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ABSTRACT

The properties of biological materials like proteins and nucleic acids are largely
determined by their primary sequence. Certain segments in the sequence strongly
influence specific functions, identifying these segments, or so-called motifs, is
challenging due to the complexity of sequential data. While deep learning (DL)
models can accurately capture sequence-property relationships, the degree of non-
linearity in these models limits the assessment of monomer contributions to a
property - a critical step in identifying key motifs. Recent advances in explainable
AI (XAI) offer attention and gradient-based methods for estimating monomeric
contributions. However, these methods are primarily applied to classification
tasks, such as binding site identification, where they achieve limited accuracy
(40–45%) and rely on qualitative evaluations. To address these limitations, we in-
troduce a DL model with interpretable steps, enabling direct tracing of monomeric
contributions. Inspired by the masking technique commonly used in vision and
language processing domains, we propose a new metric (I) for quantitative eval-
uation on datasets mainly containing distinct properties of anti-cancer peptides
(ACP), antimicrobial peptides (AMP), and collagen. Our model exhibits 22%
higher explainability than the gradient and attention-based state-of-the-art mod-
els, recognizes critical motifs (RRR, RRI, and RSS) that significantly destabilize
ACPs, and identifies motifs in AMPs that are 50% more effective in converting
non-AMPs to AMPs. These findings highlight the potential of our model in guid-
ing mutation strategies for designing protein-based biomaterials.

1 INTRODUCTION

Machine learning (ML) models have emerged as a powerful tool for establishing primary sequence-
to-property relationships in proteins (Brandes et al., 2022; Xu et al., 2020; Elnaggar et al., 2021).
This remains an active research area, as sequence data is more accessible than structural data. Deep
learning (DL) models like AlphaFold2/3 (Jumper et al., 2021; Abramson et al., 2024) predict struc-
tures from sequences but often show low confidence for amorphous and fold-switching proteins
(Chakravarty & Porter, 2022; Chakravarty et al., 2024). This limits their reliability for materials
with more disordered regions, notably structural proteins such as silks (Lefèvre et al., 2007). Mod-
els like Transformers (Vaswani, 2017), Long Short-Term Memory (LSTM) networks (Hochreiter,
1997), and 1D convolution Neural Networks (1D CNN) (Kiranyaz et al., 2019) excel at capturing
sequential dependencies. These models enable accurate prediction of various properties of proteins
(Yu et al., 2022; Gupta & Zou, 2019; Pandey et al., 2023; Sun et al., 2019; Liu et al., 2022), often
achieving R2 and accuracies over 0.8. Transformers have also enabled pre-trained models like Prot-
BERT (Brandes et al., 2022; Elnaggar et al., 2021), ESM (Lin et al., 2023), and ProtTXL (Elnaggar
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et al., 2021), which differ in self-supervised training strategies. Their success has driven transfer
learning frameworks, leveraging pre-trained model outputs as inputs to neural networks for predict-
ing protein properties (Lin et al., 2023; Brandes et al., 2022; Khare et al., 2022). Despite advances
in sequence-property prediction, DL models lack interpretability due to several non-linear transfor-
mations. This limits their ability to dissect monomers’ contribution to the property. Understanding
these contributions is essential for identifying critical motifs (Vig et al., 2021) to design mutations
for enhanced protein properties (Arakawa et al., 2022; Pandey et al., 2024). Thus, there is a great
need for a model that elucidates monomer-level contributions while establishing sequence-property
relationships.

With the growing emphasis on Explainable AI (XAI) and interpretability (Ali et al., 2023; Wu et al.,
2023), some progress has been made in understanding monomeric contributions in proteins (Danile-
vicz et al., 2023; Avsec et al., 2021; Vig et al., 2021; Chen et al., 2021; Monteiro et al., 2022; Yu
et al., 2024; Jiménez-Luna et al., 2020) while handling primary sequence as an input. One widely
used XAI approach is based on the self-attention mechanism in transformers, where a monomer’s
contribution is determined by the attention it receives from other monomers in the sequence (Wu
et al., 2020b; Karimi et al., 2020; Liu et al., 2024). Another popular method is Grad-CAM (Class
Activation Mapping) (Selvaraju et al., 2017), which attributes monomeric contribution to the gra-
dient of the output with respect to the monomer’s latent space representation. While attention and
gradient-based methods have made some strides in providing interpretability for protein sequences,
they come with limitations (Danilevicz et al., 2023; Avsec et al., 2021; Vig et al., 2021; Chen et al.,
2021; Monteiro et al., 2022; Vangala et al., 2023; Jiménez-Luna et al., 2021). The self-attention
mechanism has been shown to be unreliable as an XAI tool to identify critical segments in a se-
quence (Serrano & Smith, 2019; Bai et al., 2021; Wiegreffe & Pinter, 2019). Similarly, Grad-CAM
typically relies on the embeddings from certain Transformer or LSTM-based Large Language Mod-
els (LLM) which already have layers of non-linear transformations (Chen et al., 2023; Gligorijević
et al., 2021). Furthermore, Grad-CAM has been mostly employed for images and graph-based input
data (Selvaraju et al., 2017; Gligorijević et al., 2021; Walter et al., 2024). Therefore, there exists
a gap for a more explainable model that can effectively elucidate the contributions of individual
monomers within protein sequences.

Current XAI methods for proteins focus primarily on classification tasks like binding site identi-
fication, with limited accuracy (40–45%) in detecting all the sites (Chen et al., 2023). These ap-
proaches have not been extended to continuous properties like melting temperature and are mainly
used for qualitative analyses, such as identifying critical regions in the vicinity of high-contributing
monomers (Chen et al., 2021; Monteiro et al., 2022; Vig et al., 2021; Chen et al., 2023). Addition-
ally, no comprehensive evaluation strategy exists to validate the monomeric contribution scores in
proteins. In contrast, image analysis (Covert et al., 2023; Nazir et al., 2023; Yoshikawa & Iwata,
2024; Zhou et al., 2022) and NLP (Jahromi et al., 2024) have advanced in quantifying contribution
scores using insertion and deletion techniques, which evaluate the impact by systematically adding
or removing input segments based on score rankings. To our knowledge, this approach has not been
applied to validate monomeric contributions in protein property prediction. We propose leveraging
this method to quantify and validate monomeric contribution scores in proteins.

