COCORNA: COLLECTIVE RNA DESIGN WITH COOP-ERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028 029

031

Paper under double-blind review

ABSTRACT

Ribonucleic acid (RNA) plays a crucial role in various biological functions, and designing sequences that reliably fold into specified structures remains a significant challenge in computational biology. Existing methods often struggle with efficiency and scalability, as they require extensive search or optimization to tackle this complex combinatorial problem. In this paper, we propose COCORNA, a Collective RNA design method using COoperative multi-agent reinforcement learning, for the RNA secondary structure design problem. COCORNA decomposes the RNA design task into multiple sub-tasks, which are assigned to multiple agents to solve collaboratively, alleviating the challenges of the curse of dimensionality as well as the issues of sparse and delayed rewards.By employing a centralized Critic network and leveraging global information during training, we promote cooperation among agents, enabling the distributed policies to cooperatively optimize the joint objective, thereby resulting in a high-quality collective RNA design policy. The trained model is capable of completing RNA secondary structure design with less time and fewer steps, without requiring further training or search on new tasks. We evaluate COCORNA on the Rfam dataset and the Eterna100 benchmark. Experimental results demonstrate that COCORNA outperforms existing algorithms in terms of design time and success rate, highlighting its practicality and effectiveness.

030 1 INTRODUCTION

RNA plays diverse roles in biological systems, including encoding proteins, regulating gene expression, and acting as a catalyst in biochemical reactions (Dykstra et al., 2022). Since the function of RNA is closely tied to its structure, designing RNA molecules that can fold into desired structures has become a critical problem. We focus on the RNA secondary structure design problem, which involves creating RNA sequences that can fold into a desired secondary structure. This is a complex combinatorial optimization problem and is computationally challenging due to the vastness of the sequence space and the intricate base-pairing interactions.

 Most existing RNA design algorithms rely on online search or optimization techniques. Methods such as RNAinverse (Hofacker et al., 1994), RNA-SSD (Andronescu et al., 2004), INFO-RNA (Busch & Backofen, 2006), and antaRNA (Kleinkauf et al., 2015) use stochastic search strategies to find sequences that fold into the target structure. However, for longer sequences, the high dimensionality of the search space severely affects efficiency and scalability.

Some learning-based methods (Eastman et al., 2018; Runge et al., 2019) aim to reduce reliance on
random search but still require extensive search or optimization times. However, existing methods
also face the curse of dimensionality: the design space grows exponentially with sequence length,
leading to extremely high computational costs. This limitation restricts the applicability of some
methods; for instance, RNAinformer (Patil et al., 2024) is a generative model-based design method
but is only suitable for short sequences.

Reinforcement learning (RL) is a promising approach to addressing biological sequence design
 problems. RL enables agents to learn decision-making policies through trial-and-error and explo ration without relying on labeled data. Additionally, RL allows for flexible optimization guidance
 through the use of reward functions, which can be tailored to encourage desired design outcomes.
 Another potential advantage of RL-based methods is the ability to offload time-consuming online

054 optimization to offline training, enabling zero-shot learning on new tasks. However, RL-based meth-055 ods face challenges in the context of RNA design. The vast design space inherent to biological 056 sequences increases the difficulty of policy exploration and learning, adversely affecting policy per-057 formance. Moreover, longer sequences exacerbate the issues of delayed and sparse rewards (Ried-058 miller et al., 2018), which makes it difficult for RL agents to receive sufficient feedback. As a result, existing RL-based methods either require long search times (Eastman et al., 2018) or require online optimization for each target structure during the design phase (Runge et al., 2019). While 060 these methods show promise, they do not fully exploit the potential of learning-based approaches to 061 generalize across different target structures. 062

To address the above challenges, we propose a collective RNA design method based on multi agent reinforcement learning (MARL). By decomposing the problem and learning cooperatively, we
 alleviate the curse of dimensionality and mitigate sparse rewards, thereby improving the efficiency
 and quality of RNA design. Our contributions can be summarized as follows:

- 067
- 068 069 070

071

073

074

075

076

077

078

079

080

081

082

084 085

- We formulate the RNA secondary structure design as a collective design problem, where multiple agents cooperate to design RNA sequences. By dividing the task among multiple agents—each focusing on a specific part of the sequence or structural elements—we effectively reduce the complexity faced by individual agents, enabling more efficient policy learning and exploration.
- We propose COCORNA, a MARL method based on the Centralized Training with Decentralized Execution (CTDE) framework to learn collective RNA design policies. Additionally, we introduce a search-augmented experience replay method to improve learning efficiency. Once trained, COCORNA can efficiently design RNA sequences within just one or a few episodes, requiring minimal time and steps without the need for further training or search on new tasks.
- We conduct experiments on the Rfam dataset and the Eterna100-v2 benchmark. The results demonstrate that COCORNA surpasses existing methods in both design time and success rate. Moreover, across both datasets, COCORNA solves more sequences within shorter time limits, demonstrating superior generalization performance.

2 RELATED WORK

2.1 RNA SECONDARY STRUCTURE DESIGN

087 **Optimization methods.** Intelligent optimization algorithms have made significant progress in solv-088 ing the RNA secondary structure design problem (Churkin et al., 2018). Methods such as INFO-089 RNA (Busch & Backofen, 2006) combine dynamic programming with stochastic local search for RNA inverse folding. MODENA (Taneda, 2010) utilizes multi-objective genetic algorithms, and 091 antaRNA (Kleinkauf et al., 2015) employs ant colony optimization techniques. These methods face 092 major challenges when dealing with longer sequences, as the cost of performing stochastic search 093 increases exponentially with sequence length. Additionally, evaluating designed RNA sequences requires repeatedly applying folding algorithms like ViennaRNA (Lorenz et al., 2011), which are 094 based on dynamic programming and have computation times that grow significantly with sequence 095 length. 096

Learning-based methods. Recently, learning-based methods have partially alleviated this problem.
Reinforcement learning approaches (Eastman et al., 2018; Angermueller et al., 2019; Runge et al., 2019; 2024b) have been proposed for RNA design and other biological sequence design problems.
For instance, Eastman et al. (2018) used RL to perform local search in the RNA sequence space.
Runge et al. (2019) combined RL with neural architecture search to improve RNA design policies.
Additionally, generative model-based methods like RNAinformer (Patil et al., 2024) have been developed. While RNAinformer show promise, it require substantial computational resources and is thus only applicable to sequences shorter than 100 nucleotides.

Unlike traditional optimization or search-based methods, RL has the potential to enable agents to
 adaptively make decisions without additional training or optimization, thereby achieving few-shot or
 even zero-shot design when encountering new instances. However, previous RL-based works have
 not truly achieved zero-shot design. For example, LEARNA (Runge et al., 2019) requires hundreds

or even thousands of learning episodes when facing new RNA structures. The vast search space of the RNA design problem increases the difficulty of policy exploration and improvement, making it challenging to obtain policies with strong generalization capabilities.

111 Our work addresses these challenges by introducing an MARL framework that decomposes the 112 RNA design problem into sub-tasks handled by multiple agents. Similarly, RNA-SSD (Andronescu 113 et al., 2004) reduces the size of the search space by splitting the full sequence into shorter subse-114 quences and optimizing each subsequence independently. However, combining solutions to local 115 problems often does not yield a solution to the global problem, and RNA-SSD is unable to incor-116 porate global knowledge. In contrast, our method fully leverages global information, promoting 117 cooperation among multiple agents and guiding joint optimization. Another work that adopts a sim-118 ilar idea is GAMEOPT (Bal et al., 2023), which establishes a game between different optimization variables to decouple the combinatorial decision space into individual decision sets. Although both 119 methods are based on problem decomposition, our approach fundamentally differs from GAMEOPT. 120 Our goal is to train a set of policies that can cooperatively make dynamic decisions to complete the 121 design task, rather than searching for an optimal solution consisting of variables. 122

123

2.2 MULTI-AGENT REINFORCEMENT LEARNING

125 MARL methods address decision-making problems involving multiple agents by employing RL 126 techniques (Gronauer & Diepold, 2022; Oroojlooy & Hajinezhad, 2023). In MARL, agents learn 127 to cooperate or compete by interacting with the environment and optimizing their policies based on 128 a reward function that defines the task objectives. This approach allows agents to autonomously 129 learn policies without human intervention. Algorithms such as COMA (Foerster et al., 2018), 130 OMIX (Rashid et al., 2018) and MAPPO (Yu et al., 2022) have demonstrated significant poten-131 tial on complex MARL benchmarks like the StarCraft Multi-Agent Challenge (Samvelyan et al., 2019; Ellis et al., 2024). Recently, MARL has been widely applied to various real-world multi-agent 132 tasks, including multi-robot systems (Chen et al., 2017; Willemsen et al., 2021; Paul et al., 2022), 133 production scheduling (Johnson et al., 2022), and autonomous driving (Shalev-Shwartz et al., 2016; 134 Candela et al., 2022). 135

However, to the best of our knowledge, no prior work has modeled biological sequence design as a
multi-agent decision-making problem and applied MARL to solve it. Our work is the first to explore
the potential of MARL in RNA sequence design, leveraging the cooperative capabilities of multiple
agents to tackle the high complexity of the RNA design problem.

