
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COCORNA: COLLECTIVE RNA DESIGN WITH COOP-
ERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Ribonucleic acid (RNA) plays a crucial role in various biological functions, and
designing sequences that reliably fold into specified structures remains a signifi-
cant challenge in computational biology. Existing methods often struggle with ef-
ficiency and scalability, as they require extensive search or optimization to tackle
this complex combinatorial problem. In this paper, we propose COCORNA,
a COllective RNA design method using COoperative multi-agent reinforcement
learning, for the RNA secondary structure design problem. COCORNA decom-
poses the RNA design task into multiple sub-tasks, which are assigned to multi-
ple agents to solve collaboratively, alleviating the challenges of the curse of di-
mensionality as well as the issues of sparse and delayed rewards.By employing a
centralized Critic network and leveraging global information during training, we
promote cooperation among agents, enabling the distributed policies to coopera-
tively optimize the joint objective, thereby resulting in a high-quality collective
RNA design policy. The trained model is capable of completing RNA secondary
structure design with less time and fewer steps, without requiring further training
or search on new tasks. We evaluate COCORNA on the Rfam dataset and the
Eterna100 benchmark. Experimental results demonstrate that COCORNA outper-
forms existing algorithms in terms of design time and success rate, highlighting
its practicality and effectiveness.

1 INTRODUCTION

RNA plays diverse roles in biological systems, including encoding proteins, regulating gene expres-
sion, and acting as a catalyst in biochemical reactions (Dykstra et al., 2022). Since the function of
RNA is closely tied to its structure, designing RNA molecules that can fold into desired structures
has become a critical problem. We focus on the RNA secondary structure design problem, which
involves creating RNA sequences that can fold into a desired secondary structure. This is a complex
combinatorial optimization problem and is computationally challenging due to the vastness of the
sequence space and the intricate base-pairing interactions.

Most existing RNA design algorithms rely on online search or optimization techniques. Meth-
ods such as RNAinverse (Hofacker et al., 1994), RNA-SSD (Andronescu et al., 2004), INFO-
RNA (Busch & Backofen, 2006), and antaRNA (Kleinkauf et al., 2015) use stochastic search strate-
gies to find sequences that fold into the target structure. However, for longer sequences, the high
dimensionality of the search space severely affects efficiency and scalability.

Some learning-based methods (Eastman et al., 2018; Runge et al., 2019) aim to reduce reliance on
random search but still require extensive search or optimization times. However, existing methods
also face the curse of dimensionality: the design space grows exponentially with sequence length,
leading to extremely high computational costs. This limitation restricts the applicability of some
methods; for instance, RNAinformer (Patil et al., 2024) is a generative model-based design method
but is only suitable for short sequences.

Reinforcement learning (RL) is a promising approach to addressing biological sequence design
problems. RL enables agents to learn decision-making policies through trial-and-error and explo-
ration without relying on labeled data. Additionally, RL allows for flexible optimization guidance
through the use of reward functions, which can be tailored to encourage desired design outcomes.
Another potential advantage of RL-based methods is the ability to offload time-consuming online

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

optimization to offline training, enabling zero-shot learning on new tasks. However, RL-based meth-
ods face challenges in the context of RNA design. The vast design space inherent to biological
sequences increases the difficulty of policy exploration and learning, adversely affecting policy per-
formance. Moreover, longer sequences exacerbate the issues of delayed and sparse rewards (Ried-
miller et al., 2018), which makes it difficult for RL agents to receive sufficient feedback. As a
result, existing RL-based methods either require long search times (Eastman et al., 2018) or require
online optimization for each target structure during the design phase (Runge et al., 2019). While
these methods show promise, they do not fully exploit the potential of learning-based approaches to
generalize across different target structures.

To address the above challenges, we propose a collective RNA design method based on multi-
agent reinforcement learning (MARL). By decomposing the problem and learning cooperatively, we
alleviate the curse of dimensionality and mitigate sparse rewards, thereby improving the efficiency
and quality of RNA design. Our contributions can be summarized as follows:

• We formulate the RNA secondary structure design as a collective design problem, where
multiple agents cooperate to design RNA sequences. By dividing the task among multiple
agents—each focusing on a specific part of the sequence or structural elements—we ef-
fectively reduce the complexity faced by individual agents, enabling more efficient policy
learning and exploration.

• We propose COCORNA, a MARL method based on the Centralized Training with De-
centralized Execution (CTDE) framework to learn collective RNA design policies. Addi-
tionally, we introduce a search-augmented experience replay method to improve learning
efficiency. Once trained, COCORNA can efficiently design RNA sequences within just one
or a few episodes, requiring minimal time and steps without the need for further training or
search on new tasks.

• We conduct experiments on the Rfam dataset and the Eterna100-v2 benchmark. The results
demonstrate that COCORNA surpasses existing methods in both design time and success
rate. Moreover, across both datasets, COCORNA solves more sequences within shorter
time limits, demonstrating superior generalization performance.

2 RELATED WORK

2.1 RNA SECONDARY STRUCTURE DESIGN

Optimization methods. Intelligent optimization algorithms have made significant progress in solv-
ing the RNA secondary structure design problem (Churkin et al., 2018). Methods such as INFO-
RNA (Busch & Backofen, 2006) combine dynamic programming with stochastic local search for
RNA inverse folding. MODENA (Taneda, 2010) utilizes multi-objective genetic algorithms, and
antaRNA (Kleinkauf et al., 2015) employs ant colony optimization techniques. These methods face
major challenges when dealing with longer sequences, as the cost of performing stochastic search
increases exponentially with sequence length. Additionally, evaluating designed RNA sequences
requires repeatedly applying folding algorithms like ViennaRNA (Lorenz et al., 2011), which are
based on dynamic programming and have computation times that grow significantly with sequence
length.

Learning-based methods. Recently, learning-based methods have partially alleviated this problem.
Reinforcement learning approaches (Eastman et al., 2018; Angermueller et al., 2019; Runge et al.,
2019; 2024b) have been proposed for RNA design and other biological sequence design problems.
For instance, Eastman et al. (2018) used RL to perform local search in the RNA sequence space.
Runge et al. (2019) combined RL with neural architecture search to improve RNA design policies.
Additionally, generative model-based methods like RNAinformer (Patil et al., 2024) have been de-
veloped. While RNAinformer show promise, it require substantial computational resources and is
thus only applicable to sequences shorter than 100 nucleotides.

Unlike traditional optimization or search-based methods, RL has the potential to enable agents to
adaptively make decisions without additional training or optimization, thereby achieving few-shot or
even zero-shot design when encountering new instances. However, previous RL-based works have
not truly achieved zero-shot design. For example, LEARNA (Runge et al., 2019) requires hundreds

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

or even thousands of learning episodes when facing new RNA structures. The vast search space of
the RNA design problem increases the difficulty of policy exploration and improvement, making it
challenging to obtain policies with strong generalization capabilities.

Our work addresses these challenges by introducing an MARL framework that decomposes the
RNA design problem into sub-tasks handled by multiple agents. Similarly, RNA-SSD (Andronescu
et al., 2004) reduces the size of the search space by splitting the full sequence into shorter subse-
quences and optimizing each subsequence independently. However, combining solutions to local
problems often does not yield a solution to the global problem, and RNA-SSD is unable to incor-
porate global knowledge. In contrast, our method fully leverages global information, promoting
cooperation among multiple agents and guiding joint optimization. Another work that adopts a sim-
ilar idea is GAMEOPT (Bal et al., 2023), which establishes a game between different optimization
variables to decouple the combinatorial decision space into individual decision sets. Although both
methods are based on problem decomposition, our approach fundamentally differs from GAMEOPT.
Our goal is to train a set of policies that can cooperatively make dynamic decisions to complete the
design task, rather than searching for an optimal solution consisting of variables.

