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ABSTRACT

Motion forecasting is essential for making safe and intelligent decisions in robotic
applications such as autonomous driving. State-of-the-art methods formulate it
as a sequence-to-sequence prediction problem, which is solved in an encoder-
decoder framework with a maximum likelihood estimation objective. In this pa-
per, we show that the likelihood objective itself results in a model assigning too
much probability to trajectories that are unlikely given the contextual information
such as maps and states of surrounding agents. This is despite the fact that many
state-of-the-art models do take contextual information as part of their input. We
propose a new objective, unlikelihood training, which forces generated trajecto-
ries that conflict with contextual information to be assigned a lower probability
by our model. We demonstrate that our method can improve state-of-art models’
performance on challenging real-world trajectory forecasting datasets (nuScenes
and Argoverse) by 8% and reduce the standard deviation by up to 50%. Code will
be made available.

1 INTRODUCTION

For robotic applications deployed in the real world, the ability to foresee the future motions of agents
in the surrounding environment plays an essential role for safe and intelligent decision making. This
is a very challenging task. For example, in the autonomous driving domain, to predict nearby agents’
future trajectories, an agent needs to consider contextual information such as their past trajectories,
potential interactions, and maps. State of the art prediction models (Salzmann et al., 2020; Tang
& Salakhutdinov, 2019; Rhinehart et al., 2019) directly take contextual information as part of their
input and use techniques such as graph neural networks to extract high-level features for prediction.
They are typically trained with a maximum likelihood estimation (MLE) objective that maximizes
the likelihood of ground truth trajectories in the predicted distribution. Although MLE loss encour-
ages the prediction to be close to the ground truth geometrically, it does not focus on learning a
good distribution that is plausible with respect to the contextual information. These models predict
trajectories that violate the contextual information (e.g., go to opposite driving direction or out of
the driving area) but still closes to ground truth. In contrast, humans can easily notice that these
trajectories are unlikely in a specific context. This phenomenon suggests that simply applying MLE
loss cannot fully exploit contextual information.

To address the problem, we propose a novel and simple method, unlikelihood training, that injects
contextual information into the learning signal. Our loss penalizes the trajectories that violate the
contextual information, called negative trajectories, by minimizing their likelihood in the predicted
distribution. To generate negative trajectories, we first draw a number of candidate trajectories from
our model’s predicted distribution. Then, a context checker is used to cut out the trajectories that
violate contextual information as negative trajectories. This context checker does not need to be
differentiable. By minimizing the likelihood of negative trajectories, the model is forced to use the
contextual information to avoid predictions that violate context. Therefore, the prediction quality is
improved.

Existing methods (Casas et al., 2020; Park et al., 2020) using contextual information as learning
signals either introduce new learning parameters or using high-variance learning methods such as
the REINFORCE algorithm (Casas et al., 2020). In contrast, our method injects rich contextual
information into the training objective and keeps the training process simple.
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Unlikelihood training (Welleck et al., 2019) has been applied to neural text generation. We are the
first to propose unlikelihood training for continuous space of trajectories. For the discrete space
of token sequences, repeating tokens or n-grams in the generated sequence are chosen as negative
tokens. In contrast, we design a context checker to select negative trajectories sampled from the
continuous distribution of model predictions.

Our method can be viewed as a simple add-on to any models that estimate the distribution of future
trajectories. It improves their performance by encouraging models to focus more on contextual
information without increasing the complexity of its original training process.

Our contributions are summarized as follows:

• We propose a novel and simple method, unlikelihood training for motion forecasting in
autonomous driving that encourages models to use contextual information by minimizing
the likelihood of trajectories that violate contextual information. Our method can be easily
incorporated into state-of-the-art models.

• Our experimental results on challenging real-world trajectory forecasting datasets,
nuScenes and Argoverse, shows that unlikelihood training can improve prediction perfor-
mance by 8% and reduce the standard deviation by up to 50%.

2 RELATED WORK

In this section, we briefly review the two most related topics.

