
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEAVE-ONE-OUT STABLE CONFORMAL PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Conformal prediction (CP) is an important tool for distribution-free predictive un-
certainty quantification. Yet, a major challenge is to balance computational effi-
ciency and prediction accuracy, particularly for multiple predictions. We propose
Leave-One-Out Stable Conformal Prediction (LOO-StabCP), a novel method to
speed up full conformal using algorithmic stability without sample splitting. By
leveraging leave-one-out stability, our method is much faster in handling a large
number of prediction requests compared to existing method RO-StabCP based
on replace-one stability. We derived stability bounds for several popular machine
learning tools: regularized loss minimization (RLM) and stochastic gradient de-
scent (SGD), as well as kernel method, neural networks and bagging. Our method
is theoretically justified and demonstrates superior numerical performance on syn-
thetic and real-world data. We applied our method to a screening problem, where
its effective exploitation of training data led to improved test power compared to
state-of-the-art method based on split conformal.

1 INTRODUCTION

Conformal prediction (CP) offers a powerful framework for distribution-free prediction. It is useful
for a variety of machine learning tasks and applications, including computer vision (Angelopoulos
et al., 2020), medicine (Vazquez & Facelli, 2022; Lu et al., 2022), and finance (Wisniewski et al.,
2020), where reliable uncertainty quantification for complex and potentially mis-specified models is
in much need. Initially introduced by Vovk et al. (2005), conformal prediction has gained renewed
interest. Numerous studies significantly enriched the conformal prediction toolbox and deepened
theoretical understandings (Lei et al., 2018; Gibbs & Candes, 2021; Barber et al., 2023).

Given data D = {(Xi, Yi)}ni=1, where (Xi, Yi) ∈ (X ,Y)
i.i.d.∼ PX,Y , the goal is to predict the unob-

served responses {Yn+j}mj=1 on the test data Dtest = {(Xn+j , Yn+j=?)}mj=1
i.i.d.∼ PX,Y . Conformal

prediction constructs prediction intervals Cα(Xn+j) at any given level α ∈ (0, 1), such that

P(Yn+j ∈ Cα(Xn+j)) ≥ 1− α, for all j = 1, . . . ,m. (1)

A highlighted feature of conformal prediction is distribution-free: even when a wrong model is used
for prediction, the coverage validity (1) still holds (but the prediction interval will become wider).

A primary challenge in conformal prediction lies in balancing computation cost with prediction ac-
curacy. Among the variants of conformal prediction, full conformal is the most accurate (i.e., short-
est predictive intervals) but also the slowest; split conformal greatly speeds up by a data-splitting
scheme, but decreases accuracy and introduces variability that heavily depends on the particular split
(Angelopoulos & Bates, 2021; Vovk, 2015; Barber et al., 2021). Derandomization (Solari & Djord-
jilović, 2022; Gasparin & Ramdas, 2024) addresses the latter issue but increases computational cost
and may make the method more conservative (Ren & Barber, 2024).

Algorithmic stability is an important concept in machine learning theory (Bousquet & Elisseeff,
2002). It measures the sensitivity of a learning algorithm to small changes in the input data. Nu-
merous studies have focused on techniques that induce algorithmic stability, such as regularized
loss minimization (Shalev-Shwartz et al., 2010; Shalev-Shwartz & Ben-David, 2014) and stochastic
gradient descent (Hardt et al., 2016; Bassily et al., 2020). Recent research has applied the concept
of algorithmic stability to the field of conformal prediction (Ndiaye, 2022; Liang & Barber, 2023).
Ndiaye (2022) proposed replace-one stable conformal prediction (RO-StabCP) that effectively

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

accelerates full conformal by leveraging algorithmic stability. While it accelerates full conformal
without introducing data splitting, thus preserving prediction accuracy, the prediction model needs
to be refit for each Xn+j , lowering its computational efficiency for multiple predictions.

In this paper, we introduce Leave-One-Out Stable Conformal Prediction (LOO-StabCP), which
represents is a distinct form of algorithmic stability type than that in RO-StabCP. The key innova-
tion is that our stability correction no longer depends on the predictor at the test point Xn+j . As a
result, our method only needs one model fitting using the training data D. This enables our method to
effectively handle a large number of prediction requests. Theoretical and numerical studies demon-
strate that our method achieves competitive prediction accuracy compared to existing method, while
preserving the finite-sample coverage validity guarantee.

2 PRIOR WORKS ON CONFORMAL PREDICTION (CP)

To set up notation and introduce our method, we begin with a brief review of classical CP methods.

Full conformal. We begin by considering the prediction of a single Yn+j . Fix j ∈
[m] = {1, . . . ,m} and let y denote a guessed value of the unobserved Yn+j . We call Dy

j =

D ∪ {(Xn+j , y)} the augmented data and train a learning algorithm f (such as linear regres-
sion) on Dy

j . To emphasize that the outcome of the training depends on both Xn+j and y, we
denote the fitted model by f̂y

j . Here we require that the training algorithm is permutation-invariant,
meaning that f̂y

j remains unchanged if any two data points (Xi, Yi) and (Xi′ , Yi′) are swapped
for i, i′ ∈ [n] ∪ {n + j}. Next, for each i = 1, . . . , n, n+ j, we define a non-conformity score
Sy
i,j = S(Yi, f̂

y
j (Xi)) = |Yi − f̂y

j (Xi)| to measure f̂y
i ’s goodness of prediction on the ith data

point.1 Notice that Sy
i,j also depends on Xn+j through f̂y

j (Xi), thus its subscript j. For simplicity,
we set j = 1 and write Sy

i,j as Sy
i only for this part. Now, plugging in y = Yn+1, by symmetry,

all non-conformity scores {SYn+1

i }ni=1 ∪ {SYn+1

n+1 } are exchangeable, and then the rank of SYn+1

n+1 (in
ascending order) is uniformly distributed over {1, . . . , n+ 1}, implying that

P(SYn+1

n+1 ≤ Q1−α({SYn+1

i }ni=1 ∪ {∞})) ≥ 1− α,

2 where Qp(S) := inf{x|FS(x) ≥ p} denotes the lower-p sample quantile of data S. This implies
coverage validity P(Yn+1 ∈ Cfull

α (Xn+1)) ≥ 1− α of the prediction set Cfull
α (Xn+1) defined as

Cfull
α (Xn+1) =

{
y ∈ Y : Sy

n+1 ≤ Q1−α({Sy
i }

n
i=1 ∪ {∞})

}
. (2)

This leads to the full conformal (FullCP) method: compute Cfull
α (Xn+1) by a grid search over Y .

Split conformal. The grid search required by full conformal is expensive. The key to acceleration
is to decouple the prediction function f̂ , thus most non-conformity scores {Sy

i }ni=1, from both j and
y: if Sy

n+1 is the only term that depends on y, then the prediction set can be analytically solved
from (2). Split conformal (SplitCP) (Papadopoulos et al., 2002; Vovk, 2015) randomly splits D
into the training data Dtrain and the calibration data Dcalib, train f̂ only on Dtrain, and compute and
rank non-conformity scores only on Dcalib ∪{(Xn+j , y)}. While split conformal effectively speeds
up computation, the flip side is the reduced amount of data used for both training and calibration,
leading to wider predictive intervals and less stable output.

Replace-one stable conformal. Ndiaye (2022) accelerated FullCP by leveraging algorithmic sta-
bility. From now on, we will switch back to the full notation for S and no longer abbreviate Sy

i,j

as Sy
i . To decouple the non-conformity scores from y, Ndiaye (2022) evaluate these scores using

ỹ, an arbitrary guess of y. Therefore, we call his method replace-one stable conformal prediction
(RO-StabCP). To bound the impact of guessing y, he introduced the replace-one (RO) stability.

Definition 1 (Replace-One Algorithmic Stability). A prediction method f̂ is replace-one stable, if
for all j ∈ [m] and i ∈ [n] ∪ {n+ j}, there exists τRO

i,j < ∞, such that

sup
y,ỹ,z∈Y

|S(z, f̂y
j (Xi))− S(z, f̂ ỹ

j (Xi))| ≤ τRO
i,j ,

1We use absolute residual as the non-conformity score for simplicity and due to its popularity.
2Here we replaced “S∞

n+1” in {SYn+1

i }ni=1 ∪ {S∞
n+1} by ∞. This does not change the quantile.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where f̂y
j is trained on D ∪ {(Xn+j , y)}, for y = y or ỹ.

Recall that Sỹ
i,j = |Yi − f̂ ỹ

j (Xi)| denote the non-conformity score computed using ỹ. Then it
suffices to build a predictive interval that contains Cfull

j,α (Xn+j) in (2). By Definition 1, the following
inequality |y − f̂ ỹ

j (Xn+j)| − τRO
n+j,j ≤ Sy

n+j,j ≤ Q1−α({Sy
i,j}ni=1 ∪ {∞}) ≤ Q1−α({Sỹ

i,j +

τRO
i,j }ni=1 ∪ {∞}) holds true for any y ∈ Cfull

j,α (Xn+j). Consequently, the RO stable prediction set

CRO
j,α (Xn+j) =

{
y ∈ Y : |y − f̂ ỹ

j (Xn+j)| − τRO
n+j,j ≤ Q1−α({Sỹ

i,j + τRO
i,j }ni=1 ∪ {∞})

}
(3)

contains Cfull
j,α (Xn+j) as a subset, thus also has valid coverage. The numerical studies in Ndiaye

(2022) demonstrated that RO-StabCP computes as fast as SplitCP while stably producing more
narrower predictive intervals (i.e., higher prediction accuracy).

3 LOO-STABCP: LEAVE-ONE-OUT STABLE CONFORMAL PREDICTION

3.1 LEAVE-ONE-OUT (LOO) STABILITY AND GENERAL FRAMEWORK

When predicting one Yn+j , RO-StabCP has accelerated full conformal to the speed comparable to
split conformal. However, its non-conformity scores Sỹ

i,j’s still depend on Xn+j . Consequently, in
order to predict {Yn+j}mj=1, RO-StabCP would refit the model m times, once for each Xn+j .

