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ABSTRACT

Conformal prediction (CP) is an important tool for distribution-free predictive un-
certainty quantification. Yet, a major challenge is to balance computational effi-
ciency and prediction accuracy, particularly for multiple predictions. We propose
Leave-One-Out Stable Conformal Prediction (LOO-St abCP), a novel method to
speed up full conformal using algorithmic stability without sample splitting. By
leveraging leave-one-out stability, our method is much faster in handling a large
number of prediction requests compared to existing method RO-StabCP based
on replace-one stability. We derived stability bounds for several popular machine
learning tools: regularized loss minimization (RLM) and stochastic gradient de-
scent (SGD), as well as kernel method, neural networks and bagging. Our method
is theoretically justified and demonstrates superior numerical performance on syn-
thetic and real-world data. We applied our method to a screening problem, where
its effective exploitation of training data led to improved test power compared to
state-of-the-art method based on split conformal.

1 INTRODUCTION

Conformal prediction (CP) offers a powerful framework for distribution-free prediction. It is useful
for a variety of machine learning tasks and applications, including computer vision (Angelopoulos
et al., 2020), medicine (Vazquez & Facelli, 2022} [Lu et al., 2022)), and finance (Wisniewski et al.,
2020), where reliable uncertainty quantification for complex and potentially mis-specified models is
in much need. Initially introduced by |Vovk et al.| (2005), conformal prediction has gained renewed
interest. Numerous studies significantly enriched the conformal prediction toolbox and deepened
theoretical understandings (Lei et al., 2018} (Gibbs & Candes, [2021} |[Barber et al., [2023]).

Givendata D = {(X;,Y;)}, where (X;,Y;) € (X,)) N Px y, the goal is to predict the unob-

served responses { Y, ; };”:1 on the fest data Dyegy, = {(Xn+j, Ynt+;=") ;”:1] =" Px y. Conformal

prediction constructs prediction intervals Cq, (X, +;) at any given level a € (0, 1), such that
P(Yoyj € Ca(Xntj)) > 1—«, forallj=1,...,m. (1)

A highlighted feature of conformal prediction is distribution-free: even when a wrong model is used
for prediction, the coverage validity (1)) still holds (but the prediction interval will become wider).

A primary challenge in conformal prediction lies in balancing computation cost with prediction ac-
curacy. Among the variants of conformal prediction, full conformal is the most accurate (i.e., short-
est predictive intervals) but also the slowest; split conformal greatly speeds up by a data-splitting
scheme, but decreases accuracy and introduces variability that heavily depends on the particular split
(Angelopoulos & Bates|, 2021; Vovk, [2015} |Barber et al., [2021]). Derandomization (Solari & Djord-
jilovic, [2022; Gasparin & Ramdas| 2024)) addresses the latter issue but increases computational cost
and may make the method more conservative (Ren & Barber} 2024).

Algorithmic stability is an important concept in machine learning theory (Bousquet & Elisseeff],
2002). It measures the sensitivity of a learning algorithm to small changes in the input data. Nu-
merous studies have focused on techniques that induce algorithmic stability, such as regularized
loss minimization (Shalev-Shwartz et al., 2010; [Shalev-Shwartz & Ben-David, 2014) and stochastic
gradient descent (Hardt et al.| 2016} Bassily et al.l [2020). Recent research has applied the concept
of algorithmic stability to the field of conformal prediction (Ndiayel 2022} |Liang & Barber}, [2023).
Ndiaye| (2022) proposed replace-one stable conformal prediction (RO-StabCP) that effectively
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accelerates full conformal by leveraging algorithmic stability. While it accelerates full conformal
without introducing data splitting, thus preserving prediction accuracy, the prediction model needs
to be refit for each X, ;, lowering its computational efficiency for multiple predictions.

In this paper, we introduce Leave-One-Qut Stable Conformal Prediction (LOO-StabCP), which
represents is a distinct form of algorithmic stability type than that in RO-StabCP. The key innova-
tion is that our stability correction no longer depends on the predictor at the test point X, ;. As a
result, our method only needs one model fitting using the training data D. This enables our method to
effectively handle a large number of prediction requests. Theoretical and numerical studies demon-
strate that our method achieves competitive prediction accuracy compared to existing method, while
preserving the finite-sample coverage validity guarantee.

2 PRIOR WORKS ON CONFORMAL PREDICTION (CP)

To set up notation and introduce our method, we begin with a brief review of classical CP methods.

Full conformal. We begin by considering the prediction of a single Y,4;. Fix j €
[m] ={1,...,m} and let y denote a guessed value of the unobserved Y, 4;. We call ’D;’ =
D U {(Xn4;,y)} the augmented data and train a learning algorithm f (such as linear regres-
sion) on D;’. To emphasize that the outcome of the training depends on both X, ; and y, we
denote the fitted model by ij. Here we require that the training algorithm is permutation-invariant,
meaning that j?Jy remains unchanged if any two data points (X;,Y;) and (X;/,Y}/) are swapped
fori,7" € [n] U {n + j}. Next, for each i = 1,...,n,n + j, we define a non-conformity score
Sl = S, (X)) = |Yi — f/(X;)| to measure f!’s goodness of prediction on the ith data
point Notice that S} ; also depends on X, ; through f/(X;), thus its subscript j. For simplicity,
we set j = 1 and write 57 as S only for this part. Now, plugging in y = Y, 1, by symmetry,
all non-conformity scores {bly B YR {S,),jll } are exchangeable, and then the rank of SZ;’T (in
ascending order) is uniformly distributed over {1,...,n + 1}, implying that
P51 < Qua({S]" N U{oo}) 21— o

E|where 9,(S) = inf{x|Fs(x) > p} denotes the lower-p sample quantile of data S. This implies
coverage validity P(Y,, . € C'"'(X, 1)) > 1 — « of the prediction set C'""'( X, ;) defined as

Col (X)) ={y € ¥: 5], < Qia({S/} U{oo})}. 2)
This leads to the full conformal (Ful1CP) method: compute C/""'(X, , ) by a grid search over ).

Split conformal. The grid search required by full conformal is expensive. The key to acceleration

is to decouple the prediction function f, thus most non-conformity scores {5} ;, from both j and
y: if SY 1 is the only term that depends on y, then the prediction set can be analytically solved
from @). Split conformal (Sp1itCP) (Papadopoulos et al. 2002} [Vovk, 2015) randomly splits D
into the training data Dy, ,;, and the calibration data Dy, train f only on Dy, ain, and compute and
rank non-conformity scores only on Deaiip, U { (X, +;, v) }. While split conformal effectively speeds
up computation, the flip side is the reduced amount of data used for both training and calibration,
leading to wider predictive intervals and less stable output.

Replace-one stable conformal. [Ndiaye|(2022) accelerated Ful1CP by leveraging algorithmic sta-
bility. From now on, we will switch back to the full notation for .S and no longer abbreviate S;’_j
as SY. To decouple the non-conformity scores from y, Ndiaye| (2022) evaluate these scores using
1y, an arbitrary guess of y. Therefore, we call his method replace-one stable conformal prediction
(RO-StabCP). To bound the impact of guessing y, he introduced the replace-one (RO) stability.

Definition 1 (Replace-One Algorithmic Stability). A prediction method fis replace-one stable, if
forall j € [m]and i € [n]U{n + j}, there exists ’7'530 < o0, such that

sup |S(z, [Y(X:)) — S(z, f7(X)| < 7RO

~ J 0,5 7
y,7,2€Y '

"'We use absolute residual as the non-conformity score for simplicity and due to its popularity.
Qle.e 9 ol Y!I - Qle.el b b
?Here we replaced “S5% 7 in {S, "' }uy U {5551 } by oc. This does not change the quantile.
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where ]‘A;) is trained on D U {(X,,+5,9)}, fory =y ory.

