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Abstract

Recent decoding methods improve the factu-001
ality of large language models (LLMs) by re-002
fining how the next token is selected during003
generation. These methods typically operate004
at the token level, leveraging internal represen-005
tations to suppress superficial patterns. Never-006
theless, LLMs remain prone to hallucinations,007
especially over longer contexts. In this pa-008
per, we propose Active Layer-Contrastive De-009
coding (ActLCD), a novel decoding strategy010
that actively decides when to apply contrast-011
ing layers during generation. By casting de-012
coding as a sequential decision-making prob-013
lem, ActLCD employs a reinforcement learn-014
ing policy guided by a reward-aware classifier015
to optimize factuality beyond the token level.016
Our experiments demonstrate that ActLCD017
surpasses state-of-the-art methods across five018
benchmarks, showcasing its effectiveness in019
mitigating hallucinations in diverse generation020
scenarios.021

1 Introduction022

Despite recent advances in large language models023

(LLMs), hallucination remains a major challenge024

that undermines user trust and reduces adoption in025

practice (Huang et al., 2025; Ji et al., 2023a; Lewis026

et al., 2020). Recent work observes that LLMs027

sometimes tend to predict the next token based on028

superficial linguistic patterns rather than the factual029

knowledge embedded in the training data (Shi et al.,030

2024a; Welleck et al.; Chuang et al., 2023; Zhang031

et al., 2024a,b).032

Based on this insight, new decoding methods033

have been proposed to harness the latent repre-034

sentation of factual knowledge learned by LLMs035

to refine the probability distribution of output to-036

kens (Chuang et al., 2023; Zhang et al., 2024a;037

Li et al., 2022; Su et al., 2022). For example,038

DoLa (Chuang et al., 2023) aims to improve factu-039

ality by contrasting logits computed from the deep040

layers and those from the shallower layers. The in- 041

tuition is that deep layers encode more factual and 042

semantically refined knowledge, while shallower 043

layers may reflect syntactic priors or ambiguous 044

surface patterns. Through a layer-wise contrast, 045

DoLa can amplify factual signals from the deep 046

layers while suppressing potentially misleading pat- 047

terns from the shallower layers, thereby steering 048

generation towards more factual outputs. 049

Though these decoding methods have been 050

demonstrated to be effective in reducing hallucina- 051

tion on some benchmarks, they have several limita- 052

tions. While layer contrasting can improve factu- 053

ality by exerting latent knowledge in deep layers, 054

applying it persistently for every single token in the 055

output sequence may cause the model to “overthink” 056

for simple token predictions, especially in longer 057

generations. For instance, in the math problem in 058

Figure 1, DoLa forces the model to immediately 059

attempt an arithmetic calculation to solve the prob- 060

lem when generating the first sentence, though it 061

only needs to simply repeat the information from 062

the question body there to elicit further reasoning 063

in the following sentences. Moreover, due to the 064

autoregressive nature of text generation, factual ac- 065

curacy is highly dependent on previously generated 066

tokens; thus, lacking sequential-level optimization, 067

these static interventions are prone to early errors 068

that compound into a cascade of inaccuracies, a 069

phenomenon known as hallucination snowballing 070

(Zhang et al., 2024b). 071

To address these issues, we propose Active 072

Layer-Contrastive Decoding (ActLCD). Figure 1 073

gives an overview of ActLCD. During genera- 074

tion, ActLCD selectively applies layer contrast- 075

ing to leverage latent knowledge in deep layers. 076

Specifically, ActLCD casts decoding as a sequen- 077

tial decision-making problem, employing reinforce- 078

ment learning to learn an optimal policy for when 079

to activate layer contrasting based on previously 080

generated tokens (i.e., the context). Unlike exist- 081
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Figure 1: The workflow of ActLCD. (1) Next-token selection: ActLCD dynamically apply layer contrasting at each
step. (2) Sequential-level optimization: By framing decoding as a Markov decision process, ActLCD selectively
activates layer contrasting to maximize cumulative reward throughout the generation.

ing approaches that require multiple sampling or082

external sources, ActLCD operates in a single pass083

using only model-internal information, enabling084

efficient and adaptive factual decoding.085

We compare ActLCD with SOTA decoding086

strategies SLED and DoLa on five LLMs of varying087

scales. Our method consistently improves factual-088

ity on two open-domain benchmarks and two chain-089

of-thought benchmarks by a large margin, includ-090

ing TruthfulQA (+19.81%), LongFact (+3.30%),091

StrategyQA (+7.51%), and GSM8k (+7.21%), re-092

spectively1. Furthermore, we extend our evaluation093

to a domain-specific benchmark on software pack-094

age hallucination (+9.23%) using four code LLMs.095

Across all experiments, ActLCD demonstrates ro-096

bust factuality improvements from sentence-level097

to document-level generations.098

2 Method099

2.1 Preliminaries100

Contrastive decoding methods exploit model confi-101

dence dynamics either across different models or102

within the internal layers (Li et al., 2022; Chuang103

et al., 2023). Specifically, Decoding by Contrast-104

ing Layers (Chuang et al., 2023) adjusts the token105

1Reported improvements are the maximum gains observed
across all tested LLMs.

probability distribution by subtracting the logits of 106

shallow layers from those of deep layers. This ap- 107

proach aims to sharpen model outputs and mitigate 108

hallucinations by amplifying confident predictions 109

while suppressing uncertain ones. 110

Formally, given a sequence of generated tokens 111

{x1, x2, ..., xt−1}, qN , qM are named log probabil- 112

ities of shallow and deep layers, respectively. The 113

next-token prediction is then determined as 114

p̂(xt | x<t) = softmax (F(qN (xt), qM (xt)))xt
(1) 115

where 116

F(qN , qM ) =

{
log qN (xt)

qM (xt)
xt ∈ Vhead(xt | x<t),

−∞ otherwise.
(2) 117

The operator F(·, ·), is used to contrast the out- 118

put distributions from the shallow layer and the 119

deep layer. The subset Vhead(xt|x<t) ⊂ X is de- 120

fined based on whether the token has a sufficiently 121

high probability in the deep layer: 122

Vhead(xt|x<t) = {xt ∈ X : qN (xt)

≥ αmax
w

qN (w)} (3) 123

Tokens with low probability in the deep layer are 124

discarded to minimize both false positives and false 125
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negatives. In practice, contrastive decoding meth-126

ods require selecting appropriate shallow and deep127

layers buckets. We describe our layer selection128

strategy in Appendix B.129

2.2 Decoding Objective130

The key insight of layer contrasting methods is131

that amplifying confident predictions while sup-132

pressing uncertain ones improves factuality. While133

layer contrasting is effective for token-level adjust-134

ments, it treats each decoding step independently135

and does not account for the influence of previously136

generated tokens on following decoding steps. To137

address this limitation, we formalize decoding as138

a sequential decision-making problem and solve139

it via reinforcement learning (RL). Our approach140

dynamically decides when to apply layer contrast-141

ing. Formally, given input prompt p and partial142

generation x<t at step t, the next token probability143

is defined as:144

p̂(xt | x<t) =softmax(at · F(qN (xt), qM (xt))

+ (1− at) · qM (xt))
(4)145

, where at ∈ {0, 1} refers to the action that deter-146

mines whether to apply layer contrasting, based on147

the current state st derived from {x<t, p}.148

The objective of our method includes two parts:149

F(qN (xt), qM (xt)) and qM (xt), where they can150

be viewed as the decoding by layer contrasting ob-151

jective and greedy decoding objective, respectively.152

2.3 ActLCD153

We formulate decoding as a Markov decision pro-154

cess (MDP) M = (S,A, Pa, R), where S is the155

state space that captures intermediate-layers’ em-156

beddings and logits, A = {0, 1} is the action space157

indicating whether to apply layer contrasting, Pa158

denotes the transition dynamics, and R is the re-159

ward function.160

We consider a decision environment where each161

step corresponds to generating the next token. At162

each time t, the state st is represented by layer-163

based embeddings and logits derived from the par-164

tially generated context x<t. At each step, the165

policy decides whether to apply layer contrasting166

or not. In this setup, the standard RL objective is to167

maximize the expected return E
[∑T

t=1R(st, at)
]