2.2 MULTI-AGENT REINFORCEMENT LEARNING

MARL methods address decision-making problems involving multiple agents by employing RL
techniques (Gronauer & Diepold, 2022; Oroojlooy & Hajinezhad, 2023). In MARL, agents learn
to cooperate or compete by interacting with the environment and optimizing their policies based on
a reward function that defines the task objectives. This approach allows agents to autonomously
learn policies without human intervention. Algorithms such as COMA (Foerster et al., 2018),
QMIX (Rashid et al., 2018) and MAPPO (Yu et al., 2022) have demonstrated significant poten-
tial on complex MARL benchmarks like the StarCraft Multi-Agent Challenge (Samvelyan et al.,
2019; Ellis et al., 2024). Recently, MARL has been widely applied to various real-world multi-agent
tasks, including multi-robot systems (Chen et al., 2017; Willemsen et al., 2021; Paul et al., 2022),
production scheduling (Johnson et al., 2022), and autonomous driving (Shalev-Shwartz et al., 2016;
Candela et al., 2022).

However, to the best of our knowledge, no prior work has modeled biological sequence design as a
multi-agent decision-making problem and applied MARL to solve it. Our work is the first to explore
the potential of MARL in RNA sequence design, leveraging the cooperative capabilities of multiple
agents to tackle the high complexity of the RNA design problem.

3 PRELIMINARIES

3.1 RNA DESIGN PROBLEM

We consider the RNA secondary structure design problem: given a target secondary structure, design
an RNA sequence that most stably folds into that structure. RNA secondary structures are commonly
represented using dot-bracket notation, where unpaired nucleotides are denoted by dots (.), and base
pairs are represented by matching parentheses: an opening parenthesis (() indicates the 5’ end of a
base pair, and a closing parenthesis ()) indicates the 3’ end. For example, the notation ((...))
represents a hairpin loop structure with base pairs at the ends and unpaired nucleotides in the loop.

At each position in the RNA sequence, there are four possible nucleotides: adenine (A), uracil (U),
guanine (G), and cytosine (C). Designing an RNA sequence that folds into a specific secondary
structure is a complex combinatorial optimization problem. The size of the search space grows
exponentially with the length of the RNA sequence. For a sequence of length l, there are 4l possible
nucleotide combinations, making exhaustive search computationally infeasible for large l.

3.2 DECENTRALIZED PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

We model the fully cooperative multi-agent reinforcement learning problem as a Decentralized Par-
tially Observable Markov Decision Process (Dec-POMDP) (Oliehoek et al., 2008). A Dec-POMDP
is defined by the tuple ⟨N ,S, {Oi}, {Ai}, P,R, γ⟩, where:

• N = {1, 2, . . . , n} is the set of n agents.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• S is the global state space.
• Oi is the local observation space of agent i, and the joint observation space is O = O1 ×
· · · × On.

• Ai is the action space of agent i, and the joint action space is A = A1 × · · · × An.
• P : S ×A× S → [0, 1] is the state transition probability function, where P (st+1 | st,at)

denotes the probability of transitioning to state st+1 given state st and joint action at.
• R : S ×A → [Rmin, Rmax] is the shared reward function.
• γ ∈ [0, 1] is the discount factor.

At each time step t, the environment is in state st ∈ S. Each agent i ∈ N receives a local observation
oit ∈ Oi and selects an action ait ∈ Ai according to its policy πi(ait | oit). The joint action is
denoted as at = (a1t , a

2
t , . . . , a

n
t ). The environment then transitions to a new state st+1 based on the

transition probability P (st+1 | st,at), and all agents receive the shared reward R(st,at). The goal
is to learn the optimal joint policy π = (π1, π2, . . . , πn) that maximizes the expected discounted
cumulative return:

G = E

[ ∞∑
t=0

γtR(st,at)

]
. (1)

3.3 CENTRALIZED TRAINING WITH DECENTRALIZED EXECUTION

The Centralized Training with Decentralized Execution (CTDE) (Kraemer & Banerjee, 2016) is a
paradigm in MARL that leverages the advantages of both centralized and decentralized approaches.
During the training phase, agents utilize global information to evaluate and improve their local
policies. In the execution phase, agents select actions based on their local observations and policy
functions. CTDE mitigates the non-stationarity problem in multi-agent environments by allowing
agents to consider the joint dynamics during training, promoting interaction and cooperation among
agents. At the same time, decentralized execution based on local observations alleviates the curse
of dimensionality and enhances system scalability, reducing the dependency on global information
and communication capabilities.

Actor-Critic Methods with CTDE: In the standard Actor-Critic framework (Barto et al., 1983), the
Critic network learns the value function to evaluate the current policy, while the Actor network learns
the policy function and adjusts the policy parameters based on the Critic’s estimation. The Actor-
Critic architecture can be naturally extended to multi-agent systems under the CTDE paradigm,
resulting in centralized Critics and decentralized Actors (Lowe et al., 2017; Iqbal & Sha, 2019).
During training, the global information is used to train the centralized Critic networks, and the
outputs of the Critic are used to improve each agent’s Actor network. During execution, agents make
decisions independently based on their own policies, relying solely on their local observations.

4 MULTI-AGENT REINFORCEMENT LEARNING FOR COLLECTIVE RNA
DESIGN

In this section, we provide a comprehensive overview of the proposed COCORNA method, detail-
ing its problem decomposition framework, algorithm architecture, reward function, and the search-
augmented experience replay approach. The pseudocode for COCORNA can be found in Appendix
A.

4.1 PROBLEM DECOMPOSITION

In a Markov Decision Process (MDP), a policy is a mapping from states to actions:

π : S → A, (2)

where S is the state space and A is the action space. Typically, we desire the state to encapsulate
as much relevant information as possible to inform decision-making. In the RNA design problem,
the information influencing decisions includes: (1) the complete target RNA secondary structure;
and (2) the current RNA sequence, since nucleotides at different positions are interdependent due to

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

base pairing constraints. Therefore, the complete state information should be a combination of the
RNA sequence and structural information. Formally, the state space S can be defined as:

S = {(sseq, sstruct) | sseq ∈ {A,U,G,C}l, sstruct ∈ {.,(,)}l}, (3)

where sseq represents the nucleotide sequence, and sstruct represents the target secondary structure in
dot-bracket notation. For sequences of length l, the dimension of the state space is |S| = (4 × 3)l,
considering all possible combinations of sequences and structures. This exponential growth results
in a high-dimensional policy space, significantly increasing the difficulty of policy learning and
exploration.

We propose employing multi-agent reinforcement learning within the CTDE architecture, where the
original problem is decomposed into multiple sub-problems and assigned to multiple agents to solve
cooperatively. Each agent is responsible for making decisions at specific positions or substructures,
reducing the dimensionality of individual agents’ state and policy spaces. Specifically, we adopt two
decomposition schemes:

• Position-based decomposition: We divide the entire RNA sequence into n segments, as-
signing an individual agent to each segment. Each agent is responsible for deciding the
nucleotide at its assigned segment.

• Structure-type-based decomposition: We assign each agent to a specific structural type
based on the dot-bracket notation. Each agent designs nucleotides only at positions corre-
sponding to its assigned structural type.

For a single agent, its input is a lower-dimensional local observation, which consists of a fragment
of the RNA sequence and structure centered at the current design position. The observation space
O for an agent can be formalized as:

O =

{
(oseq, ostruct)

∣∣∣∣ oseq ∈ ({A,U,G,C, ∅})m , ostruct ∈ ({.,(,), ∅})m
}
, (4)

where m represents the length of the observation window (an odd integer), and ∅ denotes a place-
holder symbol for positions outside the sequence boundaries. Specifically, for agent i, the observa-
tion at time t is:

oit =
(
s[i−κ, i+κ]

seq , s
[i−κ, i+κ]
struct

)
, (5)

where κ = (m − 1)/2, and s
[i−κ, i+κ]
seq denotes the subsequence of nucleotides from position i − κ

to i+ κ, similarly for s[i−κ, i+κ]
struct . If i− κ or i+ κ is outside the range [1, n], we pad the observation

with ∅ symbols. This local observation captures the immediate context around the agent’s assigned
position.