Recall that Sg ;= 1Y - fjg(Xl)‘ denote the non-conformity score computed using y. Then it
suffices to build a predictive interval that contains ij.f‘él (Xnt5) in @). By Deﬁnition the following

inequality [y — f'(Xu45)l = 755 < Snpjy S Quoa({S;}iny U foo}) < Qi-a({S]; +

TFZO ?_, U{oo}) holds true for any y € C]f“g}( n—+;)- Consequently, the RO stable prediction set

CRO (i) = {y €Y s ly = Fl(Xuii)l = 780, < Qual{ST, + 780}, U o))}

contains C™'(X,,, ;) as a subset, thus also has valid coverage. The numerical studies in Ndiaye
(2022) demonstrated that RO—-StabCP computes as fast as Sp1 1t CP while stably producing more
narrower predictive intervals (i.e., higher prediction accuracy).

3 LOO-STABCP: LEAVE-ONE-OUT STABLE CONFORMAL PREDICTION

3.1 LEAVE-ONE-OUT (LOQO) STABILITY AND GENERAL FRAMEWORK

When predicting one Y,, ;, RO—St abCP has accelerated full conformal to the speed comparable to
split conformal. However, its non-conformity scores S} ;s still depend on X, ;. Consequently, in

order to predict {Y,,; };7“:1, RO-StabCP would refit the model m times, once for each X, ;.

This naturally motivates our approach: can we let all predictions be based off a common model ]?,
which only depends on D = {(X;, Y;)};, butnot any of { X, 1}, ? Interestingly, the idea might
appear similar to a beginner’s mistake when learning FullCP, overlooking that the model fitting
in FullCP should also include (X,+;,¥), not just D. Clearly, to ensure a valid method, we must

correct for errors inflicted by using f in lieu of f;f’. Since these two model fits (ours vs Ful1CP)

are computed on similar sets of data, with the only difference of whether to consider (X, ), our
strategy is to study the leave-one-out (LOO) stability of the prediction method.

Definition 2 (Leave-One-Out Algorithmic Stability). A prediction method is leave-one-out stable,
if for all j € [m] and i € [n] U {n + j}, there exists "P'° < oo, such that

sup |S(z, f}(Xi)) = S(z, F(X0)| < 79°.

y,2€Y

The 7,9’ appearing in Deﬁmtlon are called LOO stability bounds. Their values can often be
determined by analysis of the spem ¢ learning algorithm f. For each j, we used a different set
of LOO stability bounds {’m },E[,L]U{,,ﬂ} This approach is adopted to achieve sharper bounds
compared to using a uniformly bound for all 7. We clarify that the concept of algorithmic stability
is well-defined for parametric or non-parametric f’s alike. For an f parameterized by some 6,
the stability bound does not focus on the whereabout of the optimal #, but on how much impact
leaving out (n + j)th data point will have on the trained f, possibly via quantifying its impact on
lhfoe(;lmlaled 0. We will elaborate using concrete examples in Section [3.2] For now, we assume that

7.7 ’s are known and present the general framework of our method, called leave-one-out stable

conformal prediction (LOO-StabCP), as Algorithm [T}

The implementation requires computation of O(mn) many ngjoo values. However, these compu-
tations are relatively inexpensive and do not significantly impact the overall time cost. In many
examples (such as SGD, see Section @), the main computational cost comes from model fitting,
especially for complex models. We empirically confirm this in Section 4 through various numerical
experiments.

Table [T] presents a comparison of the computational complexity for conformal prediction methods.
The concept of leave-one-out perturbations in conformal prediction has been studied in [Liang &
Barber| (2023), but their angle is very different from ours. They focused on studying the LOO as a
part of Jackknife+ (Barber et al., 2021), which fits n models, one for each D\ {(X;,Y;)}. Then
all these n models are used simultaneously for each prediction. In contrast, we use LOO technique
in a very different way, developing a fast algorithm that fit only one model to D (without deletion).
The “one” in our leave-one-out refers to “(X,,+;,y)” in D U {(Xy+,,y)}. for each j.
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Algorithm 1: (.LOO-St abCP) Leave-One-Out Stable Conformal Prediction Set
Input : Training set D = {(X;, Y;)}_,, test points { X, 1, }}L,, desired coverage 1 — a.
Output: Prediction interval C]Ijgo (Xn4;) foreach j € [m]

1. Fit the prediction function fon D;
2. Compute (uncorrected) non-conformity scores on D: S; = |Y; — f(X;)| fori € [n];
for j € [m] do
3. Compute stability bounds 7,0 for i € [n] U {n + j};
4. Compute prediction interval:
CHOO (Xnss) = [F(Xuts) & { Quoa ({81 + 7O}, U {oc}) + 7829,

end

FullCP SplitCP RO-StabCP LOO-StabCP
# of model fits [Y]-m 1 m 1
# of prediction evaluations (n+1)-|Y|-m n+m (n+1)-m n+m
# of stability bounds Not applicable ~ Not applicable  (n+1)-m (n4+1)-m

Table 1: Computational complexities of our method and benchmarks, where || is the size of the
search grid used in Ful1CP. We emphasize that in many examples, such as SGD (Section [3.2.2)),
one model fitting is much more costly than one prediction or computation of one stability bound.

Next, we provide the theoretical guarantee of our algorithm’s coverage validity.

Theorem 1. If the prediction method is leave-one-out stable as in Definition Then for each
j € [m), the prediction set C}jgo (Xn4;) constructed by Algorithmsatisﬁes

P(Yny; € C;SO(XTL-H)) >1—o

3.2 LOO STABLE ALGORITHMS

So far, we have been treating the stability bounds 7, as given without showing how to obtain
them. In this section, we derive these bounds for two important machine learning tools: Regularized
Loss Minimization (RLM) and Stochastic Gradient Descent (SGD). Many machine learning tasks
aim to minimize a loss function (y, fp(x)) over training data. Empirical Risk Minimization (ERM)
is a common approach, which seeks to minimize 2 37" | £(Y;, fo(X;)) with respect to 6. However,
the objective function is often highly nonconvex, making the optimization challenging. RLM alle-
viates nonconvexity by adding an explicit penalty (e.g., ridge and LASSO) to the objective function
(Hoerl & Kennard, |1970; Tibshirani, |1996)). Alternatively, SGD implicitly regularizes the optimiza-
tion procedure (Robbins & Monrol [1951) by iteratively updating model parameters using one data
point at a time. Its computational efficiency makes it a preferred method in deep learning (LeCun

et al.L[2015; |He et al., 2016).

3.2.1 EXAMPLE 1: REGULARIZED LOSS MINIMIZATION (RLM)

To derive the LOO stability bound, we compare two versions of RLM, only differing by their
training data. The first is trained on D, producing § = arg mingee [+ 07 (Y, fo(Xa)} +
Q(0)], where © is the parameter space and () is the explicit penalty term; while the sec-
ond is trained on the augmented data D;’ (recall DY = D U {(X,+;,y)}), producing 55’ =
argmingee [ {> ey ((Ya, fo(X4)) + €y, fo(Xn1s)} + Q(0)]. The LOO stability for RLM is
described by Definition , with f(-) = J5(-) and ij() = f5v(-). To state our main result, we need
some concepts from optimization. ’

Definition 3 (p-Lipschitz). A continuous function g : RP — R? is p-Lipschitz, if

lg(z) =gl < pllx —yll, foranyx,y € RP.
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Definition 4 (Strong Convexity). A function g : RP — R is \-strongly convex, if

A
gltz+ (1= t)y) < tg(@) + (1= )g(y) = Sllz = yl*, foranyz,y € R andt € (0,1).
In addition, a function g is convex if it is O-strongly convex.

Now we are ready to formulate the LOO stability bounds for RLM.
Theorem 2. Suppose: 1) for each i € [n + m] and given any y, the loss function £(y, fo(X;)) is
convex and p;-Lipschitz in 0; 2) the penalty term ) is A-strongly convex; 3) for each i € [n + m],
the prediction function fo(X;) is v;-Lipschitz in 0; and 4) given any y, the non-conformity score
S(y, z) is y-Lipschitz in zp| Then, RLM has the following LOO and RO stability bounds.
7100 _ 29 (pntj + 5)7 and RO — 7
’] A(n+1) 7 Aln+1)

where i ranges in [n] U {n+ j} foreach 1 < j <m,and p=n"131_| p:.

RO __ 47Vipn+j (4)

As a side remark, a uniform RO stability bound has been established in |Ndiaye, (2022)) (Corollary
3.10). Our RO bound in (@) is non-uniform (not maximizing over X;) and potentially sharper.