140 141

144

141 3 PRELIMINARIES142

143 3.1 RNA DESIGN PROBLEM

We consider the RNA secondary structure design problem: given a target secondary structure, design an RNA sequence that most stably folds into that structure. RNA secondary structures are commonly represented using dot-bracket notation, where unpaired nucleotides are denoted by dots (.), and base pairs are represented by matching parentheses: an opening parenthesis (() indicates the 5' end of a base pair, and a closing parenthesis () indicates the 3' end. For example, the notation ((...)) represents a hairpin loop structure with base pairs at the ends and unpaired nucleotides in the loop.

At each position in the RNA sequence, there are four possible nucleotides: adenine (A), uracil (U), guanine (G), and cytosine (C). Designing an RNA sequence that folds into a specific secondary structure is a complex combinatorial optimization problem. The size of the search space grows exponentially with the length of the RNA sequence. For a sequence of length l, there are 4^l possible nucleotide combinations, making exhaustive search computationally infeasible for large l.

156 157

161

3.2 DECENTRALIZED PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

We model the fully cooperative multi-agent reinforcement learning problem as a Decentralized Partially Observable Markov Decision Process (Dec-POMDP) (Oliehoek et al., 2008). A Dec-POMDP is defined by the tuple $\langle \mathcal{N}, \mathcal{S}, \{\mathcal{O}_i\}, \{\mathcal{A}_i\}, P, R, \gamma \rangle$, where:

• $\mathcal{N} = \{1, 2, \dots, n\}$ is the set of n agents.

- 162 163 164 • S is the global state space. • O_i is the local observation space of agent *i*, and the joint observation space is $O = O_1 \times O_1$

166

167

168 169

170

171

178

179 180 181

182

199 200

201

202 203

204

205

206

207 208

209

211

212

- \mathcal{A}_i is the action space of agent *i*, and the joint action space is $\mathcal{A} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_n$.
 - $P: S \times A \times S \rightarrow [0, 1]$ is the state transition probability function, where $P(s_{t+1} | s_t, a_t)$ denotes the probability of transitioning to state s_{t+1} given state s_t and joint action a_t .
 - $R: \mathcal{S} \times \mathcal{A} \rightarrow [R_{\min}, R_{\max}]$ is the shared reward function.
 - $\gamma \in [0, 1]$ is the discount factor.

 $\cdots \times \mathcal{O}_n$.

At each time step t, the environment is in state $s_t \in S$. Each agent $i \in N$ receives a local observation $o_t^i \in \mathcal{O}_i$ and selects an action $a_t^i \in \mathcal{A}_i$ according to its policy $\pi^i(a_t^i \mid o_t^i)$. The joint action is denoted as $a_t = (a_t^1, a_t^2, \dots, a_t^n)$. The environment then transitions to a new state s_{t+1} based on the transition probability $P(s_{t+1} \mid s_t, a_t)$, and all agents receive the shared reward $R(s_t, a_t)$. The goal is to learn the optimal joint policy $\pi = (\pi^1, \pi^2, \dots, \pi^n)$ that maximizes the expected discounted cumulative return:

$$G = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \boldsymbol{a}_t)\right].$$
 (1)

3.3 CENTRALIZED TRAINING WITH DECENTRALIZED EXECUTION

The Centralized Training with Decentralized Execution (CTDE) (Kraemer & Banerjee, 2016) is a paradigm in MARL that leverages the advantages of both centralized and decentralized approaches. During the training phase, agents utilize global information to evaluate and improve their local policies. In the execution phase, agents select actions based on their local observations and policy functions. CTDE mitigates the non-stationarity problem in multi-agent environments by allowing agents to consider the joint dynamics during training, promoting interaction and cooperation among agents. At the same time, decentralized execution based on local observations alleviates the curse of dimensionality and enhances system scalability, reducing the dependency on global information and communication capabilities.

Actor-Critic Methods with CTDE: In the standard Actor-Critic framework (Barto et al., 1983), the
 Critic network learns the value function to evaluate the current policy, while the Actor network learns
 the policy function and adjusts the policy parameters based on the Critic's estimation. The Actor-Critic architecture can be naturally extended to multi-agent systems under the CTDE paradigm,
 resulting in centralized Critics and decentralized Actors (Lowe et al., 2017; Iqbal & Sha, 2019).
 During training, the global information is used to train the centralized Critic networks, and the
 outputs of the Critic are used to improve each agent's Actor network. During execution, agents make
 decisions independently based on their own policies, relying solely on their local observations.

4 MULTI-AGENT REINFORCEMENT LEARNING FOR COLLECTIVE RNA DESIGN

In this section, we provide a comprehensive overview of the proposed COCORNA method, detailing its problem decomposition framework, algorithm architecture, reward function, and the searchaugmented experience replay approach. The pseudocode for COCORNA can be found in Appendix A.

4.1 PROBLEM DECOMPOSITION

²¹⁰ In a Markov Decision Process (MDP), a policy is a mapping from states to actions:

 $\pi: \mathcal{S} \to \mathcal{A},\tag{2}$

where S is the state space and A is the action space. Typically, we desire the state to encapsulate as much relevant information as possible to inform decision-making. In the RNA design problem, the information influencing decisions includes: (1) the complete target RNA secondary structure; and (2) the current RNA sequence, since nucleotides at different positions are interdependent due to base pairing constraints. Therefore, the complete state information should be a combination of the RNA sequence and structural information. Formally, the state space S can be defined as:

$$S = \{ (s_{\text{seq}}, s_{\text{struct}}) \mid s_{\text{seq}} \in \{A, U, G, C\}^l, \ s_{\text{struct}} \in \{ \, . \, , \, (, \,) \,\}^l \},$$
(3)

where s_{seq} represents the nucleotide sequence, and s_{struct} represents the target secondary structure in dot-bracket notation. For sequences of length l, the dimension of the state space is $|S| = (4 \times 3)^l$, considering all possible combinations of sequences and structures. This exponential growth results in a high-dimensional policy space, significantly increasing the difficulty of policy learning and exploration.

We propose employing multi-agent reinforcement learning within the CTDE architecture, where the original problem is decomposed into multiple sub-problems and assigned to multiple agents to solve cooperatively. Each agent is responsible for making decisions at specific positions or substructures, reducing the dimensionality of individual agents' state and policy spaces. Specifically, we adopt two decomposition schemes:

- **Position-based decomposition**: We divide the entire RNA sequence into *n* segments, assigning an individual agent to each segment. Each agent is responsible for deciding the nucleotide at its assigned segment.
- Structure-type-based decomposition: We assign each agent to a specific structural type based on the dot-bracket notation. Each agent designs nucleotides only at positions corresponding to its assigned structural type.