Trajectory Forecasting Trajectory forecasting of dynamic agents, a core problem for robotic ap-
plications such as autonomous driving and social robots, has been well studied in the literature.
State-of-the-art models solves it as a sequence-to-sequence multi-modal prediction problem (Lee
et al., 2017; Cui et al., 2018; Chai et al., 2019; Rhinehart et al., 2019; Kosaraju et al., 2019; Tang
& Salakhutdinov, 2019; Ridel et al., 2020; Salzmann et al., 2020; Huang et al., 2019). (Cui et al.,
2018; Chai et al., 2019; Ridel et al., 2020) predicts multiple future trajectories without learning
low dimensional latent agent behaviors. (Lee et al., 2017; Kosaraju et al., 2019; Rhinehart et al.,
2019; Huang et al., 2019) encodes agent behaviors in continuous low dimensional latent space while
(Tang & Salakhutdinov, 2019; Salzmann et al., 2020) uses discrete latent variables. Discrete latent
variables succinctly capture semantically meaningful modes such as turn left, turn right. (Tang
& Salakhutdinov, 2019; Salzmann et al., 2020) learns discrete latent variables without explicit la-
bels. All of them use a maximum likelihood estimation (MLE) objective or its approximations (e.g.,
VAE). In this paper, we show that MLE loss can ignore contextual information such as maps and
states of surrounding agents. As a result, models with such a loss can assign too much probability to
unlikely trajectories. We propose an unlikelihood training objective to avoid such cases. All models
with the maximum likelihood estimation objective can potentially benefit from our methods.

Contrastive learning and unlikelihood training To date, several studies have investigated the
possibilities to benefit from negative data. One of the popular direction is contrastive learning. Con-
trastive learning has achieved significant success in many fields (Oord et al., 2018; Kipf et al., 2019;
Ma & Collins, 2018; Abid & Zou, 2019; Welleck et al., 2019). NCE (Ma & Collins, 2018) CPC
(Oord et al., 2018) maximizes the mutual information between data and latent representation by a
novel contrastive loss to extract useful representation from data. C-SWMs (Kipf et al., 2019) utilizes
contrastive learning to learn a better world model for reinforcement learning tasks. Recently, unlike-
lihood training (Welleck et al., 2019) proposes a new method to utilize negative data. In addition, to
maximize the likelihood of the ground truth token, it minimizes the likelihood of negative tokens for
better text generation. Their method is on the discrete space of token sequences. Repeating tokens
or n-grams in the generated sequence is chosen as negative tokens. In contrast, our proposed method
works in the continuous space of trajectories. We design a novel method, context checker, to select
negative trajectories.
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3 METHOD

3.1 PROBLEM FORMULATION

We are targeting at better predicting the future trajectory Yi of a vehicle i given input Xi. Xi can
include any related information like rasterized maps or past positions of vehicle i and surrounding
agents, depends on the design of the method. Here we skip the detailed choice of input and denote
it as Xi for conciseness. Due to different driving strategies, driving intents, and the complex traffic
environment, there are usually multiple possible future trajectories given an input xi (although there
is only one ground truth future trajectory yi,gt in a dataset recorded in the real world). To handle
this situation, most state of the art methods (Salzmann et al., 2020) model a distribution of possible
future trajectories pθ(Yi | Xi) to cover all the possibilities given the input Xi instead of predicting
one trajectory. θ denotes the learning parameters of the model. To train such methods, most state-
of-the-art models usually use maximum likelihood estimation (MLE) to maximize the likelihood of
ground truth trajectory Yi,gt in the predicted distribution. For example, the loss of CVAE-based
model Trajectron++ (Salzmann et al., 2020) is Eq.1. This loss is used to maximize the lower bound
of ground truth’s likelihood when the coefficient k = 1.

Ltraj++ = −Eẑ∼qθ3(z|Xi,Yi,gt)[log pθ2(Yi,gt |Xi, ẑ)]

+ kDKL(qθ3(z |Xi,Yi,gt)‖pθ1(z |Xi))− Iq(Xi; z)

≥ − log p(Yi,gt |Xi,Yi,gt)− Iq(Xi; z), when k = 1

(1)

Figure 1: Examples of predicted distribution from
Trajectron++ (Salzmann et al., 2020). White
points denote the ground truth trajectory Yi,gt and
the color region indicates the predicted distribu-
tion. Some of the prediction go outside of the
drivable region or go to the lane in opposite di-
rection.