Our Contributions. Building on the above discussion, our work aims to develop an interpretable
model to explain monomeric contributions within primary sequences and systematically evaluate
the contribution scores generated by the model. As the first step, we develop a novel DL model
that establishes a primary sequence-property relationship while enabling the tracing of monomeric
contributions from predicted outputs. Our analysis involves: (1) benchmarking the predictive per-
formance of our architecture against state-of-the-art (SOTA) models like Transformers, LSTMs, and
1D CNNs; (2) introducing an insertion/deletion-based parameter inspired by image and NLP tech-
niques to evaluate monomeric contribution scores; and (3) using this metric to compare our model’s
performance with attention- and gradient-based XAI methods. We mainly evaluate our model’s per-
formance on diverse datasets, including Anti-Cancer Peptide (ACP) properties (Sun et al., 2024),
protein solubility (Hon et al., 2021), binding affinity (Olson et al., 2014), collagen thermal stability
(Khare et al., 2022), and Antimicrobial Peptide (AMP) classification (Gupta & Zou, 2019). Our
results demonstrate the model’s ability to capture monomeric importance across sequences with
varying motif sizes and long-range dependencies. Furthermore, we demonstrate our model’s ability
to identify critical motifs in ACPs and AMPs and validate these findings through mutation analysis.
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2 APPROACH

2.1 DEEP-LEARNING FRAMEWORK

We develop a novel deep learning (DL) architecture with interpretable steps to estimate the contribu-
tion of each monomer in the primary sequence to the property. Our DL model uses a Compositional
Linear Operation-based Representation (COLOR) unit, a key contribution of the work. A COLOR
unit consists of 3 modules namely: sequence-to-motif conversion module, motif composition mod-
ule, and linear weighted summation module. COLOR unit architecture is shown in Fig.1. Before
describing these modules, we introduce the term number of qualitative variables (q), representing
the total distinct qualitative variables that can appear in the sequence. For proteins, q is typically
considered to be 21, accounting for the 20 most common amino acids and one additional for un-
common amino acids such as hydroxyproline and hydroxylysine in collagen protein (Ricard-Blum,
2011). Additionally, the term ”motif” will be used frequently throughout the paper and, in this
context, refers to any sub-segment of the primary sequence.

Figure 1: (a) The complete data flow for predicting properties from the primary sequence using
COLOR units, (b) Components of the COLOR unit, illustrating the linear decomposition of elements
in P into motifs, thereby showcasing its interpretability. The m values displayed in the COLOR units
are just for reference.

Sequence-to-Motif Module. This module divides the primary sequence into several motifs using a
1D convolution network (CNN) (Kiranyaz et al., 2019). For example, GGYAAA can be divided into
motifs GGY, GYA, YAA, and AAA of size 3. The motif size (m) can be controlled by regulating
the kernel size in the 1D CNN. The kernel size controls the number of neighboring monomers that
the 1D CNN considers in front of each monomer for feature extraction. It is important to note that
motifs are created by sweeping with a filter of size m across the primary sequence with the stride
of 1. Therefore, the number of motifs (κ) of size m obtained from a primary sequence of length L
is (L − m + 1). The 1D CNN uses the one-hot encoded representation (O ∈ Rq∗L) of the primary
protein sequence as input (Harding-Larsen et al., 2024). As illustrated in Fig.1, the 1D CNN divides
the primary sequence into κ motifs and generates a latent space vector of size d for each motif,
leading to matrix Q ∈ Rd∗κ.

Motif Composition Module. In this module, the model captures the composition of each motif i.e.,
it captures the number of different qualitative variables present in each motif. This is obtained by
performing a pooling operation (shown in Fig.1) on O as

Dij =

j+m∑
k=j

Oik (1)
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Linear Weighted Summation Module. Till this stage, the model has converted the primary se-
quence into motifs and has computed latent space (Q ) and composition (D ) matrix. However, to
predict the property based on the primary sequence it is important to accumulate the impact of all
the motifs. Hence in this module, a representation matrix P is obtained by linearly combining the
properties of the motifs in the latent space as follows:

P = D × QT (2)

Element Pij captures the linear combination of jth latent property (where, j = 1,2...d) of motifs
weighted by the quantity of ith (where, i = 1,2...q) qualitative variable in each motif. It is important
to note that the size of the matrix P is independent of the sequence length L, unlike other architec-
tures like Transformers, LSTM, and 1D CNNs, where the output size depends on L. It is important
to note that the linear weighted sum of the property of motifs in the latent space to obtain P does not
consider the order of occurrence of motifs in the primary sequence. This can lead to the loss of any
sequential information and poor prediction. Therefore, we add sine and cosine positional encoding,
given in (Vaswani, 2017), to O before inputting it into the CNN layers.

End-to-End Architecture. In the above sections, we discussed the method to obtain sequence-
length independent representation matrix P for a particular motif size m using the COLOR unit.
However, using P pertaining to just one motif size,m, can be insufficient to fully capture the behavior
of the protein since motifs of varying size may contribute strongly to a given property. For this
reason, we can use several COLOR units to obtain different P based on several motif sizes as shown
in Fig.1a with the detailed structure of the COLOR unit depicted in Fig.1b. Different P matrices
can be assembled into a 3D representation matrix R . Subsequently R is flattened and fed into a
fully-connected neural network (NN) to predict the property. Although R is a 3D matrix and could
theoretically be processed using a CNN to distill information and make predictions, we chose not
to use a CNN because there is no meaningful spatial relationship between neighboring elements in
R . This decision is further supported by an average drop of 4–5% in predictive performance when
a fully connected network was replaced with a CNN. The cardinality of the set m, representing the
number of COLOR units in R , is denoted as |m|. It is important to note that the performance and
size of the COLOR unit-based model depend on the values of m , |m|, and d. Optimal values can
be determined through parametric studies, as detailed in Appendix I. As a note, we would like to
highlight that whenever the term ’COLOR method’ is used in the text, it refers to the DL model
based on COLOR units. Based on our observations throughout this study, we also document certain
pointers in Appendix D to better train COLOR-based models.