For a single agent, its input is a lower-dimensional local observation, which consists of a fragment of the RNA sequence and structure centered at the current design position. The observation space O for an agent can be formalized as:

$$\mathcal{O} = \left\{ (o_{\text{seq}}, o_{\text{struct}}) \middle| o_{\text{seq}} \in \left(\{A, U, G, C, \emptyset\} \right)^m, \ o_{\text{struct}} \in \left(\{ \, . \, , \, (, \,) \, , \emptyset \} \right)^m \right\}, \tag{4}$$

(5)

where m represents the length of the observation window (an odd integer), and \emptyset denotes a placeholder symbol for positions outside the sequence boundaries. Specifically, for agent i, the observation at time t is:

 $o_t^i = \left(s_{\mathrm{seq}}^{[i-\kappa,\,i+\kappa]},\;s_{\mathrm{struct}}^{[i-\kappa,\,i+\kappa]}\right),$

250

251 252 253

254

245

219

231

232

233

235

236 237

238

239

240241242243244

where $\kappa = (m-1)/2$, and $s_{\text{seq}}^{[i-\kappa, i+\kappa]}$ denotes the subsequence of nucleotides from position $i - \kappa$ to $i + \kappa$, similarly for $s_{\text{struct}}^{[i-\kappa, i+\kappa]}$. If $i - \kappa$ or $i + \kappa$ is outside the range [1, n], we pad the observation with \emptyset symbols. This local observation captures the immediate context around the agent's assigned position.

By decomposing the complex RNA design problem into smaller sub-problems and assigning them to multiple agents, we leverage the strengths of MARL to efficiently explore the vast search space.
Each agent focuses on a specific part of the problem, either a sequence segment or a structural type, allowing for specialized policy learning. The centralized Critic ensures that while agents operate based on local observations, their policies are aligned towards the global objective, resulting in more effective and efficient RNA sequence design.

261 262

4.2 Algorithm Architecture

We adopt multi-agent proximal policy optimization (MAPPO) (Yu et al., 2022) as our base algorithm
due to its reliable performance in various multi-agent reinforcement learning benchmarks. In our
framework, each agent is equipped with an Actor network for decision-making and a Critic network
for policy evaluation. Each agent has its own set of network parameters, allowing for independent
learning and adaptation to its specific role within the environment.

Actor Network: The Actor network of each agent takes as input a local observation vector o_t^i , which captures relevant information at the agent's designated position. The Actor outputs a probability

distribution over the action space. We employ a discrete action space defined as:

$$A = \{A, U, G, C\},$$
 (6)

where each action corresponds to selecting a nucleotide type to be placed at a specific position in the RNA sequence. The policy of agent *i* is denoted as $\pi_{\theta^i}(a_t^i \mid o_t^i)$, where θ^i represents the parameters of the Actor network. During interaction with the environment, each agent samples an action a_t^i from the probability distribution output by its Actor network and executes this action, which corresponds to assigning a nucleotide to the current position.

Critic Network: The Critic network takes the global state s_t as input, which includes the current RNA sequence and secondary structure information. We use two convolutional neural network modules to process these two parts separately. The outputs of these two modules are then concatenated and fed into the subsequent layers of the Critic network to produce the value estimate $V(s_t)$ of the global state, representing the expected cumulative future rewards starting from state s_t under the current joint policy π :

$$V^{\pi}(s_t) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} \, \middle| \, s_t \right]. \tag{7}$$

The value estimates from the Critic network are used to compute the Temporal Difference (TD) error δ_t and the advantage function A_t for policy updates. The TD error is calculated as:

$$\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t). \tag{8}$$

We use Generalized Advantage Estimation (GAE) (Schulman et al., 2015) to compute the advantage function:

$$A_t = \sum_{k=0}^{\infty} (\gamma \lambda)^k \delta_{t+k}, \tag{9}$$

where $\lambda \in [0, 1]$. The advantage estimates are then used to update the Actor network parameters θ^i by maximizing the MAPPO objective for each agent:

$$\max_{\theta^{i}} \mathbb{E}\left[\min\left(\frac{\pi_{\theta^{i}}(a_{t}^{i} \mid o_{t}^{i})}{\pi_{\theta^{i}_{old}}(a_{t}^{i} \mid o_{t}^{i})}A_{t}, \operatorname{clip}\left(\frac{\pi_{\theta^{i}}(a_{t}^{i} \mid o_{t}^{i})}{\pi_{\theta^{i}_{old}}(a_{t}^{i} \mid o_{t}^{i})}, 1-\epsilon, 1+\epsilon\right)A_{t}\right)\right],$$
(10)

where ϵ is a small positive constant that determines the clipping range.

In summary, the Critic network's value estimates are used to guide policy improvement. Since
 the centralized Critic evaluates the performance of the entire multi-agent system based on global
 information, the local policies of each agent are encouraged to take actions that contribute to the
 global objective.

306 307 308

318 319

272

284 285 286

287

288 289 290

291

292 293

295

296

301

4.3 **REWARD FUNCTION**

By modeling the RNA design problem as an MDP, we can analogize RNA design to a navigation task—not in the physical world, but within the RNA design space. The gap between the current design and the target can be measured using the Hamming distance of RNA secondary structures. Inspired by navigation problems, we design a reward function that facilitates policy exploration and optimization in the RNA design space.

Firstly, we use the Minimum Free Energy (MFE) folding algorithm from the ViennaRNA package (Lorenz et al., 2011) to predict the secondary structure that each RNA sequence will fold into. Then, the Hamming distance between the folded RNA structure x_f and the target RNA structure x_t is defined as:

$$H(x_f, x_t) = \sum_{i=1}^{l} \mathbf{1}(x_f^i \neq x_t^i),$$
(11)

where $1(\cdot)$ is an indicator function that equals 1 when $x_f^i \neq x_t^i$ and 0 otherwise, and l is the length of the RNA sequence.

323 The reward function consists of two components: the intermediate reward and the final reward. At each time step t, the multi-agent team selects actions, and the environment immediately returns an

intermediate reward, which represents the change in the normalized Hamming distance between consecutive steps. If the folded RNA structure perfectly matches the target structure, i.e., H = 0, a final reward is given, and the current episode ends. The reward function is:

$$R_t = \begin{cases} (H_{t-1} - H_t)/l, & \text{if } H_t > 0, \\ C, & \text{if } H_t = 0, \end{cases}$$
(12)

where C is a positive constant. The intermediate reward encourages the agents to iteratively reduce the differences between the folded RNA structure and the target structure by minimizing the normalized Hamming distance at each step. Meanwhile, the final reward C is set to a relatively large value to incentivize the agents to find an optimal solution and escape potential local optima.

334 335

328

4.4 SEARCH-AUGMENTED EXPERIENCE REPLAY

Due to the vastness of the RNA design space, learning-based methods may face a cold-start problem:
initial random policies perform poorly, leading to a lack of high-quality experience data for effective learning. Inspired by the Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), we introduce a Search-Augmented Experience Replay (SAER) method, using a limited amount of greedy search during the early stages of training to improve data quality.

Specifically, after an agent selects an action a according to its policy π and receives a reward r, we perform a local search to check if there exists a better action a' that yields a higher reward r'. If such an action is found, we replace the original action with the better one and modify the experience tuple (o, a, r) to (o, a', r'). By doing so, we enhance the quality of the experience data, which in turn improves learning efficiency.

This approach helps alleviate the cold-start problem by providing the agents with higher-quality
 training data in the early stages. To prevent the local greedy search from causing the policy to
 converge prematurely to suboptimal solutions, we gradually reduce and eventually remove this operation as training progresses.

It is important to note that the replay buffer used here differs from those in off-policy RL methods (Mnih et al., 2015; Lillicrap et al., 2016). In our method, experiences are collected over multiple steps using the current policy until a fixed horizon is reached. At that point, the buffer is used to perform multiple gradient-based updates to both the Actor and Critic networks. Once the updates are completed, the buffer is cleared, and new experiences are sampled based on the updated policy.

356 357

358

359 360

5 EXPERIMENTS

5.1 DATASETS

In our experiments, we use two datasets: the Rfam dataset (Runge et al., 2024a) and the 361 Eterna100-v2 benchmark (Koodli et al., 2021). The Rfam dataset is constructed based on the Rfam 362 database (Kalvari et al., 2021). From the Rfam dataset, we randomly select 60,000 RNA secondary 363 structures as our training set. It is important to note that these data do not contain labels, as RL 364 algorithms learn policies through autonomous exploration and do not require labeled data. Addi-365 tionally, we randomly select 650 RNA secondary structures as a test set, which are not included in 366 the training set. The Eterna100 benchmark is a well-known set of challenging RNA design problems 367 derived from the Eterna online RNA design game. More details about the datasets can be found in 368 Appendix C.

- 369 370
- 5.2 Results

Experimental Setup: We employ position-based decomposition with n = 4 agents. For each RNA secondary structure, we divide it into four subsequences of approximately equal length, each assigned to one of the four agents. The maximum number of steps per episode is set to 400. If a valid RNA sequence that folds into the target structure is found within 400 steps, the design process for that episode terminates successfully.