By decomposing the complex RNA design problem into smaller sub-problems and assigning them
to multiple agents, we leverage the strengths of MARL to efficiently explore the vast search space.
Each agent focuses on a specific part of the problem, either a sequence segment or a structural type,
allowing for specialized policy learning. The centralized Critic ensures that while agents operate
based on local observations, their policies are aligned towards the global objective, resulting in
more effective and efficient RNA sequence design.

4.2 ALGORITHM ARCHITECTURE

We adopt multi-agent proximal policy optimization (MAPPO) (Yu et al., 2022) as our base algorithm
due to its reliable performance in various multi-agent reinforcement learning benchmarks. In our
framework, each agent is equipped with an Actor network for decision-making and a Critic network
for policy evaluation. Each agent has its own set of network parameters, allowing for independent
learning and adaptation to its specific role within the environment.

Actor Network: The Actor network of each agent takes as input a local observation vector oit, which
captures relevant information at the agent’s designated position. The Actor outputs a probability

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

distribution over the action space. We employ a discrete action space defined as:

A = {A, U, G, C}, (6)

where each action corresponds to selecting a nucleotide type to be placed at a specific position in the
RNA sequence. The policy of agent i is denoted as πθi(ait | oit), where θi represents the parameters
of the Actor network. During interaction with the environment, each agent samples an action ait from
the probability distribution output by its Actor network and executes this action, which corresponds
to assigning a nucleotide to the current position.

Critic Network: The Critic network takes the global state st as input, which includes the current
RNA sequence and secondary structure information. We use two convolutional neural network mod-
ules to process these two parts separately. The outputs of these two modules are then concatenated
and fed into the subsequent layers of the Critic network to produce the value estimate V (st) of the
global state, representing the expected cumulative future rewards starting from state st under the
current joint policy π:

V π(st) = Eπ

[ ∞∑
k=0

γkrt+k

∣∣∣∣ st
]
. (7)

The value estimates from the Critic network are used to compute the Temporal Difference (TD) error
δt and the advantage function At for policy updates. The TD error is calculated as:

δt = rt + γV (st+1)− V (st). (8)

We use Generalized Advantage Estimation (GAE) (Schulman et al., 2015) to compute the advantage
function:

At =

∞∑
k=0

(γλ)kδt+k, (9)

where λ ∈ [0, 1]. The advantage estimates are then used to update the Actor network parameters θi
by maximizing the MAPPO objective for each agent:

max
θi

E

[
min

(
πθi(ait | oit)
πθi

old
(ait | oit)

At, clip

(
πθi(ait | oit)
πθi

old
(ait | oit)

, 1− ϵ, 1 + ϵ

)
At

)]
, (10)

where ϵ is a small positive constant that determines the clipping range.

In summary, the Critic network’s value estimates are used to guide policy improvement. Since
the centralized Critic evaluates the performance of the entire multi-agent system based on global
information, the local policies of each agent are encouraged to take actions that contribute to the
global objective.

4.3 REWARD FUNCTION

By modeling the RNA design problem as an MDP, we can analogize RNA design to a navigation
task—not in the physical world, but within the RNA design space. The gap between the current
design and the target can be measured using the Hamming distance of RNA secondary structures.
Inspired by navigation problems, we design a reward function that facilitates policy exploration and
optimization in the RNA design space.

Firstly, we use the Minimum Free Energy (MFE) folding algorithm from the ViennaRNA pack-
age (Lorenz et al., 2011) to predict the secondary structure that each RNA sequence will fold into.
Then, the Hamming distance between the folded RNA structure xf and the target RNA structure xt

is defined as:

H(xf , xt) =

l∑
i=1

1(xi
f ̸= xi

t), (11)

where 1(·) is an indicator function that equals 1 when xi
f ̸= xi

t and 0 otherwise, and l is the length
of the RNA sequence.

The reward function consists of two components: the intermediate reward and the final reward. At
each time step t, the multi-agent team selects actions, and the environment immediately returns an

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

intermediate reward, which represents the change in the normalized Hamming distance between
consecutive steps. If the folded RNA structure perfectly matches the target structure, i.e., H = 0, a
final reward is given, and the current episode ends. The reward function is:

Rt =

{
(Ht−1 −Ht)/l, if Ht > 0,

C, if Ht = 0,
(12)

where C is a positive constant. The intermediate reward encourages the agents to iteratively reduce
the differences between the folded RNA structure and the target structure by minimizing the nor-
malized Hamming distance at each step. Meanwhile, the final reward C is set to a relatively large
value to incentivize the agents to find an optimal solution and escape potential local optima.

4.4 SEARCH-AUGMENTED EXPERIENCE REPLAY

Due to the vastness of the RNA design space, learning-based methods may face a cold-start problem:
initial random policies perform poorly, leading to a lack of high-quality experience data for effective
learning. Inspired by the Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), we in-
troduce a Search-Augmented Experience Replay (SAER) method, using a limited amount of greedy
search during the early stages of training to improve data quality.

Specifically, after an agent selects an action a according to its policy π and receives a reward r, we
perform a local search to check if there exists a better action a′ that yields a higher reward r′. If
such an action is found, we replace the original action with the better one and modify the experience
tuple (o, a, r) to (o, a′, r′). By doing so, we enhance the quality of the experience data, which in
turn improves learning efficiency.

This approach helps alleviate the cold-start problem by providing the agents with higher-quality
training data in the early stages. To prevent the local greedy search from causing the policy to
converge prematurely to suboptimal solutions, we gradually reduce and eventually remove this op-
eration as training progresses.

It is important to note that the replay buffer used here differs from those in off-policy RL meth-
ods (Mnih et al., 2015; Lillicrap et al., 2016). In our method, experiences are collected over multiple
steps using the current policy until a fixed horizon is reached. At that point, the buffer is used to
perform multiple gradient-based updates to both the Actor and Critic networks. Once the updates
are completed, the buffer is cleared, and new experiences are sampled based on the updated policy.

5 EXPERIMENTS

5.1 DATASETS

In our experiments, we use two datasets: the Rfam dataset (Runge et al., 2024a) and the
Eterna100-v2 benchmark (Koodli et al., 2021). The Rfam dataset is constructed based on the Rfam
database (Kalvari et al., 2021). From the Rfam dataset, we randomly select 60,000 RNA secondary
structures as our training set. It is important to note that these data do not contain labels, as RL
algorithms learn policies through autonomous exploration and do not require labeled data. Addi-
tionally, we randomly select 650 RNA secondary structures as a test set, which are not included in
the training set. The Eterna100 benchmark is a well-known set of challenging RNA design problems
derived from the Eterna online RNA design game. More details about the datasets can be found in
Appendix C.

5.2 RESULTS

Experimental Setup: We employ position-based decomposition with n = 4 agents. For each
RNA secondary structure, we divide it into four subsequences of approximately equal length, each
assigned to one of the four agents. The maximum number of steps per episode is set to 400. If a
valid RNA sequence that folds into the target structure is found within 400 steps, the design process
for that episode terminates successfully.

We first perform training over a total of 25 million steps. After training, we use the learned design
policy to design RNA sequences for the RNA secondary structures in the test set. For each RNA

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of RNA design methods on Rfam datasets and Eterna100-v2 benchmark.

Method Results [Solved / All test samples]
Rfam Eterna100-v2

COCORNA 636/650 (97.85%) 70/100
LEARNA-30s 64/650 (9.85 %) 24/100
LEARNA-60s 133/650 (20.46 %) 34/100
LEARNA-300s 368/650 (56.62 %) 49/100
LEARNA-600s 380/650 (58.46 %) 50/100
Meta-LEARNA-Adapt-30s 386/650 (59.38 %) 49/100
Meta-LEARNA-Adapt-60s 452/650 (69.54 %) 53/100
Meta-LEARNA-Adapt-300s 565/650 (86.92 %) 57/100
Meta-LEARNA-Adapt-600s 581/650 (89.38 %) 60/100

Figure 1: Distribution of solving times for COCORNA, LEARNA-600s, and Meta-LEARNA-
Adapt-600s methods on successfully solved RNA sequences in the Rfam dataset.

structure, we allow a maximum of 15 retries, with a total time limit of 30 seconds. Details concerning
the network architectures and hyperparameter settings are listed in Appendix D.

