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ABSTRACT

The paper presents a scalable approach for learning distributed visual representa-
tions over individual tokens and a holistic instance representation simultaneously.
We use self-attention blocks to represent spatially distributed tokens, followed by
cross-attention blocks to aggregate the holistic instance. The core of the approach
is the use of extremely large token masking (75%-90%) as the data augmentation
for supervision. Our model, named ExtreMA, follows the plain BYOL approach
where the instance representation from the unmasked subset is trained to predict
that from the intact input. Learning requires the model to capture informative
variations in an instance, instead of encouraging invariance.
The paper makes three contributions: 1) It presents random masking as a strong and
computationally efficient data augmentation for learning generalizable attention
representations. 2) With multiple sampling per instance, extreme masking greatly
speeds up learning and creates hunger for more data. 3) Distributed representations
can be learned from instance supervision alone, unlike per-token supervision in
masked modeling.

1 INTRODUCTION

Masked modeling (Devlin et al., 2018) has emerged as a viable approach for visual representation
learning. On a generic transformer architecture (Vaswani et al., 2017), it optimizes a learning objective
based on the masked signal prediction popularized in natural language understanding (Devlin et al.,
2018; Liu et al., 2019), without reliance on heavily engineered image augmentations (Wu et al., 2018;
Chen et al., 2020b; Grill et al., 2020). Superior finetuning performance has been demonstrated with
this approach; however, the pretrained representation does not work competitively off-the-shelf (Bao
et al., 2021), e.g., for k-nearest-neighbor retrieval.

On the other hand, Siamese networks trained with contrastive objectives (Oord et al., 2018) are
strong for learning off-the-shelf representations (Radford et al., 2021). This fundamental difference
lies in the way they represent data. Siamese networks extract an instance representation for an
image, whereas masked modeling acquires a spatially distributed representation (Mikolov et al., 2013)
over individual tokens that comprise an image. No instance representation is explicitly modeled or
provided supervision in masked modeling approaches (Devlin et al., 2018; Bao et al., 2021).

In this paper, we study the connections between the instance and the distributed representations, and
we explore self-supervision for learning these representations. We start with an observation that
random masking could be viewed as a novel data augmentation scheme not previously exploited in
Siamese networks. For the masked area, its potential degrees of freedom grow combinatorially large
with its size, allowing for richer self-supervision than conventional augmentations such as cropping
and scaling, which are heavily biased towards areas around the image center (He et al., 2021). More
importantly, the self-supervision from conventional augmentations lead to a common representation
vector that encompasses multiple augmentations of an instance, and this invariance degrades the
sensitivity of the representation to spatial locality. On the contrary, random masking preserves the
original content of the unmasked area and the geometrical structure of the data.

We propose a simple model, called ExtreMA, where the instance representation from masked input
is trained to predict that from the full view, in a plain BYOL fashion (Grill et al., 2020). The
information gap created by masking encourages the student network to encode as much information
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as possible, and hence bootstrap the teacher network to be stronger. We adopt the visual transformer
ViT (Dosovitskiy et al., 2020) to embed distributed representations over patches, and this is followed
by cross-attention blocks (Touvron et al., 2021b) to aggregate the distributed representations into the
instance representation. The instance-level learning objective provides the supervision for both of
the representations. In our model, the distributed representations are only implicitly learned without
the corresponding token-level objective used in masked modeling. However, through investigating
and visualizing the attention maps (in Figure 1), we find that the output representations of our model
maintain accurate correspondences with the input tokens and that semantic clusters tend to emerge
from the learned distributed representations.

A notable distinction of this model is its effectiveness with an extremely large masking ratio (75% -
90%), while typical masked modeling approaches work best between the range of 50% to 75% (El-
Nouby et al., 2021; Bao et al., 2021; He et al., 2021). Besides the computational efficiency that this
brings, a key aspect of extreme masking is the complementarity that arises among multiple samples.
Due to the high redundancy in visual data, the visible content for samples with different masking
becomes independent only when the masking ratio becomes large. In addition, multiple masks speed
up learning and convergence significantly, making the system a fast learner that is hungry for more
data. In practice, multiple sampling is also computationally appealing, as the teacher network for
processing the full content needs only to be forwarded once.