Limitation of MLE on Motion Forecasting
MLE encourages the model to predict a dis-
tribution that allocates reasonable probability
mass to the region where Yi is located by min-
imizing the KL-divergence of predicted distri-
bution and ground truth distribution. Because
the domain of trajectory distribution is over the
geometric locations, MLE makes these two dis-
tributions ”close” to each other geometrically.
However, we argue that maintaining the geo-
metrical nearness only is not good enough for
motion forecasting task in autonomous driv-
ing. In complex traffic scenarios, there can be
many potential trajectories close enough to the
ground truth geometrically but are very unlikely
to happen. For example, if the ground truth tra-
jectory Yi,gt is on the outermost lane, a trajec-
tory that is close to Yi,gt but outside the driv-
able region is unlike to happen in the real world.
However, MLE loss will not impose a signif-
icant enough penalty on such a case to avoid
such a prediction. Fig.1 demonstrates a pre-
diction example from Trajectron++ (Salzmann
et al., 2020) where part of the distribution is
outside of the derivable region or on the lane
with the wrong direction. The MLE-based loss
only offers learning signals that contain the geometric location information of the ground truth tra-
jectories. All the other contextual information, like the drivable region and the lane direction, are
missing in the learning signals. While the inputs to a model contain rich contextual information, the
model cannot use it to avoid the prediction that is geometrically close to ground truth but violates
context. In contrast, this is quite a simple task for humans.

3.2 UNLIKELIHOOD LOSS

To mitigate this problem, we design a new loss term that encourages the model to consider the
contextual information. Inspired by contrastive learning and unlikelihood training, we additionally
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train our model to minimize the likelihood of trajectories that violate the contextual information
given input Xi. We denote them as negative trajectories Yi,neg . Let’s first assume that we already
have a distribution of negative trajectories pneg(Yi | Xi). One intuitive way is to directly minimize
the log likelihood of Yi,neg in our predicted distribution, similar to MLE but in an opposite manner

Lunlike = EXi,∼D,Yi,neg∼pneg(Yi|Xi)[log pθ(Yi,neg |Xi)] (2)

However, the gradient of log function tends to infinity when the input tends to 0, which leads to
unstable training since the model are optimized to minimize pθ(Yi,neg | Xi) and pθ(Yi,neg |
Xi) ≥ 0. To avoid the infinity gradient region of log function, we add a small constant ε to the
likelihood. The final loss term we propose is

Lunlike = EXi,∼D,Yi,neg∼pneg(Yi|X)[log(pθ(Yi,neg |Xi) + ε))] (3)

We call it unlikelihood loss. We use a coefficient γ to balance Lunlike. The final training objective in
case we combine our method with Trajectron++ is

L = Ltraj++ + γLunlike (4)

Eq.4 is also easily adapted to combine with any other models that predict trajectory distribution as
output. With the help of Lunlike, we inject the contextual information into the learning signal, force
the model to better extract and use contextual information in Xi, and generate more reasonable
predicted distribution to avoid high Lunlike.

3.3 NEGATIVE TRAJECTORIES

Our proposed loss term is highly dependent on the negative samples Yi,neg from the distribution
pneg(Yi | Xi). However, these are not given in the dataset. To solve this issue, we approximate
the samples by directly drawing a set of trajectories from the predicted distribution and select the
trajectories that violate the contextual information out by a context checker. Note that this checker
does not need to be differentiable and it can be as complex and advanced as necessary. The type of
unlike predictions the model learns to avoid by our method depends on the type of unlike trajectories
the checker can detect.

Design of Our Checker We implement a map-based checker to judge whether a given trajectory
suits the context or not. In detail, the checker examines whether the trajectory goes into the lane
in the opposite direction or out of the road. We create a map that stores the lane direction at every
location of lanes and the drivable region. Two examples are shown in Fig.2. We first check whether
all the locations of a given trajectory are in the drivable region. If so, we further calculate angles be-
tween velocity and the lane direction at each time step to see whether they are all inside a 90 degree.
The velocities are approximated by differentiating the trajectory. The trajectories that fail to pass the
exam are judged as negative trajectories Yi,neg . Note that the lane direction information originally
comes from the dataset and is usually incomplete or invalid like in the intersection. In this case,
we only use the drivable region information. In addition, there are also a small part of ground truth
trajectories in the dataset that violates the lane direction or drivable region. In this case, our checker
skips the checking and we train it without Lunlike to allow similar prediction. Note that this checker
is not perfect due to the incomplete information and simple checking mechanism. A trajectory that
passes the exam of the checker doesn’t mean it is 100% compatible with the context. However,
our method can still work properly, because our method only depends on the negative trajectories
that do not pass the exam and has nothing to do with the passing ones. Our checker design offers
reasonable negative trajectories to support our approach. But of course, a more advanced checker
helps the model to avoid more complex unlikely prediction. We leave it open for future research.