3.2.2 EXAMPLE 2: STOCHASTIC GRADIENT DESCENT (SGD)

For simplicity, we recap how SGD operates when trained on D. It starts with an initial parameter
value 6y and runs for R epochs. In each epoch, generate a random permutation 7 = (7y,...,7,)
of [n]. Then for each i € [n], update the model parameter by 0 = 0 — nVol(Yr,, fo(Xr,)),
where 7 > 0 is a user-selected learning rate. After a total of Rn updates, the output 9 is used for
prediction. Like in RLM, our LOO stability bound compares two versions of SGD, trained on D
and DY, respectively.

Theorem 3. Suppose: 1) for each i € [n+m], the loss function {(y, fo(X;)) is convex, p;-Lipschitz
in 0, and its gradient Vol(y, fo(X;)) is @;-Lipschitz in 0, for any y; 2) for each i € [n + m],
the prediction function fg(X;) is v;-Lipschitz in 6; and 3) the non-conformity score S(y, z) is -
Lipschitz in z, for any y. Then, with learning rate 1 < —=2—, SGD has the following LOO and

max{p;}’
RO stability bounds.
Ti]jjoo = Rn-yv;ppyj, and Tiffjo =2Rn - Yipntj, 5)
where i ranges in [n] U {n + j} foreach1 < j < m.
Readers may have noticed that for SGD, 7”9 is only half of 7}, which is very different from the

case for RLM (c.f. Theorem[2). The gap here stems from the iterative nature of SGD. Recall that in
each epoch, SGD performs n (or n + 1) gradient descent (GD) updates, with each update depending
on a single data point. Consequently, leaving out one data point results in one fewer GD update. In
contrast, replacing one data point means performing one GD update differently — in the worst-case
scenario, this update may move in opposite directions before and after the replacement, doubling
the stability bound.

SGD’s iterative nature makes it an excellent example where the number of model fits is the main
bottleneck in scaling a crucial learning technique. For SGD, each model fit requires O(Rn) gradient
updates, while each prediction costs O(1) time, and evaluating stability bounds for each prediction
costs O(n) time. Combining this understanding with Table |1, we see that our method provides
significantly faster stable conformal prediction than RO—StabCP for performing a large number of
predictions.

3.2.3 TOWARDS BROADER APPLICABILITY OF LOO-STABCP

Kernel method: The kernel method (or “kernel trick™) (Scholkopf] [2002)) is a commonly used
technique in statistical learning. It implicitly transforms data into complex spaces through
a kernel function k(x,z’). This leads to the reformulated optimization problem: 6 =
arg mingegn + >0 £(Y;, k1 0) + A0TK6, where K is a positive-definite kernel matrix K; ; =
k(X;,X;), and k; denotes its i-th row. It is not difficult to verify that the kernel method is a special
case of RLM, thus Theorem 2]applies to the kernel method.

3Here, ~ represents the prediction output, and therefore, this is an assumption independent of the model.
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Neural networks: The stability bounds for RLM and SGD rely on convexity assumptions that
might not always hold in practice, such as in (deep) neural networks. Here, we analyze the LOO
stability of SGD as a popular optimizer for neural networks, without assuming convexity.

Theorem 4. Assume the conditions of Theorem (3| except that the loss function {(y, fo(X;)) is not
required to be convex in 0. Then, for the same range of (i, ), SGD has the following LOO and RO
stability bounds:

TZL7OO - R+77 “VWipn+j, and Tif}jo - 2R+77 “YViPrtjs
where Rt = Zfi1 k" and k =[]\, (1 + ne;).

While Theorem [f] does provide a rigorous theoretical justification for neural networks, in practice,
the term x may be large if the learning rate 7 is not sufficiently small or the activation function is
not very smooth, leading to large Lipschitz constants ¢;’s. Therefore, this stability bound may turn
out to be conservative. Similar to[Hardt et al| (2016)), we also observed that the empirical stability of
SGD for training neural networks is often far better than the worst-case bound described by Theorem
[] see our numerical results in Section[5] This suggests practitioners to still apply the stability bound
in Theorem 3} dismissing non-convexity. It is an intriguing but challenging future work to narrow
the gap between theory and practice here.

Bagging: Bagging (bootstrap aggregating) (Soloff et al| [2024)) is a general framework that aver-

ages over B models trained on resamples of size m from D. Random forest [2023) is
a popular special case of bagging, in which each f(*)(z) is a regression tree. Therefore, we focus
on studying bagging. It predicts by fZ(z) = & Zszl f®)(z), where f(®)(z) indicates the individ-
ual model trained on the bth resample. For simplicity, here we analyze a “derandomized bagging”
(Soloff et al.| [2024), i.e., setting B — oco. The prediction function becomes f>(z) = E[f®)(x)].

Below is the LOO stability of derandomized bagging. Here, we denote f]y (®) (x) and f®)(z) as the
individual models obtained from D;’ and D, respectively.

Theorem 5. Assume that 1) for any j € [m] and (z,y) € X x Y, all individual prediction functions

f;?"'@(x) and f® (x) are bounded within a range of width w;; 2) the nonconformity score S(y, z)
is yv-Lipschitz in z for any y. Then, derandomized bagging achieves the following LOO stability
bound:

LOO _ TWj p

T Vi

wherep =1— (1 — %)mand’i en|U{n+jtforj=1,...,m.
From above, note that the only assumption about the prediction model is bounded output. For
example, regression trees satisfy this assumption.

Due to page limit, we relegate more results and discussion to Appendix [A.3]

4 SIMULATION

In this simulation, we compare several CP methods serving RLM and SGD. We set n = m = 100,
a = 0.1 and generated synthetic data using X; "~ A/(0, 1%) with d = 100, where 3, ; = pl'~/!
(i.e., AR(1)). In particular, we chose p = 0.5 in this experiment. For the response variable we set
Y; = u(Xi; B) + e, where ¢; "X A(0, 1).
We considered two models for p(-;5): linear u(x; 3) = Z‘;:l Bjx; and nonlinear u(z; ) =
2?21 B;e®#/10. In both models, set 3; o< (1 — j/d)® for j € [d], and normalize: ||3||3 = d. To fit
the model, we used robust linear regression, equipped with Huber loss:

1 2 :

_y_fex ) lfy—fe.’l') SQ

o) = {20 TV, e
ely = fo(x)| — 3¢, if [y — fo(z)| > ¢,

where fo(z) = 276 and we set ¢ = 1 throughout. We used absolute residual as non-conformity
scores. In RLM, we set (f) = ||0]|? and solved it using gradient descent (Diamond & Boyd,
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2016). Throughout, we ran SGD for R = 15 epochs for all methods, except R = 5 for the very
slow FullCP. For both RLM and SGD, we set the learning rate to be = 0.001. For more
implementation details, see Appendix [G.1} Each experiment was repeated 100 times.

We compare our method to the following benchmarks: 1) OracleCP (Appendix [C.I] Algorithm
: an impractical method that uses the true {Y;,4;}7"; to predict; 2) Ful1CP; 3) Sp1litCP: 70%
fraining + 30% calibration; and 4) RO-StabCP. The performance of each method is evaluated by
three measures: 1) coverage probability (method validity); 2) length of predictive interval (prediction
accuracy); and 3) computation time (speed).

Linear Setting: RLM Linear Setting: SGD Nonlinear Setting: RLM Nonlinear Setting: SGD
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Figure 1: Comparison of CP methods. Our method (LOO-St abCP) achieves competitive prediction
accuracy and computes at the speed comparable to SplitCP, while maintaining coverage validity.

Figure [T] presents the results of our simulation. In the plots for coverage and length, the horizontal
dashed lines represent the desired coverage level (1 — «) and the length of the tightest possible pre-
diction band obtained from the true distribution of the dataﬂ respectively. As expected, all methods
maintain valid coverage. Our method demonstrates competitive prediction accuracy, comparable to
those of OracleCP, FullCP, and RO—StabCP. These four methods exhibit more consistent and
overall superior accuracy compared to SplitCP. In terms of computational efficiency, our method
performs on par with Sp11itCP and is clearly advantageous compared over the other methods. No-
tably, our method significantly outperforms RO-StabCP in handling a large number of prediction
requests.