ExtreMA enjoys the favorable properties of Siamese representation learning. The instance representa-
tion from the model can be used off-the-shelf for measuring semantic similarities. The framework
also welcomes other data augmentations besides masking for applications with different ends. How-
ever, unlike conventional contrastive learning, ExtreMA does not rely on data augmentation induced
invariances to achieve generalization. Rather, ExtreMA preserves all possible useful information
from the masked view in order to recover the full image. The generative aspects of our model are
exhibited in Figure 2. It can faithfully inpaint the masked pixels through network inversion (Zhao
et al., 2020b). Moreover, the instance representation is shown to be sensitive to spatial and scale
variations for localizing objects in Figure 3. These properties demonstrates that ExtreMA learns both
instance and distributed representations that well captures scale, location, and color intensities.

In the experiments, we systematically study the model behavior under different masking ratios, its
convergence properties using multiple masks on larger datasets, and integration with various other
data augmentations. Based on the study observations, we also propose a new augmentation scheme
which uses shared image crops but different colors for the two input views. Our main results on
ImageNet1k outperform prior masked modeling approaches on both finetuning and linear probing
metrics. Notably, this is achieved by training ExtreMA using a single node of 8×V100 GPUs in
about two days for a ViT-Base model. We also evaluate the transfer performance for semi-supervised
learning and semantic segmentation. For both applications, ExtreMA produces superior results
compared with prior arts.

2 RELATED WORKS

In self-supervised representation learning, labels are mined from the data itself to achieve generaliza-
tion beyond that from human annotations, especially when the training data is at scale. Past works
demonstrate generalization through k-nearest-neighbors (Wu et al., 2018) and zero-shot classification
on the learned features (Radford et al., 2021), or finetuning the model for a limited schedule (Chen
et al., 2020c; He et al., 2021). The central problem under investigation is how to extract the training
labels automatically and formulate the pretext tasks. In high-level vision, such pretext tasks include
predicting colors from a grayscale image (Zhang et al., 2016), inpainting pixels given the spatial con-
text (Doersch et al., 2015) or through autoregression (Chen et al., 2020a), predicting the orientation
of a rotated image (Gidaris et al., 2018), solving a jigsaw puzzle given shuffled patches (Noroozi
& Favaro, 2016), and others (Donahue & Simonyan, 2019; Zhang et al., 2017). The key idea is
that the network has to learn semantics in order to solve the pretext tasks. Recently, there has
been a resurgence of the context prediction pretext task (Bao et al., 2021; Li et al., 2021b) that has
accompanied the rise of visual transformers (Dosovitskiy et al., 2020). Input tokens are masked,
and the model is trained to predict the masked tokens from the visible tokens in a BERT fashion.
The target tokens could be represented by dVAE tokens (Bao et al., 2021), raw pixel values (He
et al., 2021), or features (Wei et al., 2021; Dong et al., 2021) from an online learned encoder (Zhou

2



Under review as a conference paper at ICLR 2023

et al., 2021; El-Nouby et al., 2021; Baevski et al., 2022; Chen et al., 2022; Tao et al., 2022). Such
representations are shown to surpass prior art when finetuned for downstream tasks (He et al., 2021).

Contrastive learning is a special pretext task of instance discrimination to learn view-invariant
representations from data augmentations. It encourages different views of an image instance to have
similar representations relative to negative samples (Wu et al., 2018; He et al., 2020; Chen et al.,
2020a), negative clusters (Caron et al., 2020), or even without using negatives (Grill et al., 2020) at
all. Views of an image are commonly processed by a Siamese network (Chen et al., 2020b; Li et al.,
2021a) with a momentum encoder (He et al., 2020) on one of its branches. To boost performance,
the community has crafted various data augmentations including color jittering (Wu et al., 2018),
Gaussian blurring (Chen et al., 2020b), solarization (Grill et al., 2020), and copy-and-paste (Zhao
et al., 2020a), as well as determined their optimal hyper-parameters. Contrastive models trained at
scale are shown to perform on par with supervised learning (Goyal et al., 2019; 2021). The contrastive
learning framework has the flexibility to handle various data augmentations, while traditional pretext
tasks need non-trivial engineering to be trained in a multi-task manner (Doersch & Zisserman, 2017).
Recently, there have been efforts (El-Nouby et al., 2021; Zhou et al., 2021) to combine contrastive
learning with masked modeling objectives in a multi-task manner. The two tasks complement each
other, but the intrinsic connection remains unclear.