3.4 ALGORITHM

The finial algorithm is shown in Alg.1. At each iteration, we first run the forward pass of the
model to get the output distribution pθ(Yi | Xi) given the input Xi. Then, K negative candidate
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(a) negative case (b) positive case

Figure 2: Examples of maps used in the checker in nuScences (Caesar et al., 2019a). Green and
blue region together denote the drivable region and the blue means that we have lane direction
information here. Random locations are sampled and their lane directions are plotted as red arrows
to show the concrete directions. Blue line denotes the trajectories to check and the velocity directions
are represented as yellow arrows. (a) shows a negative trajectory that goes out of the road. (b) is a
passing case.

trajectories are drawn from this distribution and we select the negative trajectories out Yi,neg via
our checker. After that, ground truth trajectory and negative trajectories are used to calculate the
loss function, update the model, and go to next iteration. Note that if there are no Yi,neg in the K
negative candidates judged by our checker for data i, we don’t apply Lunlike on i.

3.5 GRADIENT ANALYSIS

Let’s assume a single-mode prediction case that the future position yi,gt,t at time step t of
agent i is modeled by a simple Gaussian distribution N (yi,t; µ̂i,t, σ̂i,tI). µ̂ and σ̂i,t are calcu-
lated by the model. With a single negative position yi,neg,t we define a simple loss for step t
Lt = − logN (ygt,t; µ̂t, σ̂tI) + logN (yneg,t; µ̂t, σ̂tI) and omit the subscript i for brevity. The
gradient of Lt with respect to µ̂t and σ̂t in this case is (Derivation in Appx.A):

∂Lt
∂µ̂t

= − 1

σ̂2
t

((ygt,t − µ̂t) + (µ̂t − yneg,t)) (5)

∂L

∂σ̂t
= − 1

σ̂3
t

(||ygt,t − µ̂t||2 − ||yneg,t − µ̂t||2) (6)

Eq.5 shows that the center of the predicted distribution µ̂t is pushed towards ygt,t and pushed away
from yneg,t by this learning objective. In Eq.6, when ygt,t is closer to the center than yneg,t, ∂L

∂σ̂t
is positive and σ̂t is decreased. Note that yneg,t is selected out from samples of N (µ̂t, σ̂tI)), this
means whenN (µ̂t, σ̂tI)) covers context-violated region and this region is farther than ground truth
region,N (µ̂t, σ̂tI)) will shrink to exclude the negative region and become a better estimation to the
true data distribution.

When the prediction is not so accurate (e.g. at the beginning of training), our ground truth ygt,t may
be farther than the negative location yneg,t. In this case, N (µ̂t, σ̂tI) will expand to better cover
the ground truth and make the prediction more uncertain. A simple approach to alleviate this issue
is turning off our unlikelihood loss Lunlike in the first few training epochs. We implement this by
making γ in Eq.4 as a sigmoid function centered at a specified epoch. By this way, we smoothly
turn on Lunlike during training.

4 EXPERIMENTAL RESULTS
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Algorithm 1: Training process (Use Trajec-
tron++ as base model)
Initialize the model parameters θ;
Initialize learning rate α and coeifficient γ;

while not converge do
Xi,Yi,gt ∼ D
run forward pass to compute pθ(Yi | Xi)
draw K trajectotries Yi,k ∼ pθ(Yi | Xi)
select Yi,neg via checker
Compute Ltraj++ using Eq.1
Compute Lunlike using Eq.3
L = Ltraj++ + γLunlike
θ = θ − α∇θ(L)

end

In this section, we present the experimental re-
sults of our method to demonstrate our perfor-
mance. Our method is easily to applied on
state of the art models that generate a future
trajectory distribution and can further improve
their performance. In our experiments, we se-
lect Trajectron++ (Salzmann et al., 2020), one
of the state-of-the-art methods on NuScenes
dataset (Caesar et al., 2019b) with open-source
implementation, as our base model. We ex-
tend the implementation to work on Argov-
erse dataset (Chang et al., 2019). We evaluate
our approach on these two motion forecasting
datasets.