5 DATA EXAMPLES

We showcase the use of our method on the two real-world data examples analyzed in|Ndiaye, (2022]).
The Boston Housing data (Harrison Jr & Rubinfeld, [1978)) contain 506 different areas in Boston,
each area has 13 features as predictors, such as the local crime rate and the average number of
rooms. The goal is to predict the median house value in that area. The Diabetes data (Efron et al.,
2004) measured 442 individuals at their “baseline” time points for 10 variables, including age, BMI,
and blood pressure, aiming to predict diabetes progression one year after baseline. Both datasets are
complete, with no missing entries. All continuous variables have been normalized, and no outliers
were identified.

For each data set, we randomly held out m data points (as the test data) for performance evaluation
and released the rest to all methods for training/calibration. We tested two settings: m = 1 and

*In our setup, it is 3.290 since P(|e;| < 1.645) = 0.9.
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m = 100, two model fitting algorithms: RLM and SGD; and repeated each experiment 100 times.
The other configurations, including the model fitted to data (¢, €, €2, etc.), the list of compared
benchmarks and the performance measures, all remained unchanged from Section 4]
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Figure 2: Comparison of prediction interval lengths, under choices of m = 1 and m = 100.

Figure 2] shows the result. While most interpretations are consistent with that of the simulation, we
observe two significant differences between the settings m = 1 and m = 100. First, under m = 1,
RO-StabCP and our method take comparable time, but when m increases to 100, our method
exhibits remarkable speed advantage, as expected. Second, with an increased m, the amount of
available data for prediction/calibration also decreases. This leads to wider prediction intervals for
all methods. Also, SplitCP continues to produce more variable and lengthier prediction intervals
compared to most other methods for m € {1,100}. In summary, our method LOO-St abCP exhibits
advantageous performances in all aspects across different settings. The empirical coverage rates are
consistent with those in the previous experiments and are provided in Appendix [G.3}

Coverage Length Log-time (log(sec.))
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Figure 3: Comparison of CP methods with neural networks with single hidden layer under choice
of m = 100. LOO-StabCP continues to closely achieve the target coverage while exhibiting lower
variability in prediction intervals.

To further evaluate the performance of LOO-StabCP with non-convex learning methods, we con-
ducted experiments with a neural network of a single hidden layer of 20 nodes and a sigmoid ac-
tivation function. We set n = 0.001 and R = 30. For stability bounds, we borrowed from the
practical guidance in |Hardt et al. |(]2016 dnd|Ndldye| (]2022[) and set TLOO Ry - || X5 [N X5l

for LOO-StabCP and TRO 2Rn - v|| X;|[| X+ for RO- StabCp, respectively. This choice is




Under review as a conference paper at ICLR 2025

elaborated in Appendix[A2] see (B). Figure[§]presents the results. LOO-StabCP maintained valid
coverage across all scenarios. These findings highlight the robustness of LOO-StabCP in handling
complex models like neural networks.

Finally, since one could consider derandomization by aggregating results across multiple differ-
ent splits to reduce variation of SplitCP (Solari & Djordjilovié| 2022} [Gasparin & Ramdas| [2024),
we also numerically compared our method to this approach. The result demonstrated that our
LOO-StabCP is computationally faster and less conservative than two popular derandomized
SplitCP methods [Solari & Djordjilovi¢| (2022)); [Gasparin & Ramdas| (2024). Due to page limit,
we relegate all details of this study to Appendix B}

6 APPLICATION: CONFORMALIZED SCREENING

Many decision-making processes, such as drug discovery and hiring, often involve a screening stage
to filter among a large number of candidates, prior to more resource-intensive stages like clinical
trials and on-site interviews. The data structure is what we have been studying in this paper: training
data D = {(X;,Y;)};_, and a large number of test points { X,,;}72; without observing Y, ;’s.
Suppose higher values of Y are of interests. [Jin & Candes| (2023 formulated this as the following
randomized hypothesis testing problem:

HOj : Yn+j < Ccj VS Hlj : Yn+j > ¢4, for j € [m],

where c;’s are user-selected thresholds (e.g., qualifying score for phone interviews). Then screening
candidates means simultaneously testing these m randomized hypotheses. To control for error in
multiple testing, one popular criterion is the false discovery rate (FDR), defined as the expected
false discovery proportion (FDP) among all rejections.

Z;"Zl 1{H,;, is incorrectly rejected }
Lv 377 1{Hy; is rejected}

Jin & Candes|(2023) proposed a method called c £BH based on SplitCP. Our narration will build
upon non-conformity scores without repeating details about model fitting. In this context, the non-
conformity score should be defined differently, for instance: S(y, z) = y — z without the absolute
value, where y is the observed response and z is the fitted value. On the calibration data, S; =

(Yz, f( X)), whereas on the test data, we would consider S, ;= 8(cy, J/C\(Xn_l,_j)). Jin & Candeés
2023)’s ¢ £BH method computes the following conformal p-value:

PPl DieToum 1S < Sffﬂ} +1 ©)
J |Ica1ib| +1 ’

FDR = E[FDP], where FDP =

where Z.,;;p denotes the index set corresponding to the calibration data. To intuitively under-
stand (6), notice that pSlDllt « if and only if ¢; falls outside the level-(1 — «) (one-sided) split
conformal prediction interval for Y;,, ;. Finally, plugging {p ; into a Benjamini-Hochberg
(BH) procedure (Benjamini & Hochberg, [1995)) controls the FDR at a desired level ¢g: compute
k* = max{k : ZJ L l{pSpllt < gk/m} > k}, and reject all Hy;’s with p;pht < gk*/m.

While Jin & Candes|(2023)’s method effectively controls FDR and computes fast, the data splitting

mechanism leaves space for more thoroughly exploiting available information for model fitting. To

this end, we propose a new approach, called LOO-c £BH built upon our main method LOO-StabCP.

We compute stability-adjusted p-values as follows:

S S — TR0 < S
n+1

Algorithm 2] describes the full details of our method.

split }m

+ OO 11

LOO _ +3.7 . (7)

Dj

To numerically compare our method to existing approaches, we used the recruitment data set
that was also analyzed in Jin & Candes| (2023). It contains 215 individuals, each
measured on 12 features such as education, work experience, and specialization. The binary re-
sponse indicates whether the candidate receives a job offer. We import the robust regression from
Section 5] as the prediction method, optimized by SGD. Since the task is classification, we use the
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Algorithm 2: (LOO-c£BH) Conformal Selection by Prediction with Leave-One-Out p-values

Input : Training set D, test points { X, ; thresholds {c; FDR level q.
Output: Set of rejected null hypotheses

j=1 j=1
1. Fit the prediction function fon D;
2. Compute (uncorrected) non-conformity scores on D: S; = S(Y;, f ( ;) for i € [n];
for j € [m] do

3. Compute stability bounds 70 for i € [n] U {n + j}:

4. Compute LOO conformal p- Values pyO° asin ;
end
5. Implement BH Procedure: k* = max{k : Y., 1{py°® < gk/m} > k} and reject all

Hy;’s satisfying pLOO < gk*/m.

clip function in Jin & Candes (2023) as the non-conformity score: S(y, f) = 100y — f. For illus-
tration, we also formulated a benchmark RO-c £BH, following the spirit of Ndiaye|(2022) and using
replace-one stability. RO-cfBH replaces all 7°°© terms in (7) by the corresponding 7RO terms;
it is otherwise identical to LOO—c £BH. We repeated the experiment 1000 times, each time leaving
out 20% data points as the test data. In c£BH, the data was split into 70% for training and 30% for
calibration. We tested three target FDR levels ¢ € {0.1,0.2,0.3} and consider three performance
measures: 1) FDP; 2) test power, defined as (Z;nzl 1{Ho; is rejected}) /( Z;”:l 1{Hy; is true});
and 3) time cost.