Quantifying Predictability. To quantify the predictive performance of COLOR, we adopt an ap-
proach inspired by (Bornschein et al., 2020) to calculate the area under error versus training data
size (NT ) curve. For our analysis, we use two terms calculated as

A =

∫ ∞

0

e(n)dn , and A500 =

∫ 500

0

e(n)dn (3)

, where e(n) represents the mean absolute error (MAE) for regression tasks and accuracy for classi-
fication tasks. In the case of the classification datasets, the classes are balanced; therefore, accuracy
is an appropriate metric for comparing the models. The term A represents the overall predictive
performance, whereas the term A500 represents the performance in a low-data regime. In regression
tasks, lower values of the terms in Eq.3 indicate a superior model, whereas higher values are better
for classification tasks.

2.2 ESTIMATING MONOMERIC CONTRIBUTION USING COLOR METHOD

As discussed in the Introduction, studying the contribution of monomers in the primary sequence
can help estimate the motifs responsible for modulating properties within proteins. The layers of
non-linearity in deep-learning models render them uninterpretable to estimate the impact of each
monomer on the property. In this section, we show that the architectural decisions in the COLOR
unit make it interpretable to calculate the impact of each monomer. Estimating the monomeric
contribution based on COLOR is a two-step process. To elucidate these steps, we examine the case
with |m|=1, which renders R =P . Let yp represent the predicted property. As the first step, we
estimate the importance of Pij in P as

∣∣ ∂yp

∂Pij

∣∣. Based on Eq.2, Pij can be expanded as

Pij =

κ∑
k=1

DikQjk (4)
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, where DikQjk corresponds to kth motif in a sequence. The greater the magnitude of DikQjk, the
stronger the influence of the motif on Pij . Hence, the contribution score ϕm is assigned to each
motif in a sequence as

ϕm =

q−1∑
i=0

d−1∑
j=0

∣∣∣∣ ∂yp∂Pij

∣∣∣∣× |DimQjm| −min
k

(|DikQjk|)

max
k

(|DikQjk|)−min
k

(|DikQjk|)
(5)

The non-linearity introduced by the neural network (NN) in the model architecture can lead to noisy
latent properties (Qjk) for motifs, particularly affecting the Qjk with smaller magnitudes. Hence, to
mitigate the effect of such noise on ϕm, we apply min-max scaling of DikQjk in Eq.5, effectively
reducing the contribution of noisy, smaller DikQjk values, to nearly zero. Once ϕm is assigned to
all motifs, a contribution score will be associated with every monomer in the sequence.

Quantifying Explainability. Due to the absence of any quantitative evaluation metrics for
monomeric contribution scores, we propose a novel metric to quantitatively compare contribution
scores calculated by different XAI methods. we draw inspiration from the masking-based method
in the field of computer vision (Hooker et al., 2019) and NLP (Pham et al., 2022). Firstly, based
on ϕ values, the monomers in the sequence are ranked. Subsequently, all monomers are masked
except for the top u%, after which the model is re-trained to assess performance. The value of u is
incrementally increased, and with each step, the model is re-trained and the error (or accuracy) on
the test data is recorded. The area under error (or accuracy) versus u curve, I, calculated as

I =

∫ 100

0

e(u)du (6)

is used as a metric to evaluate the explainability of the model. The COLOR method is rigorously
evaluated against state-of-the-art XAI models, including Grad-CAM (Selvaraju et al., 2017), Atten-
tion Tracing (Wu et al., 2020a), and Grad-SAM (Barkan et al., 2021), whose details presented in
Appendix A.

2.3 DATASET

We present results for 7 unique properties derived from distinct datasets. These datasets include
continuous properties analyzed as regression tasks and categorical properties analyzed as classifica-
tion tasks. The details of all these datasets will follow shortly. We also conduct additional analysis
to further demonstrate the robustness of the COLOR method using two toy datasets and a computa-
tional silk dataset (Kim et al., 2023) which are discussed in detail in Appendix C.1. The data split
for all the datasets mentioned above is given in Tab.3.

Anti-Cancer Peptide (ACP) Properties. The instability index of the protein captures the intra-
cellular stability of the protein (Guruprasad et al., 1990). (Sun et al., 2024) have constructed a
comprehensive dataset documenting the instability index of several ACPs. We utilize this docu-
mented instability index for different primary sequences as one of the key datasets. Additionally, we
incorporated the Aliphatic Index (Ikai, 1980) and GRAVY Index (Kyte & Doolittle, 1982a) of ACPs
from the same database as two distinct datasets, as the ground truth for monomeric contribution
scores is known in these cases.

Collagen Melting Temperature (Tm). Collagen is one of the most abundant proteins in animals
with numerous applications in medicine (Deshmukh et al., 2016). Khare et al. (2022) have experi-
mentally gathered the melting temperature, directly proportional to thermal stability, of 633 different
primary sequences of collagen.

GB1 binding affinity. Olson et al. (2014) developed a dataset containing an experimentally calcu-
lated binding affinity of double mutated protein G domain B1 (GB1) to immunoglobulin G fragment
crystallizable (IgGFC).

Soluprot. Protein solubility is crucial for the production of various therapeutics (Hon et al., 2021),
making it an essential property to predict. Hon et al. (2021) used TargetTrack (Berman et al., 2017)
to extract the data on the solubility of proteins in E.coli.

Antimicrobial Peptide (AMP) Classification. AMPs are small molecular peptide that possesses
anti-microbial functions against a broad range of microorganisms such as bacteria, fungi, parasites,
and viruses. Gupta & Zou (2019) curated a dataset of 5200 short peptides, with 2,600 experimentally
verified as AMPs, while the remaining sequences are non-AMPs.
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3 RESULTS AND DISCUSSION

Predictive Capability. We test the COLOR method on all the datasets discussed in Section 2.3 and
compare the results with the current state-of-the-art (SOTA) models such as Transformers, LSTM,
and 1D CNN. We also present additional analysis on two toy datasets and a silk dataset in Appendix
F. The details of the models used for various datasets are given in Tab.1 and 2. We use metrics A and
A500 derived from the curves shown in Fig.6 for comparing predictive performance. A comparison
of models is shown in Fig.2. COLOR outperforms the next best SOTA model by 1-79% across
various datasets except for the ACP Instability dataset, where it performs worse by 16%. The lower
performance in the case of the instability dataset can be attributed to the lower degree of non-linearity
in COLOR as it aggregates the contribution of various motifs through a simple linear operation as
shown in Eq.2. However, it will be demonstrated in a later section, that despite the lower predictive
performance in the case of this dataset, the model excels at capturing the monomeric contribution
within the primary sequence; emphasizing the higher explainability offered by COLOR.