Test Model Trajectron++ (Salzmann et al.,
2020) is a CVAE-based (Sohn et al., 2015) model. Its input Xi contains positions, velocities,
heading of the predicted and surrounding vehicles, and a map patch. The output distribution
pθ(Yi | Xi) =

∑
z pθ1(z | Xi)pθ2(Yi | Xi, z) is a Gaussian mixture model with 25 compo-

nents and modeled by an encoder net pθ1(z |Xi) and a decoder net pθ1(Yi |Xi, z). In addition, it
has another encoder net qθ3(z | Xi,Yi,gt) used only in training. The original learning objective is
shown in Eq.1. Iq denotes the mutual information.

Evaluation Metrics we use average l2 displacement error (ADE) and final l2 displacement error
(FDE) to evaluate the prediction performance. Each of them contains some sub-versions. FDE-1
is the FDE calculated using only 1 predicted trajectory. In both original Trajectron++ and our ap-
proach, this single trajectory is drawn from predicted distribution by greedy search step by step.
ADE-Full/FDE-Full represents the quality of the whole output distribution. To compute ADE-
Full/FDE-Full, we randomly sample 200 trajectories and calculate the average performance as the
reported scores. In addition, we use our context checker to measure the context-violation rate in
these 200 trajectories as a metric to show the context-related performance.

4.1 NUSCENES DATASET

nuScenes dataset (Caesar et al., 2019b) contains 1000 city driving scenes from both left-hand (Sin-
gapore) and right-hand (Boston) traffic regions. Each scene is 20s long and recorded in 2Hz. It is
one of the biggest open-source motion forecasting datasets with detailed semantic maps.

Experiments The batch size is set to 1024. Models are trained for 35 epochs and we test the
weights from the best epoch measured by average ADE on validation set. The coefficient γ in Alg.1
increases gradually from 0 to 1 as a sigmoid function centered at 24th epoch. Initial learning rate
is 3e-3 and it decays exponentially by 0.9995 per iteration. These hyperparameters except γ are
optimized for Trajectron++ and lead to better performance than that in original paper. In addition,
we rotate the scenes randomly from 15◦ to 345◦ in the training set for data augmentation following
the setting of original Trajectron++. For each model, we run 5 experiments and report the mean and
standard deviation of the measured metrics. The models are trained to predict 3 seconds into the
future. To evaluate on generalization beyond the training horizon, we test on both 3 second and 4
second prediction horizons.

Tab.1 shows the quantitative results 3s and 4s prediction measured by the FDE/ADE-Full metrics
and the context-violation rate. Our unlikelihood loss improves Trajectron++ by about 8% for both
metrics in both 3 and 4 second prediction horizons. Results indicate that our method helps improve
the accuracy of the predicted distribution. This is also demonstrated in the qualitative comparison in
Fig.3. The predicted distribution from our methods covers the not-drivable region less compared to
original Trajectron++ without our proposed loss. In contrast, original Trajectron++ tends to violate
the contextual information when prediction horizon is long. This shows that our method encourages
the model to be more sensitive to the road boundary and the lane direction. In addition, we observe
a reduction of the performance variance measured by standard deviation in Tab1, indicates that our
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Table 1: nuScenes: Experiment results on nuScenes dataset (Caesar et al., 2019b) with Trajectron++
(Salzmann et al., 2020). FDE and ADE are averaged over 200 trajectories drawn from the predicted
distribution. Our proposed loss improves the performance of Trajectron++ by about 8%, and avoid
16% context-violated prediction compared to Trajectron++, which indicates a better predicted dis-
tribution. Mean and standard deviation are calculated over 5 runs.

Model FDE-Full ADE-Full Context-Violation-Rate
3s 4s 3s 4s 3s 4s

Trajectron++ 1.46±0.07 2.74±0.10 0.59±0.04 1.04±0.05 7.29%±0.22% 10.59%±0.54%
Ours 1.34±0.04 2.51±0.06 0.54±0.02 0.95±0.03 6.57%±0.15% 8.85% ± 0.32%

Table 2: nuScenes: Experimental results on the nuScenes dataset for single prediction. FDE and
ADE are computed by only one predicted trajectory. For both Trajectron++ and our method, this
trajectory is sampled by greedy search. Our method helps to improve the predicted accuracy. Mean
and standard deviation are calculated over 5 runs.