The technique of masking originates from representation learning on languages (Devlin et al., 2018;
Liu et al., 2019) and is especially suited for transformer architectures. In computer vision, block-wise
masking (Bao et al., 2021) and random masking (He et al., 2021) are investigated to cope with the
2D nature of images. Aside from BERT-like training approaches (Bao et al., 2021; He et al., 2021;
El-Nouby et al., 2021; Zhou et al., 2021; Baevski et al., 2022), a special type of random masking
in the form of small local image crops has also been adopted in contrastive models (Caron et al.,
2021; 2020). However, the local crop augmentation introduced in (Caron et al., 2020) is mainly
designed for computational efficiency, without considering the impact of substantial content removal
on representation quality. A concurrent work MSN (Assran et al., 2022) explores the application
of masking in Siamese networks. However, its masking ratio is low, and it heavily relies on other
augmentations besides masking. Random erasing (Zhong et al., 2020) and Cut-out (DeVries & Taylor,
2017) remove a region from an image and fill it with random or mean pixel values. While similar to
block-wise masking, its purpose is mainly to regularize supervised learning instead of self-supervised
representation learning.

3 THE EXTREMA APPROACH

This work explores the use of random masking as data augmentation for Siamese representation
learning with instance-level supervision. The model uses an architecture of two parallel networks,
where the momentum encoder processes the full image crop and the base encoder processes the
masked image crop. The information gap, i.e. the masked image region, is the basis of the supervision
for training the base encoder. An overview of our approach is illustrated in Figure 1. We describe
details about masking and the model architecture as follows.

Extreme Masking. Given an image, we first divide it into non-overlapping patches to be fed into
the visual transformer. A fixed sinusoidal positional encoding is added to each embedded patch, and a
few of the embedded patches are sampled randomly (He et al., 2021) according to the masking ratio.

A key aspect of our approach is that it achieves its best performance with an extremely large masking
ratio of 75%-90%, leaving the base encoder to process just a fraction (10%-25%) of the patches.
This is in contrast to masked image modeling where the performance degrades when the masking
ratio exceeds 75% (He et al., 2021). The extremely high masking ratio sets a very hard pretext task
for the network. The ability of ExtreMA to succeed with extreme masking is in part due to the
momentum encoder processing the entire image, whereas the encoder in the masked image modeling
never receives the full view as input. This creates train-test discrepancy for masked modeling, as the
attention blocks need to generalize from processing a fraction of the tokens to the full set.

Extreme masking provides two other critical benefits. First, a very large masking ratio leads to
independent and complementary views from the same image. This allows us to use a batch of
masks for learning, significantly expediting learning and convergence. Second, extreme masking
substantially reduces the computation cost for the base encoder, especially for transformers which
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Figure 1: Overview of ExtreMA. Our model follows the Siamese network approach for representation
learning. The momentum encoder processes the full view while the base encoder processes a partial
view from extreme masked sampling. Input tokens are encoded into distributed representations via
visual transformers and gathered into an instance representation via cross-attention blocks with an
appended [CLS] token. Self-supervision is applied at the instance level. We visualize attention maps
for four query patches in the last layer of ViT and cross attention for the class token.

have squared complexity. When multiple masks per instance (multi-masking) are used, multiple
student networks can share the same learning target from the momentum encoder. This makes
extreme masking an efficient learner. We note that such a multi-masking technique is not immediately
applicable or efficient for masked modeling since different masks do not share the same target.

Extreme masking also introduces new challenges. The space of masking augmentations becomes
combinatorially smaller when the masking ratio increases. In practice, we observe that extreme
masking tends to overfit to the training data especially when multi-masking is enabled. This is
different from “cheating”, as the feature effectively learns semantics on the training data. The
overfitting phenomenon simply suggests that extreme masking is hungry for more training data. This
is discussed further in the experiments section.

Distributed and Instance Representations. We adopt the vision transformer (Dosovitskiy et al.,
2020) for its efficiency and flexibility in handling input content of variable size. The vision transformer
embeds the input visual tokens into a spatially distributed representation via the self-attention
mechanism. An instance representation is desired in order to allow supervision from the instance
level. To achieve this, we use cross-attention blocks (Touvron et al., 2021b) to aggregate the
distributed patch-level representations into a single representation with an additional appended class
token. The distributed representations are frozen without updates, and this makes the cross-attention
blocks lightweight with O(N) complexity compared to O(N2) in self-attention. The projection head
and the predictor follow the instance representation.