Baselines: We compare COCORNA primarily against the LEARNA algorithm (Runge et al., 2019),
which, along with its variants, represents the state-of-the-art in RNA secondary structure design
tasks. Compared to search-based methods such as antaRNA (Kleinkauf et al., 2015) and MCTS-
RNA (Yang et al., 2017), as well as another RL-based approach (Eastman et al., 2018), LEARNA
achieves faster speeds and higher success rates. Therefore, our comparisons focus on LEARNA and
its variant, Meta-LEARNA-Adapt.

LEARNA uses RL to learn design policies and reduces reliance on random search, thereby im-
proving the efficiency and quality of RNA design. However, LEARNA improves performance by
conducting online optimization on specific RNA structures during the design phase, which increases
resource and time costs. Without time constraints, the design phase can last hours or even days.

In contrast, COCORNA does not require random search or optimization during the design phase.
Most RNA structures can be successfully designed within a single episode, and the design process
usually takes less than a few seconds. To better compare algorithm efficiency, we test the perfor-
mance of the baseline algorithms under time limits of 30s, 60s, 300s, and 600s.

Comparison: The results of the comparative study are presented in Table 1. COCORNA demon-
strates clear advantages on both datasets. Under the same time limit of 30 seconds, COCORNA
successfully solves 97.85% of RNA structures in the Rfam test set, substantially outperforming
LEARNA (9.85%) and its meta-learning variant Meta-LEARNA-Adapt (59.38%). Even when the
time limit for the baselines is relaxed by 20 times to 600 seconds, COCORNA still exhibits superior
performance. On the Eterna100 benchmark, COCORNA also outperforms the baselines, success-
fully solving 70 out of 100 RNA structures.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Distribution of RNA sequences by solving time intervals for different design methods on
the Rfam dataset.

Method tsolved < 1s 1s ≤ tsolved ≤ 60s tsolved > 60s

COCORNA 273 363 0
LEARNA-600s 0 147 233
Meta-LEARNA-Adapt-600s 0 474 107

Figure 2: Distribution of redesign attempts required by COCORNA, LEARNA-600s, and Meta-
LEARNA-Adapt-600s on the Rfam dataset.

Figure 1 shows the solving times for different RNA structures on the Rfam dataset and the re-
lationship between solving time and sequence length for COCORNA, LEARNA-600s, and Meta-
LEARNA-Adapt-600s. Complete test results, including other baselines, can be found in Appendix
E. Table 2 presents the number of sequences whose solving times tsolved fall within various time
intervals for the three methods. The results indicate that COCORNA requires significantly less solv-
ing time, with approximately 42% of sequences successfully solved within 1 second. In contrast,
neither of the baseline methods can solve any sequences within 1 second. Note that the solving
time for our method increases with sequence length, primarily because most of the time is spent
on the folding algorithm. While the inference time of our algorithm remains constant regardless of
sequence length, longer sequences require more time to run dynamic programming-based folding
algorithms (Lorenz et al., 2011).

Figure 2 shows the number of redesign attempts niter required to design different RNA structures
on the Rfam dataset using COCORNA, LEARNA-600s, and Meta-LEARNA-Adapt-600s. Table 3
presents the corresponding statistical information. For the majority of sequences (95.54%), our
method succeeds within a single episode. In contrast, the two baseline methods require numer-
ous iterative optimizations. Although Meta-LEARNA-Adapt performs meta-learning on the entire
training set, only 3.38% of sequences can be solved in a single attempt.

Appendix E.1 discusses the impact of two different decomposition schemes: position-based and
structure-type-based decomposition. Table 8 presents the experimental results, demonstrating that
these two decomposition schemes have only a minimal effect on performance, suggesting that CO-
CORNA is robust to the choice of decomposition strategy.

5.3 ABLATION STUDIES

To evaluate the effectiveness of each component in our proposed method, we conduct two ablation
experiments: a single-agent version and an ablated multi-agent version without the SAER method.
Figure 3 shows the results of these two ablation experiments. We plot the Sequence Recovery Rate
(SRR) over the training process, which measures the ratio of correctly designed positions in the
folded RNA sequence. The sequence recovery rate is defined as:

SRR = 1− H(xf , xt)

l
. (13)

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Distribution of RNA sequences by redesign attempts niter intervals for different methods on
the Rfam dataset.

Method niter = 1 1 < niter ≤ 15 niter > 15

COCORNA 621 29 0
LEARNA-600s 1 16 633
Meta-LEARNA-Adapt-600s 22 137 498

Figure 3: Results of ablation experiments on the Rfam dataset. Each experiment is performed over
6 independent runs with different random seeds. The shaded areas represent the standard deviation.
Left: Comparison of sequence recovery rates during training between the single-agent version and
our multi-agent COCORNA. Right: Effect of removing the search-augmented experience replay
method.

As shown in the left plot of Figure 3, the training performance of the single-agent version is signifi-
cantly worse compared to the multi-agent version, demonstrating the effectiveness of our proposed
multi-agent cooperative design architecture. The right plot of Figure 3 shows that the ablated version
without SAER converges more slowly and exhibits greater fluctuations during training, indicating
that the introduction of SAER helps the agents learn more effectively by providing additional valu-
able experiences, thus stabilizing and accelerating the training process. Additional results of the
SAER ablation study are provided in Appendix E.2.

Furthermore, we conducted a series of additional experiments to comprehensively evaluate the per-
formance of COCORNA. These experiments include varying reward signal settings, agent size,
shared policy parameters, dataset splitting, and training parameters. The detailed results and dis-
cussions for these experiments are presented in Appendix E.

6 CONCLUSION

In this paper, we proposed COCORNA, a collective RNA design method using cooperative multi-
agent reinforcement learning to address the challenges in RNA secondary structure design. By
formulating the RNA design task as a collective problem and decomposing it into multiple sub-tasks
assigned to individual agents, the complexity faced by each agent was effectively reduced. Further-
more, the implementation of the CTDE framework combined with the introduction of the SAER
method fostered multi-agent cooperation, enhanced policy exploration, and improved learning effi-
ciency. Experiments conducted on the Rfam dataset and the Eterna100-v2 benchmark demonstrated
both the effectiveness and efficiency of COCORNA.

We believe that the success of COCORNA showcases the potential of cooperative multi-agent re-
inforcement learning in biological sequence design tasks and complex combinatorial optimization
problems. We anticipate that this method can be extended to more complex application scenarios,
such as RNA tertiary structure design and protein design.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mirela Andronescu, Anthony P Fejes, Frank Hutter, Holger H Hoos, and Anne Condon. A new
algorithm for RNA secondary structure design. Journal of molecular biology, 336(3):607–624,
2004.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in neural information processing systems, volume 30, 2017.

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. Model-based reinforcement learning for biological sequence design. In Proceedings of
International Conference on Learning Representations, 2019.

Melis Ilayda Bal, Pier Giuseppe Sessa, Mojmir Mutny, and Andreas Krause. Optimistic games
for combinatorial bayesian optimization with applications to protein design. In NeurIPS 2023
Workshop on Adaptive Experimental Design and Active Learning in the Real World, 2023.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
SMC-13(5):834–846, 1983.

Judith Bernett, David B Blumenthal, Dominik G Grimm, Florian Haselbeck, Roman Joeres, Olga V
Kalinina, and Markus List. Guiding questions to avoid data leakage in biological machine learning
applications. Nature Methods, 21(8):1444–1453, 2024.

Anke Busch and Rolf Backofen. INFO-RNA—a fast approach to inverse RNA folding. Bioinfor-
matics, 22(15):1823–1831, 2006.