Model FDE-1
1s 2s 3s 4s

Const. Velocity (Salzmann et al., 2020) 0.32 0.89 1.70 2.73
S-LSTM (Alahi et al., 2016) 0.47 - 1.61 -
CSP (Deo & Trivedi, 2018) 0.46 2.35 1.50 -
CAR-Net (Sadeghian et al., 2018) 0.38 - 1.35 -
SpAGNN (Casas et al., 2019) 0.36 - 1.23 -
Trajectron++ (Salzmann et al., 2020) 0.07 0.45 1.14 2.20
Trajectron++ (our hyperparameters) 0.06±0.01 0.43±0.01 1.08±0.04 2.05±0.08
Ours 0.05±0.00 0.42±0.01 1.05±0.02 1.99±0.05

method helps to stable the training process. Comparison with other methods is shown in Tab.2. The
FDE for single predicted trajectory is also improved by our method.

4.2 ARGOVERSE DATASET

Argoverse dataset (Chang et al., 2019) contains 300,000 5-second tracked scenarios in 2 American
cities Miami and Pittsburgh. The data is recorded in 10 Hz. The first 2 seconds are used as input
to predict the next 3 seconds future. It is also one of the biggest open-source motion forecasting
datasets that offer semantic maps.

Experiments We downsample the data from 10Hz to 2Hz to make the setting similar to nuScenes
following the setting of (Park et al., 2020). Argoverse does not release the ground truth future
trajectories for the test dataset. Therefore, we use the original validation set as our test set in this
experiments and randomly split the original training set into our training set with 95% data and our
validation set with 5% data. Batch size is 256. Initial learning rate is 3e-3 and it decays exponentially
by 0.9995 per iteration. The model is trained for maximal 60 epochs and we select the weights from
the best epoch measured by average ADE in validation set. The coeffient γ in Alg.1 increases
gradually from 0 to 1 as a sigmoid function centered at 18th epoch. Trajectron++ is not designed for
Argoverse. To make the experiments runnable, we made some small modifications that are explained
in Appx.D. We execute 6 training instances for both original Trajectron++ and our method, report
the average performance and the standard deviation. The results are listed in Tab.3. Compared to
Trajectron++ without our method, our model improves the accuracy of the prediction by about 8%
with our simple loss and reduces the performance variance by about 50% measured by standard
deviation.

4.3 ABLATION STUDY

Prediction horizon for negative candidates Assume we have a predicted trajectory with a length
six, and it is on the drivable region and obeys the lane direction. However, the trajectory tends to
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(a) Ours (b) Trajectron++

Figure 3: Qualitative results of our method and Trajectron++ in a complex scenario. Some of the
predicted distribution of Trajectron++ are out of the road or cover the lane with wrong direction.
Our method helps alleviate this issue. Predicted distribution is plotted as colored region and white
points denotes the ground truth trajectories. More results are in Appx.F

Table 3: Argoverse: Experimental results on Argoverse dataset. Compared to our base model
Trajectron++, our proposed method helps increase the accuracy and stable the performance.

Model ADE-1 FDE-1 ADE-Full FDE-Full

Trajectron++ 1.15±0.14 2.73±0.24 1.43±0.15 3.40±0.20
Ours 1.06±0.08 2.58±0.14 1.34±0.06 3.25±0.10

Table 4: nuScenes: Ablation study on prediction horizon of negative candidates on nuScenes
dataset.

FDE Full FDE ML B. Violations
Model PHn 1s 2s 3s 4s 1s 2s 3s 4s 1s 2s 3s 4s

Trajectron++ - 0.107 0.560 1.378 2.621 0.052 0.396 1.010 1.950 9.169% 9.710% 13.048% 21.369%
Ours 3s 0.105 0.538 1.320 2.494 0.054 0.414 1.029 1.960 9.188% 9.619% 11.818% 17.460%
Ours 4s 0.087 0.498 1.238 2.339 0.050 0.387 0.981 1.869 9.183% 9.620% 11.872% 17.551%
Ours 5s 0.087 0.497 1.259 2.406 0.056 0.397 1.002 1.889 9.174% 9.667% 12.106% 17.992%
Ours 6s 0.099 0.521 1.297 2.474 0.059 0.405 1.004 1.912 9.170% 9.636% 12.046% 17.761%

hit the road boundary in the near future (e.g., in 1 second). Such a trajectory can pass our checker’s
exam, but it is still unlikely to happen in the real world. We can easily select out such a trajectory by
extending the prediction horizon for the candidate trajectories and examining our checker’s extended
version. To verify whether this helps us build a better checker, we extend the prediction horizon for
negative candidates from 3 seconds to 4, 5, 6 seconds, respectively, and examine them by our original
checker. The selected negative trajectories are truncated back to 3 seconds for computing Lunlike.
We can see in table 4 that the model benefits from an adequately extended prediction horizon. The
prediction horizon for ground truth trajectory is 3s. By extending the negative trajectories 1 second
more, we improve the prediction accuracy. Numbers are averaged over two training instances.