We have investigated two other alternatives to represent an instance, but neither works well. If we feed
the instance token as an input to the transformer as in ViT, optimization becomes unstable, potentially
due to the large masking rate for the input. With average pooling over the token representations as
the instance representation, the model finds a shortcut on learning averaged patch features without
learning attention across patches. Details are provided in the appendix.

Learning Objective. The instance representation from the masked input is trained to predict that
from the unmasked input by simply minimizing the cosine distance between the two representations.
We primarily follow BYOL for simplicity in this paper, but our approach is also found to work with
the contrastive loss (Wu et al., 2018; Oord et al., 2018) in our experiments. Our learning objective
differs with the conventional BYOL in the following aspect. Conventional BYOL adopts a symmetric
loss where the two views are learned to predict each other. This will drive the representation to
find the common subspace shared by the two views, with invariance over other information (Tian
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Figure 2: Generative properties of the distributed representations at various masking ratios.
We use the deep image prior technique to invert the representations. Our reconstruction result shows
the best quality overall. Supervised ViT fails to produce meaningful content. MAE fails to inpaint
proper colors due to the use of normalized pixels. DINO loses information about spatial locality.

et al., 2020). In our case, since the shared information between the two views is obvious, finding the
commonality between the views does not make for meaningful self-supervision. Thus, we adopt the
asymmetric loss. The information gap created by masking encourages the network to extrapolate the
masked regions, instead of seeking a shared subspace.

Compared with masked modeling approaches, our learning objective is fundamentally different. The
instance level supervision does not explicitly enforce spatial reasoning for each individual token.
Nonetheless, we find strong evidence that our model learns a distributed representation over the
tokens. We visualize the attention maps for four query patches in the last layer of the transformer
block in Figure 1. The shown visualization is averaged across 12 attention heads. We observe that
patch tokens tend to group into meaningful semantic clusters.

BYOL Details. Our design choices for the projection and the prediction head are even simpler than
the original BYOL (Grill et al., 2020). We replace the BatchNorm with LayerNorm and the ReLU
activations with GeLU activations, making the overall framework free of BatchNorm and consistent
with the rest of the transformer blocks. Our work also incidentally demonstrates that BYOL does
not rely on BatchNorm to prevent collapse (Richemond et al., 2020). The projection head and the
prediction head have 3 and 2 hidden layers respectively, a hidden dimension of 4096, and an output
dimension of 256, following the original design.

4 REPRESENTATION PROPERTIES

To understand the distributed representation and the instance representation trained with extreme
masking augmentation, we invert the distributed representations into the pixel space and examine
the sensitivity to locality of the instance representation. These results give further evidence that the
model learns a meaningful distributed representation without a BERT-like objective, and that the
instance representation preserves detailed visual information.
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Figure 3: ExtreMA is sensitive to spatial and scale variations. We randomly sample 25 candidate
bounding boxes of 5 scales and 5 random locations from a test image and we use the query crop
to retrieve the closest bounding box in the test image. The highest ranked crop is shown as the
prediction. The instance representation from our model is able to identify the correct scale and
location, suggesting that ExtreMA is sensitive to information beyond semantics.

Generative Properties. Given a pretrained model and a masked image, we can encode the visible
patches using the distributed representations, and invert these partial representations back to the
pixel space to reconstruct the masked patches. Specifically, we follow the technique of deep image
prior (Ulyanov et al., 2018) and minimize the L2 distance on the visible representations between the
masked image and the reconstruction. This reconstruction technique allows us to examine the content
of the encoded features without the need to further train a new generative model. Figure 2 shows the
reconstruction result. We vary the masking ratio and compare results with supervised DeiT (Touvron
et al., 2021a), DINO and MAE using this inversion method. Supervised DeiT is unable to produce
any meaningful content. MAE fails to inpaint proper colors due to the use of normalized pixels.
DINO is inaccurate with spatial localities. Our result is spatially smooth and accurate in color. The
inversion technique suffers when the masking ratio is very large, due to limited ability to inpaint
unseen semantic areas.