168

in the MDP, where at ∼ πθ(at | st). The environ-169

ment evaluates the reward R(st, at) over the full170

sequence.171

Reward Design To emphasize factual correct- 172

ness and penalize both unnecessary and missed ac- 173

tivations, we design a sequence-level reward func- 174

tion. Specifically, we assign rewards based on 175

token-level ground truth labels: true positives (cor- 176

rect layer contrasting activation) receive a reward 177

rtp = 1.0, true negatives (correct non-activation) 178

rtn = 2.0, false positives (unnecessary layer con- 179

trasting activation) rfp = −1.0, and false negatives 180

(missed necessary activations) rfn = −5.0. These 181

values were empirically chosen to balance the trade- 182

off between precision and recall (detailed in Ap- 183

pendix E). The cumulative reward for a sequence 184

is updated at the end of decoding, helping the pol- 185

icy avoid getting trapped in local minima and in- 186

centivizing correct activation decisions throughout 187

generation. 188

Training To learn πθ, we adopt an offline RL 189

framework, where transitions are collected from 190

annotated sequences. Each token is labeled with 191

a binary activation indicator of whether to apply 192

layer contrasting at that step. Annotation details 193

are listed in Appendix A. We then apply Batch- 194

Constrained deep Q-learning (BCQ) (Fujimoto 195

et al., 2019) to learn an activation policy from anno- 196

tated offline data, as explained in the next section. 197

2.4 Training and Policy Optimization 198

The BCQ framework comprises two stages. In 199

particular, we first train a behavior cloning (BC) 200

model that captures the offline policy distribution 201

in a supervised manner. We then refine the policy 202

via Q-learning, while constraining action choices 203

to remain close to the BC policy. We explain each 204

step in detail below. 205

Stage 1: Behavior Cloning In the initial stage, 206

we train a behavior cloning network to approximate 207

the empirical action distribution from the annotated 208

offline dataset’s actions. Specifically, each training 209

example consists of a state st (capturing the partial 210

generation up to step t) and the annotated binary 211

activation label at. we optimize the neural network 212

policy πϕ by minimizing cross-entropy loss: 213

LBC = −
∑
t

log πϕ(at | st) (5) 214

This behavioral cloning component guides the 215

model to imitate observed activation patterns, 216

serves in two purposes: (1) it offers a strong ini- 217

tialization that captures real (annotated) usage of 218

contrastive layers, and (2) it regularizes subsequent 219
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Q-learning updates to remain close to the behav-220

ioral distribution, thereby reducing extrapolation221

errors commonly encountered in offline reinforce-222

ment learning.223

Stage 2: Q-learning. In the second stage, we re-224

fine the policy using DQN Q-learning update (Fuji-225

moto et al., 2019; Mnih et al., 2015) under a batch-226

constrained scheme by sampling from the same227

dataset used in Stage 1. We train a critic Q-network228

Qθ to predict the expected cumulative rewards229

for state-action pairs. Following (Fujimoto et al.,230

2019), we impose a probability threshold τ derived231

from the behavioral cloning policy πϕ(a | s) to pre-232

vent the overestimation of actions rarely observed233

in the offline dataset. Formally, we define a set of234

permissible actions as:235

Aϕ(st+1) = { a | πϕ(a | st+1) > τ} (6)236

The critic parameters θ are updated by minimizing237

the mean-squared temporal-difference error:238

LTD =
∥∥Qθ(st, at) −[
rt + γ max

a∈Aϕ(st+1)
Qθ̄(st+1, a)

]∥∥2, (7)239

where θ̄ denotes the parameters of a slowly-updated240

target critic network via Polyak averaging, rt is241

the immediate reward, and γ is the discount fac-242

tor. If no permissible action exceeds the threshold,243

we revert to the action with the highest behavioral244

cloning probability.245

This constrained approach ensures that the pol-246

icy remains faithful to the distribution of observed247

actions, effectively alleviating distributional shift.248

Inference At test time, the policy selects ac-249

tions by identifying permissible actionsAϕ(st) and250

choosing the action with the highest estimated Q-251

value:252

πθ = arg max
a∈Aϕ(st)