5 CONCLUSION

We present unlikelihood guided trajectory prediction method, that minimizes the probability of un-
likely trajectories. During training, our context checker detects predicted unlikely trajectories and
their probabilities are reduced through an unlikelihood loss. Our method can be incorporated into
state-of-the-art models with a maximum likelihood estimation objective. Our experimental results
demonstrate that our method significantly improves state-of-the-art trajectory prediction models.
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We hope that our work may encourage future work on exploring better unlikelihood methods for
trajectory prediction and improved context checker models.
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A DERIVATION OF GRADIENT

Here we show how to obtain Eq.5 and Eq.6

Lt = − logN (ygt,t; µ̂t, σ̂tI) + logN (yneg,t; µ̂t, σ̂tI)

=
1

2
(log 2π + log σ̂2

t +
||ygt,t − µ̂t||2

σ̂2
t

)− 1

2
(log 2π + log σ̂2

t +
||yneg,t − µ̂t||2

σ̂2
t

)

=
1

2σ̂2
t

(||ygt,t − µ̂t||2 − ||yneg,t − µ̂t||2)

∂Lt
∂µ̂t

=
∂

∂µ̂t

1

2σ̂2
t

(||ygt,t − µ̂t||2 − ||yneg,t − µ̂t||2)

= − 1

σ̂2
t

((ygt,t − µ̂t) + (µ̂t − yneg,t))

∂L

∂σ̂t
=

∂

∂σ̂t

1

2σ̂2
t

(||ygt,t − µ̂t||2 − ||yneg,t − µ̂t||2)

= − 1

σ̂3
t

(||ygt,t − µ̂t||2 − ||yneg,t − µ̂t||2)

B GRADIENT ANALYSIS IN GAUSSIAN MIXTURE MODEL

In case we model the output distribution as a Gaussian mixture model pGMM(yt) =∑
i φiN (yt; µ̂i,t, σ̂i,tI), the gradient of Lt w.r.t. the mean of component i is

∂Lt
∂µ̂i,t

=
∂

∂µ̂i,t
(− log

pGMM(ygt,t)

pGMM(yneg,t)
)

= −φi(
1

pGMM(ygt,t)

∂N (ygt,t; µ̂i,t, σ̂i,tI)

∂µ̂i,t
− 1

pGMM(yneg,t)

∂N (yneg,t; µ̂i,t, σ̂i,tI)

∂µ̂i,t
)

= − φi
σ2
i,t

(
N (ygt,t; µ̂i,t, σ̂i,tI)

pGMM(ygt,t)
(ygt,t − µ̂i,t)−

N (yneg,t; µ̂i,t, σ̂i,tI)

pGMM(yneg,t)
(yneg,t − µ̂i,t))

This gradient shows that the center µ̂i,t of component i will be pushed towards the ground truth
location ygt,t and way from the negative location yneg,t. For σ̂i,t we have

∂L

∂σ̂i,t
= −φi(

1

pGMM(ygt,t)

∂N (ygt,t; µ̂i,t, σ̂i,tI)

∂σ̂i,t
− 1

pGMM(yneg,t)

∂N (yneg,t; µ̂i,t, σ̂i,tI)

∂σ̂i,t
)

= − φi
σ3
i,t

(
N (ygt,t; µ̂i,t, σ̂i,tI)

pGMM(ygt,t)
(||ygt,t − µ̂i,t||2 − σ2

i,t)

− N (yneg,t; µ̂i,t, σ̂i,tI)

pGMM(yneg,t)
(||yneg,t − µ̂i,t||2 − σ2

i,t))

C THE INFLUENCE OF OUR LOSS WITHOUT MAP INPUT

In this experiment, we remove the map input to the model and demonstrate the influence of our
unlikelihood loss in this case. Results are shown in Tab.5 Interestingly, our loss helps improve the
performance from 1.52 to 1.42 measured by the FDE-Full in 3 seconds case although the model
doesn’t see the context during inference. We think the reason is that compared to the Trajectron++
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Table 5: The influence of our loss without map input to the model on nuScenes. Compared to
Trajectron++ without map input, our loss performs better, which indicates that our loss can inject
context information into learning signals