We first perform training over a total of 25 million steps. After training, we use the learned design policy to design RNA sequences for the RNA secondary structures in the test set. For each RNA

Mathad	Results	[Solved / A	ll test samples]
Method	R	fam	Eterna100-v2
CocoRNA	636 /650	(97.85 %)	70 /100
LEARNA-30s	64/650	(9.85 %)	24/100
LEARNA-60s	133/650	(20.46 %)	34/100
LEARNA-300s	368/650	(56.62 %)	49/100
LEARNA-600s	380/650	(58.46 %)	50/100
Meta-LEARNA-Adapt-30s	386/650	(59.38 %)	49/100
Meta-LEARNA-Adapt-60s	452/650	(69.54 %)	53/100
Meta-LEARNA-Adapt-300s	565/650	(86.92 %)	57/100
Meta-LEARNA-Adapt-600s	581/650	(89.38 %)	60/100

Table 1: Comparison of RNA design methods on Rfam datasets and Eterna100-v2 benchmark.

Figure 1: Distribution of solving times for COCORNA, LEARNA-600s, and Meta-LEARNA-Adapt-600s methods on successfully solved RNA sequences in the Rfam dataset.

structure, we allow a maximum of 15 retries, with a total time limit of 30 seconds. Details concerning the network architectures and hyperparameter settings are listed in Appendix D.

Baselines: We compare COCORNA primarily against the LEARNA algorithm (Runge et al., 2019),
which, along with its variants, represents the state-of-the-art in RNA secondary structure design
tasks. Compared to search-based methods such as antaRNA (Kleinkauf et al., 2015) and MCTSRNA (Yang et al., 2017), as well as another RL-based approach (Eastman et al., 2018), LEARNA
achieves faster speeds and higher success rates. Therefore, our comparisons focus on LEARNA and
its variant, Meta-LEARNA-Adapt.

LEARNA uses RL to learn design policies and reduces reliance on random search, thereby improving the efficiency and quality of RNA design. However, LEARNA improves performance by conducting online optimization on specific RNA structures during the design phase, which increases resource and time costs. Without time constraints, the design phase can last hours or even days.

In contrast, COCORNA does not require random search or optimization during the design phase.
Most RNA structures can be successfully designed within a single episode, and the design process
usually takes less than a few seconds. To better compare algorithm efficiency, we test the performance of the baseline algorithms under time limits of 30s, 60s, 300s, and 600s.

Comparison: The results of the comparative study are presented in Table 1. COCORNA demon strates clear advantages on both datasets. Under the same time limit of 30 seconds, COCORNA
 successfully solves 97.85% of RNA structures in the Rfam test set, substantially outperforming
 LEARNA (9.85%) and its meta-learning variant Meta-LEARNA-Adapt (59.38%). Even when the
 time limit for the baselines is relaxed by 20 times to 600 seconds, COCORNA still exhibits superior
 performance. On the Eterna100 benchmark, COCORNA also outperforms the baselines, successfully solving 70 out of 100 RNA structures.

433	Table 2:	Distribution	of RNA	sequences	s by	solving	time	intervals	for	differ	ent (design	metho	ds on
434	the Rfan	n dataset.												
435						. 1	1							

Method			$t_{\rm solved} < 1 { m s}$	$1s \le t_{sc}$	$_{\rm olved} \le 60 {\rm s}$	$t_{\rm solved} > 60 {\rm s}$
CocoRN	A		273	3	363	0
LEARNA	-600s		0	1	147	233
Meta-LEA	ARNA-Adapt-60	00s	0	2	174	107
		10 ⁴ 10 ³ 10 ³ 10 ² 10 ¹ 10 ⁰	Meta LEARNA Adapt	_600s		LEARNA 6005

Figure 2: Distribution of redesign attempts required by COCORNA, LEARNA-600s, and Meta-LEARNA-Adapt-600s on the Rfam dataset.

Figure 1 shows the solving times for different RNA structures on the Rfam dataset and the re-lationship between solving time and sequence length for COCORNA, LEARNA-600s, and Meta-LEARNA-Adapt-600s. Complete test results, including other baselines, can be found in Appendix E. Table 2 presents the number of sequences whose solving times t_{solved} fall within various time intervals for the three methods. The results indicate that COCORNA requires significantly less solv-ing time, with approximately 42% of sequences successfully solved within 1 second. In contrast, neither of the baseline methods can solve any sequences within 1 second. Note that the solving time for our method increases with sequence length, primarily because most of the time is spent on the folding algorithm. While the inference time of our algorithm remains constant regardless of sequence length, longer sequences require more time to run dynamic programming-based folding algorithms (Lorenz et al., 2011).

Figure 2 shows the number of redesign attempts n_{iter} required to design different RNA structures on the Rfam dataset using COCORNA, LEARNA-600s, and Meta-LEARNA-Adapt-600s. Table 3 presents the corresponding statistical information. For the majority of sequences (95.54%), our method succeeds within a single episode. In contrast, the two baseline methods require numerous iterative optimizations. Although Meta-LEARNA-Adapt performs meta-learning on the entire training set, only 3.38% of sequences can be solved in a single attempt.

Appendix E.1 discusses the impact of two different decomposition schemes: position-based and structure-type-based decomposition. Table 8 presents the experimental results, demonstrating that these two decomposition schemes have only a minimal effect on performance, suggesting that Co-CORNA is robust to the choice of decomposition strategy.

5.3 Ablation Studies

To evaluate the effectiveness of each component in our proposed method, we conduct two ablation experiments: a single-agent version and an ablated multi-agent version without the SAER method.
Figure 3 shows the results of these two ablation experiments. We plot the *Sequence Recovery Rate* (SRR) over the training process, which measures the ratio of correctly designed positions in the folded RNA sequence. The sequence recovery rate is defined as:

$$SRR = 1 - \frac{H(x_f, x_t)}{l}.$$
(13)

507 508

510

511

513

522

523

524

525 526

527

487 Table 3: Distribution of RNA sequences by redesign attempts n_{iter} intervals for different methods on the Rfam dataset. 488

Figure 3: Results of ablation experiments on the Rfam dataset. Each experiment is performed over 509 6 independent runs with different random seeds. The shaded areas represent the standard deviation. **Left:** Comparison of sequence recovery rates during training between the single-agent version and our multi-agent COCORNA. Right: Effect of removing the search-augmented experience replay 512 method.

514 As shown in the left plot of Figure 3, the training performance of the single-agent version is signifi-515 cantly worse compared to the multi-agent version, demonstrating the effectiveness of our proposed 516 multi-agent cooperative design architecture. The right plot of Figure 3 shows that the ablated version 517 without SAER converges more slowly and exhibits greater fluctuations during training, indicating 518 that the introduction of SAER helps the agents learn more effectively by providing additional valu-519 able experiences, thus stabilizing and accelerating the training process. Additional results of the 520 SAER ablation study are provided in Appendix E.2. 521

Furthermore, we conducted a series of additional experiments to comprehensively evaluate the performance of COCORNA. These experiments include varying reward signal settings, agent size, shared policy parameters, dataset splitting, and training parameters. The detailed results and discussions for these experiments are presented in Appendix E.

CONCLUSION 6

528 529 In this paper, we proposed COCORNA, a collective RNA design method using cooperative multi-530 agent reinforcement learning to address the challenges in RNA secondary structure design. By 531 formulating the RNA design task as a collective problem and decomposing it into multiple sub-tasks assigned to individual agents, the complexity faced by each agent was effectively reduced. Further-532 more, the implementation of the CTDE framework combined with the introduction of the SAER 533 method fostered multi-agent cooperation, enhanced policy exploration, and improved learning effi-534 ciency. Experiments conducted on the Rfam dataset and the Eterna100-v2 benchmark demonstrated 535 both the effectiveness and efficiency of COCORNA. 536

We believe that the success of COCORNA showcases the potential of cooperative multi-agent reinforcement learning in biological sequence design tasks and complex combinatorial optimization 538 problems. We anticipate that this method can be extended to more complex application scenarios, such as RNA tertiary structure design and protein design.