Locality Properties. We use the k-nearest neighbor technique to probe the instance representation.
We first generate a small gallery set by random sampling of image crops that vary spatially and in
scale from a single image. We then use another query image crop from the same semantic category to
rank the gallery set. We resize these image crops to 224×224 and extract the instance representations
for measuring similarities. In Figure 3, the top nearest retrieval returns the image bounding box with
the closest spatial and scale configuration as the query crop. The results suggest that the instance
representation is sensitive to spatial and scale changes, and the learned high-level representation is
not a result of invariance but is more powerful and generalizable. This example also demonstrates a
form of zero-shot detection using exemplars (Malisiewicz et al., 2011).

5 EXPERIMENTS

5.1 ABLATION STUDIES

We pretrain the representation on ImageNet and evaluate it on finetuning (ft) and linear probe (lin)
in our ablations. We finetune the model on top of the distributed representation, and conduct linear
probes with the instance representation. The evaluation protocol mainly follows BEiT and MAE.

Implementation Details. We use the original ViT-base (Dosovitskiy et al., 2020) as the backbone
architecture without the layer scale technique (Touvron et al., 2021b). The class attention follows
the original design in (Touvron et al., 2021b) with a default of two transformer blocks and a layer
scale hyper-parameter of 0.1. We train our model using the AdamW optimizer (Loshchilov & Hutter,
2017) with a batch size of 2048, an initial base learning rate of 1.5e-4, and a weight decay of 0.1.
The exponential averaging weight for the momentum encoder is initialized to 0.996 and increased to
1.0 following a cosine schedule. The default augmentation is random resized cropping and random
flipping. All models are trained for 300 epochs.
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Table 1: Mask ratio.
ratio ft. lin.
50% 81.9 36.3
70% 82.3 64.4
80% 82.4 67.3
85% 82.4 66.3
90% 82.3 61.6
95% 81.6 49.3

Table 2: Multi-masks trained on IM1k.
ratio 75% ratio 80% ratio 90%

num ft. lin. num ft. lin. num ft. lin.
1 82.4 64.8 1 82.4 67.3 1 82.3 61.6
2 82.7 67.2 2 82.6 68.8 2 82.5 64.0
4 82.9 67.7 4 82.8 67.5 4 82.7 63.1

5 82.9 67.1 8 82.9 60.3
10 83.0 59.3

Table 3: Trained on IM22k.
ratio 90%

num ft. lin.
1 82.5 60.4
2 82.7 65.6
4 83.0 69.0
8 83.2 71.4
10 83.2 72.0
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Figure 4: Convergence curves for multi-masking on ImageNet1k. Each plot shows kNN accuracy on
the validation set with respect to training epochs. Multi-masking with 80% and 90% ratio enjoys
steep learning curves, but suffers from overfitting on ImageNet1k.

Masking Ratio. We first vary the masking ratio using a single mask for training. In Table 1, the
finetuning performance plateaus across a wide range from 70% to 90%, while the linear probe
performance peaks at ratio 80%. Notably, an extremely large masking ratio of 90% also achieves
reasonably good performance. The performance degrades beyond 90%.

Multi-Masking and Convergence Speed. For each image instance, we generate multiple masks
without replacement for the student network. The loss is averaged over multiple masked inputs.
We investigate the behavior of multi-masking under the ratios of 75%, 80%, and 90% in Table 2.
Finetuning performance consistently improves with more masked inputs. However, the linear probe
performance degrades when too many masks are used, especially when the masking ratio gets larger.
We take a close look at this phenomenon and find that the training accuracy for linear probing
actually improves with greater multi-masking. This suggests that the model overfits to the training
data without using labels. In Figure 4, we plot the k-nearest-neighbor classification curves on the
validation set with respect to training epochs. The hyper-parameter k is set to 200 and the gallery is
set to 10% of the ImageNet training set. Masking with ratio 75% does not suffer from overfitting with
multi-masking, but converges less quickly. Multi-masking with extreme ratio 90% has the steepest
learning curve, but it tends to saturate and degrade after 120 epochs. We hypothesize that this is due
to the complexity of the masking augmentation, which may decrease as the masking ratio grows.

To combat overfitting while preserving fast learning, a straightforward solution is to use larger
datasets. We therefore study multi-masking on ImageNet22k, which is about 10 times larger in total
images. We train the model for 30 epochs, which maintains the effective number of optimization
iterations and reveals the impact solely from data scale. The evaluations for finetuning and linear
probing are all conducted with ImageNet1k. In Table 3, at the masking ratio of 90%, ExtreMA no
longer suffers from overfitting as the number of masks increases. The model performance is also
consistently better than using ImageNet1k training data. This shows that our model wants more data
and benefits from large-scale representation learning.