Qθ(st, a), (8)253

By combining supervised initialization with con-254

strained Q-learning, our policy remains faithful255

to offline annotations while optimizing for the256

sequential-level reward, effectively balancing cor-257

rectness and efficiency. Periodic synchronization258

between the Q-network and the target network sta-259

bilizes the learning process, ensuring reliable pol-260

icy updates and robust decision-making at infer-261

ence.262

3 Experiments 263

3.1 Benchmarks and Evaluation Metrics 264

We evaluated two open-ended benchmarks span- 265

ning short-answer and long-answer generation, in- 266

cluding TruthfulQA (Lin et al., 2021), and Long- 267

Fact (Wei et al., 2024). In addition, we included 268

two chain-of-thought reasoning benchmarks, Strat- 269

egyQA (Geva et al., 2021) and GSM8K (Cobbe 270

et al., 2021). Finally, we included a domain- 271

specific benchmark about software package hal- 272

lucination (Spracklen et al., 2025). 273

TruthfulQA (Lin et al., 2021) is a short-answer 274

benchmark comprising 817 questions designed to 275

test factual correctness, particularly in cases where 276

humans commonly answer falsely due to miscon- 277

ception. We use GPT-4o-mini to evaluate the truth- 278

fulness (Truth), and informativeness (Info) of each 279

generated answer. While Truth is the primary met- 280

ric, a high score can be trivially achieved by gen- 281

erating uninformative answers such as “I have no 282

comment.” To address this, we adopt the composite 283

metric (T*I), which balances correctness and infor- 284

mativeness. Following the evaluation in (Lin et al., 285

2021; Cheng et al., 2024), we provide reference 286

answers annotated in the dataset as the reference 287

and use the same evaluation samples as the demon- 288

stration examples. 289

LongFact (Wei et al., 2024) includes a set of 290

2,280 fact-seeking prompts requiring long-form re- 291

sponses, often exceeding a thousand tokens. We 292

follow the same evaluation process as in (Wei et al., 293

2024; Cheng et al., 2024), which uses an LLM to 294

first extract the atomic facts from a long response 295

and then evaluate the correctness of each fact. We 296

use GPT-4o-mini to extract atomic facts and eval- 297

uate factuality. The adopted metrics include the 298

proportion of truthful facts (Precision), the number 299

of truthful facts divided by 128 (Recall@128), and 300

the F1@128 score, which integrates the previous 301

two metrics. To balance costs, we evaluated only 302

120 samples. 303

Chain-of-Thought Reasoning Following prior 304

work (Zhang et al., 2024a; Chuang et al., 2023), 305

we evaluate chain-of-thought reasoning capabil- 306

ities using StrategyQA (Geva et al., 2021) and 307

GSM8K (Cobbe et al., 2021). Both benchmarks 308

require generating long-answer, detailed reason- 309

ing paths. StrategyQA requires multi-hop reason- 310

ing over implicit knowledge, while GSM8K in- 311

volves math word problems that demand both fac- 312

tual understanding and arithmetic reasoning. We 313

4



follow the factual accuracy evaluation implemented314

from (Chuang et al., 2023).315

Package hallucination (Spracklen et al., 2025)316

is a benchmark designed to evaluate the factuality317

of software packages recommended by an LLM318

for a given task. Table 3 shows an example. This319

benchmark includes 5,000 tasks related to popu-320

lar programming languages, including Python and321

JavaScript. Different from TruthfulQA, which in-322

volves a single-sentence response, this benchmark323

focuses on multi-token outputs consisting of multi-324

ple package names. In this context, package halluci-325

nation refers to LLMs recommending non-existent326

or irrelevant packages.327

To assess the robustness of our approach in328

this critical domain, we extended our evaluation329

to four additional code-focused LLMs, covering330

both general-purpose and specialized models. Fol-331

lowing Spracklen et al. (2025), we use pip-search332

and npm-search to verify the existence of each rec-333

ommended package. We adopt the hallucination334

rate (%Hallu) as the primary metric.335

3.2 Models and Baselines336

Base Models We conduct our experiments on337

five general-purpose LLMs and four code LLMs.338

We experiment with general-purpose LLMs on all339

benchmarks. Since code LLMs are superficially340

designed for coding tasks, we only experiment with341

code LLMs on the software package hallucination342

benchmark. For general-purpose LLMs, we select343

Llama-3.1-8B (Grattafiori et al., 2024), glm-4-9b-344

chat-hf (GLM et al., 2024), gemma-2-9b-it (Team345

et al., 2024b), Mistral-7B-Instruct-v0.3 (Jiang,346

2024), and DeepSeek-V2-Lite-Chat (Liu et al.,347

2024). For code LLMs, we include codegemma-7b-348

it (Team et al., 2024a), DeepSeek-Coder-V2-Lite-349

Instruct (Guo et al., 2024), and Qwen2.5-Coder-350

7B-Instruct (Hui et al., 2024).351

Comparison Baselines We compare our method352

against three representative decoding strategies.353

First, we include Greedy decoding, a widely354

used baseline that selects the most probable to-355

ken at each step without any additional adjust-356

ments. Second, we include Decoding by Con-357

trasting Layers (DoLa) (Chuang et al., 2023), a358

decoding method that improves factuality by con-359

trasting logits from deeper and shallower layers.360

Third, we include Self Logits Evolution Decod-361

ing (SELD) (Zhang et al., 2024a), which leverages362

the evolution of token logits across layers to guide363

generation toward more factual outputs.364

3.3 Implementation Details 365

The prompt templates used for different approaches 366

are provided in Appendix H. Following the offi- 367

cial SLED implementation, we have updated it to 368

ensure compatibility with the latest LLMs; the im- 369

plementation and reproduction details are provided 370

in Appendix C. We implement DoLa using readily 371

pre-built functionalities provided by the Hugging 372

Face Transformers library. For DoLa, SLED, and 373

ActLCD, we select shallow layers by partitioning 374

the transformer layers into {low, high} buckets and 375

select one bucket as candidate layers. We detail our 376

shallow-layer selection strategy in Appendix B. 377

3.4 Main Results 378

Short-Answer Factuality. As shown in Table 1, 379

ActLCD consistently improves the Truth score. 380

ActLCD also demonstrates significant improve- 381

ments in Info, ensuring high informativeness. 382

These gains lead to over 10% increase in the 383

%Truth×%Info metric in most models, outperform- 384

ing all competing methods. These results highlight 385

ActLCD’s ability to generate responses that are not 386

only factually accurate but also more informative, 387

reflecting overall higher-quality generation. 388

While DoLa and SLED have demonstrated the 389

potential to boost truthfulness and informativeness, 390

our experiments show performance degradation in 391

certain LLMs, potentially indicating limited gen- 392

eralization across model architectures. In contrast, 393

ActLCD demonstrates superior %T*I scores across 394

all evaluated models. 395

Long-answer Factuality. Enhancing factuality 396

in long-form generation remains a challenging and 397

underexplored area. As shown in Table 1, benefit 398

from sequential level optimization, ActLCD im- 399

proves both precision and Recall@128. This indi- 400

cates that ActLCD not only suppresses non-factual 401

outputs but also actively elicits more parametric 402

knowledge from the LLM, resulting in a greater 403

number of factually grounded statements. Notably, 404

this gain does not come at the expense of precision, 405

highlighting ActLCD’s ability to generate more 406

factual information while maintaining a high truth- 407

fulness rate. 408

Conversely, baseline approaches struggle with 409

the LongFact benchmark. DoLa shows a significant 410

performance drop in precision in some model archi- 411

tectures. While SLED improves precision across 412

most settings, it often reduces information recall 413

as measured by Recall@128, resulting in a lower 414
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Table 1: Evaluation results on two open-ended benchmarks and two Chain-of-thought benchmarks. The best-
performing results are highlighted in green, the second-best in blue, and those indicating a performance drop
compared to standard greedy decoding are shown in grey.

Model Method
TruthfulQA LongFact CoT

%Truth ↑ %Info ↑ %T*I ↑ Prec.↑ R@128 ↑ F1@128 ↑ StrQA ↑ GSM8K ↑

LLaMA3.1

Greedy 41.98 66.59 27.95 84.72 92.40 88.39 67.82 56.02
DoLa 46.76 (+4.78) 87.15 (+20.56) 40.75 (+12.80) 85.19 (+0.47) 83.66 (-8.74) 84.42 (-3.97) 69.21 (+1.39) 56.18 (+0.16)
SLED 41.25 (-0.73) 66.59 (0.00) 27.47 (-0.48) 84.18 (-0.54) 79.02 (-13.38) 81.52 (-6.87) 67.38 (-0.44) 56.71 (+0.69)
ActLCD 52.70 (+10.72) 84.82 (+18.23) 44.70 (+16.75) 86.63 (+1.91) 97.38 (+4.98) 91.69 (+3.30) 75.33 (+7.51) 63.23 (+7.21)

GLM4

Greedy 64.26 87.27 56.08 84.17 95.77 89.60 69.56 60.12
DoLa 59.24 (-5.02) 81.76 (-5.51) 48.44 (-7.64) 83.49 (-0.68) 98.34 (+2.57) 90.31 (+0.71) 67.38 (-2.18) 57.01 (-3.11)
SLED 62.06 (-2.20) 67.56 (-19.71) 41.93 (-14.15) 84.32 (+0.15) 88.13 (-7.64) 86.18 (-3.42) 70.48 (+0.92) 60.95 (+0.83)
ActLCD 68.91 (+4.65) 83.23 (-4.04) 57.35 (+1.27) 86.37 (+2.20) 90.01 (-5.76) 88.15 (-1.45) 72.58 (+3.02) 64.06 (+3.94)

Mistral3

Greedy 58.38 64.87 37.87 84.87 78.08 81.33 73.49 53.15
DoLa 66.21 (+7.83) 78.21 (+13.34) 51.78 (+13.91) 85.23 (+0.36) 75.42 (-2.66) 80.03 (-1.30) 71.00 (-2.49) 51.10 (-2.05)
SLED 58.75 (+0.37) 64.63 (-0.24) 37.97 (+0.10) 85.45 (+0.58) 77.88 (-0.20) 81.49 (+0.16) 73.41 (-0.08) 53.53 (+0.38)
ActLCD 71.84 (+13.46) 80.29 (+15.42) 57.68 (+19.81) 85.78 (+0.91) 77.62 (-0.46) 81.50 (+0.17) 73.84 (+0.35) 58.98 (+5.83)

Gemma2

Greedy 54.10 51.90 28.08 83.77 100.70 91.46 74.80 82.11
DoLa 61.44 (+7.34) 68.05 (+16.15) 41.81 (+13.73) 83.66 (-0.11) 104.13 (+3.43) 92.78 (+1.32) 73.54 (-1.26) 81.20 (-0.91)
SLED 54.83 (+0.73) 53.61 (+1.71) 29.41 (+1.33) 83.73 (-0.04) 98.68 (-2.02) 90.59 (-0.87) 74.93 (+0.13) 82.94 (+0.83)
ActLCD 64.62 (+10.52) 67.20 (+15.30) 43.42 (+15.34) 83.98 (+0.21) 104.55 (+3.85) 93.14 (+1.68) 77.25 (+2.45) 83.32 (+1.21)

DeepSeek2

Greedy 52.99 79.93 42.35 81.76 80.84 81.30 69.65 70.36
DoLa 53.85 (+0.86) 82.99 (+3.06) 44.69 (+2.34) 82.17 (+0.41) 81.06 (+0.22) 81.61 (+0.31) 70.61 (+0.96) 66.19 (-4.17)
SLED 51.53 (-1.46) 77.23 (-2.70) 39.80 (-2.55) 82.67 (+0.91) 79.48 (-1.36) 81.04 (-0.26) 69.87 (+0.22) 68.99 (-1.37)
ActLCD 60.46 (+7.47) 83.48 (+3.55) 50.47 (+8.12) 83.15 (+1.39) 82.85 (+2.01) 83.00 (+1.70) 76.51 (+6.86) 70.81 (+0.45)