540 REFERENCES

548

- 542 Mirela Andronescu, Anthony P Fejes, Frank Hutter, Holger H Hoos, and Anne Condon. A new algorithm for RNA secondary structure design. *Journal of molecular biology*, 336(3):607–624, 2004.
- Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
 McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re play. In *Advances in neural information processing systems*, volume 30, 2017.
- 549 Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
 550 Colwell. Model-based reinforcement learning for biological sequence design. In *Proceedings of* 551 *International Conference on Learning Representations*, 2019.
- Melis Ilayda Bal, Pier Giuseppe Sessa, Mojmir Mutny, and Andreas Krause. Optimistic games
 for combinatorial bayesian optimization with applications to protein design. In *NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World*, 2023.
- Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can solve difficult learning control problems. *IEEE transactions on systems, man, and cybernetics*, SMC-13(5):834–846, 1983.
- Judith Bernett, David B Blumenthal, Dominik G Grimm, Florian Haselbeck, Roman Joeres, Olga V
 Kalinina, and Markus List. Guiding questions to avoid data leakage in biological machine learning
 applications. *Nature Methods*, 21(8):1444–1453, 2024.
- Anke Busch and Rolf Backofen. INFO-RNA—a fast approach to inverse RNA folding. *Bioinformatics*, 22(15):1823–1831, 2006.
- Eduardo Candela, Leandro Parada, Luis Marques, Tiberiu-Andrei Georgescu, Yiannis Demiris, and
 Panagiotis Angeloudis. Transferring multi-agent reinforcement learning policies for autonomous
 driving using sim-to-real. In *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 8814–8820. IEEE, 2022.
- Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In *Proceedings of the IEEE International Conference on Robotics and Automation*, pp. 285–292. IEEE, 2017.
- Alexander Churkin, Matan Drory Retwitzer, Vladimir Reinharz, Yann Ponty, Jérôme Waldispühl,
 and Danny Barash. Design of RNAs: comparing programs for inverse RNA folding. *Briefings in bioinformatics*, 19(2):350–358, 2018.
- Peter B Dykstra, Matias Kaplan, and Christina D Smolke. Engineering synthetic RNA devices for cell control. *Nature Reviews Genetics*, 23(4):215–228, 2022.
- Peter Eastman, Jade Shi, Bharath Ramsundar, and Vijay S Pande. Solving the rna design problem
 with reinforcement learning. *PLoS computational biology*, 14(6):e1006176, 2018.
- Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-agent reinforcement learning. In *Advances in Neural Information Processing Systems*, volume 36, 2024.
- Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
 Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 2974–2982, New Orleans, LA, USA, 2018.
- Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial Intelligence Review, 55(2):895–943, 2022.
- Ivo L Hofacker, Walter Fontana, Peter F Stadler, L Sebastian Bonhoeffer, Manfred Tacker, Peter
 Schuster, et al. Fast folding and comparison of RNA secondary structures. *Monatshefte fur chemie*, 125:167–167, 1994.

594 595 596	Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In <i>Proceed-ings of the International Conference on Machine Learning</i> , pp. 2961–2970. PMLR, 2019.
597 598 599	Dazzle Johnson, Gang Chen, and Yuqian Lu. Multi-agent reinforcement learning for real-time dynamic production scheduling in a robot assembly cell. <i>IEEE Robotics and Automation Letters</i> , 7(3):7684–7691, 2022.
600 601 602 603	Ioanna Kalvari, Eric P Nawrocki, Nancy Ontiveros-Palacios, Joanna Argasinska, Kevin Lamkiewicz, Manja Marz, Sam Griffiths-Jones, Claire Toffano-Nioche, Daniel Gautheret, Zasha Weinberg, et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. <i>Nucleic Acids Research</i> , 49(D1):D192–D200, 2021.
604 605 606	Robert Kleinkauf, Martin Mann, and Rolf Backofen. antaRNA: ant colony-based RNA sequence design. <i>Bioinformatics</i> , 31(19):3114–3121, 2015.
607 608	Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In <i>Advances in neural information processing systems</i> , volume 12, pp. 1008—1014, 1999.
610 611	Rohan V Koodli, Boris Rudolfs, Hannah K Wayment-Steele, Eterna Structure Designers, and Rhiju Das. Redesigning the EteRNA100 for the Vienna 2 folding engine. <i>BioRxiv</i> , pp. 2021–08, 2021.
612 613 614	Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for decentralized planning. <i>Neurocomputing</i> , 190:82–94, 2016.
615 616 617	Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In <i>Proc. International Conference on Learning Representations</i> , San Juan, Puerto Rico, 2016.
618 619 620	Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph Flamm, Peter F Stadler, and Ivo L Hofacker. ViennaRNA package 2.0. <i>Algorithms for molecular biology</i> , 6:1–14, 2011.
621 622 623 624	Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi- agent actor-critic for mixed cooperative-competitive environments. In <i>Proc. Advances in Neural</i> <i>Information Processing Systems</i> , pp. 6382–6393, Long Beach, CA, USA, 2017.
625 626 627	Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle- mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. <i>Nature</i> , 518(7540):529–533, 2015.
628 629 630	Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate Q-value func- tions for decentralized POMDPs. <i>Journal of Artificial Intelligence Research</i> , 32:289–353, 2008.
631 632	Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement learning. <i>Applied Intelligence</i> , 53(11):13677–13722, 2023.
634 635 636	Sharat Patil, Frederic Runge, Jörg KH Franke, and Frank Hutter. Towards generative RNA design with tertiary interactions. In <i>ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design</i> , 2024.
637 638 639	Steve Paul, Payam Ghassemi, and Souma Chowdhury. Learning scalable policies over graphs for multi-robot task allocation using capsule attention networks. In <i>Proceedings of the International</i> <i>Conference on Robotics and Automation</i> , pp. 8815–8822. IEEE, 2022.
640 641 642 643 644	Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning. In <i>Proceedings of the International Conference on Machine Learning</i> , pp. 4295–4304, Stockholm, Sweden, 2018.
645 646 647	Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse reward tasks from scratch. In <i>Proceedings of the International Conference on Machine Learning</i> , pp. 4344–4353. PMLR, 2018.

- Frederic Runge, Danny Stoll, Stefan Falkner, and Frank Hutter. Learning to design RNA. In *Proceedings of the International Conference on Learning Representations*, 2019.
- Frederic Runge, Karim Farid, Jorg KH Franke, and Frank Hutter. Rnabench: A comprehensive library for in silico rna modelling. *bioRxiv*, pp. 2024–01, 2024a.
- Frederic Runge, Jörg Franke, Daniel Fertmann, Rolf Backofen, and Frank Hutter. Partial RNA design. *Bioinformatics*, 40(Supplement_1):i437–i445, 2024b.
- Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
 Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent challenge. In *Proceedings of the International Conference on Autonomous Agents and MultiAgent Systems*, pp. 2186–2188, 2019.
- John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High dimensional continuous control using generalized advantage estimation. arXiv preprint
 arXiv:1506.02438, 2015.
- Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement learning for autonomous driving. *arXiv preprint arXiv:1610.03295*, 2016.
- Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth ods for reinforcement learning with function approximation. In *Advances in neural information processing systems*, volume 12, pp. 1057—-1063, 1999.
 - Akito Taneda. MODENA: a multi-objective RNA inverse folding. Advances and Applications in Bioinformatics and Chemistry, pp. 1–12, 2010.
- Daniël Willemsen, Mario Coppola, and Guido C.H.E. de Croon. Mambpo: Sample-efficient multi robot reinforcement learning using learned world models. In *Proceedings of the IEEE/RSJ Inter- national Conference on Intelligent Robots and Systems*, pp. 5635–5640, 2021.
- Kiufeng Yang, Kazuki Yoshizoe, Akito Taneda, and Koji Tsuda. RNA inverse folding using monte carlo tree search. *BMC bioinformatics*, 18:1–12, 2017.
- Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
 The surprising effectiveness of ppo in cooperative multi-agent games. In *Advances in Neural Information Processing Systems*, volume 35, pp. 24611–24624, 2022.

702 A PSEUDOCODE FOR COCORNA

Algorithm 1 presents the pseudocode for the proposed COCORNA method. Figure 4 illustrates the overall workflow of the algorithm. COCORNA leverages the MAPPO algorithm, an extension of the PPO method tailored for multi-agent environments. In our implementation of COCORNA, each agent is equipped with an Actor network responsible for selecting actions based on local observations, while the centralized Critic network evaluates the global state to provide value estimates for policy updates.