Other Augmentations. Supervision at the instance level enables integration of other augmentations
for both the student and teacher networks. We set the default masking ratio to 80% with two masks
in the following ablations, as it does not suffer from overfitting. We consider the augmentations of
cropping (random resized crop + flipping) and color (color jittering and random grayscaling). We do
not consider Gaussian blurring and solarization as their effects are marginal.

We first examine the case of a single augmentation, where the input of the teacher branch is augmented
and the student branch takes a random masking sample of the teacher’s input. Such a scheme is
akin to enlarging the training dataset without introducing other supervision from augmentations. As
reported in Table 4, by just using a center crop, our model achieves a reasonable result of 82.3%
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Table 4: Other augmentations.

augment 1 aug 2 augs
ft. lin. ft. lin.

none 82.3 55.1 - -
color 82.5 62.0 83.3 62.4

rand size crop 82.6 68.8 82.2 66.8
crop + color 82.6 69.0 83.1 73.3

shared crop + color - - 83.3 73.1

Table 5: Cross attention block.
#blocks ft. lin.

1 82.6 66.2
2 82.6 68.8
3 82.6 68.5

Table 6: Training loss.
objective ft. lin.
BYOL 82.6 68.8

InfoNCE 82.8 66.8

Table 7: ImageNet1k classification comparison.

methods epochs ViT-S ViT-B
ft. lin. ft. lin.

MoCo-v3 300 81.5 73.1 83.2 76.2
DINO 400 81.7 77.0 83.6 78.2
BEiT 800 - - 83.2 37.6
MAE 1600 - - 83.6 67.8

ExtreMA (1k) 300 81.8 69.4 83.7 73.3
ExtreMA (22k) 30 81.5 65.7 83.9 74.5

Table 8: ViT-B Wall-clock time comparison
using a single node of 8×V100 GPUs.

methods epochs time
DINO 400 300 hrs
BEiT 800 240 hrs
MAE 1600 650 hrs

ExtreMA (80% ratio ×1) 300 29 hrs
ExtreMA (80% ratio ×2) 300 36 hrs
ExtreMA (80% ratio ×5) 300 60 hrs

finetuning and 55.1% linear probing performance. Color and cropping augmentations improve the
overall performance individually but their effects are marginal when both are used.

We next consider two independent augmentations, one for the student and one for the teacher, with
the student’s input undergoing masking as well. The self-supervision in such a scheme introduces
invariance, such as spatial, scale, and color intensity, similar to prior contrastive models (Caron
et al., 2021; Chen et al., 2021). Crucially, we find that adding spatial and scale invariance by two
crops of an image may hurt representation quality, with finetuning decreased by 0.4% and linear
probing decreased by 2.0%. On the other hand, color invariance is shown to be beneficial, leading to
a significant 0.8% gain from 82.5% to 83.3%. Using cropping and color augmentations combined,
the linear probing performance improves substantially to 73.3% while the finetuning performance
drops 0.2% as spatial invariance may hurt generalization.

Based on these observations, we propose another augmentation scheme that uses a shared spatial
crop for the two network branches, but two different color augmentations. Such scheme achieves the
best overall performance for finetuning and linear probing.

Cross Attention Blocks. We use cross-attention heads (Touvron et al., 2021b) to aggregate the
distributed representations into the instance representation. We ablate the number of blocks for this
design in Table 5. The finetuning performance is not affected by the depth of the cross-attention
blocks, while the linear probing performance is improved by 2% with two blocks and saturates for
more blocks.

Training Objective. Besides BYOL, ExtreMA also works with other Siamese representation learning
objectives, such as InfoNCE (Oord et al., 2018) with negatives. In Table 6, we provide the result with
a MoCo-v3 implementation using a contrast temperature of 0.2. Compared with the BYOL objective,
the finetuning performance is improved by 0.2% and linear probing drops by 2.0%.