Figure 2: Comparison of the predictive capability of different supervised models. Figure a) and b)
shows the comparison of A and A500 respectively for different datasets. The arrows ↑ and ↓ indicate
whether higher or lower values are better, respectively. The results are normalized using the highest
values of the corresponding dataset.

How Explainable is the model? In this section, we proceed to show COLOR’s capability to capture
monomeric contribution in the primary sequence as discussed in Section 2.2. For this study, we
dropped the GB1 binding affinity and Soluprot dataset. We do not consider the GB1 binding affinity
dataset for this study as it contains highly similar sequences with only two mutations in the wild-
type protein. Additionally, we also drop the Soluprot dataset as it contains noisy labels for the
solubility of proteins (Hon et al., 2021) leading to lower model accuracy as shown in Fig.6. We
use random assignment of the monomeric contribution scores within the primary sequence as one
of the baseline methods. This random method provides a baseline against which our method should
perform better, indicating that it has learned some meaningful information about the sequence. A
comparison of COLOR with other SOTA models along with random baseline is given in Fig.3. The
I values reported are obtained from the curves shown in Fig.7. All results are normalized using the
results from the random method. The figure shows that the COLOR method achieves the highest
performance, outperforming the next-best method by 1–38% across datasets, with an average gain
of 22%. Notably, our approach consistently outperforms random baselines, a result not guaranteed
by other SOTA models. The above observations suggest that our method offers more explainability,
making it more effective in estimating the monomeric contribution within the primary sequence.
Additional analyses highlighting the explainability of the COLOR are presented in Appendix G.

Is latent space representation meaningful? To study whether COLOR learns a meaningful latent
representation of motifs in matrix Q , we designed two tasks: in the first, we trained the model
to predict the sum of monomeric hydropathy (Kyte & Doolittle, 1982b) of the monomers; in the
second, we trained it to predict the sum of the isoelectric (pI) point (Ouellette & Rawn, 2014). The
pI point of a monomer is reflective of its charge. As the hyperparameters, we fix m and d to be 1,
indicating that we generate the latent representation for every single monomer. The choice of d=1
here is sufficient, as it is already known that only a single monomer-level property is necessary to
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Figure 3: Comparison of explainability offered by different XAI models. The arrows ↑ and ↓ indicate
whether higher or lower values are better, respectively.

capture the final property y for the two tasks discussed above. We also replace the neural network
with a simple sum of all the elements of P (i.e., yp=

∑
i,j Pij). After training, upon comparing the

actual monomeric hydropathy and pI values with their corresponding latent space representations
from Q , we achieve an R2 of 1.0, indicating that the model learns meaningful and application-
specific representations.

Figure 4: Contribution score of each amino acid in predicting the aliphatic index assigned using a)
Grad-CAM method, and b) using COLOR.
Does the contribution score reflect expected patterns? In this section, we study if the contribution
score assigned to different amino acids is proportional to their actual contribution to the output
y. First, we consider the example of ACP aliphatic index prediction. Given a primary sequence,
the aliphatic index is equal to χ(A) + 2.9χ(V ) + 3.9(χ(I) + χ(L)), where χ is the amino acid
compositional fraction. According to this equation, amino acids isoleucine (I) and leucine (L) have
the highest significance, followed by valine (V) and alanine (A). The ϕ values COLOR assigned to
amino acids closely follow the expected trend, as shown in Fig.4. In contrast, the Grad-CAM method
(second-best) exhibits notable deviations from the expected trend, particularly underestimating the
contribution of amino acid L. It is noteworthy that both COLOR and the transformer-based model
exhibit excellent predictive capabilities, achieving R2 >0.99 in both instances. Consequently, the
variation in the contribution scores presented in Fig.4 can be attributed solely to the explainability
of the respective models. In another study on ACP GRAVY index data, shown in Appendix H, we
show that COLOR captures the contribution scores of amino acids 31% accurately.
Application in motif identification. Having quantitatively demonstrated the explainability of
COLOR, we now extend its application to motif identification. We first choose the three most un-
stable peptides from the ACP Instability index dataset and study the monomeric contribution using
Grad-SAM (second best) and COLOR. Subsequently, based on the contribution score, we identify
the three most important motifs (iu) in the case of both methods. To validate the impact of identified
motifs, all the test sequences, xt, are mutated to x̃t at the three most important positions (pm) using
iun. In short, x̃t = r(xt, iu, pm), where r represents the mutation of xtest at positions pm using
motif iu. For a fair comparison between the two methods, we conduct multiple scenarios: in half
of the scenarios, the pm are determined based on contribution scores from the Grad-SAM method,
while in the other half, they are selected using the COLOR method. To further avoid any bias, the
instability index of x̃t is calculated using both methods. The distribution of the instability index of
x̃t is shown in Fig.5a in comparison with the distribution of the instability index of xt. The shift
is dominant when mutated with iu identified using the COLOR method (RRR, RSS, and RRI), re-
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Figure 5: Motif identification and mutation study. a) Illustrates the distribution shift in the instability
index of the mutated ACP sequences x̃t. RRR, RRI, and RSS are the motifs identified by COLOR,
b) Depicts the variation of C with the number of mutations (|pm|) introduced in non-AMPs (xn).

inforcing its capability to identify impactful motifs. This study also demonstrates that motifs RRR,
RSS, and RRI, significantly compromise the stability of ACP.