This naturally motivates our approach: can we let all predictions be based off a common model f̂ ,
which only depends on D = {(Xi, Yi)}ni=1, but not any of {Xn+j}mj=1? Interestingly, the idea might
appear similar to a beginner’s mistake when learning FullCP, overlooking that the model fitting
in FullCP should also include (Xn+j , y), not just D. Clearly, to ensure a valid method, we must
correct for errors inflicted by using f̂ in lieu of f̂y

j . Since these two model fits (ours vs FullCP)
are computed on similar sets of data, with the only difference of whether to consider (Xn+j , y), our
strategy is to study the leave-one-out (LOO) stability of the prediction method.
Definition 2 (Leave-One-Out Algorithmic Stability). A prediction method is leave-one-out stable,
if for all j ∈ [m] and i ∈ [n] ∪ {n+ j}, there exists τLOO

i,j < ∞, such that

sup
y,z∈Y

|S(z, f̂y
j (Xi))− S(z, f̂(Xi))| ≤ τLOO

i,j .

The τLOO
i,j ’s appearing in Definition 2 are called LOO stability bounds. Their values can often be

determined by analysis of the specific learning algorithm f . For each j, we used a different set
of LOO stability bounds {τLOO

i,j }i∈[n]∪{n+j}. This approach is adopted to achieve sharper bounds
compared to using a uniformly bound for all j. We clarify that the concept of algorithmic stability
is well-defined for parametric or non-parametric f ’s alike. For an f parameterized by some θ,
the stability bound does not focus on the whereabout of the optimal θ, but on how much impact
leaving out (n + j)th data point will have on the trained f , possibly via quantifying its impact on
the estimated θ. We will elaborate using concrete examples in Section 3.2. For now, we assume that
τLOO
i,j ’s are known and present the general framework of our method, called leave-one-out stable

conformal prediction (LOO-StabCP), as Algorithm 1.

The implementation requires computation of O(mn) many τLOO
i,j values. However, these compu-

tations are relatively inexpensive and do not significantly impact the overall time cost. In many
examples (such as SGD, see Section 3.2.2), the main computational cost comes from model fitting,
especially for complex models. We empirically confirm this in Section 4 through various numerical
experiments.

Table 1 presents a comparison of the computational complexity for conformal prediction methods.
The concept of leave-one-out perturbations in conformal prediction has been studied in Liang &
Barber (2023), but their angle is very different from ours. They focused on studying the LOO as a
part of Jackknife+ (Barber et al., 2021), which fits n models, one for each D \ {(Xi, Yi)}. Then
all these n models are used simultaneously for each prediction. In contrast, we use LOO technique
in a very different way, developing a fast algorithm that fit only one model to D (without deletion).
The “one” in our leave-one-out refers to “(Xn+j , y)” in D ∪ {(Xn+j , y)}, for each j.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: (LOO-StabCP) Leave-One-Out Stable Conformal Prediction Set
Input : Training set D = {(Xi, Yi)}ni=1, test points {Xn+j}mj=1, desired coverage 1− α.
Output: Prediction interval CLOO

j,α (Xn+j) for each j ∈ [m]

1. Fit the prediction function f̂ on D;
2. Compute (uncorrected) non-conformity scores on D: Si = |Yi − f̂(Xi)| for i ∈ [n];
for j ∈ [m] do

3. Compute stability bounds τLOO
i,j for i ∈ [n] ∪ {n+ j};

4. Compute prediction interval:
CLOO
j,α (Xn+j) =

[
f̂(Xn+j)±

{
Q1−α

(
{Si + τLOO

i,j }ni=1 ∪ {∞}
)
+ τLOO

n+j,j

}]
;

end

FullCP SplitCP RO-StabCP LOO-StabCP
of model fits |Y| ·m 1 m 1
of prediction evaluations (n+ 1) · |Y| ·m n+m (n+ 1) ·m n + m
of stability bounds Not applicable Not applicable (n+ 1) ·m (n + 1) · m

Table 1: Computational complexities of our method and benchmarks, where |Y| is the size of the
search grid used in FullCP. We emphasize that in many examples, such as SGD (Section 3.2.2),
one model fitting is much more costly than one prediction or computation of one stability bound.

Next, we provide the theoretical guarantee of our algorithm’s coverage validity.

Theorem 1. If the prediction method is leave-one-out stable as in Definition 2. Then for each
j ∈ [m], the prediction set CLOO

j,α (Xn+j) constructed by Algorithm 1 satisfies

P(Yn+j ∈ CLOO
j,α (Xn+j)) ≥ 1− α.

3.2 LOO STABLE ALGORITHMS

So far, we have been treating the stability bounds τLOO
i,j as given without showing how to obtain

them. In this section, we derive these bounds for two important machine learning tools: Regularized
Loss Minimization (RLM) and Stochastic Gradient Descent (SGD). Many machine learning tasks
aim to minimize a loss function ℓ(y, fθ(x)) over training data. Empirical Risk Minimization (ERM)
is a common approach, which seeks to minimize 1

n

∑n
i=1 ℓ(Yi, fθ(Xi)) with respect to θ. However,

the objective function is often highly nonconvex, making the optimization challenging. RLM alle-
viates nonconvexity by adding an explicit penalty (e.g., ridge and LASSO) to the objective function
(Hoerl & Kennard, 1970; Tibshirani, 1996). Alternatively, SGD implicitly regularizes the optimiza-
tion procedure (Robbins & Monro, 1951) by iteratively updating model parameters using one data
point at a time. Its computational efficiency makes it a preferred method in deep learning (LeCun
et al., 2015; He et al., 2016).

3.2.1 EXAMPLE 1: REGULARIZED LOSS MINIMIZATION (RLM)

To derive the LOO stability bound, we compare two versions of RLM, only differing by their
training data. The first is trained on D, producing θ̂ = argminθ∈Θ[

1
n

∑n
i=1 ℓ(Yi, fθ(Xi)} +

Ω(θ)], where Θ is the parameter space and Ω(θ) is the explicit penalty term; while the sec-
ond is trained on the augmented data Dy

j (recall Dy
j = D ∪ {(Xn+j , y)}), producing θ̂yj =

argminθ∈Θ[
1

n+1{
∑n

i=1 ℓ(Yi, fθ(Xi)) + ℓ(y, fθ(Xn+j)} + Ω(θ)]. The LOO stability for RLM is

described by Definition 2, with f̂(·) = fθ̂(·) and f̂y
j (·) = fθ̂y

j
(·). To state our main result, we need

some concepts from optimization.

Definition 3 (ρ-Lipschitz). A continuous function g : Rp → Rq is ρ-Lipschitz, if

∥g(x)− g(y)∥ ≤ ρ∥x− y∥, for any x, y ∈ Rp.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 4 (Strong Convexity). A function g : Rp → R is λ-strongly convex, if

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)− λ

2
∥x− y∥2, for any x, y ∈ Rp and t ∈ (0, 1).

In addition, a function g is convex if it is 0-strongly convex.

Now we are ready to formulate the LOO stability bounds for RLM.
Theorem 2. Suppose: 1) for each i ∈ [n + m] and given any y, the loss function ℓ(y, fθ(Xi)) is
convex and ρi-Lipschitz in θ; 2) the penalty term Ω is λ-strongly convex; 3) for each i ∈ [n +m],
the prediction function fθ(Xi) is νi-Lipschitz in θ; and 4) given any y, the non-conformity score
S(y, z) is γ-Lipschitz in z.3 Then, RLM has the following LOO and RO stability bounds.

τLOO
i,j =

2γνi(ρn+j + ρ̄)

λ(n+ 1)
, and τRO

i,j =
4γνiρn+j

λ(n+ 1)
, (4)

where i ranges in [n] ∪ {n+ j} for each 1 ≤ j ≤ m, and ρ̄ = n−1
∑n

i=1 ρi.

As a side remark, a uniform RO stability bound has been established in Ndiaye (2022) (Corollary
3.10). Our RO bound in (4) is non-uniform (not maximizing over Xi) and potentially sharper.

3.2.2 EXAMPLE 2: STOCHASTIC GRADIENT DESCENT (SGD)

For simplicity, we recap how SGD operates when trained on D. It starts with an initial parameter
value θ0 and runs for R epochs. In each epoch, generate a random permutation π = (π1, . . . , πn)
of [n]. Then for each i ∈ [n], update the model parameter by θ = θ − η∇θℓ(Yπi

, fθ(Xπi
)),

where η > 0 is a user-selected learning rate. After a total of Rn updates, the output θ̂ is used for
prediction. Like in RLM, our LOO stability bound compares two versions of SGD, trained on D
and Dy

j , respectively.
Theorem 3. Suppose: 1) for each i ∈ [n+m], the loss function ℓ(y, fθ(Xi)) is convex, ρi-Lipschitz
in θ, and its gradient ∇θℓ(y, fθ(Xi)) is φi-Lipschitz in θ, for any y; 2) for each i ∈ [n + m],
the prediction function fθ(Xi) is νi-Lipschitz in θ; and 3) the non-conformity score S(y, z) is γ-
Lipschitz in z, for any y. Then, with learning rate η ≤ 2

max{φi} , SGD has the following LOO and
RO stability bounds.

τLOO
i,j = Rη · γνiρn+j , and τRO

i,j = 2Rη · γνiρn+j , (5)

where i ranges in [n] ∪ {n+ j} for each 1 ≤ j ≤ m.