Model FDE-Full 3s ADE-Full 3s
Trajectron++ without map input 1.52±0.04 0.61±0.02

Trajectron++ 1.46±0.07 0.59±0.04
Ours without map input 1.42±0.03 0.57±0.01

Ours 1.34±0.04 0.54±0.02

without map input, our unlikelihood loss still offers context information to support the training since
this loss is calculated using the context. Therefore, our model receives more information during
training and performs better. Besides, our method without map input even achieves a comparable
result (FDE-FUll 1.42) compared to Trajectron++ with map input (FDE-Full 1.46). This experiment
shows that our loss can inject context information into learning signals. In addition, map input im-
proves FDE-Full of Trajectron++ in 3s prediction from 1.52 to 1.46, which is about 6 cm. However,
when we further add our unlikelihood loss, performance improved from 1.46 to 1.34, which is 12
cm. Our loss triple the contribution of context information, which is significant.

D MODIFICATION ON TRAJECTRON++ FOR ARGOVERSE EVALUATION

The original Trajectron++ (Salzmann et al., 2020) is evaluated on nuScenes dataset (Caesar et al.,
2019b) but not on Argoverse (Chang et al., 2019). To make it runnable on Argoverse, we make
some modifications on Trajectron++. The input states of the full version of Trajectron++ consist
of the positions, velocities, accelerations, heading angles and heading angular velocities. However,
Argoverse doesn’t offer the data for heading angles and heading angular velocities. Therefore,
we remove them from the input states. In addition, Trajectron++ has a unicycle physics model
to convert the predicted velocity from neural networks to locations. The unicycle physics model
requires also the angular velocities information. Therefore, we replace the unicycle model by the
single integrator model that requires only velocities and initial positions. The maps offered by
nuScens and Argoverse are different, too. We stack the drivable region and region of interest offered
by Argoverse and upsample them to the same resolution as nuScenes as the input map. Please
refer to Argoverse for the details. Lastly, Trajectron++ use separate modules to process surrounding
vehicles and surrounding pedestrians in nuScenes. However, Argoverse doesn’t offer the labels for
the surrouding agents and just simply denote them as ”others”. Therefore, we remove the pedestrian
modules in Trajectron++ and use the vehicle modules to process both surrounding pedestrians and
vehicles.
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E COMPARISON WITH OTHER METHODS ON ARGOVERSE

Our experiment setting on Argoverse follows AttGlobal-CAM-Nf (Park et al., 2020). Here we list
the detailed comparison with their numbers using their evaluation metrics minADE-12 and minFDE-
12, which are the minimal ADE and FDE over 12 prediction candidates, in Tab.6. Both Trajectron++
and our method outperform their numbers. In addition, our unlikelihood loss helps improve the
performance of Trajectron++. Our scores and the standard deviation are calculated over 4 training
instances.

Table 6: Experimental results on Argoverse dataset

Model minADE-12 minFDE-12

CSP (Deo & Trivedi, 2018; Park et al., 2020) 1.39 2.57
DESIRE (Lee et al., 2017; Park et al., 2020) 0.90 1.45
MATF-GAN (Zhao et al., 2019; Park et al., 2020) 1.26 2.31
R2P2-MA (Rhinehart et al., 2019; Park et al., 2020) 1.11 1.77
AttGlobal-CAM-Nf (Park et al., 2020) 0.73 1.12
Trajectron++ (Salzmann et al., 2020) 0.65±0.09 1.08±0.07
Ours 0.63±0.04 1.08±0.06

F QUALITATIVE RESULTS

Here, we demonstrate our method’s qualitative results compared with Trajectron++ for 3 seconds
prediction. We randomly sample 50 trajectories from the predicted prediction, use kernel density
estimation (KDE) to approximate the total output distribution from the samples, and print it out in
Fig.4. White points represent the ground truth trajectories. Compared to Trajectron++, our method
suits the contextual information more and therefore is more accurate and plausible.
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(a) Ours (b) Trajectron++

(c) Ours (d) Trajectron++

(e) Ours (f) Trajectron++

Figure 4: Qualitative results of our method and Trajectron++.
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