It is important to note that the replay buffer used here differs from those in off-policy RL methods (Mnih et al., 2015; Lillicrap et al., 2016). In our method, experiences are collected over multiple steps using the current policy until a fixed horizon is reached. At that point, the buffer is used to perform multiple gradient-based updates to both the Actor and Critic networks. Once the updates are completed, the buffer is cleared, and new experiences are sampled based on the updated policy.

Alg	orithm 1 COCORNA: Cooperative Multi-Agent RNA Design
1:	Input: Target RNA secondary structure dataset X , maximum episodes E , maximum steps per
	episode T , horizon H , number of agents n
2:	Initialize Actor networks π_{θ^i} and Critic network V_{ϕ} for each agent <i>i</i>
3:	Initialize experience replay buffer \mathcal{D}
4:	for episode = 1 to E do
5:	Reset environment, randomly select a target RNA secondary structure x_t from X, and initial-
	ize RNA sequence s _{seq}
6:	Decompose the RNA design task among n agents according to the chosen decomposition
	scheme
7:	for step $t = 1$ to T do
8:	for each agent $i = 1$ to n in parallel do
9:	Observe local observation o_t^i
10:	Select action $a_t^i \sim \pi_{\theta^i}(a_t^i \mid o_t^i)$
11:	end for
12:	Execute joint action $\boldsymbol{a}_t = (a_t^1, a_t^2, \dots, a_t^n)$
13:	Update RNA sequence s_{seq} with actions a_t
14:	Predict folded structure x_f using MFE folding algorithm
15:	Calculate Hamming distance $H_t = H(x_f, x_t)$
16:	Calculate reward r_t based on H_t and H_{t-1}
17:	Store transition (o_t, a_t, r_t, o_{t+1}) in buffer \mathcal{D}
18:	if using SAER then
19:	Perform local search to find better actions a'_t
20:	Update reward r'_t based on improved Hamming distance H'_t
21:	Replace transition with $(o_t, a'_t, r'_t, o_{t+1})$ in buffer \mathcal{D}
22:	end if
23:	if $H_t = 0$ or $t = T$ then
24:	Assign final reward C to all agents
25:	Break
26:	end if
27:	if buffer size reaches horizon H then
28:	Update Actor networks π_{θ^i} and Critic network V_{ϕ} using mini-batch updates from buffer
	\mathcal{D} with MAPPO
29:	Clear experience buffer \mathcal{D}
30:	end if
31:	end for
32:	end for

(14)

(15)

(16)

(17)

(18)

(19)

810 we have:

$$\sum_{a^i} \nabla_\theta \pi^i(a^i \mid o^i) = \nabla_\theta \sum_{a^i} \pi^i(a^i \mid o^i) = \nabla_\theta 1 = 0.$$
⁽²⁰⁾

Therefore,

$$g_V = -\sum_s d^{\boldsymbol{\pi}}(s) \sum_i \sum_{\boldsymbol{a}^{-i}} \boldsymbol{\pi}(\boldsymbol{a}^{-i} \mid o^{-i}) V(s) \nabla_{\theta} 1$$
(21)

Thus, the policy gradient in (16) reduces to only the first term:

_

$$g = \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{i} \nabla_{\theta} \log \pi^{i}(a^{i} \mid o^{i}) Q(s, \boldsymbol{a}) \right].$$
(23)

Since the joint policy can be expressed as the product of individual agent policies:

$$\pi(a \mid s) = \prod_{i} \pi^{i}(a^{i} \mid o^{i}), \tag{24}$$

and using the logarithmic identity $\log \prod_i x_i = \sum_i \log x_i$, we can rewrite the policy gradient as:

$$g = \mathbb{E}_{\pi} \left[\sum_{i} \nabla_{\theta} \log \pi^{i}(a^{i} \mid o^{i}) Q(s, \boldsymbol{a}) \right]$$
(25)

$$= \mathbb{E}_{\boldsymbol{\pi}} \left[\nabla_{\boldsymbol{\theta}} \log \prod_{i} \pi^{i}(a^{i} \mid o^{i}) Q(s, \boldsymbol{a}) \right]$$
(26)

$$= \mathbb{E}_{\boldsymbol{\pi}} \left[\nabla_{\boldsymbol{\theta}} \log \boldsymbol{\pi}(\boldsymbol{a} \mid s) Q(s, \boldsymbol{a}) \right].$$
(27)

This result shows that (27) is equivalent to the single-agent actor-critic policy gradient, where the multiple agents are considered as a single joint agent (or super-agent). Konda & Tsitsiklis (1999) proved the convergence of policy gradient algorithms under the condition that the policy π is differentiable and the algorithm parameters satisfy certain conditions.

Therefore, by following the gradient in (15), the multi-agent actor-critic algorithm converges to a local maximum of the expected joint return J^{π} .

844 B.2 LIMITATION AND DISCUSSION

In theory, gradient-based deep learning and reinforcement learning methods generally guarantee
 convergence to local optima rather than global optima due to the non-convex nature of the optimiza tion landscape. However, in practice, the ability of reinforcement learning algorithms to go beyond
 local optima and approach global optima depends significantly on how well they balance exploration
 and exploitation.

Specifically, CocoRNA is built upon PPO, which includes an entropy bonus in the objective function, which explicitly encourages the policy to maintain high entropy. This prevents the policy from becoming too deterministic too quickly, avoiding premature convergence to suboptimal policies and promoting continued exploration.

In the context of the RNA design task, the multi-agent framework of CocoRNA further aids in overcoming local optima. Unlike single-agent methods that mutate one nucleotide at one step, our method allows multiple agents to act simultaneously on different parts of the RNA sequence. This introduces greater diversity and increases the exploration of the state space, thereby increasing the opportunities to discover better policies.

C DATASETS DETAILS

We use the Rfam dataset (Runge et al., 2024a) and the Eterna100-v2 benchmark (Koodli et al., 2021) to train and evaluate our algorithm. Both datasets contain only RNA secondary structure

Figure 5: Length distributions of RNA secondary structures in different datasets.

Dataset	Sample Size	Average Length	Max Length	Min Length
Rfam (Training Set)	60000	243.73	450	50
Rfam (Test Set)	650	238.78	450	50
Eterna100-v2	100	159.57	400	12

Table 4: Statistics of the datasets.

information without explicit sequence labels, as the task is to design sequences that fold into the provided structures.

The Rfam dataset is constructed by applying RNA folding algorithms to RNA sequences from the Rfam database (Kalvari et al., 2021). The structures in this dataset are computationally predicted using tools like the ViennaRNA package (Lorenz et al., 2011), which produces secondary structures based on minimum free energy (MFE) folding. We randomly sample 60,000 RNA secondary structures as the training set and an additional 650 structures as the test set.

The Eterna100-v2 benchmark consists of 100 challenging RNA design tasks derived from the Eterna citizen science project. These tasks represent a wide range of RNA secondary structures with varying lengths and complexities, providing a rigorous benchmark for evaluating RNA design algorithms.

Figure 5 shows the length distributions of RNA secondary structures in the Rfam training set, Rfam test set, and the Eterna100-v2 benchmark. Table 4 provides statistical information about the RNA structures in these datasets, including the sample size, average length, maximum length, and minimum length of the RNA secondary structures.

Hyperparameter	Value
Learning Rate	0.00001
Discount Factor (γ)	0.99
GAE Parameter (λ)	0.95
PPO Clip Range (ϵ)	0.2
Entropy Coefficient	0.02
Horizon Length	256
Batch Size	512
Number of Epochs	10
Gradient Clipping	0.5

Table 5: Training hyperparameters.

• •	1
Hyperparameter	Value
Actor Network Layers	[128, 64]
Critic Network Layers	[256, 64]
CNN Filter Size	[8, 4, 3]
CNN Number of Filters	[32, 64, 64]
Activation Function	ReLU
Optimizer	Adam

Table 6: Network hyperparameters.

ALGORITHM DETAILS AND HYPERPARAMETERS D

This section provides a detailed description of the COCORNA algorithm, including network architectures, training details, and hyperparameter settings.