B Method 1.0 l
0% = 05
[ RO<BH ~
0.4 == L00-cBH 081 5
im’/ —1.04
o, 031 £=f-1=11 5 %0 g
=) = = ] .
= o v —L.5
0.21 - - A 04 g .
ED +
Method
el 1 S -2.04 L i
0.1 0.2 [ oBH — =g
* [ RO-<fBH i
0.0 004 o I LOO-cfBH 5]

01 02 03 0.1 02 03 ofBH RO-cfBH LOO-cfBH

Figure 4: Comparison of different screening methods on recruitment data. Time cost does not vary
with q.

Figure [4] shows the result. Our method achieves valid FDP control for all tested g. Compared to
cfBH, our method is more powerful, due to the improved exploitation of available data for pre-
diction. The performance measures also reflect that our method LOO-c £BH produces more stable
prediction intervals, while sample splitting introduces additional artificial random variations to the
result of c£BH. Compared to RO-c£BH, we highlight our method’s significant speed advantage.
Moreover, as we showed in Theorem [3] for SGD, our LOO approach achieves a tighter stabil-
ity bound than RO. As a result, our method is less conservative and more powerful compared to
RO-cfBH.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to stable conformal prediction. Our method significantly
improves computational efficiency for multiple prediction requests, compared to the classical stable
conformal prediction (Ndiaye, [2022)). Here, we mention two directions for future work. While we
have derived stability bounds for RLM, SGD, neural networks and bagging, improving the tightness
of bounds for complex methods remains an important avenue for future research. Also, we have
been focusing on continuous responses. It would be an intriguing future work to expand our theory
to classification.

10
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Supplemental Materials for
“Leave-one-out Stable Conformal Prediction”

Anonymous Authors

A DETAILED INSIGHTS ON PRACTICAL EXTENSIONS OF LOO-STABCP

In this appendix, we provide further numerical and theoretical analysis to support the approaches
discussed in Section[3.2.3]

A.1 NUMERICAL EXPERIMENTS USING KERNEL TRICK

The key insight of the kernel trick is that by transforming the data into a higher-dimensional feature
space using a kernel function, the original optimization problem

n

- 1
- in = ;X7 N8I3,
B argérel]l@n;( I8)+ 18I

can be reformulated as
n

~ 1
0 = in — Y £(Y;, k0) + A0TKG.
gl > L0V K6) +
This reformulation using the kernel trick does not violate the assumptions required for RLM and
SGD, as the transformation maintains the core structure of the optimization problem. Specifically,
the kernel matrix K implicitly defines the high-dimensional feature space through the kernel func-
tion k(X;, X;), without requiring explicit computation of the transformed features. This ensures

that the problem remains computationally tractable.

For RLM, the regularization term ||3||? in the original formulation translates directly to 67 K6 in the
kernelized version, preserving the strong convexity of the optimization problem as long as we use
a positive definite kernel (e.g. radial basis kernel, polynomial kernel, etc.). Similarly, for SGD, the
smoothness and Lipschitz continuity of the loss function are preserved, as the transformation affects
only the inner product computations, which is linear, and does not alter the fundamental properties
of the objective function. Thus, if our original problem satisfies the conditions of LOO stability of
RLM and SGD, the kernel trick enables the model to capture nonlinear patterns in the data while
ensuring that the theoretical guarantees remain intact.

By integrating the kernel trick, we revisit the scenarios in Sectionf] where we initially considered
synthetic data examples using standard robust linear regression methods. For our experiments, we

2
_ HIQ:Q I
mial kernel kpoly (7, 2") = (272’ + ¢)9, both chosen for their ability to model complex nonlinear
relationships effectively. For hyperparameters, we chose 0 = 0.1, ¢ = 1, and d = 2. We compared
these results to the outcomes in Section ] and this can be theoretically viewed as a special case of
kernel robust regression using a linear kernel.

employed the radial basis function (RBF) kernel kgrpr(z,z’) = exp ( ) and the polyno-

As shown in Figure[§] LOO-StabCP continues to perform reliably under both settings settings with-
out any loss of coverage, validating its adaptability to more sophisticated model structures. More-
over, compared to the linear setting, the use of the kernel trick in nonlinear settings leads to a notable
reduction in prediction interval length. This reduction highlights the ability of LOO-StabCP with
kernel trick to provide more precise predictions while capturing the complex patterns inherent in
data, thereby enhancing its practical utility.

A.2 DETAILED INSIGHTS INTO NONCONVEX OPTIMIZATION

In Section [3.2.3] we derived stability bounds for SGD under nonconvex settings. Here, we provide
additional details on the derivation and implications of these bounds.

13
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Figure 5: Comparison of CP methods using kernelized technique.

In the convex case (Theorem[3), the stability bounds for SGD are given by:

TiI,J‘]()O = Rn - ipn+j, Til?jo =2Rn - YWipn+j-
On the other hand, for the nonconvex case (Theorem E[) these bounds are modified to include the
term RT:

~LOO RO _

0 =R wipnyy, T = 2R wipnyy,

where Rt = S>% k7 and & = [/, (1 + ;). Note that the only distinction in the nonconvex
case is that R™ replaces R. Hence, RT can be interpreted as representing the cumulative effect
of nonconvexity. This term is influenced by the learning rate 7 and the Lipschitz constants of the
gradients ¢;. Specifically, if x ~ 1, RT approximates R, aligning with the convex optimization sce-
nario. However, when « is significantly greater than 1, R™ can grow exponentially with R, resulting
in overly loose bounds. The practical implication of this result is that 7 and ¢; significantly influ-
ence the tightness of stability bounds. While smaller values of 7 can mitigate this issue, they may
also slow down convergence, creating a trade-off between theoretical stability and computational
efficiency.

As described in Section[d] we conducted experiments with a neural network featuring a single hidden
layer and employed approximated stability bounds:

7150~ R || Xl Xngll and 7P~ 2R - A X1 X5 ®)

b 2,]

Although these terms approximate our problem as if it were convex, they still capture the interaction
between the training and test points in our dataset, providing a practical measure of stability. By
using these approximations, we adapted our conformal prediction framework without relying on
overly conservative worst-case bounds. Alongside the results in Section 5} Figure[6]shows outcomes
for a two-hidden-layer network with 10 and 5 nodes, respectively, under the same settings.

Our empirical results, shown in Figure [f]and Figure[§] demonstrate that these approximations, de-
spite their theoretical looseness, do not compromise the validity of LOO-StabCP. These findings
are consistent with prior observations (Hardt et al| 2016} [Ndiaye] [2022)), where theoretical stability
bounds in nonconvex settings are often pessimistic, yet empirical results tend to outperform these
expectations.

14
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Figure 6: Comparison of CP methods with neural networks with two hidden layers under choice of
m = 100.

A.3 ADDITIONAL RESULTS AND DISCUSSION ON BAGGING

While derandomized bagging discussed in[3.2.3]|provides conceptual insights into stability, practical
bagging methods have internal randomness induced by the resampling scheme. To account for this
randomness, here, we provide theoretical results on the LOO stability of bagging in practice.

The randomness in bagging is two-fold. One source is the resampling process, where datasets
are created by sampling with replacement from the original dataset. Another arises from the base
learning algorithm itself, as seen in random forest, where random feature subsets are selected in
each bag. The latter can be characterized by a random variable & ~ U/(0, 1). Algorithmillustrates
the implementation of bagging.

Algorithm 3: Bagging

Input : Training set D = {(X;,Y;)}?_,, Number of bags B, Number of samples in each bag

m
Output: Prediction function f(-) = f2(-):= L S0 | f®(.).
for b € [B] do

1. Sample bag r(®) = (igb), . (b)) where z(b) Lig- U([n]) for j € [m];

2. Sample seed &) ~ 24(|0, 1]),
3. Fit model f(®) with () and £€®);
end

The prediction function of bagging is inherently random, making it challenging to derive a de-
terministic stability bound. Nonetheless, based on Theorem [] we can deduce with high prob-

zﬂjﬂity that bagging is LOO stable. In the context of bagging, Ey(i) = 1 25:1 ﬁ”(b) (x) and
flx) = & 25:1 f®)(z), where the sample average replaces the expectation compared to deran-

domized bagging. The following theorem provides a probabilistic guarantee on the LOO stability
bounds for bagging.

Theorem 6. Suppose the conditions of Theoremlhold Then forany o € (0,1), bagging has the
following LOO stability bounds with probability at least 1 —

NN )

withp =1 — (1 — 2)™ where i ranges in [n] U {n + j} for each 1 < j < m.