Eduardo Candela, Leandro Parada, Luis Marques, Tiberiu-Andrei Georgescu, Yiannis Demiris, and
Panagiotis Angeloudis. Transferring multi-agent reinforcement learning policies for autonomous
driving using sim-to-real. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 8814–8820. IEEE, 2022.

Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning. In Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 285–292. IEEE, 2017.

Alexander Churkin, Matan Drory Retwitzer, Vladimir Reinharz, Yann Ponty, Jérôme Waldispühl,
and Danny Barash. Design of RNAs: comparing programs for inverse RNA folding. Briefings in
bioinformatics, 19(2):350–358, 2018.

Peter B Dykstra, Matias Kaplan, and Christina D Smolke. Engineering synthetic RNA devices for
cell control. Nature Reviews Genetics, 23(4):215–228, 2022.

Peter Eastman, Jade Shi, Bharath Ramsundar, and Vijay S Pande. Solving the rna design problem
with reinforcement learning. PLoS computational biology, 14(6):e1006176, 2018.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. In Advances in Neural Information Processing Systems, volume 36,
2024.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 2974–2982, New Orleans, LA, USA, 2018.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895–943, 2022.

Ivo L Hofacker, Walter Fontana, Peter F Stadler, L Sebastian Bonhoeffer, Manfred Tacker, Peter
Schuster, et al. Fast folding and comparison of RNA secondary structures. Monatshefte fur
chemie, 125:167–167, 1994.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Proceed-
ings of the International Conference on Machine Learning, pp. 2961–2970. PMLR, 2019.

Dazzle Johnson, Gang Chen, and Yuqian Lu. Multi-agent reinforcement learning for real-time
dynamic production scheduling in a robot assembly cell. IEEE Robotics and Automation Letters,
7(3):7684–7691, 2022.

Ioanna Kalvari, Eric P Nawrocki, Nancy Ontiveros-Palacios, Joanna Argasinska, Kevin
Lamkiewicz, Manja Marz, Sam Griffiths-Jones, Claire Toffano-Nioche, Daniel Gautheret, Za-
sha Weinberg, et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families.
Nucleic Acids Research, 49(D1):D192–D200, 2021.

Robert Kleinkauf, Martin Mann, and Rolf Backofen. antaRNA: ant colony-based RNA sequence
design. Bioinformatics, 31(19):3114–3121, 2015.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In Advances in neural information pro-
cessing systems, volume 12, pp. 1008—-1014, 1999.

Rohan V Koodli, Boris Rudolfs, Hannah K Wayment-Steele, Eterna Structure Designers, and Rhiju
Das. Redesigning the EteRNA100 for the Vienna 2 folding engine. BioRxiv, pp. 2021–08, 2021.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Proc.
International Conference on Learning Representations, San Juan, Puerto Rico, 2016.

Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph
Flamm, Peter F Stadler, and Ivo L Hofacker. ViennaRNA package 2.0. Algorithms for molecular
biology, 6:1–14, 2011.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In Proc. Advances in Neural
Information Processing Systems, pp. 6382–6393, Long Beach, CA, USA, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate Q-value func-
tions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement
learning. Applied Intelligence, 53(11):13677–13722, 2023.

Sharat Patil, Frederic Runge, Jörg KH Franke, and Frank Hutter. Towards generative RNA design
with tertiary interactions. In ICLR 2024 Workshop on Generative and Experimental Perspectives
for Biomolecular Design, 2024.

Steve Paul, Payam Ghassemi, and Souma Chowdhury. Learning scalable policies over graphs for
multi-robot task allocation using capsule attention networks. In Proceedings of the International
Conference on Robotics and Automation, pp. 8815–8822. IEEE, 2022.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent rein-
forcement learning. In Proceedings of the International Conference on Machine Learning, pp.
4295–4304, Stockholm, Sweden, 2018.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In Proceedings of the International Conference on Machine Learning,
pp. 4344–4353. PMLR, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Frederic Runge, Danny Stoll, Stefan Falkner, and Frank Hutter. Learning to design RNA. In Pro-
ceedings of the International Conference on Learning Representations, 2019.

Frederic Runge, Karim Farid, Jorg KH Franke, and Frank Hutter. Rnabench: A comprehensive
library for in silico rna modelling. bioRxiv, pp. 2024–01, 2024a.

Frederic Runge, Jörg Franke, Daniel Fertmann, Rolf Backofen, and Frank Hutter. Partial RNA
design. Bioinformatics, 40(Supplement 1):i437–i445, 2024b.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon White-
son. The starcraft multi-agent challenge. In Proceedings of the International Conference on
Autonomous Agents and MultiAgent Systems, pp. 2186–2188, 2019.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, volume 12, pp. 1057—-1063, 1999.

Akito Taneda. MODENA: a multi-objective RNA inverse folding. Advances and Applications in
Bioinformatics and Chemistry, pp. 1–12, 2010.

Daniël Willemsen, Mario Coppola, and Guido C.H.E. de Croon. Mambpo: Sample-efficient multi-
robot reinforcement learning using learned world models. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 5635–5640, 2021.

Xiufeng Yang, Kazuki Yoshizoe, Akito Taneda, and Koji Tsuda. RNA inverse folding using monte
carlo tree search. BMC bioinformatics, 18:1–12, 2017.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative multi-agent games. In Advances in Neural
Information Processing Systems, volume 35, pp. 24611–24624, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PSEUDOCODE FOR COCORNA

Algorithm 1 presents the pseudocode for the proposed COCORNA method. Figure 4 illustrates the
overall workflow of the algorithm. COCORNA leverages the MAPPO algorithm, an extension of
the PPO method tailored for multi-agent environments. In our implementation of COCORNA, each
agent is equipped with an Actor network responsible for selecting actions based on local observa-
tions, while the centralized Critic network evaluates the global state to provide value estimates for
policy updates.

It is important to note that the replay buffer used here differs from those in off-policy RL meth-
ods (Mnih et al., 2015; Lillicrap et al., 2016). In our method, experiences are collected over multiple
steps using the current policy until a fixed horizon is reached. At that point, the buffer is used to
perform multiple gradient-based updates to both the Actor and Critic networks. Once the updates
are completed, the buffer is cleared, and new experiences are sampled based on the updated policy.

Algorithm 1 COCORNA: Cooperative Multi-Agent RNA Design
1: Input: Target RNA secondary structure dataset X, maximum episodes E, maximum steps per

episode T , horizon H , number of agents n
2: Initialize Actor networks πθi and Critic network Vϕ for each agent i
3: Initialize experience replay buffer D
4: for episode = 1 to E do
5: Reset environment, randomly select a target RNA secondary structure xt from X, and initial-

ize RNA sequence sseq
6: Decompose the RNA design task among n agents according to the chosen decomposition

scheme
7: for step t = 1 to T do
8: for each agent i = 1 to n in parallel do
9: Observe local observation oit

10: Select action ait ∼ πθi(ait | oit)
11: end for
12: Execute joint action at = (a1t , a

2
t , . . . , a

n
t )

13: Update RNA sequence sseq with actions at

14: Predict folded structure xf using MFE folding algorithm
15: Calculate Hamming distance Ht = H(xf , xt)
16: Calculate reward rt based on Ht and Ht−1

17: Store transition (ot,at, rt,ot+1) in buffer D
18: if using SAER then
19: Perform local search to find better actions a′

t
20: Update reward r′t based on improved Hamming distance H ′

t
21: Replace transition with (ot,a

′
t, r

′
t,ot+1) in buffer D

22: end if
23: if Ht = 0 or t = T then
24: Assign final reward C to all agents
25: Break
26: end if
27: if buffer size reaches horizon H then
28: Update Actor networks πθi and Critic network Vϕ using mini-batch updates from buffer

D with MAPPO
29: Clear experience buffer D
30: end if
31: end for
32: end for

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 4: Overview of the COCORNA workflow.

B THEORETICAL ANALYSIS

B.1 CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis of the proposed algorithm. We demonstrate that,
under certain conditions, the multi-agent actor-critic method used in COCORNA converges to a
local maximum of the expected joint return.