D.1 NETWORK ARCHITECTURES

Each agent in the COCORNA framework is equipped with its own Actor and Critic networks. Although the Critic network leverages shared global information, the network parameters are not shared across agents. The Actor network takes local observations as input and outputs a discrete action (the nucleotide to be placed in the RNA sequence). The Critic network, on the other hand, processes the global state, which includes the full RNA sequence and secondary structure, and out-puts a scalar value representing the estimated cumulative future reward for the entire system.

- Actor Network: The Actor network consists of several fully connected layers followed by a softmax output layer. Each agent's observation is passed through the network to compute a probability distribution over the action space $\{A, U, G, C\}$.
- Critic Network: The Critic network takes the entire RNA sequence and secondary structure as input. This input is processed through two separate CNN modules: one for the sequence and one for the structure. The outputs of these modules are concatenated and passed through a fully connected network to produce a value estimate for the entire system.
- **D.2** TRAINING AND OPTIMIZATION

The training procedure involves collecting experiences over a fixed horizon, storing them in a replay buffer, and periodically updating the Actor and Critic networks using these stored experiences. The PPO algorithm is used to update the networks by maximizing the clipped objective, ensuring stable training. We also apply the Generalized Advantage Estimation (GAE) technique to compute the advantage function, which helps reduce variance during training.

Table 7: Additional hyperparameters.

Parameter	Value
Maximum Steps per Episode (Training)	350
Maximum Steps per Episode (Testing)	400
Observation Radius	30
Local Observation Window Size	61
Global State Dimension	900
Total Training Steps	25000000
	1

972 D.3 HYPERPARAMETER SETTINGS

Table 5 and Table 6 summarize the key hyperparameters used in training the COCORNA model,including training parameters and network parameters.

976 977

987

989

1004

1007 1008

1010 1011

1012

1013

1015

977 D.4 OTHER SETTINGS 978

Table 7 presents additional parameter settings used in the COCORNA framework. During training, the maximum number of steps per episode is set to 350, while for testing, it is increased to 400. The training is conducted for a total of 25 million steps. Each agent has an observation radius of 30, resulting in a local observation window size of 61. Since the maximum RNA structure length in the dataset is 450, we standardize the global state dimension to 900 (450 for the sequence information and 450 for the structure information).

We use the ViennaRNA package (Lorenz et al., 2011) version 2.6.4 to compute the folded RNA structures during the design process.

Table 8: Performance of COCORNA with different problem decomposition schemes on Rfam and Eterna100-v2 datasets.

Method	Results	[Solved / Al	l Test Samples]
Witthou	R	fam	Eterna100-v2
COCORNA-PBD	636/650	(97.85%)	70/100
COCORNA-SBD	629/650	(96.77 %)	68/100

Table 9: Performance of COCORNA and ablated versions on Rfam and Eterna100-v2 datasets.

Method	Results	[Solved / Al	1 Test Samples]
Wiethou	R	fam	Eterna100-v2
CocoRNA	636/650	(97.85%)	70/100
COCORNA-ablated	603/650	(92.77 %)	63/100
Single-agent version	344/650	(52.92 %)	31/100

E ADDITIONAL RESULTS

In this section, we present a series of experiments under various settings to comprehensively demonstrate the effectiveness of COCORNA.

1014 E.1 USING DIFFERENT DECOMPOSITION SCHEMES

1016 Table 8 provides the testing results for different problem decomposition schemes used in Co-CORNA. We employ two decomposition methods: Position-based decomposition (COCORNA-1017 PBD) and Structure-type-based decomposition (COCORNA-SBD). For Position-based decomposi-1018 tion, the complete RNA structure is divided into approximately equal segments, with each segment 1019 assigned to a different agent. For Structure-type-based decomposition, agents are assigned specific 1020 structural types based on the dot-bracket notation; for example, if Agent 1 is responsible for non-1021 paired structures, it sequentially designs nucleotides at all non-paired positions within the structure. 1022 In our experiments, the two decomposition methods only show minor performance differences, 1023

1023 In our experiments, the two decomposition methods only snow minor performance differences,
 1024 demonstrating the flexibility of our method concerning decomposition choices. For COCORNA 1025 SBD, structure-type-based decomposition allows agents to focus more on specific structural elements, but the relative positional relationships between different agents may become completely

 disrupted as the design process progresses, potentially causing slight adverse effects on the learning process. Although CocoRNA-SBD performed slightly worse than CocoRNA-PBD in testing, both methods significantly outperformed the single-agent approach.

1030 E.2 ABLATION STUDY ON SAER

Table 9 presents the testing results of two ablated versions of COCORNA. Removing the SAER method results in a slight performance decrease in COCORNA-ablated, demonstrating the effective-ness of the SAER approach. Additionally, as shown in the right plot of Figure 3, COCORNA-ablated continues to improve towards the end of the training process, suggesting that further training may yield better performance. The single-agent version shows significantly poorer performance. In fact, the single-agent version is similar to the LEARNA method but lacks architectural and hyperparameter optimizations and does not undergo additional training during the design phase.

Figure 6: Learning curves under different reward settings on the Rfam dataset. Each experiment is performed over 6 independent runs with different random seeds. The shaded areas represent the standard deviation. Left: Learning curves using delayed reward (28). Right: Learning curves using terminal reward (29).

Table 10: Performance of COCORNA and COCORNA-ablated under different reward settings on the Rfam dataset.

Reward Setting / Method	Results [Solved / All Test Samples]
Delayed Reward / COCORNA	634/650 (97.54%)
Delayed Reward / COCORNA-ablated	621/650 (95.54%)
Terminal Reward / COCORNA	604/650 (92.92%)
Terminal Reward / COCORNA-ablated	570/650 (87.69%)

1067 1068 1069

1074

1075

1076

1053

1058 1059

1070 E.3 ABLATION STUDY ON REWARD SIGNALS

In addition to the standard reward signal, we test two different delayed/sparse reward settings on theRfam dataset.

• **Delayed Reward:** The reward signal is calculated every 10 steps instead of every step. The original reward function (12) is modified as follows:

1077
1078
1079
$$R_t = \begin{cases} \frac{H_{t-10} - H_t}{l}, & \text{if } H_t > 0 \text{ and } t \mod 10 = 0, \\ C, & \text{if } H_t = 0 \text{ and } t \mod 10 = 0, \\ 0, & \text{otherwise.} \end{cases}$$
(28)

• **Terminal Reward Only:** The reward is given only at the end of an episode or upon successful design. The reward function is defined as:

$$R_t = \begin{cases} 1 - \frac{H_t}{l}, & \text{if } H_t \neq 0 \text{ and } t \text{ reaches maximum steps (episode ends),} \\ C, & \text{if } H_t = 0, \\ 0, & \text{otherwise.} \end{cases}$$
(29)

We also test the impact of removing the SAER method under these two reward settings. The results are shown in Figure 6 and Table 10. We denote the ablated version without SAER as COCORNA-ablated. It can be observed that under the delayed reward setting, COCORNA experiences almost no performance loss. When only terminal rewards are available, the algorithm's performance decreases slightly due to the excessively sparse reward signal significantly increasing the difficulty of policy learning. Under both reward settings, COCORNA-ablated performs worse than COCORNA, demon-strating the effectiveness of the SAER method. Overall, this experiment shows that COCORNA is robust to different reward signals and performs well even under harsh reward settings. Notably, the delayed reward setting reduces the number of calls to the RNA folding algorithm to one-tenth of the original, significantly speeding up training.

Figure 7: Learning curves of COCORNA under different agent size settings on the Rfam dataset.
Each experiment is performed over 6 independent runs with different random seeds. The shaded areas represent the standard deviation.

Table 11: Performance of COCORNA under different agent size settings on the Rfam dataset.

Number of Agents (n)	Results [Solved /	All Test Samples]
n=2	601/650	(92.46%)
n = 4	636/650	(97.85%)
n = 6	629/650	(96.77%)
n = 8	615/650	(94.62%)

1130 E.4 EFFECT OF VARYING THE NUMBER OF AGENTS

1132 In the main results presented earlier, we set the number of agents to n = 4. In this section, we adjust the parameter n to examine the impact of different numbers of agents on the algorithm's performance. We experiment with four different settings: using 2, 4, 6, and 8 agents. Table 11 shows the performance of COCORNA under these different agent sizes on the Rfam dataset. The corresponding learning curves are presented in Figure 7.