Readers may have noticed that for SGD, τLOO
i,j is only half of τRO

i,j , which is very different from the
case for RLM (c.f. Theorem 2). The gap here stems from the iterative nature of SGD. Recall that in
each epoch, SGD performs n (or n+1) gradient descent (GD) updates, with each update depending
on a single data point. Consequently, leaving out one data point results in one fewer GD update. In
contrast, replacing one data point means performing one GD update differently – in the worst-case
scenario, this update may move in opposite directions before and after the replacement, doubling
the stability bound.

SGD’s iterative nature makes it an excellent example where the number of model fits is the main
bottleneck in scaling a crucial learning technique. For SGD, each model fit requires O(Rn) gradient
updates, while each prediction costs O(1) time, and evaluating stability bounds for each prediction
costs O(n) time. Combining this understanding with Table 1, we see that our method provides
significantly faster stable conformal prediction than RO-StabCP for performing a large number of
predictions.

3.2.3 TOWARDS BROADER APPLICABILITY OF LOO-STABCP

Kernel method: The kernel method (or “kernel trick”) (Schölkopf, 2002) is a commonly used
technique in statistical learning. It implicitly transforms data into complex spaces through
a kernel function k(x, x′). This leads to the reformulated optimization problem: θ̂ =
argminθ∈Rn

1
n

∑n
i=1 ℓ(Yi, k

T
i θ) + λθTKθ, where K is a positive-definite kernel matrix Ki,j =

k(Xi, Xj), and ki denotes its i-th row. It is not difficult to verify that the kernel method is a special
case of RLM, thus Theorem 2 applies to the kernel method.

3Here, z represents the prediction output, and therefore, this is an assumption independent of the model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Neural networks: The stability bounds for RLM and SGD rely on convexity assumptions that
might not always hold in practice, such as in (deep) neural networks. Here, we analyze the LOO
stability of SGD as a popular optimizer for neural networks, without assuming convexity.
Theorem 4. Assume the conditions of Theorem 3, except that the loss function ℓ(y, fθ(Xi)) is not
required to be convex in θ. Then, for the same range of (i, j), SGD has the following LOO and RO
stability bounds:

τLOO
i,j = R+η · γνiρn+j , and τRO

i,j = 2R+η · γνiρn+j ,

where R+ =
∑R

r=1 κ
r and κ =

∏n
i=1(1 + ηφi).

While Theorem 4 does provide a rigorous theoretical justification for neural networks, in practice,
the term κ may be large if the learning rate η is not sufficiently small or the activation function is
not very smooth, leading to large Lipschitz constants φi’s. Therefore, this stability bound may turn
out to be conservative. Similar to Hardt et al. (2016), we also observed that the empirical stability of
SGD for training neural networks is often far better than the worst-case bound described by Theorem
4, see our numerical results in Section 5. This suggests practitioners to still apply the stability bound
in Theorem 3, dismissing non-convexity. It is an intriguing but challenging future work to narrow
the gap between theory and practice here.

Bagging: Bagging (bootstrap aggregating) (Soloff et al., 2024) is a general framework that aver-
ages over B models trained on resamples of size m from D. Random forest (Wang et al., 2023) is
a popular special case of bagging, in which each f (b)(x) is a regression tree. Therefore, we focus
on studying bagging. It predicts by fB(x) = 1

B

∑B
b=1 f

(b)(x), where f (b)(x) indicates the individ-
ual model trained on the bth resample. For simplicity, here we analyze a “derandomized bagging”
(Soloff et al., 2024), i.e., setting B → ∞. The prediction function becomes f∞(x) = E[f (b)(x)].
Below is the LOO stability of derandomized bagging. Here, we denote f

y,(b)
j (x) and f (b)(x) as the

individual models obtained from Dy
j and D, respectively.

Theorem 5. Assume that 1) for any j ∈ [m] and (x, y) ∈ X ×Y , all individual prediction functions
f
y,(b)
j (x) and f (b)(x) are bounded within a range of width wj; 2) the nonconformity score S(y, z)

is γ-Lipschitz in z for any y. Then, derandomized bagging achieves the following LOO stability
bound:

τLOO
i,j =

γwj

2

√
p

1− p
,

where p = 1−
(
1− 1

n

)m
and i ∈ [n] ∪ {n+ j} for j = 1, . . . ,m.

From above, note that the only assumption about the prediction model is bounded output. For
example, regression trees satisfy this assumption.

Due to page limit, we relegate more results and discussion to Appendix A.3.

4 SIMULATION

In this simulation, we compare several CP methods serving RLM and SGD. We set n = m = 100,
α = 0.1 and generated synthetic data using Xi

i.i.d.∼ N (0, 1
dΣ) with d = 100, where Σi,j = ρ|i−j|

(i.e., AR(1)). In particular, we chose ρ = 0.5 in this experiment. For the response variable we set
Yi = µ(Xi;β) + ϵi, where ϵi

i.i.d.∼ N (0, 1).

We considered two models for µ(·;β): linear µ(x;β) =
∑d

j=1 βjxj and nonlinear µ(x;β) =∑d
j=1 βje

xj/10. In both models, set βj ∝ (1 − j/d)5 for j ∈ [d], and normalize: ∥β∥22 = d. To fit
the model, we used robust linear regression, equipped with Huber loss:

ℓ(y, fθ(x)) =

{
1
2 (y − fθ(x))

2, if |y − fθ(x)| ≤ ϵ,

ϵ|y − fθ(x)| − 1
2ϵ

2, if |y − fθ(x)| > ϵ,

where fθ(x) = xT θ and we set ϵ = 1 throughout. We used absolute residual as non-conformity
scores. In RLM, we set Ω(θ) = ∥θ∥2 and solved it using gradient descent (Diamond & Boyd,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2016). Throughout, we ran SGD for R = 15 epochs for all methods, except R = 5 for the very
slow FullCP. For both RLM and SGD, we set the learning rate to be η = 0.001. For more
implementation details, see Appendix G.1. Each experiment was repeated 100 times.

We compare our method to the following benchmarks: 1) OracleCP (Appendix C.1, Algorithm
4): an impractical method that uses the true {Yn+j}mj=1 to predict; 2) FullCP; 3) SplitCP: 70%
training + 30% calibration; and 4) RO-StabCP. The performance of each method is evaluated by
three measures: 1) coverage probability (method validity); 2) length of predictive interval (prediction
accuracy); and 3) computation time (speed).

Figure 1: Comparison of CP methods. Our method (LOO-StabCP) achieves competitive prediction
accuracy and computes at the speed comparable to SplitCP, while maintaining coverage validity.

Figure 1 presents the results of our simulation. In the plots for coverage and length, the horizontal
dashed lines represent the desired coverage level (1− α) and the length of the tightest possible pre-
diction band obtained from the true distribution of the data4, respectively. As expected, all methods
maintain valid coverage. Our method demonstrates competitive prediction accuracy, comparable to
those of OracleCP, FullCP, and RO-StabCP. These four methods exhibit more consistent and
overall superior accuracy compared to SplitCP. In terms of computational efficiency, our method
performs on par with SplitCP and is clearly advantageous compared over the other methods. No-
tably, our method significantly outperforms RO-StabCP in handling a large number of prediction
requests.

5 DATA EXAMPLES

We showcase the use of our method on the two real-world data examples analyzed in Ndiaye (2022).
The Boston Housing data (Harrison Jr & Rubinfeld, 1978) contain 506 different areas in Boston,
each area has 13 features as predictors, such as the local crime rate and the average number of
rooms. The goal is to predict the median house value in that area. The Diabetes data (Efron et al.,
2004) measured 442 individuals at their “baseline” time points for 10 variables, including age, BMI,
and blood pressure, aiming to predict diabetes progression one year after baseline. Both datasets are
complete, with no missing entries. All continuous variables have been normalized, and no outliers
were identified.

For each data set, we randomly held out m data points (as the test data) for performance evaluation
and released the rest to all methods for training/calibration. We tested two settings: m = 1 and

4In our setup, it is 3.290 since P(|ϵi| ≤ 1.645) = 0.9.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

m = 100, two model fitting algorithms: RLM and SGD; and repeated each experiment 100 times.
The other configurations, including the model fitted to data (ℓ, ϵ, Ω, etc.), the list of compared
benchmarks and the performance measures, all remained unchanged from Section 4.

Figure 2: Comparison of prediction interval lengths, under choices of m = 1 and m = 100.

Figure 2 shows the result. While most interpretations are consistent with that of the simulation, we
observe two significant differences between the settings m = 1 and m = 100. First, under m = 1,
RO-StabCP and our method take comparable time, but when m increases to 100, our method
exhibits remarkable speed advantage, as expected. Second, with an increased m, the amount of
available data for prediction/calibration also decreases. This leads to wider prediction intervals for
all methods. Also, SplitCP continues to produce more variable and lengthier prediction intervals
compared to most other methods for m ∈ {1, 100}. In summary, our method LOO-StabCP exhibits
advantageous performances in all aspects across different settings. The empirical coverage rates are
consistent with those in the previous experiments and are provided in Appendix G.3.

Figure 3: Comparison of CP methods with neural networks with single hidden layer under choice
of m = 100. LOO-StabCP continues to closely achieve the target coverage while exhibiting lower
variability in prediction intervals.

To further evaluate the performance of LOO-StabCP with non-convex learning methods, we con-
ducted experiments with a neural network of a single hidden layer of 20 nodes and a sigmoid ac-
tivation function. We set η = 0.001 and R = 30. For stability bounds, we borrowed from the
practical guidance in Hardt et al. (2016) and Ndiaye (2022) and set τLOO

i,j ≈ Rη · γ∥Xi∥∥Xn+j∥
for LOO-StabCP and τRO

i,j ≈ 2Rη · γ∥Xi∥∥Xn+j∥ for RO-StabCP, respectively. This choice is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

elaborated in Appendix A.2, see (8). Figure 3 presents the results. LOO-StabCP maintained valid
coverage across all scenarios. These findings highlight the robustness of LOO-StabCP in handling
complex models like neural networks.