In COCORNA, we employ a centralized Critic network to evaluate the joint policy. Specifically, we
use the joint advantage function A(s,a), defined as:

A(s,a) = Q(s,a)− V (s), (14)

where V (s) is the state value function. The joint policy gradient is then given by:

g = Eπ

[∑
i

∇θ log π
i(ai | oi)A(s,a)

]
(15)

= Eπ

[∑
i

∇θ log π
i(ai | oi)Q(s,a)

]
− Eπ

[∑
i

∇θ log π
i(ai | oi)V (s)

]
, (16)

where π denotes the joint policy, and θ represents the parameters of the Actor networks. The second
term of (16) can be expanded as:

gV = −Eπ

[∑
i

∇θ log π
i(ai | oi)V (s)

]
(17)

= −
∑
s

dπ(s)
∑
i

∑
a−i

π(a−i | o−i)
∑
ai

∇θπ
i(ai | oi)V (s), (18)

where dπ(s) denotes the discounted ergodic state distribution (Sutton et al., 1999), a−i and o−i

represent the joint actions and observations of all agents except agent i.

Due to the normalization property of the policy:∑
ai

πi(ai | oi) = 1, (19)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

we have: ∑
ai

∇θπ
i(ai | oi) = ∇θ

∑
ai

πi(ai | oi) = ∇θ1 = 0. (20)

Therefore,

gV = −
∑
s

dπ(s)
∑
i

∑
a−i

π(a−i | o−i)V (s)∇θ1 (21)

= 0. (22)

Thus, the policy gradient in (16) reduces to only the first term:

g = Eπ

[∑
i

∇θ log π
i(ai | oi)Q(s,a)

]
. (23)

Since the joint policy can be expressed as the product of individual agent policies:

π(a | s) =
∏
i

πi(ai | oi), (24)

and using the logarithmic identity log
∏

i xi =
∑

i log xi, we can rewrite the policy gradient as:

g = Eπ

[∑
i

∇θ log π
i(ai | oi)Q(s,a)

]
(25)

= Eπ

[
∇θ log

∏
i

πi(ai | oi)Q(s,a)

]
(26)

= Eπ [∇θ logπ(a | s)Q(s,a)] . (27)

This result shows that (27) is equivalent to the single-agent actor-critic policy gradient, where the
multiple agents are considered as a single joint agent (or super-agent). Konda & Tsitsiklis (1999)
proved the convergence of policy gradient algorithms under the condition that the policy π is differ-
entiable and the algorithm parameters satisfy certain conditions.

Therefore, by following the gradient in (15), the multi-agent actor-critic algorithm converges to a
local maximum of the expected joint return Jπ .

B.2 LIMITATION AND DISCUSSION

In theory, gradient-based deep learning and reinforcement learning methods generally guarantee
convergence to local optima rather than global optima due to the non-convex nature of the optimiza-
tion landscape. However, in practice, the ability of reinforcement learning algorithms to go beyond
local optima and approach global optima depends significantly on how well they balance exploration
and exploitation.

Specifically, CocoRNA is built upon PPO, which includes an entropy bonus in the objective function,
which explicitly encourages the policy to maintain high entropy. This prevents the policy from
becoming too deterministic too quickly, avoiding premature convergence to suboptimal policies and
promoting continued exploration.

In the context of the RNA design task, the multi-agent framework of CocoRNA further aids in
overcoming local optima. Unlike single-agent methods that mutate one nucleotide at one step, our
method allows multiple agents to act simultaneously on different parts of the RNA sequence. This
introduces greater diversity and increases the exploration of the state space, thereby increasing the
opportunities to discover better policies.

C DATASETS DETAILS

We use the Rfam dataset (Runge et al., 2024a) and the Eterna100-v2 benchmark (Koodli et al.,
2021) to train and evaluate our algorithm. Both datasets contain only RNA secondary structure

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5: Length distributions of RNA secondary structures in different datasets.

Table 4: Statistics of the datasets.

Dataset Sample Size Average Length Max Length Min Length

Rfam (Training Set) 60000 243.73 450 50

Rfam (Test Set) 650 238.78 450 50

Eterna100-v2 100 159.57 400 12

information without explicit sequence labels, as the task is to design sequences that fold into the
provided structures.

The Rfam dataset is constructed by applying RNA folding algorithms to RNA sequences from the
Rfam database (Kalvari et al., 2021). The structures in this dataset are computationally predicted
using tools like the ViennaRNA package (Lorenz et al., 2011), which produces secondary struc-
tures based on minimum free energy (MFE) folding. We randomly sample 60,000 RNA secondary
structures as the training set and an additional 650 structures as the test set.

The Eterna100-v2 benchmark consists of 100 challenging RNA design tasks derived from the Eterna
citizen science project. These tasks represent a wide range of RNA secondary structures with varying
lengths and complexities, providing a rigorous benchmark for evaluating RNA design algorithms.

Figure 5 shows the length distributions of RNA secondary structures in the Rfam training set, Rfam
test set, and the Eterna100-v2 benchmark. Table 4 provides statistical information about the RNA
structures in these datasets, including the sample size, average length, maximum length, and mini-
mum length of the RNA secondary structures.

Table 5: Training hyperparameters.

Hyperparameter Value

Learning Rate 0.00001
Discount Factor (γ) 0.99
GAE Parameter (λ) 0.95
PPO Clip Range (ϵ) 0.2
Entropy Coefficient 0.02
Horizon Length 256
Batch Size 512
Number of Epochs 10
Gradient Clipping 0.5

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Network hyperparameters.

Hyperparameter Value

Actor Network Layers [128, 64]
Critic Network Layers [256, 64]
CNN Filter Size [8, 4, 3]
CNN Number of Filters [32, 64, 64]
Activation Function ReLU
Optimizer Adam

D ALGORITHM DETAILS AND HYPERPARAMETERS

This section provides a detailed description of the COCORNA algorithm, including network archi-
tectures, training details, and hyperparameter settings.

D.1 NETWORK ARCHITECTURES

Each agent in the COCORNA framework is equipped with its own Actor and Critic networks.
Although the Critic network leverages shared global information, the network parameters are not
shared across agents. The Actor network takes local observations as input and outputs a discrete
action (the nucleotide to be placed in the RNA sequence). The Critic network, on the other hand,
processes the global state, which includes the full RNA sequence and secondary structure, and out-
puts a scalar value representing the estimated cumulative future reward for the entire system.

• Actor Network: The Actor network consists of several fully connected layers followed by
a softmax output layer. Each agent’s observation is passed through the network to compute
a probability distribution over the action space {A,U,G,C}.

• Critic Network: The Critic network takes the entire RNA sequence and secondary struc-
ture as input. This input is processed through two separate CNN modules: one for the
sequence and one for the structure. The outputs of these modules are concatenated and
passed through a fully connected network to produce a value estimate for the entire system.

D.2 TRAINING AND OPTIMIZATION

The training procedure involves collecting experiences over a fixed horizon, storing them in a replay
buffer, and periodically updating the Actor and Critic networks using these stored experiences. The
PPO algorithm is used to update the networks by maximizing the clipped objective, ensuring stable
training. We also apply the Generalized Advantage Estimation (GAE) technique to compute the
advantage function, which helps reduce variance during training.

Table 7: Additional hyperparameters.

Parameter Value

Maximum Steps per Episode (Training) 350
Maximum Steps per Episode (Testing) 400
Observation Radius 30
Local Observation Window Size 61
Global State Dimension 900
Total Training Steps 25000000

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.3 HYPERPARAMETER SETTINGS

Table 5 and Table 6 summarize the key hyperparameters used in training the COCORNA model,
including training parameters and network parameters.