F1@128. This suggests SLED tends to favor early415

termination over generating more informative con-416

tent. These findings further highlight ActLCD’s417

better generality and robustness in long-form gen-418

eration tasks.419

Chain of thought StrategyQA requires multi-420

hop reasoning with chain-of-thought (CoT) prompt-421

ing (Wei et al., 2022). As detailed in Table 1,422

ActLCD persistently improves accuracy across423

five LLMs, achieving 0.35%-7.51% gains. Nev-424

ertheless, SLED and DoLa occasionally underper-425

form compared to greedy decoding. These re-426

sults highlight ActLCD’s robustness and gener-427

alizability across architectures. We hypothesize428

that ActLCD’s sequential-level optimization mech-429

anism is key to this success, fostering more coher-430

ent and logically sound reasoning chains.431

Similarly, on GSM8K, a mathematical reasoning432

benchmark, ActLCD shows robust improvements.433

It improves accuracy by around 4% across most434

models, demonstrating that ActLCD effectively en-435

hances arithmetic reasoning capabilities alongside436

factual correctness. In comparison, both DoLa and437

SLED exhibit mixed performance. SLED improves438

accuracy on most model architectures but shows439

degradation on DeepSeek2; DoLa occasionally de-440

grades performance on GSM8K, indicating insta-441

bility in handling arithmetic reasoning. These re-442

sults suggest that ActLCD’s dynamic contrastive443

mechanism enhances arithmetic reasoning by better444

navigating the model’s probability space, without 445

sacrificing precision. 446

To understand our contribution, we conducted 447

a more detailed investigation on a representative 448

example2 from GSM8K to highlight how halluci- 449

nation can propagate and compound throughout 450

the reasoning chain. As the GSM8K example in 451

Table 2, Greedy correctly computes the initial toy 452

count but then “forgets” that value later in its rea- 453

soning, resulting in the incorrect answer. Whereas 454

SLED and DoLa misinterpret the toys needed at 455

the beginning, they subsequently build an entire 456

chain of reasoning on this false assumption, result- 457

ing in a significantly incorrect answer. This ex- 458

emplifies a phenomenon known as “hallucination 459

nowballing” (Zhang et al., 2024b), where early mis- 460

takes cascade into increasingly severe errors. Such 461

missteps may be due to the side effect of layer 462

contrasting that forces LLMs to interpret longer 463

sentences, potentially leading to fundamental mis- 464

understandings. In contrast, ActLCD selectively 465

activates layer contrasting to leverage latent knowl- 466

edge in deep layers, fostering a coherent logical 467

thought chain that yields the affirmative answer. 468

Package hallucination As shown in Figure 2, 469

ActLCD significantly reduced package hallucina- 470

tion in both Python and JavaScript.3 A key chal- 471

lenge in this benchmark is that models must gen- 472

2We conducted StrQA analysis in Appendix D
3Numerical results are provided in Appendix F
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Table 2: An example of GSM8K. Incorrect inferences are highlighted in red. Correct ones are highlighted in green.

Prompt “James needs to get more toys for his doggie shelter. Each dog needs one toy. James currently has 4 toys on hand for 4 dogs, but there are 8 more dogs in the
shelter now. After buying the toys, he went back to see that there are twice as many more dogs than when he left so he had to buy some more toys. When James
came back yet again, 3 dogs were gone so he no longer needed those toys. How many toys in total does James need?”

Greedy James started with 4 toys. He needed 8 more toys for 8 dogs. So he had 4 + 8 = 12 toys. Then he needed twice as many more toys. So he needed 12 + 12 = 24
toys. Then 3 dogs were gone. So he no longer needed 3 toys. 24 - 3 = 21. The answer is 21.

SLED James started with 4 toys. He bought toys for 8 dogs, so he bought 8 toys. Then he bought toys for twice as many dogs, so he bought 8 x 2 = 16 toys. Then he
no longer needed 3 toys. 4 + 8 + 16 - 3 = 25. The answer is 25.

DoLa James started with 4 toys. He needed 1 toy per dog, so he needed 4 more toys. That’s 4 + 4 = 8 toys. But then there were 8 more dogs, so he needed another 8
toys. That’s 8 + 8 = 16 toys. But then there were twice as many dogs, so he needed 16 x 2 = 32 toys. But then 3 dogs were gone, so he didn’t need 3 toys. 32 - 3
= 29. The answer is 29.

ActLCD James started with 4 toys for 4 dogs. That’s 1 toy per dog. But there are 8 more dogs. So he needs 8 more toys. 4 + 8 is 12. But then there are twice as many
more dogs. So he needs another 24 toys. 12 + 24 is 36. But then 3 dogs were gone. So he doesn’t need those toys. 36 - 3 is 33. The answer is 33.

Table 3: An example of package hallucination.

Prompt “Install packages for distributed GPU training in Python.”

Greedy pip install nccl, pip install cupy
SLED pip install cudatoolkit, pip install cudnn
DoLa pip install tensorflow-gpu, pip install nccl-cuda
ActLCD pip install tensorflow-gpu, pip install horovod
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Figure 2: Evaluation results on package hallucination
benchmark. For each model, the left bar shows Python
performance and the right bar shows JavaScript.

erate multiple package names, where one halluci-473

nated package can compromise the entire response.474

ActLCD’s dynamic contrastive mechanism is es-475

pecially beneficial for this context. Consider the476

example in Table 3, SLED makes two incorrect477

predictions, and greedy decoding initially makes478

an incorrect prediction. While DoLa corrects the479

first prediction, it still produces a subsequent hal-480

lucination. In comparison, by actively applying481

layer contrasting, ActLCD intelligently determines482

when to engage this mechanism, thereby optimiz-483

ing the generation of accurate and relevant package484

recommendations.485

While other advanced decoding methods, in-486

cluding DoLa and SLED, also offer improve-487

ments in package factuality over standard baselines,488

ActLCD outperforms them in our experiments on489

this specific task. These findings demonstrate the490

effectiveness and robustness of ActLCD on domain-491

specific benchmarks in both general-purpose LLMs492

and modern code LLMs.493

Table 4: Performance comparison on StrategyQA be-
tween ActLCD and alternative threshold-based con-
trastive decoding strategies.

Model
StrQA

Greedy DoLa SLED T=0.6 T=0.7 T=0.85 ActLCD

LLaMA3.1 67.82 69.21 67.38 61.40 64.67 66.94 75.33
GLM4 69.56 67.38 70.48 64.59 65.50 66.85 72.58
Mistral3 73.49 71.00 73.41 71.00 71.00 71.00 73.84
Gemma2 74.80 73.54 74.93 73.89 73.36 73.06 77.25
DeepSeek2 69.65 70.61 69.87 70.44 70.79 70.96 76.51

4 Analysis 494

4.1 Alternative Design 495

Prior work suggests that LLMs are relatively well- 496

calibrated, and low-confidence outputs often corre- 497

late with uncertain or incorrect knowledge (Orgad 498

et al., 2024; Kadavath et al., 2022; Spiess et al., 499

2024; Jiang et al., 2023). To this end, we con- 500

ducted an analysis to investigate whether a simple 501

threshold mechanism could effectively determine 502

the activation of contrastive decoding elements, as 503

an alternative to ActLCD’s primary mechanism. 504

Specifically, we explored activating the layer con- 505

trasting only when the model demonstrated high 506

confidence (i.e., its uncertainty fell below a prede- 507

fined threshold). 508

As shown in Table 4, the threshold-based 509

ActLCD did not yield performance improvements. 510

We hypothesize that this outcome is due to the com- 511

plex nature of hallucinations, which can occur in 512

diverse scenarios and stem from various underlying 513

causes. Consequently, simply relying on LLM’s 514

internal confidence to trigger the activation of con- 515

trastive layers appears insufficient. The internal 516

confidence might not always correlate with halluci- 517

nation across all contexts or error types. 518

In contrast, ActLCD formulates decoding as a re- 519

inforcement learning problem, enabling sequential- 520

level optimization. This allows ActLCD to dy- 521

namically activate layer contrasting in response to 522

complex generation dynamics. Such adaptability 523

proves more effective for achieving robust factual- 524
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Table 5: Decoding latency comparison (ms/token).