Finally, since one could consider derandomization by aggregating results across multiple differ-
ent splits to reduce variation of SplitCP (Solari & Djordjilović, 2022; Gasparin & Ramdas, 2024),
we also numerically compared our method to this approach. The result demonstrated that our
LOO-StabCP is computationally faster and less conservative than two popular derandomized
SplitCP methods Solari & Djordjilović (2022); Gasparin & Ramdas (2024). Due to page limit,
we relegate all details of this study to Appendix B.

6 APPLICATION: CONFORMALIZED SCREENING

Many decision-making processes, such as drug discovery and hiring, often involve a screening stage
to filter among a large number of candidates, prior to more resource-intensive stages like clinical
trials and on-site interviews. The data structure is what we have been studying in this paper: training
data D = {(Xi, Yi)}ni=1 and a large number of test points {Xn+j}mj=1 without observing Yn+j’s.
Suppose higher values of Y are of interests. Jin & Candès (2023) formulated this as the following
randomized hypothesis testing problem:

H0j : Yn+j ≤ cj vs H1j : Yn+j > cj , for j ∈ [m],

where cj’s are user-selected thresholds (e.g., qualifying score for phone interviews). Then screening
candidates means simultaneously testing these m randomized hypotheses. To control for error in
multiple testing, one popular criterion is the false discovery rate (FDR), defined as the expected
false discovery proportion (FDP) among all rejections.

FDR = E[FDP], where FDP =

∑m
j=1 1{H0j is incorrectly rejected}
1 ∨

∑m
j=1 1{H0j is rejected}

.

Jin & Candès (2023) proposed a method called cfBH based on SplitCP. Our narration will build
upon non-conformity scores without repeating details about model fitting. In this context, the non-
conformity score should be defined differently, for instance: S(y, z) = y − z without the absolute
value, where y is the observed response and z is the fitted value. On the calibration data, Si =

S(Yi, f̂(Xi)), whereas on the test data, we would consider Scj
n+j = S(cj , f̂(Xn+j)). Jin & Candès

(2023)’s cfBH method computes the following conformal p-value:

psplitj =

∑
i∈Icalib

1{Si < S
cj
n+j}+ 1

|Icalib|+ 1
, (6)

where Icalib denotes the index set corresponding to the calibration data. To intuitively under-
stand (6), notice that psplitj < α if and only if cj falls outside the level-(1 − α) (one-sided) split
conformal prediction interval for Yn+j . Finally, plugging {psplitj }mj=1 into a Benjamini-Hochberg
(BH) procedure (Benjamini & Hochberg, 1995) controls the FDR at a desired level q: compute
k⋆ = max{k :

∑m
j=1 1{p

split
j ≤ qk/m} ≥ k}, and reject all H0j’s with psplitj < qk⋆/m.

While Jin & Candès (2023)’s method effectively controls FDR and computes fast, the data splitting
mechanism leaves space for more thoroughly exploiting available information for model fitting. To
this end, we propose a new approach, called LOO-cfBH built upon our main method LOO-StabCP.
We compute stability-adjusted p-values as follows:

pLOO
j =

∑n
i=1 1{Si − τLOO

i,j < S
cj
n+j + τLOO

n+j,j}+ 1

n+ 1
. (7)

Algorithm 2 describes the full details of our method.

To numerically compare our method to existing approaches, we used the recruitment data set
Ganatara (2020) that was also analyzed in Jin & Candès (2023). It contains 215 individuals, each
measured on 12 features such as education, work experience, and specialization. The binary re-
sponse indicates whether the candidate receives a job offer. We import the robust regression from
Section 5 as the prediction method, optimized by SGD. Since the task is classification, we use the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Algorithm 2: (LOO-cfBH) Conformal Selection by Prediction with Leave-One-Out p-values
Input : Training set D, test points {Xn+j}mj=1, thresholds {cj}mj=1, FDR level q.
Output: Set of rejected null hypotheses

1. Fit the prediction function f̂ on D;
2. Compute (uncorrected) non-conformity scores on D: Si = S(Yi, f̂(Xi)) for i ∈ [n];
for j ∈ [m] do

3. Compute stability bounds τLOO
i,j for i ∈ [n] ∪ {n+ j};

4. Compute LOO conformal p-values pLOO
j as in (7);

end
5. Implement BH Procedure: k⋆ = max{k :

∑m
j=1 1{pLOO

j ≤ qk/m} ≥ k} and reject all
H0j’s satisfying pLOO

j < qk⋆/m.

clip function in Jin & Candès (2023) as the non-conformity score: S(y, f̂) = 100y − f̂ . For illus-
tration, we also formulated a benchmark RO-cfBH, following the spirit of Ndiaye (2022) and using
replace-one stability. RO-cfBH replaces all τLOO terms in (7) by the corresponding τRO terms;
it is otherwise identical to LOO-cfBH. We repeated the experiment 1000 times, each time leaving
out 20% data points as the test data. In cfBH, the data was split into 70% for training and 30% for
calibration. We tested three target FDR levels q ∈ {0.1, 0.2, 0.3} and consider three performance
measures: 1) FDP; 2) test power, defined as

(∑m
j=1 1{H0j is rejected}

)/(∑m
j=1 1{H1j is true}

)
;

and 3) time cost.

Figure 4: Comparison of different screening methods on recruitment data. Time cost does not vary
with q.

Figure 4 shows the result. Our method achieves valid FDP control for all tested q. Compared to
cfBH, our method is more powerful, due to the improved exploitation of available data for pre-
diction. The performance measures also reflect that our method LOO-cfBH produces more stable
prediction intervals, while sample splitting introduces additional artificial random variations to the
result of cfBH. Compared to RO-cfBH, we highlight our method’s significant speed advantage.
Moreover, as we showed in Theorem 3, for SGD, our LOO approach achieves a tighter stabil-
ity bound than RO. As a result, our method is less conservative and more powerful compared to
RO-cfBH.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to stable conformal prediction. Our method significantly
improves computational efficiency for multiple prediction requests, compared to the classical stable
conformal prediction (Ndiaye, 2022). Here, we mention two directions for future work. While we
have derived stability bounds for RLM, SGD, neural networks and bagging, improving the tightness
of bounds for complex methods remains an important avenue for future research. Also, we have
been focusing on continuous responses. It would be an intriguing future work to expand our theory
to classification.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets
for image classifiers using conformal prediction. arXiv preprint arXiv:2009.14193, 2020.

Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. Predictive
inference with the jackknife+. The Annals of Statistics, 49(1):486 – 507, 2021. doi: 10.1214/
20-AOS1965. URL https://doi.org/10.1214/20-AOS1965.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
prediction beyond exchangeability. The Annals of Statistics, 51(2):816–845, 2023.

Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient
descent on nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:
4381–4391, 2020.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal statistical society: series B (Methodological),
57(1):289–300, 1995.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learn-
ing Research, 2:499–526, 2002.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The
Annals of Statistics, 32(2):407–499, 2004.

Dhimant Ganatara. Campus recruitment. https://www.kaggle.com/datasets/
benroshan/factors-affecting-campus-placement, 2020.

Matteo Gasparin and Aaditya Ramdas. Merging uncertainty sets via majority vote. arXiv preprint
arXiv:2401.09379, 2024.

Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. Ad-
vances in Neural Information Processing Systems, 34:1660–1672, 2021.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air.
Journal of environmental economics and management, 5(1):81–102, 1978.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Ying Jin and Emmanuel J Candès. Selection by prediction with conformal p-values. Journal of
Machine Learning Research, 24(244):1–41, 2023.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
free predictive inference for regression. Journal of the American Statistical Association, 113
(523):1094–1111, 2018.

11

https://doi.org/10.1214/20-AOS1965
https://www.kaggle.com/datasets/benroshan/factors-affecting-campus-placement
https://www.kaggle.com/datasets/benroshan/factors-affecting-campus-placement

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ruiting Liang and Rina Foygel Barber. Algorithmic stability implies training-conditional coverage
for distribution-free prediction methods. arXiv preprint arXiv:2311.04295, 2023.

Charles Lu, Andréanne Lemay, Ken Chang, Katharina Höbel, and Jayashree Kalpathy-Cramer. Fair
conformal predictors for applications in medical imaging. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 12008–12016, 2022.

Eugene Ndiaye. Stable conformal prediction sets. In International Conference on Machine Learn-
ing, pp. 16462–16479. PMLR, 2022.

Harris Papadopoulos, Kostas Proedrou, Vladimir Vovk, and Alexander Gammerman. Inductive
confidence machines for regression. In European Conference on Machine Learning, 2002. URL
https://api.semanticscholar.org/CorpusID:42084298.

Zhimei Ren and Rina Foygel Barber. Derandomised knockoffs: leveraging e-values for false dis-
covery rate control. Journal of the Royal Statistical Society Series B: Statistical Methodology, 86
(1):122–154, 2024.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

B Schölkopf. Learning with kernels: support vector machines, regularization, optimization, and
beyond, 2002.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
and uniform convergence. The Journal of Machine Learning Research, 11:2635–2670, 2010.

Aldo Solari and Vera Djordjilović. Multi split conformal prediction. Statistics & Probability Letters,
184:109395, 2022.

Jake A Soloff, Rina Foygel Barber, and Rebecca Willett. Bagging provides assumption-free stability.
Journal of Machine Learning Research, 25(131):1–35, 2024.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Janette Vazquez and Julio C Facelli. Conformal prediction in clinical medical sciences. Journal of
Healthcare Informatics Research, 6(3):241–252, 2022.

Vladimir Vovk. Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence, 74:
9–28, 2015.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world,
volume 29. Springer, 2005.

Yan Wang, Huaiqing Wu, and Dan Nettleton. Stability of random forests and coverage of random-
forest prediction intervals. Advances in Neural Information Processing Systems, 36:31558–
31569, 2023.