In a similar study, we identify key motifs in AMP sequences and validate their impact through
mutation analyses. We first identify key motifs (ia) in AMP sequences using Attention tracing
(second-best) and COLOR. To evaluate the impact of ia identified by the two methods, we first
select specific positions (pm) for mutation in non-AMP sequences. Subsequently, all the non-AMP
sequences in the test data, xn, are mutated to x̃n, where x̃n=r(xn, ia, pm). It is important to note
that for a given ia, pm can also be a list for facilitating mutations at multiple positions. Additionally,
since x̃n is derived from xn, their cardinality remain the same for a given ia and pm, i.e., |xn|=|x̃n|.
Following the mutations, the probability of a x̃n belonging to the AMP class, p(x̃n ∈AMP class). To
avoid bias towards any one model, we follow similar steps as in the case of the ACP dataset above.
To quantify the impact of mutation(s), we introduce the variable C defined as

C =
|{x̃n|p(x̃n ∈ AMP class) > 0.8}|

|x̃n|
(7)

The term C represents the fraction of non-AMP sequences that exhibit a high probability (>0.8) of
being classified as AMPs following mutation(s). Fig.5b shows the variation of C with the number of
mutations introduced in the non-AMP sequences. The higher C values observed for motifs identified
from AMP sequences using the COLOR method reflect its effectiveness in identifying critical motifs
in the sequences. Overall, based on C values, COLOR demonstrates a 53% mean improvement in
the likelihood of converting a non-AMP sequence into an AMP sequence compared to the attention
tracing method. Additionally, in Appendix J, we further demonstrate COLOR’s enhanced ability to
accurately identify motifs in a toy dataset.

4 LIMITATION

It is evident from Eq.2 that COLOR only captures the linear interaction between all motifs while
constructing P. Hence, this can affect its predictive capability for sequences that have higher-order
interactions. To study COLOR’s performance in the dataset with higher-order interactions, we utilize
the ACP GRAVY index dataset but change the property y to:

y =

L/2∑
i=1

(ψi × ψL−i)
2 (8)

where, ψi is the hydropathy of the amino acids present at the ith position. Based on Eq.8, it can
be noted that there is higher-order (order=2) interaction between the monomers far away in the se-
quence; hence making this a good dataset to test COLOR’s capability to capture such interactions.
Upon training COLOR to predict y in Eq.8, we obtain < R2 > = 0.88 which is 12% lower than
the R2 value while trained on GRAVY index (order=1). This drop in the performance can be at-
tributed to only capturing linear interactions in Eq.2. Even though we add a fully connected neural
network after R (Fig.1a) to capture higher-order interactions, the information loss that occurs in
Eq.2 about the higher-order interactions cannot be fully retrieved using the neural network. But
the Transformer model, the second-best model in this case, also shows a 10% drop in performance
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compared to the prediction of the GRAVY index. This highlights that the performance decline when
capturing higher-order interactions is common among other state-of-the-art models as well, given
the complexity of the task.

Typically, these long-range higher-order interactions arise in proteins due to their complex tertiary
structure Kihara (2005). Therefore, to enhance predictive performance, it is essential to explicitly or
implicitly incorporate structural information into the model. One approach is to predict the protein’s
contact map Vendruscolo et al. (1997) and concatenate its elements with rbefore feeding all features
into the neural network (NN) for prediction.

In the current method, we have used one-hot encoding (O) to represent the primary sequence. How-
ever, this approach can be extended to incorporate other tokenization methods, such as byte-pair
encoding (BPE) tokenizer Gage (1994), for sequence optimization. One important consideration
when using an alternative tokenization is to control or be aware of the number of monomers that
form each token. This will help in accurately assigning the contribution score (ψ) to correct motifs
in Eq.5.

5 CONCLUSION

To address the gap for an explainable model to estimate monomeric contribution in proteins, we de-
veloped a novel deep-learning model named COLOR in which every step is interpretable to estimate
monomeric contribution scores. Firstly we show that COLOR has superior data efficiency as it out-
performs SOTA in a low training data regime (NT<500) on 7 out of 10 datasets. We also formulate
a metric (I) to evaluate the contribution scores calculated by COLOR and compare it against atten-
tion and gradient-based explainable models. Our analysis shows that COLOR achieves 22% higher
explainability than the SOTA. Therefore, COLOR achieves enhanced explainability without com-
promising the predictive capability. Additionally, through systematic study, we show that COLOR
is more effective in identifying critical motifs in primary sequences. For example, we show that
the critical motifs identified by COLOR are 50% more effective in converting non-AMP sequences
to AMPs. The motif identification study in our analysis provides the foundation for monomeric
contribution score-driven sequence optimization to accelerate the design of de novo proteins.
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Joel P Arrais. Explainable deep drug–target representations for binding affinity prediction. BMC
bioinformatics, 23(1):237, 2022.

Sajid Nazir, Diane M Dickson, and Muhammad Usman Akram. Survey of explainable artificial
intelligence techniques for biomedical imaging with deep neural networks. Computers in Biology
and Medicine, 156:106668, 2023.

C Anders Olson, Nicholas C Wu, and Ren Sun. A comprehensive biophysical description of pairwise
epistasis throughout an entire protein domain. Current biology, 24(22):2643–2651, 2014.

Robert J Ouellette and J David Rawn. Organic chemistry study guide: Key concepts, problems, and
solutions. Elsevier, 2014.

Akash Pandey, Elaine Liu, Jacob Graham, Wei Chen, and Sinan Keten. B-factor prediction in
proteins using a sequence-based deep learning model. Patterns, 4(9), 2023.

Akash Pandey, Wei Chen, and Sinan Keten. Sequence-based data-constrained deep learning frame-
work to predict spider dragline mechanical properties. Communications Materials, 5(1):83, 2024.

Thang Pham, Trung Bui, Long Mai, and Anh Nguyen. Double trouble: How to not explain a
text classifier’s decisions using counterfactuals synthesized by masked language models? In
Yulan He, Heng Ji, Sujian Li, Yang Liu, and Chua-Hui Chang (eds.), Proceedings of the 2nd
Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and
the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers), pp. 12–31, Online only, November 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.aacl-main.2.

Sylvie Ricard-Blum. The collagen family. Cold Spring Harbor perspectives in biology, 3(1):
a004978, 2011.