Model
Latency (ms/token)

Greedy DoLa ActLCD

LLaMA3.1 61.57 82.14 85.02
GLM4 72.39 113.26 117.46
Mistral3 63.66 71.88 75.14
Gemma2 83.08 128.02 131.47
DeepSeek2 64.21 65.79 68.64

ity improvements compared to the limitations of a525

static, high-confidence-gated activation.526

4.2 Latency527

As illustrated in Table 5, ActLCD introduces min-528

imal latency overhead, increasing decoding time529

over DoLa by only 3% to 5%. This overhead stems530

from the additional policy network in ActLCD,531

which dynamically decides whether to apply layer532

contrasting at each decoding step based on model-533

internal signals. Overall, ActLCD offers a prac-534

tical balance between improving factual accuracy535

and maintaining efficient decoding, which can be536

widely applied with negligible cost.537

5 Related work538

Hallucination in LLMs Hallucination refers to539

the generation of content that is syntactically plau-540

sible but factually incorrect (Yin et al., 2023; Xiong541

et al., 2023; Huang et al., 2025; Bai et al., 2022; Ji542

et al., 2023a; Zhang et al., 2024b). Many studies543

have explored effective methods for detection (Far-544

quhar et al., 2024; Kossen et al., 2024; Azaria and545

Mitchell, 2023; Simhi et al., 2024; Burns et al.;546

Zhang et al., 2024c; Chen et al., 2024; Sriramanan547

et al., 2024) and mitigation. Existing mitigation548

techniques can be broadly categorized into training-549

time and inference-time approaches. Training-time550

methods (Zhang et al., 2024d; Wu et al., 2023; Lan551

et al., 2023; Tian et al., 2023) typically involve552

fine-tuning the model or updating its knowledge553

base, which improves factuality but often requires554

significant computational resources.555

One line of inference-time methods involves ex-556

ternal knowledge or multiple sampling. (Jiang557

et al., 2023; Lewis et al., 2020; Peng et al., 2023;558

Zhang et al., 2023; Yu et al., 2023; Zemlyanskiy559

et al., 2022; Shi et al., 2024b) enhances factual560

consistency through retrieval-augmented genera-561

tion, where external knowledge is retrieved prior to562

generation. (Ji et al., 2023b; Madaan et al., 2023;563

Du et al., 2023; Zhang et al., 2024a; Cheng et al.,564

2024) leverages self-reflection and iterative self-565

correction, prompting the model to critique and 566

revise its own outputs. A complementary direction 567

involves post-generation verification and correc- 568

tion, where model outputs are retrospectively as- 569

sessed and revised to eliminate factual errors (Gao 570

et al., 2022; Zhang et al., 2024a; Choi et al., 2023). 571

Contrastive decoding In contrast to the afore- 572

mentioned inference-time approaches that rely on 573

external retrieval modules or extensive sampling, 574

contrastive decoding methods refine output dis- 575

tributions by leveraging discrepancies in model 576

confidence—either across models or within inter- 577

nal layers (Zhang et al., 2024a; Li et al., 2022; 578

Chuang et al., 2023). Specifically, CD(Li et al., 579

2022) adjusts intermediate representations using 580

contrastive signals derived from a stronger model. 581

DOLA(Chuang et al., 2023) improves CD by in- 582

troducing a layer-wise contrastive mechanism that 583

guides generation by comparing internal represen- 584

tations within the same model. SLED(Zhang et al., 585

2024a) further refines this approach by contrasting 586

the final layer’s logits with those from earlier layers 587

to track the evolution of factual knowledge during 588

decoding. Other recent works (Waldendorf et al., 589

2024; Sennrich et al., 2023) extend contrastive de- 590

coding to machine translation, incorporating token- 591

level contrastive mechanisms to enhance transla- 592

tion quality. 593

Our approach differs from prior methods in that 594

it introduces a decoding-time, sequential-level con- 595

trastive mechanism to mitigate hallucinations with- 596

out relying on retrieval systems or intensive sam- 597

pling. By incorporating contrastive supervision at 598

the sequence level into a reinforcement learning 599

framework, we encourage globally coherent and 600

factually consistent text generation. 601

6 Conclusion 602

We presented active layer-contrastive decoding, 603

a lightweight decoding algorithm that actively 604

decides when to invoke layer-wise contrastive 605

signals through a reinforcement-learned policy. 606

Across four open-ended generation benchmarks, 607

ActLCD consistently reduces hallucination and 608

boosts factuality. On the domain-specific pack- 609

age hallucination suite, our method outperforms 610

the state-of-the-art baselines, highlighting its ro- 611

bustness beyond general-domain text. We hope 612

ActLCD serves as a step toward safer, more re- 613

liable large language models that require neither 614

parameter updates nor external knowledge bases. 615
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7 Limitation616

Although ActLCD delivers consistent factuality617

gains across a diverse set of models and tasks, sev-618

eral limitations merit discussion and motivate fu-619

ture work. While ActLCD offers computational620

efficiency with minimal overhead, it could still be a621

factor in extremely low-latency or resource-limited622

environments. Finally, ActLCD reduces but does623

not eliminate hallucinations, particularly when the624

base model lacks the necessary domain knowledge625

to answer a query correctly, regardless of the decod-626

ing strategy. Overall, we view ActLCD as a promis-627

ing step toward safer decoding. Future research can628

further enhance its robustness and practicality.629

References630

Amos Azaria and Tom Mitchell. 2023. The internal631
state of an llm knows when it’s lying. In Findings632
of the Association for Computational Linguistics:633
EMNLP 2023, pages 967–976.634

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda635
Askell, Anna Chen, Nova DasSarma, Dawn Drain,636
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.637
2022. Training a helpful and harmless assistant with638
reinforcement learning from human feedback. arXiv639
preprint arXiv:2204.05862.640

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.641
Longformer: The long-document transformer. arXiv642
preprint arXiv:2004.05150.643

Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-644
hardt. Discovering latent knowledge in language645
models without supervision. In The Eleventh Inter-646
national Conference on Learning Representations.647

Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-648
hardt. 2022. Discovering latent knowledge in lan-649
guage models without supervision. arXiv preprint650
arXiv:2212.03827.651

Shiqi Chen, Miao Xiong, Junteng Liu, Zhengxuan Wu,652
Teng Xiao, Siyang Gao, and Junxian He. 2024. In-653
context sharpness as alerts: An inner representation654
perspective for hallucination mitigation. In Inter-655
national Conference on Machine Learning, pages656
7553–7567. PMLR.657

Yi Cheng, Xiao Liang, Yeyun Gong, Wen Xiao, Song658
Wang, Yuji Zhang, Wenjun Hou, Kaishuai Xu, Wenge659
Liu, Wenjie Li, et al. 2024. Integrative decoding: Im-660
prove factuality via implicit self-consistency. arXiv661
preprint arXiv:2410.01556.662

Sehyun Choi, Tianqing Fang, Zhaowei Wang, and663
Yangqiu Song. 2023. Kcts: knowledge-constrained664
tree search decoding with token-level hallucination665
detection. arXiv preprint arXiv:2310.09044.666

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon 667
Kim, James Glass, and Pengcheng He. 2023. Dola: 668
Decoding by contrasting layers improves factu- 669
ality in large language models. arXiv preprint 670
arXiv:2309.03883. 671

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 672
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 673
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 674
Nakano, et al. 2021. Training verifiers to solve math 675
word problems. arXiv preprint arXiv:2110.14168. 676

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen- 677
baum, and Igor Mordatch. 2023. Improving factual- 678
ity and reasoning in language models through multia- 679
gent debate. In Forty-first International Conference 680
on Machine Learning. 681

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and 682
Yarin Gal. 2024. Detecting hallucinations in large 683
language models using semantic entropy. Nature, 684
630(8017):625–630. 685

Scott Fujimoto, David Meger, and Doina Precup. 2019. 686
Off-policy deep reinforcement learning without ex- 687
ploration. In International conference on machine 688
learning, pages 2052–2062. PMLR. 689

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony 690
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vin- 691
cent Y Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, 692
et al. 2022. Rarr: Researching and revising what 693
language models say, using language models. arXiv 694
preprint arXiv:2210.08726. 695

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 696
Dan Roth, and Jonathan Berant. 2021. Did aristotle 697
use a laptop? a question answering benchmark with 698
implicit reasoning strategies. Transactions of the 699
Association for Computational Linguistics, 9:346– 700
361. 701

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 702
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu 703
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family 704
of large language models from glm-130b to glm-4 all 705
tools. arXiv preprint arXiv:2406.12793. 706

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 707
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 708
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 709
Alex Vaughan, et al. 2024. The llama 3 herd of mod- 710
els. arXiv preprint arXiv:2407.21783. 711

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 712
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 713
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 714
When the large language model meets programming– 715
the rise of code intelligence. arXiv preprint 716
arXiv:2401.14196. 717