D.4 OTHER SETTINGS

Table 7 presents additional parameter settings used in the COCORNA framework. During training,
the maximum number of steps per episode is set to 350, while for testing, it is increased to 400. The
training is conducted for a total of 25 million steps. Each agent has an observation radius of 30,
resulting in a local observation window size of 61. Since the maximum RNA structure length in the
dataset is 450, we standardize the global state dimension to 900 (450 for the sequence information
and 450 for the structure information).

We use the ViennaRNA package (Lorenz et al., 2011) version 2.6.4 to compute the folded RNA
structures during the design process.

Table 8: Performance of COCORNA with different problem decomposition schemes on Rfam and
Eterna100-v2 datasets.

Method Results [Solved / All Test Samples]
Rfam Eterna100-v2

COCORNA-PBD 636/650 (97.85%) 70/100
COCORNA-SBD 629/650 (96.77 %) 68/100

Table 9: Performance of COCORNA and ablated versions on Rfam and Eterna100-v2 datasets.

Method Results [Solved / All Test Samples]
Rfam Eterna100-v2

COCORNA 636/650 (97.85%) 70/100
COCORNA-ablated 603/650 (92.77 %) 63/100
Single-agent version 344/650 (52.92 %) 31/100

E ADDITIONAL RESULTS

In this section, we present a series of experiments under various settings to comprehensively demon-
strate the effectiveness of COCORNA.

E.1 USING DIFFERENT DECOMPOSITION SCHEMES

Table 8 provides the testing results for different problem decomposition schemes used in CO-
CORNA. We employ two decomposition methods: Position-based decomposition (COCORNA-
PBD) and Structure-type-based decomposition (COCORNA-SBD). For Position-based decomposi-
tion, the complete RNA structure is divided into approximately equal segments, with each segment
assigned to a different agent. For Structure-type-based decomposition, agents are assigned specific
structural types based on the dot-bracket notation; for example, if Agent 1 is responsible for non-
paired structures, it sequentially designs nucleotides at all non-paired positions within the structure.

In our experiments, the two decomposition methods only show minor performance differences,
demonstrating the flexibility of our method concerning decomposition choices. For COCORNA-
SBD, structure-type-based decomposition allows agents to focus more on specific structural ele-
ments, but the relative positional relationships between different agents may become completely

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

disrupted as the design process progresses, potentially causing slight adverse effects on the learn-
ing process. Although COCORNA-SBD performed slightly worse than COCORNA-PBD in testing,
both methods significantly outperformed the single-agent approach.

E.2 ABLATION STUDY ON SAER

Table 9 presents the testing results of two ablated versions of COCORNA. Removing the SAER
method results in a slight performance decrease in COCORNA-ablated, demonstrating the effective-
ness of the SAER approach. Additionally, as shown in the right plot of Figure 3, COCORNA-ablated
continues to improve towards the end of the training process, suggesting that further training may
yield better performance. The single-agent version shows significantly poorer performance. In fact,
the single-agent version is similar to the LEARNA method but lacks architectural and hyperparam-
eter optimizations and does not undergo additional training during the design phase.

Figure 6: Learning curves under different reward settings on the Rfam dataset. Each experiment
is performed over 6 independent runs with different random seeds. The shaded areas represent the
standard deviation. Left: Learning curves using delayed reward (28). Right: Learning curves using
terminal reward (29).

Table 10: Performance of COCORNA and COCORNA-ablated under different reward settings on
the Rfam dataset.

Reward Setting / Method Results [Solved / All Test Samples]
Delayed Reward / COCORNA 634/650 (97.54%)
Delayed Reward / COCORNA-ablated 621/650 (95.54%)
Terminal Reward / COCORNA 604/650 (92.92%)
Terminal Reward / COCORNA-ablated 570/650 (87.69%)

E.3 ABLATION STUDY ON REWARD SIGNALS

In addition to the standard reward signal, we test two different delayed/sparse reward settings on the
Rfam dataset.

• Delayed Reward: The reward signal is calculated every 10 steps instead of every step. The
original reward function (12) is modified as follows:

Rt =


Ht−10−Ht

l , if Ht > 0 and t mod 10 = 0,

C, if Ht = 0 and t mod 10 = 0,

0, otherwise.
(28)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• Terminal Reward Only: The reward is given only at the end of an episode or upon suc-
cessful design. The reward function is defined as:

Rt =


1− Ht

l , if Ht ̸= 0 and t reaches maximum steps (episode ends),
C, if Ht = 0,

0, otherwise.
(29)

We also test the impact of removing the SAER method under these two reward settings. The results
are shown in Figure 6 and Table 10. We denote the ablated version without SAER as COCORNA-
ablated. It can be observed that under the delayed reward setting, COCORNA experiences almost no
performance loss. When only terminal rewards are available, the algorithm’s performance decreases
slightly due to the excessively sparse reward signal significantly increasing the difficulty of policy
learning. Under both reward settings, COCORNA-ablated performs worse than COCORNA, demon-
strating the effectiveness of the SAER method. Overall, this experiment shows that COCORNA is
robust to different reward signals and performs well even under harsh reward settings. Notably, the
delayed reward setting reduces the number of calls to the RNA folding algorithm to one-tenth of the
original, significantly speeding up training.

Figure 7: Learning curves of COCORNA under different agent size settings on the Rfam dataset.
Each experiment is performed over 6 independent runs with different random seeds. The shaded
areas represent the standard deviation.

Table 11: Performance of COCORNA under different agent size settings on the Rfam dataset.

Number of Agents (n) Results [Solved / All Test Samples]
n = 2 601/650 (92.46%)
n = 4 636/650 (97.85%)
n = 6 629/650 (96.77%)
n = 8 615/650 (94.62%)

E.4 EFFECT OF VARYING THE NUMBER OF AGENTS

In the main results presented earlier, we set the number of agents to n = 4. In this section, we
adjust the parameter n to examine the impact of different numbers of agents on the algorithm’s
performance. We experiment with four different settings: using 2, 4, 6, and 8 agents. Table 11

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

shows the performance of COCORNA under these different agent sizes on the Rfam dataset. The
corresponding learning curves are presented in Figure 7.

From the results, we observe that using 4 or 6 agents achieves the best performance. When the
number of agents is too small or too large, the performance tends to decrease. With too few agents,
the benefits of multi-agent problem decomposition cannot be fully exploited, as each agent handles
a larger portion of the task, leading to higher complexity per agent and potentially less efficient
learning. On the other hand, with too many agents, the environment becomes more non-stationary
from the perspective of each agent due to the increased interactions and dependencies among agents,
making cooperation more challenging.

Figure 8: Learning curves of COCORNA-PBD and COCORNA-PBD-shared on the Rfam dataset.
Each experiment is performed over 6 independent runs with different random seeds. The shaded
areas represent the standard deviation.

Table 12: Performance of COCORNA with independent and shared policies on the Rfam dataset.

Method Results [Solved / All Test Samples]
COCORNA-PBD 636/650 (97.85%)
COCORNA-PBD-shared 622/650 (95.69%)
COCORNA-SBD 629/650 (96.77%)
COCORNA-SBD-shared 621/650 (95.54%)

E.5 EFFECT OF SHARING POLICY PARAMETERS

We investigate the performance of COCORNA when agents share policy parameters under both de-
composition methods. In these experiments, although different agents receive different observations,
all agents share the same set of policy parameters. This approach is referred to as COCORNA-PBD-
shared and COCORNA-SBD-shared for position-based decomposition and structure-type-based de-
composition, respectively.

The learning curves and test results are shown in Figure 8 and Table 12, respectively. From the
results, we observe that enforcing shared policy parameters among multiple agents leads to a slight
decrease in algorithm performance compared to using independent policies, although the gap is
relatively small.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

These results potentially suggest that different agents learn distinct local policies that are specialized
for their assigned sub-tasks. When agents share policy parameters, the policy learning process is
constrained because all agents must use the same policy function, despite facing different sub-tasks
or local environments. This can limit the agents’ ability to adapt their policies to their specific roles
in the RNA design task. In contrast, when using independent policies, each agent can tailor its policy
parameters to its particular sub-task without interference from the data of other agents, providing
more flexibility in policy learning.