Wojciech Wisniewski, David Lindsay, and Sian Lindsay. Application of conformal prediction inter-
val estimations to market makers’ net positions. In Conformal and probabilistic prediction and
applications, pp. 285–301. PMLR, 2020.

12

https://api.semanticscholar.org/CorpusID:42084298

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Supplemental Materials for
“Leave-one-out Stable Conformal Prediction”

Anonymous Authors

A DETAILED INSIGHTS ON PRACTICAL EXTENSIONS OF LOO-STABCP

In this appendix, we provide further numerical and theoretical analysis to support the approaches
discussed in Section 3.2.3.

A.1 NUMERICAL EXPERIMENTS USING KERNEL TRICK

The key insight of the kernel trick is that by transforming the data into a higher-dimensional feature
space using a kernel function, the original optimization problem

β̂ = arg min
β∈Rd

1

n

n∑
i=1

ℓ(Yi, X
T
i β) + λ∥β∥2,

can be reformulated as

θ̂ = arg min
θ∈Rn

1

n

n∑
i=1

ℓ(Yi, k
T
i θ) + λθTKθ.

This reformulation using the kernel trick does not violate the assumptions required for RLM and
SGD, as the transformation maintains the core structure of the optimization problem. Specifically,
the kernel matrix K implicitly defines the high-dimensional feature space through the kernel func-
tion k(Xi, Xj), without requiring explicit computation of the transformed features. This ensures
that the problem remains computationally tractable.

For RLM, the regularization term ∥β∥2 in the original formulation translates directly to θTKθ in the
kernelized version, preserving the strong convexity of the optimization problem as long as we use
a positive definite kernel (e.g. radial basis kernel, polynomial kernel, etc.). Similarly, for SGD, the
smoothness and Lipschitz continuity of the loss function are preserved, as the transformation affects
only the inner product computations, which is linear, and does not alter the fundamental properties
of the objective function. Thus, if our original problem satisfies the conditions of LOO stability of
RLM and SGD, the kernel trick enables the model to capture nonlinear patterns in the data while
ensuring that the theoretical guarantees remain intact.

By integrating the kernel trick, we revisit the scenarios in Section 4, where we initially considered
synthetic data examples using standard robust linear regression methods. For our experiments, we
employed the radial basis function (RBF) kernel kRBF(x, x

′) = exp
(
−∥x−x′∥2

2σ2

)
and the polyno-

mial kernel kPoly(x, x′) = (xTx′ + c)d, both chosen for their ability to model complex nonlinear
relationships effectively. For hyperparameters, we chose σ = 0.1, c = 1, and d = 2. We compared
these results to the outcomes in Section 4 and this can be theoretically viewed as a special case of
kernel robust regression using a linear kernel.

As shown in Figure 5, LOO-StabCP continues to perform reliably under both settings settings with-
out any loss of coverage, validating its adaptability to more sophisticated model structures. More-
over, compared to the linear setting, the use of the kernel trick in nonlinear settings leads to a notable
reduction in prediction interval length. This reduction highlights the ability of LOO-StabCP with
kernel trick to provide more precise predictions while capturing the complex patterns inherent in
data, thereby enhancing its practical utility.

A.2 DETAILED INSIGHTS INTO NONCONVEX OPTIMIZATION

In Section 3.2.3, we derived stability bounds for SGD under nonconvex settings. Here, we provide
additional details on the derivation and implications of these bounds.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 5: Comparison of CP methods using kernelized technique.

In the convex case (Theorem 3), the stability bounds for SGD are given by:

τLOO
i,j = Rη · γνiρn+j , τRO

i,j = 2Rη · γνiρn+j .

On the other hand, for the nonconvex case (Theorem 4), these bounds are modified to include the
term R+:

τLOO
i,j = R+η · γνiρn+j , τRO

i,j = 2R+η · γνiρn+j ,

where R+ =
∑R

r=1 κ
r and κ =

∏n
i=1(1 + ηφi). Note that the only distinction in the nonconvex

case is that R+ replaces R. Hence, R+ can be interpreted as representing the cumulative effect
of nonconvexity. This term is influenced by the learning rate η and the Lipschitz constants of the
gradients φi. Specifically, if κ ≈ 1, R+ approximates R, aligning with the convex optimization sce-
nario. However, when κ is significantly greater than 1, R+ can grow exponentially with R, resulting
in overly loose bounds. The practical implication of this result is that η and φi significantly influ-
ence the tightness of stability bounds. While smaller values of η can mitigate this issue, they may
also slow down convergence, creating a trade-off between theoretical stability and computational
efficiency.

As described in Section 5, we conducted experiments with a neural network featuring a single hidden
layer and employed approximated stability bounds:

τLOO
i,j ≈ Rη · γ∥Xi∥∥Xn+j∥ and τRO

i,j ≈ 2Rη · γ∥Xi∥∥Xn+j∥. (8)

Although these terms approximate our problem as if it were convex, they still capture the interaction
between the training and test points in our dataset, providing a practical measure of stability. By
using these approximations, we adapted our conformal prediction framework without relying on
overly conservative worst-case bounds. Alongside the results in Section 5, Figure 6 shows outcomes
for a two-hidden-layer network with 10 and 5 nodes, respectively, under the same settings.

Our empirical results, shown in Figure 3 and Figure 6, demonstrate that these approximations, de-
spite their theoretical looseness, do not compromise the validity of LOO-StabCP. These findings
are consistent with prior observations (Hardt et al., 2016; Ndiaye, 2022), where theoretical stability
bounds in nonconvex settings are often pessimistic, yet empirical results tend to outperform these
expectations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 6: Comparison of CP methods with neural networks with two hidden layers under choice of
m = 100.

A.3 ADDITIONAL RESULTS AND DISCUSSION ON BAGGING

While derandomized bagging discussed in 3.2.3 provides conceptual insights into stability, practical
bagging methods have internal randomness induced by the resampling scheme. To account for this
randomness, here, we provide theoretical results on the LOO stability of bagging in practice.

The randomness in bagging is two-fold. One source is the resampling process, where datasets
are created by sampling with replacement from the original dataset. Another arises from the base
learning algorithm itself, as seen in random forest, where random feature subsets are selected in
each bag. The latter can be characterized by a random variable ξ ∼ U(0, 1). Algorithm 3 illustrates
the implementation of bagging.

Algorithm 3: Bagging
Input : Training set D = {(Xi, Yi)}ni=1, Number of bags B, Number of samples in each bag

m
Output: Prediction function f̂(·) = fB(·) := 1

B

∑B
b=1 f

(b)(·).
for b ∈ [B] do

1. Sample bag r(b) = (i
(b)
1 , . . . , i

(b)
m) where i

(b)
j

i.i.d.∼ U([n]) for j ∈ [m];
2. Sample seed ξ(b) ∼ U([0, 1]);
3. Fit model f (b) with r(b) and ξ(b);

end

The prediction function of bagging is inherently random, making it challenging to derive a de-
terministic stability bound. Nonetheless, based on Theorem 5, we can deduce with high prob-
ability that bagging is LOO stable. In the context of bagging, f̂y

j (x) = 1
B

∑B
b=1 f

y,(b)
j (x) and

f̂(x) = 1
B

∑B
b=1 f

(b)(x), where the sample average replaces the expectation compared to deran-
domized bagging. The following theorem provides a probabilistic guarantee on the LOO stability
bounds for bagging.
Theorem 6. Suppose the conditions of Theorem 5 hold. Then, for any δ ∈ (0, 1), bagging has the
following LOO stability bounds with probability at least 1− δ.

τLOO
i,j (δ) = γwj

{
1

2

√
p

1− p
+

√
2

B
log

(
4

δ

)}
with p = 1− (1− 1

n)
m where i ranges in [n] ∪ {n+ j} for each 1 ≤ j ≤ m.

The implications of Theorem 5 and Theorem 6 are as follows. Note that the above theorem requires
only the minimal assumption that the base model fitting algorithm used in bagging has bounded
output. This suggests that LOO-StabCP can be applied to a wide range of algorithms. For example,
building on the stability of bagging, Wang et al. (2023) extended the results to the stability of random
forest. Their key insight was that random forest utilize weak decision trees as their base model fitting
algorithm, and the final output of a decision tree is always determined as the average of the responses

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

in the training data it uses. As a result, it is straightforward to see that the output of a decision tree
cannot exceed the range of the responses in the training set. Moving forward, these insights can
serve as a foundation for exploring stability guarantees in other complex learning algorithms.

B COMPARISON WITH DERANDOMIZATION APPROACHES

In this appendix, we extend our numerical experiments to include comparisons with derandom-
ization approaches (Solari & Djordjilović, 2022; Gasparin & Ramdas, 2024), which are potential
alternatives to LOO-StabCP in terms of reducing the variability of SplitCP. Specifically, these
methods differ from SplitCP, which relies on a single data split, by merging multiple prediction
intervals constructed from various splits into one final prediction interval.

Figure 7: Comparison of CP methods including derandomization approaches on synthetic datasets.

Among these, two notable methods have been proposed in the literature. Solari & Djordjilović
(2022) were the first to propose this approach. They generated split conformal prediction intervals
with 1− α

2 validity from multiple data splits and then derived a final prediction interval through ma-
jority voting (i.e., the range covered by more than half of these intervals). They showed that this final
interval maintains 1 − α validity. We refer to their method as MM-SplitCP (Majority Multi-Split
Conformal Prediction). Meanwhile, Gasparin & Ramdas (2024) focused on the exchangeability of
each prediction interval derived through MM-SplitCP. Building on this property, they proposed an
alternative aggregation technique that produces tighter yet still valid prediction intervals by apply-
ing a majority vote correction. We denote this method as EM-SplitCP (Exchangeable Multi-Split
Conformal Prediction). For further details on these methods, we refer readers to Solari & Djord-
jilović (2022); Gasparin & Ramdas (2024).