The implications of Theorem[3]and Theorem[f]are as follows. Note that the above theorem requires
only the minimal assumption that the base model fitting algorithm used in bagging has bounded
output. This suggests that LOO—StabCP can be applied to a wide range of algorithms. For example,
building on the stability of bagging,[Wang et al](2023)) extended the results to the stability of random
forest. Their key insight was that random forest utilize weak decision trees as their base model fitting
algorithm, and the final output of a decision tree is always determined as the average of the responses
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in the training data it uses. As a result, it is straightforward to see that the output of a decision tree
cannot exceed the range of the responses in the training set. Moving forward, these insights can
serve as a foundation for exploring stability guarantees in other complex learning algorithms.

B COMPARISON WITH DERANDOMIZATION APPROACHES

In this appendix, we extend our numerical experiments to include comparisons with derandom-
ization approaches (Solari & Djordjilovid] 2022} [Gasparin & Ramdas] [2024), which are potential
alternatives to LOO-StabCP in terms of reducing the variability of Sp1itCP. Specifically, these
methods differ from SplitCP, which relies on a single data split, by merging multiple prediction
intervals constructed from various splits into one final prediction interval.

Linear Setting: RLM Linear Setting: SGD Nonlinear Setting: RLM Nonlinear Setting: SGD
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Figure 7: Comparison of CP methods including derandomization approaches on synthetic datasets.

Among these, two notable methods have been proposed in the literature. [Solari & Djordjilovic|
were the first to propose this approach. They generated split conformal prediction intervals
with 1 — 3 validity from multiple data splits and then derived a final prediction interval through ma-
jority voting (i.e., the range covered by more than half of these intervals). They showed that this final
interval maintains 1 — « validity. We refer to their method as MM—-Sp1itCP (Majority Multi-Split
Conformal Prediction). Meanwhile, [Gasparin & Ramdas| (2024)) focused on the exchangeability of
each prediction interval derived through MM-Sp1 it CP. Building on this property, they proposed an
alternative aggregation technique that produces tighter yet still valid prediction intervals by apply-
ing a majority vote correction. We denote this method as EM-Sp1itCP (Exchangeable Multi-Split
Conformal Prediction). For further details on these methods, we refer readers to
[iTovid| (2022); [Gasparin & Ramdas| (2024).

We compare the performance of these two derandomization techniques with our proposed method,
LOO-StabCP. To this end, we applied the methods to the settings described in Section ] and Sec-
tionp] For MM-SplitCP and EM-SplitCP, we merged 30 splits. Figures [7] and [§] present the
results on synthetic and real datasets, respectively. From the results, we observe that the variabil-
ity in coverage and interval length produced by MM-SplitCP and EM-SplitCP is noticeably
lower than that of SplitCP, indicating that these derandomization techniques effectively reduce
the internal variability of data-splitting approaches.

However, we also find that the average coverage of MM-SplitCP and EM-SplitCP is gener-
ally higher than the predetermined level, suggesting that these derandomization techniques tend
to produce conservative intervals. Furthermore, both methods require significantly more computa-
tional time, which can be attributed to their reliance on multiple model fits, unlike Sp1itCP and
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Figure 8: Comparison of CP methods including derandomization approaches on real datasets.

LOO-StabCP, which rely on a single model fit. In contrast, LOO-StabCP produces tight and
stable intervals while maintaining reasonable coverage. These results underscore the computational
efficiency and precision of LOO-StabCP. These findings are consistent across both synthetic and
real data scenarios, showcasing the adaptability and efficiency of LOO-StalbCP compared to other
derandomization methods.

C IMPLEMENTATIONS OF CONFORMAL PREDICTION METHODS

C.1 ORACLE CONFORMAL PREDICTION

Algorithm 4: (OracleCP) Oracle Conformal Prediction Set

Input : Training set D = {(X;, Vi) } ;. test sets Diesy = {(Xntj, Ynyj)} 7Ly, desired
coverage 1 — a.
Output: Prediction interval C§"2¢(X,, ;) for each j € [m)].
for j € [m] do
1. Fit the prediction function f; on DY"“ ;
2. Compute non-conformity scores on D Ynti. g Si;j =Y — E(Xl)| fori € [njU{n+j};

3. Compute predlctlon interval:

CoRle (X, ) = [F5(Xngs) £ Quoal{Sij 1oy U LSt Dl:
end
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C.2 FuLL CONFORMAL PREDICTION

Algorithm 5: (Ful1cP) Full Conformal Prediction Set

Input : Training set D = {(X;, Y;)};,, test points { X, 4;}72,, search grid G, desired
coverage 1 — a.
Output: Prediction interval Ci"} (X, ;) for each j € [m].

for j € [m] do
for y € G do
1. Fit the prediction function f; on DY;
2. Compute non-conformity scores on D: S} ; = [Y; — f”( X;)| fori € [n];
3. Compute quantile value Q1 ({57, }7, U {o0});
end

4. Compute prediction interval
Cl(Xng) = {y € G: SU4 5 < Quoal{SY, 1, U{ooh) )

end

C.3 SpLIT CONFORMAL PREDICTION

Algorithm 6: (Sp1itCP) Split Conformal Prediction Set

Input : Training set Diyain = {(Xi, Y3) }ieZ, an» calibration set Doy, = {(X, Vi) FieZo s
test points { X, y;}7.,, desired coverage 1 — a.

Output: Prediction interval C;f’;t(XnH) for each j € [m)].

1. Fit the prediction function ﬁrain on Dipain;
2. Compute non-conformity scores on Deaiit,: S; = |Yi — firain(Xi)| for i € Zeatip;
for j € [m] do
3. Compute prediction interval
N ~
Cgs',palt (Xn+j) - [ftrain(Xn—i—j) + Ql—Ot({Si}iEIcanb U {Oo})]’
end

C.4 REPLACE-ONE STABLE CONFORMAL PREDICTION

Algorithm 7: (RO-StabCP) Replace-One Stable Conformal Prediction Set

Input : Training set D = {(X;, Y;)}i_,, test points { X, 4, }7L,, initial guesses {Yy4;}72;,
desired coverage 1 — a.
Output: Prediction interval CES(XTLH) for each j € [m].
for j € [m] do -
1. Fit the prediction function f; on D}’
2. Compute (guessed) non-conformity scores on D: S; = |Y; — E(XZ)\ fori € [n];
3. Compute stability bounds 70 for i € [n] U {n + j};
4. Compute prediction interval:
CJP"{S(Xn-&-j) = [fj(Xn-‘r]) (Ql a({S + 7, RO e U {OO}) RJ?] ])]
end

18
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D IMPLEMENTATIONS OF LOO STABLE ALGORITHMS

D.1 REGULARIZED L0OSS MINIMIZATION

Algorithm 8: (RLM) Regularized Loss Minimization
Input : Training set D = {(X,;,Y;)} ;.

~

Output: Prediction function f(-) = f5(-).

1. Compute optimal parameter § := arg mingeo{< Y1, (Y5, fo(X:)) + Q(0)};

D.2 STOCHASTIC GRADIENT DESCENT

Algorithm 9: (SGD) Stochastic Gradient Descent (with Random Reshuffling)
Input : Training set D = {(X;,Y;)}” ,, number of epochs R, step size 7, initial value .
Output: Prediction function f(-) = f5(-).

1. Initialize parameter 6 := 6;
for r € [R] do
2. Sample a permutation 7 of [n] uniformly at random;
for i € [n] do
| 3. Update parameter 6 := 6 — nVol(Yr,, fo(Xx,));
end
end

4. Set the final parameter - 0;

E USEFUL LEMMAS

Lemma 1 (Lemma 13.5 in[Shalev-Shwartz & Ben-David (2014)). 1. Let g, h : RP — R be convex
function and A-strongly convex function, respectively. Then, g + h is \-strongly convex. 2. Let
g : RP — R be A-strongly convex and y minimize g, then, for any x,

o)~ 9(y) > Slle — ol

Lemma 2 (Lemma 3.6 in[Hardt et al.| (2016)). Let g : RP? — R be a function such that Vg : RP —
RP is a p-Lipschitz. Define h : RP — RP such that h(0) = 6 — aVg(0) with o < 2/¢@. Then, h is
(1 + ne)-Lipschitz. If g is in addition convex, h is 1-Lipschitz.