From the results, we observe that using 4 or 6 agents achieves the best performance. When the number of agents is too small or too large, the performance tends to decrease. With too few agents, the benefits of multi-agent problem decomposition cannot be fully exploited, as each agent handles a larger portion of the task, leading to higher complexity per agent and potentially less efficient learning. On the other hand, with too many agents, the environment becomes more non-stationary from the perspective of each agent due to the increased interactions and dependencies among agents, making cooperation more challenging.

Figure 8: Learning curves of COCORNA-PBD and COCORNA-PBD-shared on the Rfam dataset.
Each experiment is performed over 6 independent runs with different random seeds. The shaded areas represent the standard deviation.

Table 12: Performance of COCORNA with independent and shared policies on the Rfam dataset.

Method	Results [Solved / All Test Samples]
CocoRNA-PBD	636/650 (97.85%)
COCORNA-PBD-shared	622/650 (95.69%)
CocoRNA-SBD	629/650 (96.77%)
COCORNA-SBD-shared	621/650 (95.54%)

1178 E.5 EFFECT OF SHARING POLICY PARAMETERS

We investigate the performance of COCORNA when agents share policy parameters under both decomposition methods. In these experiments, although different agents receive different observations, all agents share the same set of policy parameters. This approach is referred to as COCORNA-PBDshared and COCORNA-SBD-shared for position-based decomposition and structure-type-based decomposition, respectively.

The learning curves and test results are shown in Figure 8 and Table 12, respectively. From the results, we observe that enforcing shared policy parameters among multiple agents leads to a slight decrease in algorithm performance compared to using independent policies, although the gap is relatively small.

These results potentially suggest that different agents learn distinct local policies that are specialized for their assigned sub-tasks. When agents share policy parameters, the policy learning process is constrained because all agents must use the same policy function, despite facing different sub-tasks or local environments. This can limit the agents' ability to adapt their policies to their specific roles in the RNA design task. In contrast, when using independent policies, each agent can tailor its policy parameters to its particular sub-task without interference from the data of other agents, providing more flexibility in policy learning.

1195

1199

1201

1196Table 13: Performance of COCORNA on the re-split Rfam dataset, where the training and test sets
are partitioned based on structural similarity.

Method	Results [Solved / All Test Samples]
COCORNA-PBD	638/650 (98.15%)
COCORNA-SBD	628/650 (96.62%)

1202 1203 1204

1205 E.6 DATASET SPLITTING

In the intersection of machine learning and biology, data leakage is a significant concern (Bernett et al., 2024). For supervised learning methods, if the test set contains data that are highly similar to those in the training set, it may not accurately assess the algorithm's performance on unseen data. However, since reinforcement learning is not a supervised learning method and the dataset does not contain explicit labels, data leakage is usually not an issue.

1211 To further demonstrate COCORNA's generalization capability across different RNA structures, we 1212 re-split the dataset based on structural similarity rather than using a random split. Specifically, we 1213 first calculated the edit distance between each pair of RNA structures in the dataset, which consists 1214 of 65,000 RNA structures. This resulted in a $65,000 \times 65,000$ similarity matrix that quantifies the 1215 pairwise differences between all RNA structures in the dataset. Next, we applied the MiniBatch K-1216 Means clustering algorithm to partition the dataset into 100 distinct clusters based on the calculated 1217 distances. We then selected one cluster at random to serve as the test set, consisting of 650 RNA 1218 structures. We filtered the remaining data by removing RNA structures that had high similarity to 1219 the test set, and retained 60,000 RNA structures as the final training set. The minimum edit distance 1220 between any structure in the test set and those in the training set is 111, and the average edit distance is 188.42. 1221

Table 13 presents the results of training and testing on the re-split dataset. It can be observed that the differences in results across different datasets are minimal; different splitting methods do not significantly affect the algorithm's performance. Both COCORNA-PBD and COCORNA-SBD achieve high success rates, demonstrating the robust generalization ability of COCORNA to unseen RNA structures.

1227

1228 E.7 TRAINING PARAMETERS

We observe that the algorithm is relatively sensitive to the learning rate compared to other hyperparameters. In our main experiments, we use a learning rate of 1×10^{-5} , which is lower than the settings commonly used in RL algorithms. Figure 9 shows the learning curves when using higher learning rates. It can be seen that excessively high learning rates lead to unstable training and poor convergence.

In multi-agent environments, a high learning rate can exacerbate the non-stationarity of the environment. This issue arises because each agent's policy update affects the environment dynamics perceived by other agents. With higher learning rates, these changes become more abrupt, making it difficult for agents to adapt and learn stable policies. Consequently, the training process becomes highly unstable.

1240 For other important hyperparameters, such as the discount factor γ , the GAE parameter λ , and the 1241 PPO clip range ϵ , we use standard values commonly adopted in the literature. These settings are detailed in Appendix D.

- 1282
- 1283 1284

As shown in Table 14, although antaRNA achieves relatively low average structural distances, the number of RNA structures it fully solves is significantly lower than that achieved by COCORNA, which attains a success rate of 97.85% (as reported in Table 1). This may be due to the presence of longer and more complex structures in the dataset, which affect optimization efficiency and make antaRNA more prone to getting stuck in local optima. Moreover, the maximum time limit of 1200 seconds per structure is substantially higher than the computational time required by COCORNA, highlighting the advantage of our method.

12/100

14/100

22/100

22/100

Solved (Structural Distance = 0)

1292

1294

1293 E.9 OTHER RESULTS

Figure 10 shows the distribution of solving times for all baseline methods on the Rfam dataset, including only the sequences that were successfully solved. Similarly, Figure 11 presents the dis-

Figure 10: Distribution of solving times for different RNA design methods on the Rfam dataset.

tribution of redesign attempts (iterations) required by different RNA design methods on the Rfam dataset.

F DISCUSSION

1330 1331

1332

1333 1334 1335

1336

1337 F.1 GRAPH NEURAL NETWORKS

Many biological molecules are well-suited to be modeled as graphs due to their inherent structural
properties. Transforming RNA structures into graph representations and utilizing Graph Neural
Networks (GNNs) could potentially better capture the relationships between different nucleotides,
enabling more effective policy learning. Graph-based representations naturally model the interactions and dependencies within RNA structures, which could enhance the agent's decision-making
process.

However, employing more complex network architectures like GNNs also introduces higher computational and memory overheads, potentially reducing training efficiency. In our work, although we did not use GNNs, we addressed the issue of partial observations by employing CNNs within the centralized Critic to extract global structural information. This approach helps mitigate the limitations of local observations by providing a holistic view of the RNA structure, thereby supporting coordinated policy optimization without incurring excessive computational costs. Nevertheless, in-

Figure 11: Distribution of redesign attempts (iterations) required by different RNA design methods on the Rfam dataset.

tegrating GNNs with reinforcement learning-based methodologies represents a promising direction for future research.

1389 1390 1391

1392

1388

1384

1385 1386 1387

F.2 LIMITATIONS

While COCORNA demonstrates promising results in RNA secondary structure design, there are several limitations.

First, it is non-trivial to design a accurate and reliable reward model given the complexity of biological systems. We may resort to large-scale pretrained models, e.g., RNA/protein language models.
However, these models are often too large and thus are computationally expensive. One potential
solution is to go with a model-based RL, where an explicit model of the environment is learned and
used to predict future states and rewards more efficiently.

Another potential limitation is the decomposition method considered in the current CocoRNA. Given
 the high-dimensional nucleotide design space, it will be more promising to study an adaptive decomposition mechanism. This might be achieved by designing hierarchical policies, where high-level agents make decisions about task decomposition and low-level agents focus on specific sub-tasks.

1404 1405 1406	Last but not least, this paper chooses the RNA inverse design problem as a proof-of-concept study. However, we believe CocoRNA or even MARL will be a potent method for solving such highly
1400	complex structured space problems. As part of our next step, we will explore other biological
1408	sequence design problems such as protein.
1409	
1410	
1411	
1412	
1413	
1414	
1415	
1416	
1417	
1418	
1419	
1420	
1421	
1422	
1423	
1424	
1425	
1426	
1427	
1428	
1429	
1430	
1431	
1432	
1/13/	
1435	
1436	
1437	
1438	
1439	
1440	
1441	
1442	
1443	
1444	
1445	
1446	
1447	
1448	
1449	
1450	
1451	
1452	
1453	
1454	
1455	
1457	