We compare the performance of these two derandomization techniques with our proposed method,
LOO-StabCP. To this end, we applied the methods to the settings described in Section 4 and Sec-
tion 5. For MM-SplitCP and EM-SplitCP, we merged 30 splits. Figures 7 and 8 present the
results on synthetic and real datasets, respectively. From the results, we observe that the variabil-
ity in coverage and interval length produced by MM-SplitCP and EM-SplitCP is noticeably
lower than that of SplitCP, indicating that these derandomization techniques effectively reduce
the internal variability of data-splitting approaches.

However, we also find that the average coverage of MM-SplitCP and EM-SplitCP is gener-
ally higher than the predetermined level, suggesting that these derandomization techniques tend
to produce conservative intervals. Furthermore, both methods require significantly more computa-
tional time, which can be attributed to their reliance on multiple model fits, unlike SplitCP and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Comparison of CP methods including derandomization approaches on real datasets.

LOO-StabCP, which rely on a single model fit. In contrast, LOO-StabCP produces tight and
stable intervals while maintaining reasonable coverage. These results underscore the computational
efficiency and precision of LOO-StabCP. These findings are consistent across both synthetic and
real data scenarios, showcasing the adaptability and efficiency of LOO-StabCP compared to other
derandomization methods.

C IMPLEMENTATIONS OF CONFORMAL PREDICTION METHODS

C.1 ORACLE CONFORMAL PREDICTION

Algorithm 4: (OracleCP) Oracle Conformal Prediction Set
Input : Training set D = {(Xi, Yi)}ni=1, test sets Dtest = {(Xn+j , Yn+j)}mj=1, desired

coverage 1− α.
Output: Prediction interval Coracle

j,α (Xn+j) for each j ∈ [m].

for j ∈ [m] do
1. Fit the prediction function f̂j on DYn+j

j ;

2. Compute non-conformity scores on DYn+j

j : Si,j = |Yi − f̂j(Xi)| for i ∈ [n] ∪ {n+ j};
3. Compute prediction interval:
Coracle
j,α (Xn+j) = [f̂j(Xn+j)±Q1−α({Si,j}ni=1 ∪ {Sn+j,j})];

end

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.2 FULL CONFORMAL PREDICTION

Algorithm 5: (FullCP) Full Conformal Prediction Set
Input : Training set D = {(Xi, Yi)}ni=1, test points {Xn+j}mj=1, search grid G, desired

coverage 1− α.
Output: Prediction interval Cfull

j,α (Xn+j) for each j ∈ [m].

for j ∈ [m] do
for y ∈ G do

1. Fit the prediction function f̂y
j on Dy

j ;
2. Compute non-conformity scores on D: Sy

i,j = |Yi − f̂y
j (Xi)| for i ∈ [n];

3. Compute quantile value Q1−α({Sy
i,j}ni=1 ∪ {∞});

end
4. Compute prediction interval
Cfull
j,α (Xn+j) =

{
y ∈ G : Sy

n+j,j ≤ Q1−α({Sy
i,j}ni=1 ∪ {∞})

}
;

end

C.3 SPLIT CONFORMAL PREDICTION

Algorithm 6: (SplitCP) Split Conformal Prediction Set
Input : Training set Dtrain = {(Xi, Yi)}i∈Itrain

, calibration set Dcalib = {(Xi, Yi)}i∈Icalib
,

test points {Xn+j}mj=1, desired coverage 1− α.
Output: Prediction interval Csplit

j,α (Xn+j) for each j ∈ [m].

1. Fit the prediction function f̂train on Dtrain;
2. Compute non-conformity scores on Dcalib: Si = |Yi − f̂train(Xi)| for i ∈ Icalib;
for j ∈ [m] do

3. Compute prediction interval
Csplit
j,α (Xn+j) = [f̂train(Xn+j)±Q1−α({Si}i∈Icalib

∪ {∞})];
end

C.4 REPLACE-ONE STABLE CONFORMAL PREDICTION

Algorithm 7: (RO-StabCP) Replace-One Stable Conformal Prediction Set
Input : Training set D = {(Xi, Yi)}ni=1, test points {Xn+j}mj=1, initial guesses {ỹn+j}mj=1,

desired coverage 1− α.
Output: Prediction interval CRO

j,α (Xn+j) for each j ∈ [m].

for j ∈ [m] do
1. Fit the prediction function f̂j on Dỹj

j ;
2. Compute (guessed) non-conformity scores on D: Si = |Yi − f̂j(Xi)| for i ∈ [n];
3. Compute stability bounds τRO

i,j for i ∈ [n] ∪ {n+ j};
4. Compute prediction interval:
CRO
j,α (Xn+j) = [f̂j(Xn+j)± (Q1−α({Si + τRO

i,j }ni=1 ∪ {∞}) + τRO
n+j,j)];

end

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D IMPLEMENTATIONS OF LOO STABLE ALGORITHMS

D.1 REGULARIZED LOSS MINIMIZATION

Algorithm 8: (RLM) Regularized Loss Minimization
Input : Training set D = {(Xi, Yi)}ni=1.
Output: Prediction function f̂(·) = fθ̂(·).

1. Compute optimal parameter θ̂ := argminθ∈Θ{ 1
n

∑n
i=1 ℓ(Yi, fθ(Xi)) + Ω(θ)};

D.2 STOCHASTIC GRADIENT DESCENT

Algorithm 9: (SGD) Stochastic Gradient Descent (with Random Reshuffling)
Input : Training set D = {(Xi, Yi)}ni=1, number of epochs R, step size η, initial value θ0.
Output: Prediction function f̂(·) = fθ̂(·).
1. Initialize parameter θ := θ0;
for r ∈ [R] do

2. Sample a permutation π of [n] uniformly at random;
for i ∈ [n] do

3. Update parameter θ := θ − η∇θℓ(Yπi , fθ(Xπi));
end

end
4. Set the final parameter θ̂ := θ;

E USEFUL LEMMAS

Lemma 1 (Lemma 13.5 in Shalev-Shwartz & Ben-David (2014)). 1. Let g, h : Rp → R be convex
function and λ-strongly convex function, respectively. Then, g + h is λ-strongly convex. 2. Let
g : Rp → R be λ-strongly convex and y minimize g, then, for any x,

g(x)− g(y) ≥ λ

2
∥x− y∥2.

Lemma 2 (Lemma 3.6 in Hardt et al. (2016)). Let g : Rp → R be a function such that ∇g : Rp →
Rp is a φ-Lipschitz. Define h : Rp → Rp such that h(θ) = θ − α∇g(θ) with α ≤ 2/φ. Then, h is
(1 + ηφ)-Lipschitz. If g is in addition convex, h is 1-Lipschitz.

F PROOFS OF THEOREMS

F.1 PROOF OF THEOREM 1

Proof. By Definition 2, we have Sy
i,j ≤ Si + τLOO

i,j , for i ∈ [n] and j = [m]. Similarly, for any
j, we have |y − f̂(Xn+j)| − τLOO

n+j,j ≤ Sy
n+j,j . Therefore, for any j, the following holds for all y

contained in Cfull
j,α (Xn+j):

|y − f̂(Xn+j)| − τLOO
n+j,j ≤ Q1−α({Si + τLOO

i,j }ni=1 ∪ {∞}),
which is equivalent to

y ∈ [f̂(Xn+j)± (Q1−α({Si + τLOO
i,j }ni=1 ∪ {∞}) + τLOO

n+j,j)].

This directly implies CLOO
j,α (Xn+j) ⊇ Cfull

j,α (Xn+j) and hence

P(Yn+j ∈ CLOO
j,α (Xn+j)) ≥ P(Yn+j ∈ Cfull

j,α (Xn+j)) ≥ 1− α,

for any choice of α.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F.2 PROOF OF THEOREM 2

Proof. For y ∈ Y and j ∈ [m] define F y
j (θ) = 1

n+1{
∑n

i=1 ℓ(Yi, fθ(Xi)) + ℓ(y, fθ(Xn+j)} +

Ω(θ) and F (θ) = 1
n{
∑n

i=1 ℓ(Yi, fθ(Xi))} + Ω(θ). Then, θ̂yj = argminθ∈Θ F y
j (θ) and θ̂ =

argminθ∈Θ F (θ).

We begin by proving the LOO algorithmic stability. Fix y and j and suppose that ∥θ̂yj − θ̂∥ ≤
2(ρn+j+ρ̄)
λ(n+1) . Then, for all i ∈ [n] ∪ {n+ j} and z ∈ Y ,

|S(z, f̂y
j (Xi))− S(z, f̂(Xi))| ≤ γ|f̂y

j (Xi)− f̂(Xi)|
= γ|fθ̂y

j
(Xi)− fθ̂(Xi)|

≤ γνi∥θ̂yj − θ̂∥

≤ 2γνi(ρn+j + ρ̄)

λ(n+ 1)
.

The first and the second inequalities follow from the Lipschitz property of non-conformity score
function and the prediction function, respectively. Therefore, it suffices to obtain the bound of
∥θ̂y− θ̂∥ as assumed above. By the first part of Lemma 1, F y

j and F are λ-strongly convex functions
of θ. Using the second part of the Lemma 1, we have:

λ

2
∥θ̂ − θ̂yj ∥

2 ≤ F y
j (θ̂)− F y

j (θ̂
y
j)

=
n

n+ 1
{F (θ̂)− F (θ̂yj)}

+
1

n+ 1
{ℓ(y, fθ̂(Xn+j))− ℓ(y, fθ̂y

j
(Xn+j)) + Ω(θ̂)− Ω(θ̂yj)}

≤ 1

n+ 1
{ℓ(y, fθ̂(Xn+j))− ℓ(y, fθ̂y

j
(Xn+j)) + Ω(θ̂)− Ω(θ̂yj)}.