F PROOFS OF THEOREMS

F.1 PROOF OF THEOREM 1

Proof. By Deﬁnition we have SY; < S; + 7P°, for i € [n] and j = [m]. Similarly, for any
4, we have [y — f(Xn.;)| — 9P < SY. ;- Therefore, for any j, the following holds for all y

contained in C;?‘fclyl (Xnts):
[y = F(Xni)| = 70 < Quoa({Si + 770}y U {o0}),
which is equivalent to
Y € [f(Xnas) £ (Quoa({Si + 77N U {o0}) + 0]
This directly implies C}9°(X,45) 2 Ci4(X,15) and hence
P(Yoyj € Cia®(Xnij)) = P(Yay; € Ci0 (Xngy)) > 1—a,
for any choice of a.
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F.2 PROOF OF THEOREM 2

Proof. Fory € Y and j € [m] define F}'(0) = —5{>1_, £(Yi, fo(X:)) + €y, fo(Xni)} +
Q(0) and F(0) = ={>1_, €(Y;, fo(X:))} + Q6). Then, ! = argmingeo F}(6) and 6 =
arg mingeg F(6).

We begin by proving the LOO algorithmic stability. Fix y and j and suppose that ||§;’ — §|| <

%. Then, forall i € [n]U{n+ j}and z € ),

-~

1S(2, FY(X0)) = Sz, F(X)| < AIFY(X) — F(X3)]
= 7|f§; (Xi) — f7(X0)]
N |
29vi(pn+j + P)
- An+1)

The first and the second inequalities follow from the Lipschitz property of non-conformity score
function and the prediction function, respectively. Therefore, it suffices to obtain the bound of

[|6¥ — ]| as assumed above. By the first part of Lemma F/ and F are \-strongly convex functions
of 6. Using the second part of the Lemma [I] we have:

~

Aa A ~
S0 = 0717 < FY(6) - F}(67)

n

= " {FO) - F@)}

n+1
+ %H{ﬁ(y, F3(Xue) = Uy, fy (X)) + Q6) — 28}

< o {H (X)) — U, 3y (X)) + 0(0) — 0@}

©))

The last inequality follows from the optimality of 9. Now, by the Lipschitz property of the loss
function, we have:

Uy J3(Xoe)) = s S0 (Xoe)) < psl|6 — 67 (10)

On the other hand, again by the optimality of 5, it holds that

~

0.< F(8) ~ FB) = - S UV f (X0) — Vi, F5(X0) + Q@) — 9),
i=1

which implies
Q(0) — Q(65) < pll6y - 0ll, (11)
by the Lipschitz property of the loss function. Finally, combining (T0) and (1) to (©), we get
167 - 81 < e
J - n :

For the RO algorithmic stability, fix y, 3, and j. By the similar arguments as for (E[) we have
AT A 1
SIBY =B < — (£ fa (X)) — €y Sy (X))

{0 fyy (X)) — €65, Fyp (X))

20n+j 7 Yl
< ) gy gy
S

.. . ny ny 4pn+;j 1 1mi i
and this implies [|07 — 6| < i1y The rest of the proof is similar to the previous case.
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F.3 PROOF OF THEOREM 3

Proof. We start with proving the case of RO algorithmic stability first, for clearer presentation.
Also, we only prove the case of j = 1 and R = 1 since extending to the case of j > 1l or R > 11s
straightforward. Let 7 be an arbitrary permutation of [n + 1] and k be such that 7, = n + 1. Fix y

and 7. Let (03, 07,....07.,) and (67, 9%’, o ,HZH) be the updating sequences of SGD sharing 7
for DY and Dy respectively. Note that fy = f1 = foy,, and fy f1 = fey . As in the proof of
+1

Theoreml we first bound the distance between the two termlnal parameters, [|6% —0Y -

Let us first consider the case of K = n + 1. Then, by the SGD update rule, we can see that 67 = 9?
for all ¢ = [n] since for SGD update, the two sequences share the first n data points as well as the
initial parameter. Therefore, we have

10741 = 0% ia 1l = 1% = 190y, Sy (Xasa))} = {67 — 1V6l(T. Lo (Xna))}
< nlIVol(y, foy (Xnt))ll + 0l Vol(y, for (Xnt1))ll
< 2npn+1-
Here, we used triangle inequality, and then the Lipschitz property of loss function.
Now, consider the case of K < n + 1. If ¢ = k, by the similar aument, we can show that
2

167 — 917|| < ||0 ?_1H + 2npp+1. Otherwise, if ¢ # k, by Lemma [2) with the choice of « := 7,
P = P S n’ andg(@) = g(yﬂ"m fG(XWi))’ we have:

167 — 071 = I8!y = Vol (Y, for (Xr))} = {611 = V0 (Yay, Sy (X )]

. (12)
< 167 — &1,

since £(Yr,, fo(Xx,)) is convex. Unraveling the recursion from the above two inequality, we get

6% 4 Hg <68 - 93 I + 21npn+1 = 2npn+1. The last equality holds since the two updating
sequences share the common initial value. The remaining parts follow similarly to the proof of
Theorem 21

Next, to prove the LOO algorithmic stability, fix y and let 7’ = (7},...,n],) be the sequence
obtained from 7 by excluding the kth entry. For example, if we choose n = 4 and 7w = (3,2,5,1, 4),
then K = 3 and 7’ = (3,2,1,4). Then, it can be shown that 7’ is an arbitrary permutation of [n]

Define an updating sequence of SGD, (6o, 01, ..., 60,) for D induced by 7/, i.e, f = fo, . Note that
6o = 6. As the case of the RO algorithmic stability, it suffices to show that [|6Y | — 60, || < npp1.

If K = n + 1, then we have 0 = 0, for i = [n]. Therefore, it follows that

105 11— Onll = {04 — nVel(y, for (Xnt1))} — ball
<nIVel(y, for (Xnt1))|l
< NPn+j-

For the case of £ < n + 1 and further remaining parts, we can follow the same procedure used in
the RO algorithmic stability. O

F.4 PROOF OF THEOREM 4

Proof. The overall structure of the proof is almost identical to that of Theorem[3] Again, let us focus
on the proof of RO stability with R = 1 first. Recall that in that proof, the convexity assumption was
used only in (I2). Since we have discarded the convexity assumption of £ (Yz,, fo(X%,)) by Lemma
Iagaln the Lipschitz constant of A(0) = 0 — nVel(Yx,, fo(Xr,)) is replaced from 1 to 1+ nex,.
That is, we obtain the following recursive inequalities:

HOU - HUH < ”951171 - Hﬁjf] || + 277/)g+1 if i=F, (13)
' T @m0y — 0 if i<k
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Considering || — 6%|| = 0, unraveling these inequalities yields

n+1
16541 — Onall < ( 11 (1+Wm)> - 2P

i=k+1

n+1
< (H(1+n@m)> 2Mpntj

i=1

n+1
= (H (1+ n%)) “2Mpntj

1=1
= 2KNpp+;j,

since ny; > 0 by definitions. Extending this to the case of R > 1 is not as straightforward as
the proof of Theorem 3] hence we also present the corresponding proof. In this case, we can use
induction. Set R > 1 andletr € [R]. Suppose that up to (r —1)th epoch, the difference of parameter

is bounded by 2 (ZS LK ) Npn+j. Then, rth iteration can be treated as the case of & = 1 with

08 — 0% < 2 (Zb LR ) 7Pn+;- In this case, unraveling ([3) yileds

n+1 k—1
H0n+1 0%-&-1” < < H 1 +7790m)> l(H(l +77‘pm)> 168 — 6811 + 2npn+;

i=k+1 =1
n+1 k—1 r—1
< < I a+ 77%)) l(H(l + 77%)) 2 <Z %S> NPn+j + 277Pn+j‘|
i=k+1 i=1 s=1
r—1 n+1
< 2puys || T+ ner) (Z Hs> + ( IT a+ nsom-))
ik s=1 i=k+1

r—1
< 261+ KZ %S> +1
s=1
,
=2 (Z ns> NPrtj-
s=1

Since we already proved the case of » = 1, this completes proof for RO stability. For the LOO
stability, we can use the same reasoning. O

F.5 PROOF OF THEOREM 5

Proof. Fix (z,y) € X x Y and j € [m]. Due to the symmetry of the resampling scheme, i.e.,
sampling uniformly with replacement, we have

flz)=E [f;”(b)(ac)‘n—&- 1¢ r} .