Table 13: Performance of COCORNA on the re-split Rfam dataset, where the training and test sets
are partitioned based on structural similarity.

Method Results [Solved / All Test Samples]
COCORNA-PBD 638/650 (98.15%)
COCORNA-SBD 628/650 (96.62%)

E.6 DATASET SPLITTING

In the intersection of machine learning and biology, data leakage is a significant concern (Bernett
et al., 2024). For supervised learning methods, if the test set contains data that are highly similar to
those in the training set, it may not accurately assess the algorithm’s performance on unseen data.
However, since reinforcement learning is not a supervised learning method and the dataset does not
contain explicit labels, data leakage is usually not an issue.

To further demonstrate COCORNA’s generalization capability across different RNA structures, we
re-split the dataset based on structural similarity rather than using a random split. Specifically, we
first calculated the edit distance between each pair of RNA structures in the dataset, which consists
of 65, 000 RNA structures. This resulted in a 65, 000× 65, 000 similarity matrix that quantifies the
pairwise differences between all RNA structures in the dataset. Next, we applied the MiniBatch K-
Means clustering algorithm to partition the dataset into 100 distinct clusters based on the calculated
distances. We then selected one cluster at random to serve as the test set, consisting of 650 RNA
structures. We filtered the remaining data by removing RNA structures that had high similarity to
the test set, and retained 60, 000 RNA structures as the final training set. The minimum edit distance
between any structure in the test set and those in the training set is 111, and the average edit distance
is 188.42.

Table 13 presents the results of training and testing on the re-split dataset. It can be observed
that the differences in results across different datasets are minimal; different splitting methods do
not significantly affect the algorithm’s performance. Both COCORNA-PBD and COCORNA-SBD
achieve high success rates, demonstrating the robust generalization ability of COCORNA to unseen
RNA structures.

E.7 TRAINING PARAMETERS

We observe that the algorithm is relatively sensitive to the learning rate compared to other hyper-
parameters. In our main experiments, we use a learning rate of 1 × 10−5, which is lower than the
settings commonly used in RL algorithms. Figure 9 shows the learning curves when using higher
learning rates. It can be seen that excessively high learning rates lead to unstable training and poor
convergence.

In multi-agent environments, a high learning rate can exacerbate the non-stationarity of the envi-
ronment. This issue arises because each agent’s policy update affects the environment dynamics
perceived by other agents. With higher learning rates, these changes become more abrupt, making
it difficult for agents to adapt and learn stable policies. Consequently, the training process becomes
highly unstable.

For other important hyperparameters, such as the discount factor γ, the GAE parameter λ, and the
PPO clip range ϵ, we use standard values commonly adopted in the literature. These settings are
detailed in Appendix D.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 9: Learning curves of COCORNA using different learning rates.

E.8 COMPARISON ON SEARCH-BASED METHOD

To further evaluate the performance of COCORNA, we conducted additional experiments comparing
our method with antaRNA (Kleinkauf et al., 2015) on the Rfam dataset. antaRNA is an ant colony
optimization-based RNA inverse design algorithm. Due to the time-consuming nature of its online
search process, we limited the test set to 100 RNA structures.

We evaluated antaRNA under various computational time limits per RNA structure: 60 seconds, 600
seconds, and 1200 seconds. For the experiments with time limits of 60 seconds and 600 seconds,
each RNA structure was designed only once. For the 1200-second time limit, we tested two settings:
designing each RNA structure 5 times and 15 times, respectively, and selected the best result among
the attempts. We report the average structural distance and the number of fully solved RNA struc-
tures (i.e., sequences that fold exactly into the target secondary structures). The results are presented
in Table 14.

Table 14: Performance of antaRNA under different time limits on the Rfam dataset

60s
(1 run)

600s
(1 run)

1200s
(5 runs)

1200s
(15 runs)

Average Structural Distance 5.406 3.813 2.769 2.439
Solved (Structural Distance = 0) 12/100 14/100 22/100 22/100

As shown in Table 14, although antaRNA achieves relatively low average structural distances, the
number of RNA structures it fully solves is significantly lower than that achieved by COCORNA,
which attains a success rate of 97.85% (as reported in Table 1). This may be due to the presence of
longer and more complex structures in the dataset, which affect optimization efficiency and make
antaRNA more prone to getting stuck in local optima. Moreover, the maximum time limit of 1200
seconds per structure is substantially higher than the computational time required by COCORNA,
highlighting the advantage of our method.

E.9 OTHER RESULTS

Figure 10 shows the distribution of solving times for all baseline methods on the Rfam dataset,
including only the sequences that were successfully solved. Similarly, Figure 11 presents the dis-

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 10: Distribution of solving times for different RNA design methods on the Rfam dataset.

tribution of redesign attempts (iterations) required by different RNA design methods on the Rfam
dataset.

F DISCUSSION

F.1 GRAPH NEURAL NETWORKS

Many biological molecules are well-suited to be modeled as graphs due to their inherent structural
properties. Transforming RNA structures into graph representations and utilizing Graph Neural
Networks (GNNs) could potentially better capture the relationships between different nucleotides,
enabling more effective policy learning. Graph-based representations naturally model the interac-
tions and dependencies within RNA structures, which could enhance the agent’s decision-making
process.

However, employing more complex network architectures like GNNs also introduces higher com-
putational and memory overheads, potentially reducing training efficiency. In our work, although
we did not use GNNs, we addressed the issue of partial observations by employing CNNs within
the centralized Critic to extract global structural information. This approach helps mitigate the lim-
itations of local observations by providing a holistic view of the RNA structure, thereby supporting
coordinated policy optimization without incurring excessive computational costs. Nevertheless, in-

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 11: Distribution of redesign attempts (iterations) required by different RNA design methods
on the Rfam dataset.

tegrating GNNs with reinforcement learning-based methodologies represents a promising direction
for future research.

F.2 LIMITATIONS

While COCORNA demonstrates promising results in RNA secondary structure design, there are
several limitations.

First, it is non-trivial to design a accurate and reliable reward model given the complexity of biolog-
ical systems. We may resort to large-scale pretrained models, e.g., RNA/protein language models.
However, these models are often too large and thus are computationally expensive. One potential
solution is to go with a model-based RL, where an explicit model of the environment is learned and
used to predict future states and rewards more efficiently.

Another potential limitation is the decomposition method considered in the current CocoRNA. Given
the high-dimensional nucleotide design space, it will be more promising to study an adaptive decom-
position mechanism. This might be achieved by designing hierarchical policies, where high-level
agents make decisions about task decomposition and low-level agents focus on specific sub-tasks.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Last but not least, this paper chooses the RNA inverse design problem as a proof-of-concept study.
However, we believe CocoRNA or even MARL will be a potent method for solving such highly
complex structured space problems. As part of our next step, we will explore other biological
sequence design problems such as protein.

27


	Introduction
	Related Work
	RNA Secondary Structure Design
	Multi-Agent Reinforcement Learning

	Preliminaries
	RNA Design Problem
	Decentralized Partially Observable Markov Decision Process
	Centralized Training with Decentralized Execution

	Multi-agent Reinforcement Learning for Collective RNA Design
	Problem Decomposition
	Algorithm Architecture
	Reward Function
	Search-Augmented Experience Replay

	Experiments
	Datasets
	Results
	Ablation Studies

	Conclusion
	Pseudocode for CocoRNA
	Theoretical Analysis
	Convergence Analysis
	Limitation and Discussion

	Datasets Details
	Algorithm Details and Hyperparameters
	Network Architectures
	Training and Optimization
	Hyperparameter Settings
	Other Settings

	Additional Results
	Using Different Decomposition Schemes
	Ablation Study on SAER
	Ablation Study on Reward Signals
	Effect of Varying the Number of Agents
	Effect of Sharing Policy Parameters
	Dataset Splitting
	Training Parameters
	Comparison on Search-based Method
	Other Results

	Discussion
	Graph Neural Networks
	Limitations