(9)

The last inequality follows from the optimality of θ̂. Now, by the Lipschitz property of the loss
function, we have:

ℓ(y, fθ̂(Xn+j))− ℓ(y, fθ̂y
j
(Xn+j)) ≤ ρn+j∥θ̂ − θ̂yj ∥. (10)

On the other hand, again by the optimality of θ̂, it holds that

0 ≤ F (θ̂yj)− F (θ̂) =
1

n

n∑
i=1

{ℓ(Yi, fθ̂y
j
(Xi))− ℓ(Yi, fθ̂(Xi)) + Ω(θ̂y)− Ω(θ̂),

which implies
Ω(θ̂)− Ω(θ̂yj) ≤ ρ̄∥θ̂yj − θ̂∥, (11)

by the Lipschitz property of the loss function. Finally, combining (10) and (11) to (9), we get
∥θ̂yj − θ̂∥ ≤ 2(ρn+j+ρ̄)

λ(n+1) .

For the RO algorithmic stability, fix y, ỹ, and j. By the similar arguments as for (9), we have

λ

2
∥θ̂ỹj − θ̂yj ∥

2 ≤ 1

n+ 1
{ℓ(y, f

θ̂ỹ
j
(Xn+j))− ℓ(y, fθ̂y

j
(Xn+j))}

+
1

n+ 1
{ℓ(ỹ, fθ̂y

j
(Xn+j))− ℓ(ỹ, f

θ̂ỹ
j
(Xn+j))}

≤ 2ρn+j

n+ 1
∥θ̂yj − θ̂ỹj ∥,

and this implies ∥θ̂yj − θ̂ỹj ∥ ≤ 4ρn+j

λ(n+1) . The rest of the proof is similar to the previous case.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F.3 PROOF OF THEOREM 3

Proof. We start with proving the case of RO algorithmic stability first, for clearer presentation.
Also, we only prove the case of j = 1 and R = 1 since extending to the case of j > 1 or R > 1 is
straightforward. Let π be an arbitrary permutation of [n+ 1] and k be such that πk = n+ 1. Fix y

and ỹ. Let (θy0 , θ
y
1 , . . . , θ

y
n+1) and (θỹ0 , θ

ỹ
1 , . . . , θ

ỹ
n+1) be the updating sequences of SGD sharing π

for Dy
j and Dỹ

j , respectively. Note that f̂y
j = f̂y

1 = fθy
n+1

and f̂ ỹ
j = f̂ ỹ

1 = f
θỹ
n+1

. As in the proof of

Theorem 2, we first bound the distance between the two terminal parameters, ∥θyn+1 − θỹn+1∥.

Let us first consider the case of k = n+ 1. Then, by the SGD update rule, we can see that θyi = θỹi
for all i = [n] since for SGD update, the two sequences share the first n data points as well as the
initial parameter. Therefore, we have

∥θyn+1 − θỹn+1∥ = ∥{θyn − η∇θℓ(y, fθy
n
(Xn+1))} − {θỹn − η∇θℓ(ỹ, fθỹ

n
(Xn+1))}∥

≤ η∥∇θℓ(y, fθy
n
(Xn+1))∥+ η∥∇θℓ(ỹ, fθỹ

n
(Xn+1))∥

≤ 2ηρn+1.

Here, we used triangle inequality, and then the Lipschitz property of loss function.

Now, consider the case of k < n + 1. If i = k, by the similar argument, we can show that
∥θyi − θỹi ∥ ≤ ∥θyi−1 − θỹi−1∥+2ηρn+1. Otherwise, if i ̸= k, by Lemma 2 with the choice of α := η,
φ := φπi

≤ 2
η , and g(θ) := ℓ(Yπi , fθ(Xπi)), we have:

∥θyi − θỹi ∥ = ∥{θyi−1 − η∇θℓ(Yπi , fθy
i
(Xπi))} − {θỹi−1 − η∇θℓ(Yπi , fθỹ

i
(Xπi))}∥

≤ ∥θyi − θỹi ∥,
(12)

since ℓ(Yπi
, fθ(Xπi

)) is convex. Unraveling the recursion from the above two inequality, we get
∥θyn+1 − θỹn+1∥ ≤ ∥θy0 − θỹ0∥ + 2ηρn+1 = 2ηρn+1. The last equality holds since the two updating
sequences share the common initial value. The remaining parts follow similarly to the proof of
Theorem 2.

Next, to prove the LOO algorithmic stability, fix y and let π′ = (π′
1, . . . , π

′
n) be the sequence

obtained from π by excluding the kth entry. For example, if we choose n = 4 and π = (3, 2, 5, 1, 4),
then k = 3 and π′ = (3, 2, 1, 4). Then, it can be shown that π′ is an arbitrary permutation of [n].
Define an updating sequence of SGD, (θ0, θ1, . . . , θn) for D induced by π′, i.e, f̂ = fθn . Note that
θ0 = θy0 . As the case of the RO algorithmic stability, it suffices to show that ∥θyn+1 − θn∥ ≤ ηρn+1.

If k = n+ 1, then we have θyi = θi for i = [n]. Therefore, it follows that

∥θyn+1 − θn∥ = ∥{θyn − η∇θℓ(y, fθy
n
(Xn+1))} − θn∥

≤ η∥∇θℓ(y, fθy
n
(Xn+1))∥

≤ ηρn+j .

For the case of k < n + 1 and further remaining parts, we can follow the same procedure used in
the RO algorithmic stability.

F.4 PROOF OF THEOREM 4

Proof. The overall structure of the proof is almost identical to that of Theorem 3. Again, let us focus
on the proof of RO stability with R = 1 first. Recall that in that proof, the convexity assumption was
used only in (12). Since we have discarded the convexity assumption of ℓ(Yπi

, fθ(Xπi
)) by Lemma

2 again, the Lipschitz constant of h(θ) = θ − η∇θℓ(Yπi
, fθ(Xπi

)) is replaced from 1 to 1 + ηφπi
.

That is, we obtain the following recursive inequalities:

∥θyi − θỹi ∥ ≤

{
∥θyi−1 − θỹi−1∥+ 2ηρn+1 if i = k,

(1 + ηφπi
)∥θyi−1 − θỹi−1∥ if i < k.

(13)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Considering ∥θy0 − θỹ0∥ = 0, unraveling these inequalities yields

∥θyn+1 − θỹn+1∥ ≤

(
n+1∏

i=k+1

(1 + ηφπi)

)
· 2ηρn+j

≤

(
n+1∏
i=1

(1 + ηφπi
)

)
· 2ηρn+j

=

(
n+1∏
i=1

(1 + ηφi)

)
· 2ηρn+j

= 2κηρn+j ,

since ηφi > 0 by definitions. Extending this to the case of R > 1 is not as straightforward as
the proof of Theorem 3, hence we also present the corresponding proof. In this case, we can use
induction. Set R > 1 and let r ∈ [R]. Suppose that up to (r−1)th epoch, the difference of parameter
is bounded by 2

(∑r−1
s=1 κ

s
)
ηρn+j . Then, rth iteration can be treated as the case of R = 1 with

∥θy0 − θỹ0∥ ≤ 2
(∑r−1

s=1 κ
s
)
ηρn+j . In this case, unraveling (13) yileds

∥θyn+1 − θỹn+1∥ ≤

(
n+1∏

i=k+1

(1 + ηφπi
)

)[(
k−1∏
i=1

(1 + ηφπi
)

)
∥θy0 − θỹ0∥+ 2ηρn+j

]

≤

(
n+1∏

i=k+1

(1 + ηφπi
)

)[(
k−1∏
i=1

(1 + ηφπi
)

)
2

(
r−1∑
s=1

κs

)
ηρn+j + 2ηρn+j

]

≤ 2ηρn+j

∏
i ̸=k

(1 + ηφπi
)

(r−1∑
s=1

κs

)
+

(
n+1∏

i=k+1

(1 + ηφπi
)

)
≤ 2κηρn+j

[(
r−1∑
s=1

κs

)
+ 1

]

= 2

(
r∑

s=1

κs

)
ηρn+j .

Since we already proved the case of r = 1, this completes proof for RO stability. For the LOO
stability, we can use the same reasoning.

F.5 PROOF OF THEOREM 5

Proof. Fix (x, y) ∈ X × Y and j ∈ [m]. Due to the symmetry of the resampling scheme, i.e.,
sampling uniformly with replacement, we have

f̂(x) = E
[
f
y,(b)
j (x)

∣∣∣n+ 1 /∈ r
]
.

Therefore, using the above facts along with the Lipschitz property of the non-conformity score
function, we get

|S(z, f̂y
j (x))− S(z, f̂(x))| ≤ γ

∣∣∣f̂y
j (x)− f̂(x)

∣∣∣
= γ

∣∣∣E [fy,(b)
j (x)

]
− E

[
f
y,(b)
j (x)

∣∣∣n+ 1 /∈ r
]∣∣∣

= γ
∣∣∣E [fy,(b)

j (x)− E
[
f
y,(b)
j (x)

]∣∣∣n+ 1 /∈ r
]∣∣∣ .

Next, by the definitions of conditional expectation and covariance,

E
[
f
y,(b)
j (x)− E

[
f
y,(b)
j (x)

]∣∣∣n+ 1 /∈ r
]
=

1

P(n+ 1 /∈ r)
E
[{

f
y,(b)
j (x)− E

[
f
y,(b)
j (x)

]}
1{n+ 1 /∈ r}

]
=

1

P(n+ 1 /∈ r)
Cov

(
f
y,(b)
j (x),1{n+ 1 /∈ r}

)
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Combining the above results, we have

|S(z, f̂y
j (x))− S(z, f̂(x))| ≤ 1

1− p

∣∣∣Cov (fy,(b)
j (x),1{n+ 1 /∈ r}

)∣∣∣ , (14)

where p = P(n+ 1 ∈ r) = 1− (1− 1
n)

m. Furthermore, it holds that∣∣∣Cov (fy,(b)
j (x),1{n+ 1 /∈ r}

)∣∣∣ ≤ [Var(fy,(b)
j (x)

)
Var (1{n+ 1 /∈ r})

] 1
2

≤

√
w2

j

4
p(1− p)

=
wj

2

√
p(1− p).