12

https://aclanthology.org/2022.aacl-main.2


Published as a workshop paper at MLGenX 2025

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Sofia Serrano and Noah A. Smith. Is attention interpretable? In Anna Korhonen, David Traum, and
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APPENDIX

A RELATED EXPLAINABLE MODELS FOR PROTEIN SEQUENCES

With advancements in AI, models such as CNN, LSTM, and Transformers have been extensively
used to predict properties based on the primary sequence. However, these models lack interpretabil-
ity due to the layers of added non-linearity. But recently there have been some developments in
the field of Explainable AI (XAI) methods to improve the interpretability of DL models. Based on
the techniques discussed in the comprehensive review of the XAI method for biological application
by (Karim et al., 2023), we are going to use three methods as the baseline due to their applica-
bility to the sequence-based models. These methods are Grad-CAM (Chen et al., 2021; Monteiro
et al., 2022), Attention Tracing (Vig et al., 2021; Danilevicz et al., 2023; Avsec et al., 2021), and
Grad-SAM (Barkan et al., 2021). The grad-SAM method has not been used for proteins but is a
simple extension of the Attention Tracing method; hence we have included it as our baseline. The
description of the baseline methods is as follows:

Grad-CAM:
The Gradient-weighting Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017) was ini-
tially proposed for producing a visual explanation for the decision made by a CNN-based model for
classification tasks. To understand the formulation of Grad-CAM let us consider zji (where i=1,...L,
and j=1,..d) to be the latent space representation of the primary sequence with L and d being the
sequence length and latent vector size for every position in the sequence respectively. Also, let yp be
the output predicted by the DL model. Then the importance of each position in the primary sequence
can be obtained using 9.

ϕi =

∣∣∣∣∣1d∑
j

∂yp

∂zji

∣∣∣∣∣ (9)

Attention Tracing:
Self-attention mechanism in Transformers (Vaswani, 2017) has been used to study the importance
of different positions in the field of Natural Language Processing (NLP) (Vaswani, 2017), images
(Covert et al., 2023), and protein (Vig et al., 2021). Self-attention captures the impact of one-time
point (or pixel in the case of images) on another in the sequential data. Transformer consists of
several layers and in each layer, self-attention is calculated. Let us indicate the layer number using
n and the self-attention matrix of nth layer as α(n). α(n) is calculated as per 10a using the Query
(Q) and Key(K) matrix obtained from the primary sequence as indicated in (Vaswani, 2017) with
α
(n)
i→j indicating the attention position i places on j in nth layer of the transformer. Using α(n), the

importance ϕ(n)i (where i= 1,..L) can be obtained for every position in the sequence in every layer
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Dataset q m d Trainable Parameters
Toy Dataset 1 5 4 8 10,601
Toy Dataset 2 9 [4,8,6,3] 8 48,657
ACP Aliphatic 20 1 20 7,341
ACP GRAVY 20 1 8 7,337
ACP Instability 20 3 20 11,965
Collagen Melting temperature 21 [4,8,6,3] 8 52,433
GB1 binding affinity 20 4 20 37237
Soluprot 20 [4,8,16,24] 20 166,922
AMP classification 4 8 4 18,958
Silk 20 [4,8,6,3] 8 51,089

Table 1: Details for our model for every dataset used in the study.

of the Transformer with 10b.

α(n) =softmax

(
Q(n)K(n)T

d0.5
K(n)

)
, where α(n) ∈ RL∗L (10a)

ϕ
(n)
i =

L∑
j=1

α
(n)
i→jϕ

(n+1)
j (10b)

Using the same 10b, the importance can be propagated from the topmost layer of the transformer

to the input of the transformer. The importance of the input to the transformer (ϕ(1)i ) indicates the
importance of positions in the primary sequence.

Grad-SAM:
Gradient Self-Attention Map (Grad-SAM) (Barkan et al., 2021) has been employed in NLP to iden-
tify the input elements that explain the model prediction. Grad-SAM extends the attention tracing
method by incorporating an additional gradient term into 10b, yielding the formulation in 11.

ϕ
(n)
i =

L∑
j=1

α
(n)
i→jϕ

(n+1)
j

∣∣∣∣∣ ∂yp

∂α
(n)
i→j

∣∣∣∣∣ (11)

Including the gradient term helps capture not only the absolute value of the self-attention (αi→j) but
also the sensitivity of the output (yp) with respect to these self-attention values.

B MODEL DETAILS

The details of the COLOR model used for different datasets are provided in Tab.1, and those of other
baselines are given in Tab.2.

C ADDITIONAL ANALYSIS

We have designed these toy datasets such that the output properties (y) for each primary sequence
are determined through an analytical formulation, providing an exact ground truth for model evalua-
tion. This approach is particularly useful for conducting monomeric contribution studies, where the
primary sequence is masked based on its contribution score, and the properties are re-evaluated as
described in Section 2.2 in the main text. In the case of the toy dataset, re-evaluating the properties
is straightforward due to the availability of an analytical formulation.

C.1 DATASETS

C.1.1 TOY DATASET 1

In this dataset, the primary sequence consists of 5 qualitative (i.e., categorical) variables: A, B, C, D,
and E. At each ith position, the ψi is assigned to account for 2 neighboring positions in the sequence
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Models
Dataset Transformer 1D CNN LSTM
Toy Dataset 1 159K 137K 115K
Toy Dataset 2 138K 138K 115K
ACP Aliphatic 139K 87K 139K
ACP GRAVY 139K 87K 139K
ACP Instability 158K 139K 139K
Collagen Melting temperature 158K 139K 139K
GB1 binding affinity 158K 139K 139K
Soluprot 158K 139K 139K
Silk 158K - -
Antimicrobial Classification 159K 138K 163K

Table 2: Details of state-of-the-art models used for comparison with our model. For the silk dataset,
there is no data available for 1D CNN and LSTM as this dataset was only used for the explainability
study.

as:

ψi = (ai−1 + ai) ∗ ai+1 (12)

, where, ψ0 and ψL are equal to 0. The term ai takes on values 5,2,4,1, or 8 depending on whether
A, B, C, D, or E is present at that position. The property y is calculated as

y =

L∑
i=1

ψi (13)

The L of all the primary sequences is 50.