5.2 IMAGENET COMPARISONS WITH PREVIOUS METHODS

We compare with representative contrastive methods MoCo-v3 and DINO, as well as masked image
modeling methods BeiT and MAE on ImageNet classification. We use our strongest model with
five masks of ratio 80% and color augmentations. The finetuning takes 200 epochs for ViT-S and
100 epochs for ViT-B following prior works. The results are summarized in Table 7. Our approach
achieves the best finetuning performance for both architectures. Our linear probing outperforms the
masked image modeling methods by a large margin but underperforms contrastive counterparts. This
may be due to the lack of global crops and other heavy image augmentations. The ViT-S model does
not scale well with large data, potentially limited by its model size.
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Table 9: Semantic segmentation on ADE20K.
methods epochs mIoU
DINO 300 47.2

MoCo-v3 300 47.3
BEiT 800 47.1
MAE 1600 48.1

ExtreMA (1k) 300 47.9
ExtreMA (22k) 30 48.4

Table 10: Semi-supervised classification.
methods epochs 1% 10%
scratch - 9.0 44.8
BEiT 800 35.9 69.7
DINO 400 64.7 75.9

MoCo-v3 300 57.2 75.8
MAE 1600 52.7 72.1

ExtreMA (1k) 300 67.3 76.1

A notable advantage for ExtreMA is its computational efficiency and fast convergence speed. This
allows us to train ViT-Base models of 300 epochs using a single node of 8×V100 GPUs for 29 hours
to 60 hours depending on the choice of multi-masking. Such hardware requirement is amenable to
resource-limited academic labs. On the contrary, prior self-supervised representation models require
multi-node training and lengthy optimization. We summarize the wall clock times of representative
models in Table 8. Since official releases of prior methods are reported with multi-node training, we
estimate their wall-clock time using just a single node of 8×V100 GPUs. ExtreMA achieves 5× to
10× speedups for visual representation learning.

5.3 TRANSFER LEARNING RESULTS

We consider two transfer learning scenarios with limited target labels: semi-supervised image
classification and semantic segmentation. For both experiments, we use our strongest model with five
masks of ratio 80% and color augmentations.

Semi-supervised Learning. Given the pretrained model, we use a small fraction of the ImageNet1k
training labels (1% or 10%) for semi-supervised finetuning. We append the classification head on the
first output layer of the projection head following SimCLR-v2 Chen et al. (2020c). The finetuning
protocol and data augmentation mainly follows BEiT. The model is optimized using AdamW with
an initial learning rate of 5e-6 for 1000 epochs and a batch size of 1024. Comparison results are
shown in Table 10. ExtreMA outperforms the masked image modeling approaches MAE and BEiT
by a large margin of 12% and 30% using 1% of the labels. Surprisingly, ExtreMA obtains better
results than DINO, which is heavily tuned for ImageNet classification with higher linear probing
performance than our approach. The models pretrained with ImageNet22k perform worse, because
the majority of unlabeled classes are less relevant to the target 1k classes. We thus follow the prior
evaluation practice and omit the ImageNet22k entry.

Semantic Segmentation. We evaluate semantic segmentation performance on the ADE20K (Zhou
et al., 2017) dataset. Following prior works, we initialize the UperNet framework (Xiao et al., 2018)
using our pretrained model and finetune the segmentation model end-to-end. The model is optimized
using AdamW for 80k iterations with an initial learning rate of 1e-4 and a batch size of 16. We set the
weight decay to 0.05 and layer-wise learning rate decay to 0.85. The results are shown in Table 9. Our
method is able to outperform competitive representation learning baselines such as DINO, MoCo-v3
and BEiT. Our model is even comparable to MAE, which is trained with a much heavier schedule
(300 epochs vs. 1600 epochs). By scaling the training data to the larger ImageNet-22K dataset while
keeping the total number of iterations unchanged, our model performance improves by 0.5 mIoU,
surpassing all prior arts by a significant margin. This indicates that our model scales well with data.

6 CONCLUSIONS

This work explores masking as a novel augmentation for Siamese representation learning. The
investigated approach, ExtreMA, learns strong instance and distributed representations through data
augmentations without masked modeling supervision. This work is inspired by the masking operation
in masked modeling. However, it makes no claims that ExtreMA works in a similar way as masked
modeling, since the learning objectives are different. ExtreMA exhibits several unique characteristics:
1) the use of extremely large masking ratios, 75%-90%; 2) fast convergence speed with multi-masking
and scalability to large data; 3) low consumption of computational resources. Its ability on encoding
precise locality for the instance representation may open up a new possibility for detection transfer.
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