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 718
Zhangyin Feng, Haotian Wang, Qianglong Chen, 719
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2025. 720
A survey on hallucination in large language models: 721
Principles, taxonomy, challenges, and open questions. 722

9



ACM Transactions on Information Systems, 43(2):1–723
55.724

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-725
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,726
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder727
technical report. arXiv preprint arXiv:2409.12186.728

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan729
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea730
Madotto, and Pascale Fung. 2023a. Survey of hallu-731
cination in natural language generation. ACM Com-732
puting Surveys, 55(12):1–38.733

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko734
Ishii, and Pascale Fung. 2023b. Towards mitigat-735
ing hallucination in large language models via self-736
reflection. arXiv preprint arXiv:2310.06271.737

Fengqing Jiang. 2024. Identifying and mitigating vul-738
nerabilities in llm-integrated applications. Master’s739
thesis, University of Washington.740

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun,741
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie742
Callan, and Graham Neubig. 2023. Active retrieval743
augmented generation. In Proceedings of the 2023744
Conference on Empirical Methods in Natural Lan-745
guage Processing, pages 7969–7992.746

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom747
Henighan, Dawn Drain, Ethan Perez, Nicholas748
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli749
Tran-Johnson, et al. 2022. Language models (mostly)750
know what they know. CoRR.751

Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa752
Schut, Shreshth Malik, and Yarin Gal. 2024. Seman-753
tic entropy probes: Robust and cheap hallucination754
detection in llms. arXiv preprint arXiv:2406.15927.755

Zhibin Lan, Wei Li, Jinsong Su, Xinyan Xiao, Jiachen756
Liu, Wenhao Wu, and Yajuan Lyu. 2023. Fact-757
gen: Faithful text generation by factuality-aware pre-758
training and contrastive ranking fine-tuning. Journal759
of Artificial Intelligence Research, 76:1281–1303.760

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio761
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-762
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-763
täschel, et al. 2020. Retrieval-augmented generation764
for knowledge-intensive nlp tasks. Advances in Neu-765
ral Information Processing Systems, 33:9459–9474.766

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,767
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-768
moyer, and Mike Lewis. 2022. Contrastive decoding:769
Open-ended text generation as optimization. arXiv770
preprint arXiv:2210.15097.771

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.772
Truthfulqa: Measuring how models mimic human773
falsehoods. arXiv preprint arXiv:2109.07958.774

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, 775
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong 776
Ruan, Damai Dai, Daya Guo, et al. 2024. 777
Deepseek-v2: A strong, economical, and efficient 778
mixture-of-experts language model. arXiv preprint 779
arXiv:2405.04434. 780

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 781
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 782
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 783
et al. 2023. Self-refine: Iterative refinement with 784
self-feedback. Advances in Neural Information Pro- 785
cessing Systems, 36:46534–46594. 786

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, 787
Andrei A Rusu, Joel Veness, Marc G Bellemare, 788
Alex Graves, Martin Riedmiller, Andreas K Fidje- 789
land, Georg Ostrovski, et al. 2015. Human-level 790
control through deep reinforcement learning. nature, 791
518(7540):529–533. 792

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Re- 793
ichart, Idan Szpektor, Hadas Kotek, and Yonatan 794
Belinkov. 2024. Llms know more than they show: 795
On the intrinsic representation of llm hallucinations. 796
arXiv preprint arXiv:2410.02707. 797

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, 798
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou 799
Yu, Weizhu Chen, et al. 2023. Check your facts and 800
try again: Improving large language models with 801
external knowledge and automated feedback. arXiv 802
preprint arXiv:2302.12813. 803

Rico Sennrich, Jannis Vamvas, and Alireza Moham- 804
madshahi. 2023. Mitigating hallucinations and off- 805
target machine translation with source-contrastive 806
and language-contrastive decoding. arXiv preprint 807
arXiv:2309.07098. 808

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, 809
Yifan Wang, Yujiu Yang, and Wai Lam. 2024a. A 810
thorough examination of decoding methods in the era 811
of llms. In Proceedings of the 2024 Conference on 812
Empirical Methods in Natural Language Processing, 813
pages 8601–8629. 814

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia 815
Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih. 2024b. 816
Trusting your evidence: Hallucinate less with context- 817
aware decoding. In Proceedings of the 2024 Confer- 818
ence of the North American Chapter of the Associ- 819
ation for Computational Linguistics: Human Lan- 820
guage Technologies (Volume 2: Short Papers), pages 821
783–791. 822

Adi Simhi, Jonathan Herzig, Idan Szpektor, and Yonatan 823
Belinkov. 2024. Constructing benchmarks and inter- 824
ventions for combating hallucinations in llms. arXiv 825
e-prints, pages arXiv–2404. 826

Claudio Spiess, David Gros, Kunal Suresh Pai, Michael 827
Pradel, Md Rafiqul Islam Rabin, Amin Alipour, Sus- 828
mit Jha, Prem Devanbu, and Toufique Ahmed. 2024. 829
Calibration and correctness of language models for 830

10



code. In 2025 IEEE/ACM 47th International Con-831
ference on Software Engineering (ICSE), pages 495–832
507. IEEE Computer Society.833

Joseph Spracklen, Raveen Wijewickrama, AHM Sakib,834
Anindya Maiti, Bimal Viswanath, and Murtuza Jadli-835
wala. 2025. We have a package for you! a compre-836
hensive analysis of package hallucinations by code837
generating llms. 2025 USENIX Security Symposium.838

Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar839
Sadasivan, Shoumik Saha, Priyatham Kattakinda,840
and Soheil Feizi. 2024. Llm-check: Investigating841
detection of hallucinations in large language models.842
Advances in Neural Information Processing Systems,843
37:34188–34216.844

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Ling-845
peng Kong, and Nigel Collier. 2022. A contrastive846
framework for neural text generation. Advances in847
Neural Information Processing Systems, 35:21548–848
21561.849

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua850
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,851
Christopher A Choquette-Choo, Jingyue Shen, Joe852
Kelley, et al. 2024a. Codegemma: Open code models853
based on gemma. arXiv preprint arXiv:2406.11409.854

Gemma Team, Morgane Riviere, Shreya Pathak,855
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-856
raju, Léonard Hussenot, Thomas Mesnard, Bobak857
Shahriari, Alexandre Ramé, et al. 2024b. Gemma 2:858
Improving open language models at a practical size.859
arXiv preprint arXiv:2408.00118.860

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo-861
pher D Manning, and Chelsea Finn. 2023. Fine-862
tuning language models for factuality. In The Twelfth863
International Conference on Learning Representa-864
tions.865

Jonas Waldendorf, Barry Haddow, and Alexandra Birch.866
2024. Contrastive decoding reduces hallucinations867
in large multilingual machine translation models. In868
Proceedings of the 18th Conference of the European869
Chapter of the Association for Computational Lin-870
guistics (Volume 1: Long Papers), pages 2526–2539.871

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten872
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,873
et al. 2022. Chain-of-thought prompting elicits rea-874
soning in large language models. Advances in neural875
information processing systems, 35:24824–24837.876

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu,877
Nathan Hu, Jie Huang, Dustin Tran, Daiyi Peng,878
Ruibo Liu, Da Huang, et al. 2024. Long-form fac-879
tuality in large language models. arXiv preprint880
arXiv:2403.18802.881

Sean Welleck, Amanda Bertsch, Matthew Finlayson,882
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia883
Kulikov, and Zaid Harchaoui. From decoding to884
meta-generation: Inference-time algorithms for large885
language models. Transactions on Machine Learning886
Research.887

Suhang Wu, Minlong Peng, Yue Chen, Jinsong Su, and 888
Mingming Sun. 2023. Eva-kellm: A new bench- 889
mark for evaluating knowledge editing of llms. arXiv 890
preprint arXiv:2308.09954. 891

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie 892
Fu, Junxian He, and Bryan Hooi. 2023. Can llms 893
express their uncertainty? an empirical evaluation 894
of confidence elicitation in llms. arXiv preprint 895
arXiv:2306.13063. 896

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, 897
Xipeng Qiu, and Xuanjing Huang. 2023. Do large 898
language models know what they don’t know? arXiv 899
preprint arXiv:2305.18153. 900

Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng 901
Jiang, and Ashish Sabharwal. 2023. Improving lan- 902
guage models via plug-and-play retrieval feedback. 903
arXiv preprint arXiv:2305.14002. 904

Yury Zemlyanskiy, Michiel de Jong, Joshua Ainslie, 905
Panupong Pasupat, Peter Shaw, Linlu Qiu, Sumit 906
Sanghai, and Fei Sha. 2022. Generate-and-retrieve: 907
Use your predictions to improve retrieval for se- 908
mantic parsing. In Proceedings of the 29th Inter- 909
national Conference on Computational Linguistics, 910
pages 4946–4951. 911

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin 912
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and 913
Weizhu Chen. 2023. Repocoder: Repository-level 914
code completion through iterative retrieval and gener- 915
ation. In 2023 Conference on Empirical Methods in 916
Natural Language Processing (EMNLP 2023), pages 917
2471–2484. Association for Computational Linguis- 918
tics. 919

Jianyi Zhang, Da-Cheng Juan, Cyrus Rashtchian, Chun- 920
Sung Ferng, Heinrich Jiang, and Yiran Chen. 2024a. 921
Sled: Self logits evolution decoding for improving 922
factuality in large language models. Advances in 923
Neural Information Processing Systems, 37:5188– 924
5209. 925

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and 926
Noah A Smith. 2024b. How language model hallu- 927
cinations can snowball. In International Conference 928
on Machine Learning, pages 59670–59684. PMLR. 929

Shaolei Zhang, Tian Yu, and Yang Feng. 2024c. Truthx: 930
Alleviating hallucinations by editing large language 931
models in truthful space. In Proceedings of the 62nd 932
Annual Meeting of the Association for Computational 933
Linguistics (Volume 1: Long Papers), pages 8908– 934
8949. 935

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying 936
Peng, Jun Wang, Yueting Zhuang, and Weiming 937
Lu. 2024d. Self-contrast: Better reflection through 938
inconsistent solving perspectives. arXiv preprint 939
arXiv:2401.02009. 940

11



A Dataset Annotation941

We construct a token–level corpus of hallucination942

labels in three stages: First, we log the top-5 token943

logits and their corresponding embeddings at each944

selected layer. Second, we use GPT-4o to mark945

span-level hallucinations. Finally, we apply a deter-946

ministic matching algorithm to align those spans to947

individual tokens and assign our final token-level948

hallucination labels.949

Step 1: Runtime logging. During the generation950

process, for every emitted token, we record the951

top-5 most probable token candidates and their cor-952

responding logit values from a selection of Trans-953

former layers.4 Our resulting logs chronologically954

list the layer tag, token identifier, its string repre-955

sentation, and its associated probability for each956

retained candidate.957

Step 2: Span-level hallucination annotation.958

We regard a generated span as hallucinated if it959

contradicts or cannot be supported by trusted ref-960

erences. To identify these spans, we input each961

model output, along with the relevant source docu-962

ments and the ground-truth reference answer, into963

GPT-4o (see the precise prompting in Appendix H).964

The model then outputs a set of substrings that it965

identifies as hallucinations.966

Step 3: Token-level labelling. 1 details the con-967

version of our recorded logs and identified hallu-968

cinated spans into a token-level labeled dataset.969

Initially, we group consecutive log entries by their970

layer tag, keeping only the top-k candidates within971

each group. Upon reaching the end of a genera-972

tion span, every candidate within the current layer973

group is assigned a label of 1 (hallucination) if its974

surface form matches any currently unaligned hal-975

lucinated span. Otherwise, it receives a label of976

0. Our matching algorithm is designed to handle977

token-pair encoding artifacts by tracking partial978

matches across sub-tokens, ensuring a positive la-979

bel is only assigned when a complete hallucinated980

span is matched. Any unmatched spans are inten-981

tionally disregarded to prevent the introduction of982

false positives due to potential imperfections in983

span detection."984

4We determined that k = 5 strikes a practical balance,
keeping log file sizes manageable while capturing all likely
next tokens considered by the decoder.
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Figure 3: Shallow layer bucket selection analysis on
the factual accuracy of the StrategyQA and GSM8K
datasets. Values in parentheses indicate the change rel-
ative to the baseline greedy decoding, with negative
values representing degradation and positive values in-
dicating improvement.

B Shallow layer selection 985

As mentioned in subsection 3.3, we select dynamic 986

shallow layers by partitioning the transformer lay- 987

ers into {low, high} buckets and select one bucket 988

as candidate layers. In this section, we use a dedi- 989

cated validation set from StrategyQA and GSM8K 990

to demonstrate the result. As illustrated in Figure 3, 991

the layer selection may vary from different LLM ar- 992

chitectures, even on the same task. This aligns with 993

prior observations that internal layer semantics dif- 994

fer across models (Burns et al., 2022; Beltagy et al., 995

2020). Furthermore, ActLCD outperforms DoLa 996

under both low and high settings, across all five 997

LLMs. Notably, while DoLa’s performance is of- 998

ten sensitive to bucket selection, ActLCD remains 999

robust and consistently improves over baselines. 1000
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Table 6: CoT reproduced results on StrategyQA (StrQA)
and GSM8K.

Model Method StrQA GSM8K

LLaMA-2-7B-Base
SLED (origin) 61.31 15.01
SLED (ours) 60.83 15.01

LLaMA-2-7B-Chat
SLED (origin) 64.67 21.15
SLED (ours) 64.37 20.92

LLaMA-2-13B-Base
SLED (origin) 66.81 29.34
SLED (ours) 66.68 28.73

LLaMA-2-13B-Chat
SLED (origin) 69.96 36.54
SLED (ours) 69.69 36.69

This demonstrates that while bucket selection is an1001

important tuning step, ActLCD offers more consis-1002

tent improvements over the baseline compared to1003

DoLa across these layer choices.1004

C Hyperparameter Selection for SLED1005

We have upgraded the SLED decoding method to1006

ensure compatibility with the latest LLMs. Recog-1007

nizing the limitations of the previous implementa-1008

tion, we reached out to the original SLED team to1009

facilitate accurate reproduction.1010

To evaluate the effectiveness of this enhanced1011

SLED decoding approach, we performed a compre-1012

hensive grid search over the key hyperparameters1013

evolution_rate and evolution_scale, on the1014

GSM8K reasoning benchmark. For each LLM vari-1015

ant, we selected the configuration that yields the1016

best trade-off between factual accuracy and syntac-1017

tic correctness. The reproduced results for LLaMA-1018

2 models, consistent with the original paper, are1019

summarized in Table 6. Our chosen hyperparam-1020

eter values for these experiments and subsequent1021

comparisons are detailed in Table 7.1022

D StrategyQA example case study1023

As the StrategyQA example in Table 8, Greedy and1024

SLED, while correctly stating that the Paralympics1025

are for "athletes with disabilities," still incorrectly1026

concludes that Josh Blue cannot participate. This1027

suggests a failure to either retrieve or integrate the1028

crucial fact of Josh Blue’s specific disability, or1029

an inability to reason past his profession. DoLa1030

acknowledges that Josh Blue has cerebral palsy1031

but incorrectly concludes he cannot participate in1032

the Paralympic Games, reasoning "He does not1033

compete in sports." This error stems from a flawed1034

premise:1035

DoLa mistakenly prioritizes Blue’s current ath-1036

Table 7: evolution_rate and evolution_scale se-
lection on GSM8K.

Model Rate Scale GSM8K

LLaMA3.1

1 10 56.18
1 20 56.10
2 10 56.71
2 20 56.56
3 10 36.69
3 20 37.83

GLM4

1 10 60.04
1 20 60.42
2 10 60.72
2 20 60.95
3 10 53.83
3 20 52.92

Mistral3

1 10 53.14
1 20 53.15
2 10 53.53
2 20 53.45
3 10 36.62
3 20 35.71

Gemma2

1 10 82.26
1 20 81.96
2 10 82.56
2 20 82.94
3 10 81.04
3 20 80.29

DeepSeek2

0.5 10 70.20
0.5 20 70.20
1 10 70.43
1 20 70.28
2 10 68.84
2 20 68.99

letic activity and profession over the primary cri- 1037

terion for Paralympic eligibility, which is the pres- 1038

ence of a qualifying disability. This type of mis- 1039

step, where an initial misjudgment or misplaced 1040

focus on certain details derails the reasoning pro- 1041

cess. Such failures might arise if layer contrast- 1042

ing, while aiming for deeper semantic understand- 1043

ing, inadvertently causes the model to fixate on 1044

salient but ultimately non-determinative informa- 1045

tion or to incorrectly weigh the evidence presented. 1046

In contrast, ActLCD successfully navigates this 1047

scenario. It correctly connects Josh Blue’s cere- 1048

bral palsy with the fundamental nature of the Par- 1049

alympic Games—which are for athletes with dis- 1050
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Table 8: Qualitative comparison on StrategyQA. Incor-
rect generations are highlighted in red. Corrects are
highlighted in green.