Here, the first inequality follows from the Cauchy-Schwarz inequality. For the second inequality,
we apply Popoviciu’s inequality for variance and the properties of the Bernoulli distribution. Sub-
stituting this bound into (14) completes the proof.

F.6 PROOF OF THEOREM 6

Proof. Fix (x, y) ∈ X × Y and j ∈ [m]. Let f̂y
j (x) and f̂(x) denote the predictions correspond-

ing to bagging, and let f̂y,∞
j (x) and f̂∞(x) denote the predictions corresponding to derandomized

bagging. Then,

|S(z, f̂y
j (x))− S(z, f̂(x))| ≤ γ

∣∣∣f̂y
j (x)− f̂(x)

∣∣∣
= γ

∣∣∣{f̂y
j (x)− f̂y,∞

j (x)
}
+
{
f̂y,∞
j (x)− f̂∞(x)

}
+
{
f̂∞(x)− f̂(x)

}∣∣∣
≤ γ

[∣∣∣f̂y
j (x)− f̂y,∞

j (x)
∣∣∣+ ∣∣∣f̂y,∞

j (x)− f̂∞(x)
∣∣∣+ ∣∣∣f̂∞(x)− f̂(x)

∣∣∣] .
(15)

Consider each term on the last line of (15). For the first term, note that∣∣∣f̂y
j (x)− f̂y,∞

j (x)
∣∣∣ = ∣∣∣∣∣ 1B

B∑
b=1

f
y,(b)
j (x)− E

[
f
y,(b)
j (x)

]∣∣∣∣∣ .
Since each single prediction f

y,(b)
j (x) is almost surely bounded within an interval of range wj , by

Hoeffding’s inequality, we have

P
(∣∣∣f̂y

j (x)− f̂y,∞
j (x)

∣∣∣ ≤ t
)
≥ 1− 2 exp

(
−2Bt2/w2

j

)
,

for any t > 0. Setting δ
2 = 2 exp(−2Bt2/w2

j) yields

P

∣∣∣f̂y
j (x)− f̂y,∞

j (x)
∣∣∣ ≤

√
w2

j

2B
log

(
4

δ

) ≥ 1− δ

2
.

Similarly, for the third term, we obtain an identical bound:

P

∣∣∣f̂(x)− f̂∞(x)
∣∣∣ ≤

√
w2

j

2B
log

(
4

δ

) ≥ 1− δ

2
.

For the second term, a direct application of Theorem 5 gives the following deterministic bound:∣∣∣f̂y,∞
j (x)− f̂∞(x)

∣∣∣ ≤ γwj

2

√
p

1− p
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Combining all the bounds for the three terms in (15) using the union bound, we have that, with
probability at least 1− δ,

|S(z, f̂y
j (x))− S(z, f̂(x))| ≤ γ

√w2
j

2B
log

(
4

δ

)
+

wj

2

√
p

1− p
+

√
w2

j

2B
log

(
4

δ

)
= γwj

{
1

2

√
p

1− p
+

√
2

B
log

(
4

δ

)}
.

G DETAILS OF NUMERICAL EXPERIMENTS

G.1 DETAILS OF ALGORITHMS

The configurations satisfy the assumptions of Theorem 2 and Theorem 3, allowing us to compute
the stability bounds concretely. First, for RLM, the following stability bounds were used. For
i ∈ [n] ∪ {n+ j} for each j ∈ [m],

τLOO
i,j =

2ϵ∥Xi∥
λ(n+ 1)

(
∥Xn+j∥+

1

n

n∑
i=1

∥Xi∥

)
, τRO

i,j =
4ϵ∥Xi∥∥Xn+j∥

λ(n+ 1)
.

Next, the stability bounds for SGD are as follows:

τLOO
i,j = Rηϵ∥Xi∥∥Xn+j∥, τRO

i,j = 2Rηϵ∥Xi∥∥Xn+j∥.

G.2 ADDITIONAL RESULTS FROM SECTION 4

OracleCP FullCP SplitCP RO-StabCP LOO-StabCP

Linear

RLM
Coverage 0.903 (0.040) 0.896 (0.043) 0.903 (0.060) 0.910 (0.039) 0.910 (0.039)
Length 3.272 (0.250) 3.300 (0.257) 3.455 (0.514) 3.442 (0.257) 3.442 (0.257)
Time 3.201 (0.172) 176.783 (15.704) 0.017 (0.006) 3.190 (0.176) 0.035 (0.008)

SGD
Coverage 0.903 (0.041) 0.896 (0.043) 0.900 (0.059) 0.911 (0.040) 0.906 (0.040)
Length 3.252 (0.250) 3.300 (0.257) 3.420 (0.557) 3.464 (0.259) 3.405 (0.259)
Time 0.720 (0.087) 19.320 (2.018) 0.005 (0.003) 0.720 (0.075) 0.009 (0.005)

Nonlinear

RLM
Coverage 0.892 (0.045) 0.886 (0.047) 0.893 (0.059) 0.897 (0.044) 0.897 (0.044)
Length 3.659 (0.317) 3.690 (0.340) 3.812 (0.554) 3.828 (0.344) 3.827 (0.344)
Time 3.289 (0.219) 163.101 (22.120) 0.017 (0.005) 3.275 (0.221) 0.038 (0.010)

SGD
Coverage 0.892 (0.045) 0.886 (0.047) 0.895 (0.062) 0.900 (0.043) 0.894 (0.044)
Length 3.641 (0.318) 3.690 (0.340) 3.855 (0.612) 3.849 (0.345) 3.789 (0.345)
Time 0.732 (0.074) 17.425 (2.206) 0.005 (0.003) 0.746 (0.093) 0.009 (0.005)

Table 2: Mean (and standard deviation) of empirical coverage, average prediction interval length,
and execution time across 100 iterations for each scenario in simulation.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

G.3 ADDITIONAL RESULTS FROM SECTION 5

OracleCP FullCP SplitCP RO-StabCP LOO-StabCP

m = 1
Boston RLM 0.920 (0.273) 0.910 (0.288) 0.910 (0.288) 0.920 (0.273) 0.920 (0.273)

SGD 0.900 (0.302) 0.920 (0.273) 0.910 (0.288) 0.900 (0.302) 0.900 (0.302)

Diabetes RLM 0.910 (0.288) 0.900 (0.302) 0.890 (0.314) 0.910 (0.288) 0.910 (0.288)
SGD 0.920 (0.273) 0.910 (0.288) 0.920 (0.273) 0.930 (0.256) 0.920 (0.273)

m = 100
Boston RLM 0.906 (0.031) 0.897 (0.031) 0.898 (0.040) 0.905 (0.030) 0.905 (0.030)

SGD 0.905 (0.029) 0.901 (0.032) 0.901 (0.036) 0.910 (0.028) 0.906 (0.029)

Diabetes RLM 0.900 (0.035) 0.889 (0.037) 0.894 (0.043) 0.900 (0.035) 0.900 (0.035)
SGD 0.902 (0.031) 0.890 (0.036) 0.902 (0.037) 0.914 (0.030) 0.906 (0.031)

Table 3: The mean (and the standard deviation) of empirical coverage over 100 iterations for each
scenario on Boston Housing and Diabetes datasets.

G.4 ADDITIONAL RESULTS FROM SECTION 6

cfBH RO-cfBH LOO-cfBH

q = 0.1
FDP 0.0928 (0.0713) 0.0038 (0.0115) 0.0657 (0.0617)
Power 0.6319 (0.2053) 0.3041 (0.1452) 0.6744 (0.1295)
Time 0.0037 (0.0006) 0.2976 (0.0114) 0.0060 (0.0011)

q = 0.2
FDP 0.2000 (0.0807) 0.0602 (0.0813) 0.1836 (0.0560)
Power 0.9277 (0.0838) 0.6522 (0.1450) 0.9430 (0.0486)
Time 0.0037 (0.0005) 0.2971 (0.0100) 0.0060 (0.0002)

q = 0.3
FDP 0.2882 (0.0806) 0.2483 (0.1212) 0.2837 (0.0934)
Power 0.9923 (0.0198) 0.9627 (0.0347) 0.9917 (0.0136)
Time 0.0037 (0.0002) 0.2970 (0.0101) 0.0060 (0.0003)

Table 4: Mean (and standard deviation) of FDP, power, and execution time for three conformal
selection methods.

25

	Introduction
	Prior Works on Conformal Prediction (CP)
	LOO-StabCP: Leave-One-Out Stable Conformal Prediction
	Leave-one-out (LOO) stability and general framework
	LOO Stable Algorithms
	Example 1: Regularized Loss Minimization (RLM)
	Example 2: Stochastic Gradient Descent (SGD)
	Towards Broader Applicability of LOO-StabCP

	Simulation
	Data Examples
	Application: Conformalized Screening
	Conclusion and Future Work
	Detailed Insights on Practical Extensions of LOO-StabCP
	Numerical Experiments using Kernel Trick
	Detailed Insights into Nonconvex Optimization
	Additional Results and Discussion on Bagging

	Comparison with Derandomization Approaches
	Implementations of Conformal Prediction Methods
	Oracle Conformal Prediction
	Full Conformal Prediction
	Split Conformal Prediction
	Replace-One Stable Conformal Prediction

	Implementations of LOO Stable Algorithms
	Regularized Loss Minimization
	Stochastic Gradient Descent

	Useful Lemmas
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

	Details of Numerical Experiments
	Details of Algorithms
	Additional Results from Section 4
	Additional Results from Section 5
	Additional Results from Section 6