C.1.2 TOY DATASET 2

In this dataset, the primary sequence consists of 9 distinct qualitative variables: A, B, C, D, E, F, G,
H, and I. At each ith position, the descriptor ai is assigned, where ai takes on values 5, 2, 4, 1, 8, 10,
7, 6, or 3 depending on whether A, B, C, D, E, F, G, H, or I is present at that position. The descriptor
at each position is further refined to ψi to incorporate the influence of neighboring variables in the
sequence as:

ψi =

i+bi/2∑
j=i−bi/2

aj (14)

, where, bi takes values 10, 12, 14, 16, 18, 20, 22, 24, or 26, depending on whether A, B, C, D, E, F,
G, H, or I is present at the ith position. The property y is calculated as:

y =

L∑
i=1

ψi (15)

The L of all the primary sequences is 50.

C.1.3 SPIDER SILK PEAK FORCE

Silk has superior mechanical properties, making it a good choice for designing biomaterials. (Kim
et al., 2023) collected the peak force data using Molecular Dynamics (MD) simulation for 82 differ-
ent primary sequences of silk mimicking MaSp1 spidroin of the spider silk (Arakawa et al., 2022).
We use this computational data as one of the datasets for our study. For simplicity, we will refer to
this dataset as the ”Silk dataset”.

The data split for the above-mentioned datasets is given in Tab.3.
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Dataset Training Validation Test
ACP Aliphatic, GRAVY, Instability 850 150 150
Collagen Melting Temperature 506 63 64
GB1 Binding Affinity 10000 5255 5308
Soluprot 8336 3100 3100
AMP Classification 3200 1000 1000
Toy Dataset 1,2 1000 100 100
Silk 50 15 15

Table 3: Data split for different datasets used in the current study.

D STRATEGIES FOR ENHANCING MODEL PERFORMANCE

In Section 2.1, we discuss the overall architecture of our model. Based on the architecture, we
outline several strategies to enhance model performance across various applications:

• Adjust the motif size m to identify the optimal choice for different datasets, as they may
contain motifs of varying sizes.

• Tune the latent space dimension d to balance representation capacity and model complexity.
• Increase the number of COLOR units, each with unique motif sizes m to capture diverse

motif structures.
• Apply layer normalization after each COLOR unit for enhanced optimization in certain

applications.
• Introduce layer normalization following the 3D representation R for further optimization

benefits.
• Normalize the motif composition matrix D by the sequence length to ensure the model

processes relative compositions rather than absolute values. This approach is particularly
advantageous for properties like the Aliphatic Index, which depends on the relative propor-
tions of amino acids A, V, I, and L.

E PREDICTABILITY AND EXPLAINABILITY CURVES

The MAE (or accuracy) versus NT curves are shown in Fig.6, and these curves are used to calculate
A and A500. The metric I is calculated from MAE (or accuracy) versus the percentage of sequence
unmasked (u%) curves, and these curves are shown in Fig.7.

F COMPREHENSIVE PREDICTIVE CAPABILITY

To study the predictive capability of COLOR, we use A and A500, as introduced in Section 2.2 in
the Main text. The A and A500 values for Toy dataset 1 and 2 are plotted in Fig.8 along with all other
datasets discussed in the Main text. On the toy datasets, COLOR outperforms the next-best SOTA
model by 34% on average. We do not perform this study on the silk dataset due to the insufficiency
of training samples to calculate either A or A500. An important observation from Fig.8 is the strong
performance of COLOR on Toy Dataset 2. In this dataset, the monomeric properties (ψ) depend on
a larger neighborhood of monomers, as defined by 12. Interestingly, despite using small values of
m (3,4,6,8) in the model, COLOR accurately predicts the property y as evident by the lower values
of A and A500. This highlights the model’s ability to capture properties at the motif level through
Q , while the matrix multiplication of D and QT , combined with the non-linearities in the neural
network, enables the model to effectively capture global interactions.

G COMPREHENSIVE EXPLAINABILITY

We study the explainability of the COLOR method in estimating the monomeric contribution scores
for two toy datasets and the silk dataset. Even though we do not perform the predictive study on the
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Figure 6: Curves showing the predictive capability of different models. MAE (or accuracy) versus
training data size (NT ) curves obtained from different deep-learning models are plotted for a) Toy
dataset 1, b) Toy dataset 2, c) ACP Aliphatic index dataset, d) ACP GRAVY index dataset, e) ACP
instability dataset, f) Collagen dataset, g) Silk dataset, h) Antimicrobial classification dataset. and i)
Soluprot dataset. The curves shown here are the mean of runs using three different seeds.
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Figure 7: Curves showing the explainability of different models. MAE (or accuracy) versus % of
sequence unmasked curve obtained from different XAI models are plotted for a) Toy dataset 1, b)
Toy dataset 2, c) ACP Aliphatic index dataset, d) ACP GRAVY index dataset, e) ACP instability
dataset, f) Collagen dataset, g) Silk dataset, and h) Antimicrobial classification dataset. The curves
shown here are the mean of runs using three different seeds.
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Figure 8: Comparison of the predictive capability of different supervised models. Figure a) shows
the comparison of A and b) illustrates the comparison of A500 obtained for different datasets. The
arrows ↑ and ↓ in front of dataset names indicate whether higher or lower values are better, respec-
tively. The results are normalized using the highest values of the corresponding dataset.
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Silk dataset, we include it in the explainability study. Using the data split provided in Tab.3 for the
Silk dataset, the mean R2 value of 0.91 is achieved across all models, indicating strong predictive
performance and making the dataset suitable for the explainability study. We use the metric I
discussed in Section 2.2 in the Main text to quantify the explainability. The values of I are shown
in Fig.9 along with all the datasets discussed in the Main text. The COLOR method outperforms
the next-best method by 37%, 5%, and 14% on Toy Dataset 1, Toy Dataset 2, and the Silk dataset,
respectively.

Figure 9: Comparison of explainability offered by different XAI models. The results are normalized
using the results from the Random method of the corresponding dataset. The arrows ↑ and ↓ in front
of dataset names indicate whether higher or lower values are better, respectively.