Therefore, using the above facts along with the Lipschitz property of the non-conformity score
function, we get

1S(2, Y (2)) = S(z, f(2))] <
=1 [E[#@)] B[ @)+ 18]
=o[e [ e[ ]

Next, by the definitions of conditional expectation and covariance,

B[O @ B[O @)]|n+1¢7] = ST +11 E (V@ -E [0 @)]} 1{n+1 ¢}
- mc‘” (@) 11 ¢ry).

@) - fla)
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Combining the above results, we have

-~ o~

Iﬂ%ﬁwn—ﬂaﬂwﬂéT%;@w(ﬁ“%mlm+l¢ﬂ), (14)

where p=P(n+1 € r)=1— (1 — 1)™. Furthermore, it holds that
’Cov (ij’(b) (), 1{n+1¢ r})‘ < [Var (ij’(b) (x)) Var (1{n+1 ¢ r})} :

wj2 .
IP( *P)

IN

wj
= 3. /(1 =p).
5 p(1—p)

Here, the first inequality follows from the Cauchy-Schwarz inequality. For the second inequality,
we apply Popoviciu’s inequality for variance and the properties of the Bernoulli distribution. Sub-
stituting this bound into (T4) completes the proof. O

F.6 PROOF OF THEOREM 6

Proof. Fix (z,y) € X x Y and j € [m]. Let ij(x) and f(z) denote the predictions correspond-

ing to bagging, and let ij’oo(x) and f> (z) denote the predictions corresponding to derandomized
bagging. Then,

{(F@ =@+ {7 - 2@} + {7~ - f@)]
V() = J @) + |7 @) - @) + [ @) - fla)

Consider each term on the last line of (T3). For the first term, note that

1 B
BZﬁwm—HﬁWM«

HOR G

Since each single prediction f]y &) (x) is almost surely bounded within an interval of range w;, by
Hoeffding’s inequality, we have

p (‘f]@/(x) - ijm(x)’ <t) 21— 2exp (-2B62/u?),

for any ¢ > 0. Setting § = 2 exp(—2Bt%/w?) yields

_ ~ 0
P |7V - @) < '”’Jlog(;‘) >1- 2.

Similarly, for the third term, we obtain an identical bound:

2
P ( |f) - Po)| < %bqg 120,

For the second term, a direct application of Theorem[3] gives the following deterministic bound:
2Y,00 Foo yw; p
|Froo(a) - o) < 252 )

2 1—p
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Combining all the bounds for the three terms in (]E]) using the union bound, we have that, with
probability at least 1 — 6,

S(z, fY(2)) = S(z, f(2))] <

G DETAILS OF NUMERICAL EXPERIMENTS

G.1 DETAILS OF ALGORITHMS

The configurations satisfy the assumptions of Theorem [2] and Theorem [3] allowing us to compute
the stability bounds concretely. First, for RLM, the following stability bounds were used. For
i€ [n]U{n+ j}foreachj € [m],

QGHXZ'H 1« 4€||XiHHXn+'”

LOO X Z X RO J

T, = n+j A ) T; 4 :
bl )\(n + 1) I J H n = 1%l i Aln + 1)

Next, the stability bounds for SGD are as follows:
750 = Rne Xill| Xnsll, 7050 = 2Rnel| Xilll| Xny4-

] J

G.2 ADDITIONAL RESULTS FROM SECTION4]

OracleCP FullcCp SplitCP RO-StabCP LOO-StabCP
Coverage 0.903 (0.040)  0.896 (0.043) 0.903 (0.060)  0.910 (0.039) 0.910 (0.039)
RLM Length 3.272(0.250)  3.300 (0.257) 3.455(0.514) 3.442(0.257) 3.442(0.257)
Time 3.201 (0.172)  176.783 (15.704) 0.017 (0.006) 3.190 (0.176)  0.035 (0.008)

Linear Coverage  0.903 (0.041) 0.896 (0.043) 0.900 (0.059) 0.911 (0.040) 0.906 (0.040)
SGD Length  3.252(0.250) 3.300 (0.257) 3.420(0.557) 3.464 (0.259) 3.405 (0.259)

Time 0.720 (0.087) 19.320 (2.018)  0.005 (0.003) 0.720 (0.075)  0.009 (0.005)

Coverage  0.892 (0.045) 0.886 (0.047) 0.893 (0.059) 0.897 (0.044) 0.897 (0.044)

RLM Length  3.659 (0.317) 3.690 (0.340) 3.812(0.554) 3.828 (0.344) 3.827 (0.344)

Nonlinear Time 3.280(0.219) 163.101(22.120) 0.017 (0.005) 3.275(0.221)  0.038 (0.010)

Coverage 0.892 (0.045) 0.886 (0.047) 0.895 (0.062) 0.900 (0.043) 0.894 (0.044)
SGD  Length 3.641 (0.318)  3.690 (0.340) 3.855(0.612) 3.849 (0.345) 3.789 (0.345)
Time 0.732 (0.074)  17.425 (2.206) 0.005 (0.003)  0.746 (0.093)  0.009 (0.005)

Table 2: Mean (and standard deviation) of empirical coverage, average prediction interval length,
and execution time across 100 iterations for each scenario in simulation.
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G.3 ADDITIONAL RESULTS FROM SECTION[3|

RO-StabCP
0.920 (0.273)
0.900 (0.302)
0.910 (0.288)
0.930 (0.256)
0.905 (0.030)
0.910 (0.028)
0.900 (0.035)
0.914 (0.030)

LOO-StabCP
0.920 (0.273)
0.900 (0.302)
0.910 (0.288)
0.920 (0.273)
0.905 (0.030)
0.906 (0.029)
0.900 (0.035)
0.906 (0.031)

OracleCP

0.920 (0.273)
0.900 (0.302)
0.910 (0.288)
0.920 (0.273)
0.906 (0.031)
0.905 (0.029)
0.900 (0.035)
0.902 (0.031)

FullCP

0.910 (0.288)
0.920 (0.273)
0.900 (0.302)
0.910 (0.288)
0.897 (0.031)
0.901 (0.032)
0.889 (0.037)
0.890 (0.036)

SplitCP

0.910 (0.288)
0.910 (0.288)
0.890 (0.314)
0.920 (0.273)
0.898 (0.040)
0.901 (0.036)
0.894 (0.043)
0.902 (0.037)

RLM
SGD
RLM
SGD
RLM
SGD
RLM
SGD

Boston

Diabetes

Boston
m = 100

Diabetes

Table 3: The mean (and the standard deviation) of empirical coverage over 100 iterations for each
scenario on Boston Housing and Diabetes datasets.

G.4 ADDITIONAL RESULTS FROM SECTION [

cfBH RO-cfBH LOO-cfBH
FDP 0.0928 (0.0713)  0.0038 (0.0115)  0.0657 (0.0617)
qg=0.1 Power 0.6319(0.2053) 0.3041 (0.1452) 0.6744 (0.1295)
Time  0.0037 (0.0006) 0.2976 (0.0114) 0.0060 (0.0011)
FDP 0.2000 (0.0807)  0.0602 (0.0813) 0.1836 (0.0560)
q=0.2 Power 0.9277(0.0838) 0.6522(0.1450) 0.9430 (0.0486)
Time  0.0037 (0.0005) 0.2971 (0.0100) 0.0060 (0.0002)
FDP 0.2882 (0.0806) 0.2483 (0.1212) 0.2837 (0.0934)
qg=10.3 Power 0.9923(0.0198) 0.9627 (0.0347) 0.9917 (0.0136)
Time  0.0037 (0.0002) 0.2970 (0.0101)  0.0060 (0.0003)

Table 4: Mean (and standard deviation) of FDP, power, and execution time for three conformal
selection methods.
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