H CONTRIBUTION SCORE OF AMINO ACIDS IN GRAVY INDEX DATASET

Analytically, the GRAVY index is the sum of the hydropathy value of all the amino acids, divided by
the sequence length (L). Fig.10 shows the comparison between the contribution scores and absolute
hydropathy of amino acids, wherein we anticipate a strong correlation between the two variables. In
Fig.10a & b, the contribution scores are obtained using Grad-SAM (second best interpretable model)
and our method, respectively. The contribution scores from COLOR have ∼31% higher correlation
with the absolute hydropathy value, highlighting the effectiveness of our approach in accurately
capturing the significance of various amino acids. It is again important to note that both COLOR
and the transformer-based model exhibit high predictive capabilities, withR2 >0.99. Therefore, the
differences illustrated in Fig. 10 arise from the varying explainability of the two models.

I PARAMETRIC STUDY

As discussed in Section 2.1, the motif size m and the dimensionality of the latent space represen-
tation d for each motif are key parameters that define a COLOR unit. Hence, in this section, we
conduct a parametric study to examine the impact of varying m and d on the model’s predictive
performance and explainability. To quantify explainability in the parametric study, we introduce a
scaled parameter Mr, defined as

Mr =Predictive performance with only 20% sequence unmasked

Mr =
Mr

maxm∈Sm
(Mr)

, where, Sm = [1,2,3,6,8,12,18,24]
(16)

While computing Mr in Eq.16, the monomers within the top 20% based on their contribution scores
are unmasked, while the remainder of the sequence is masked. To evaluate predictive performance,
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Figure 10: Comparison of contribution scores as a function of monomer hydropathy. a) contribution
scores obtained using the Grad-SAM method, and b) contribution scores obtained using the COLOR
method.

Figure 11: Parametric study depicting the effect ofm and d on COLOR’s predictive performance and
explainability. Figures (a) and (b) show the effect of m on the ACP dataset (Instability and GRAVY
index) and AMP classification dataset, respectively, with mean results from three independent runs.
Black arrows indicate the direction in which optimal values should trend. Figures (c) and (d) depict
the effect of d on predictive performance, where red and green markers indicate lower and higher
values corresponding to better model performance, respectively.
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we utilize scaled MAE (MAE) for regression tasks and scaled accuracy (Accuracy) for classifi-
cation tasks. The scaling process for MAE and accuracy follows the same approach as outlined in
Eq.16. Furthermore, to examine the effect of m, we fix |m| to 1 and vary the value of m. This
approach enables us to isolate the influence of motif size on the performance of COLOR.

In Fig.11a&b, we show the effect of m on the model’s predictive performance and explainability. For
the parametric study in regression tasks, we selected two properties (Instability index and GRAVY
index) from the ACP dataset. The GRAVY index was specifically chosen becausem = 1 is sufficient
for accurate prediction, making it an interesting case to explore the impact of increasing m on
predictive performance. It is evident from Fig.11a&b that explainability drops while using m ≥12
in the case of instability index and AMP classification. This can be attributed to the fact that in the
COLOR method, the contribution score ϕ is assigned at the motif level as per Eq.5. This means
that while working with larger m values, the model can end up assigning a higher contribution
score to a larger motif of which only a smaller segment is important and the rest of the motif is
insignificant. For the same reason, in the case of the GRAVY Index, which is independent of any
interactions between neighboring monomers in the sequence, using any m >1 adversely affects
explainability as evident from Fig.11a. It can also be noted that in the case of instability index and
AMP classification, the model’s predictive capability is lower while using m =1. This is because
the model does not consider any neighboring monomers while generating matrix Q and linearly
combining the effect of various monomers in Eq.2 might not be sufficient to capture the effect of
neighboring monomers in the sequence.

There is also a subtle but important difference in the effect of m on ACP instability and AMP
classification dataset. For the ACP instability dataset, a smaller motif size (3< m <6) yields optimal
performance, whereas the AMP classification dataset requires a larger motif size (m=6 or 8) for
better results. This difference can be attributed to the nature of the datasets: the AMP dataset
consists of sequences made up of nucleotide bases (A, G, C, and T), where every three nucleotides
correspond to a single amino acid. Since amino acids are crucial for protein function, a larger motif
size in nucleotide sequence is necessary to capture 2–3 amino acids in each motif, thereby improving
both predictive accuracy and explainability.

For a fixed value of m , varying d can lead to different predictive capabilities. Since d determines the
size of the vector representing each motif in matrix Q , adjusting it primarily impacts the number of
tunable parameters, thus influencing the model’s predictive capability. To study the impact of d, we
first fix m to be 1, 3, and 8 for the GRAVY index, Instability index, and AMP classification datasets
respectively based on the results shown in Fig.11 a&b. In Fig.11 c&d, we show the variation of
A (see Eq.3) for ACP and AMP datasets. From the figure, it can be noted that in the case of the
ACP dataset, choosing d >4 is a robust choice for better predictive performance. On the other
hand, for the AMP dataset, A for all d values are within 3% of each other. The better performance
observed with lower d values in the AMP dataset could be attributed to the composition of the
sequences, which consist of nucleotides (q = 4), necessitating a lower dimensionality (d) for effective
representation. This study suggests that users may consider setting d proportional to q .

J MOTIF IDENTIFICATION IN A TOY DATASET

We show the capability of COLOR to effectively identify important motifs using Toy Dataset 1 as
the critical motif is correctly known in this case. Fig.12 showcases the capability of Grad-SAM and
COLOR methods in accurately pinpointing the critical motifs within the sequences. The Grad-SAM
method is chosen for the comparison as it ranks the second-best interpretable model for toy dataset 1
as shown in Fig.9. Based on the results in Fig.12, COLOR successfully identifies the most important
motif in 8 out of 10 instances, compared to 6 out of 10 for the Grad-SAM method.
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Figure 12: Motif identification in sequences from Toy dataset 1. The figure highlights the most
contributing motif in each sequence with a black underline. Every monomer in the sequence is color-
coded based on its contribution score, as determined using the Grad-SAM and COLOR methods.
Based on the contribution scores, the key motif identified by Grad-SAM and COLOR methods is
shown using green underline. With a good interpretable model, the black solid and green dashed
underlines are expected to overlap more frequently.
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