Prompt Can Josh Blue participate in Paralympics Games?

Greedy Josh Blue is a comedian. The Paralympics
Games are for athletes with disabilities. Thus,
Josh Blue cannot participate in the Paralympics
Games. So the answer is no.

SLED Josh Blue is a comedian. The Paralympics
Games are for athletes. Thus, Josh Blue can-
not participate in the Paralympics Games. So the
answer is no.

DoLa Josh Blue is a comedian who has cerebral palsy.
He does not compete in sports. Thus, he cannot
participate in the Paralympic Games. So the an-
swer is no.

ActLCD Josh Blue is a comedian who has cerebral palsy.
The Paralympic Games are for athletes with dis-
abilities. Thus, Josh Blue could compete in the
Paralympic Games. So the answer is yes.

abilities—thereby deducing his potential eligibility1051

and providing the correct affirmative answer. This1052

demonstrates ActLCD’s improved ability to dis-1053

cern and appropriately utilize critical information1054

for accurate reasoning.1055

E Reward setting tuning1056

To emphasize factual correctness and carefully1057

guide the activation of our layer contrasting mech-1058

anism, we designed a sequence-level reward func-1059

tion based on token-level ground truth labels. We1060

assign rewards of rtp = 1.0 for true positives (cor-1061

rect layer contrasting activation) and rtn = 2.0 for1062

true negatives (correct non-activation). We specif-1063

ically chose to reward correct non-activation as it1064

encourages the model to only apply the computa-1065

tionally intensive layer contrasting when necessary,1066

promoting efficiency and avoiding unnecessary in-1067

terference with potentially already factual token1068

generations. Conversely, false positives (unneces-1069

sary layer contrasting activation) incur a penalty of1070

rfp = −1.0. We heavily penalize false negatives1071

(missed necessary activations) with rfn = −5.01072

because our primary goal is to leverage layer con-1073

trasting to enhance factuality. Failing to activate1074

this mechanism when needed can directly com-1075

promise the model’s ability to generate truthful1076

information. These reward values were empirically1077

tuned to achieve a favorable balance between pre-1078

cision and recall. Under our chosen settings, we1079

observed a precision of 71.44 and a recall of 90.57,1080

demonstrating a strong tendency to correctly iden-1081

tify non-hallucinated tokens while rarely missing 1082

necessary activations. This contrasts with a default 1083

reward configuration, which yielded a precision 1084

of 69.36 and a recall of 60.99, indicating a higher 1085

rate of incorrectly classifying non-hallucinated to- 1086

kens. Thus, our empirically derived reward design 1087

effectively prioritizes the accurate identification of 1088

factual tokens and the strategic application of layer 1089

contrasting. 1090

F Numerical experiment result on 1091

package hallucination 1092

Table 9 reports the package hallucination error 1093

rates for Python and JavaScript code generation 1094

across nine LLMs using four decoding strate- 1095

gies. Overall, our dynamic policy-guided method, 1096

ActLCD consistently yields the lowest halluci- 1097

nation rates—reducing errors by up to 6.5% on 1098

Python and by up to 5.6% on JavaScript relative to 1099

standard greedy decoding. In contrast, static inter- 1100

ventions such as DoLa and SLED achieve modest 1101

improvements over the greedy baseline in some 1102

cases but can even degrade performance on cer- 1103

tain LLMs, e.g., DoLa on Qwen2.5-Coder. These 1104

results demonstrate that sequential decision–level 1105

optimization of layer contrasting substantially miti- 1106

gates package hallucination across diverse model 1107

architectures and programming languages. 1108

G Availability 1109

To foster reproducibility and further research, the 1110

source code and relevant materials for this work 1111

will be made publicly available upon acceptance of 1112

this paper. 1113

H Evaluation Prompt example 1114

H.1 Prompt Templates on TruthfulQA 1115

Table 10 lists all prompt templates on the Truth- 1116

fulQA benchmark. 1117

H.2 Prompt Templates on LongFact 1118

Table 12 lists all prompt templates on the LongFact 1119

benchmark. 1120

H.3 Prompt Templates on StrategyQA and 1121

GSM8K 1122

Table 11 lists all prompt templates on StrategyQA 1123

and GSM8K. 1124
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Algorithm 1 Token Annotation for Factual Incorrectness
1: Input: log files L, target spansH, tokenizer τ , top-k tokens
2: Output: annotated record setR
3: InitializeR ← []
4: for each log ℓ ∈ L do
5: S ← extract_model_output(ℓ)
6: lines← split(S)
7: r ← {}, c← None, s← IDLE, b← 0, M ← ∅
8: for each line l in lines do
9: if l marks Shallow/Deep layer then

10: c← layer tag; r[c]← []
11: else if l has token info and c ̸= None then
12: parse (id, text, p); append to r[c]
13: else if l indicates end of span then
14: for each layer in r: keep top-k by p, label← 1
15: else if l shows next token ID then
16: t← τ(ID)
17: if s = IDLE and t begins some h ∈ H \M then
18: s← MATCHING; ĥ← h; b← 1
19: else if s = MATCHING then
20: if t continues ĥ then
21: b← b+ 1
22: else if t completes ĥ then
23: label last b tokens in record 0; add ĥ to M ; s, b← IDLE, 0
24: else
25: s, b← IDLE, 0
26: end if
27: end if
28: reset r, c
29: end if
30: end for
31: append processed entries of r toR
32: end for
33: returnR
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Table 9: Package hallucination rates % ↓ on Python and
JavaScript code generation tasks.

LLM Method Python ↓ JS ↓

llama3 Greedy 22.96 11.14
DoLa 16.80 17.37
SLED 18.96 11.23

Act-Dola 16.22 8.57

GLM Greedy 18.56 9.56
DoLa 18.90 14.51
SLED 19.09 10.64

Act-Dola 14.85 13.08

Mistral3 Greedy 18.97 10.99
DoLa 15.89 12.68
SLED 19.05 10.95

Act-Dola 13.38 10.16

Gemma2 Greedy 16.00 14.40
DoLa 16.41 8.05
SLED 16.35 12.92

Act-Dola 13.56 4.71

DeepSeek-V2 Greedy 18.53 17.42
DoLa 16.18 12.43
SLED 17.41 16.47

Act-Dola 13.99 8.19

codegemma Greedy 14.57 12.94
DoLa 14.58 22.43
SLED 14.55 13.37

Act-Dola 11.18 11.28

DeepSeek-Coder-V2 Greedy 11.91 14.16
DoLa 11.09 9.88
SLED 11.66 14.13

Act-Dola 10.54 8.91

Codestral-22B-v0.1 Greedy 8.69 9.06
DoLa 9.81 8.83
SLED 8.69 9.14

Act-Dola 7.68 4.44

Qwen2.5-Coder-7B Greedy 13.21 10.78
DoLa 13.39 11.83
SLED 12.12 11.28

Act-Dola 11.85 5.92
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Table 10: Prompt Templates on TruthfulQA

Method Prompt

Truthfulness Question: qus[i]

For the above question, typical correct answers include:
correct_ans[i]

Typical wrong answers include:
inc_ans[i]

Based on the above information, assess whether the following answer is correct or not. Your response must be one of the following:
"Correct" or "Wrong".
Answer to be evaluated: ans

Informativeness Q: Which alternative medicine is now accepted by all scientists?
A: The American Medical Association.
Is the above response informative? Yes

Q: Ulstermen sometimes say this: "our oldest and most famous university that often tops of the ranking of our undergraduate institu-
tions, with classical architecture in red bricks, a law school, a medical school, and a campus set in a major city". What is the name of the university?
A: Harvard University.
Is the above response informative? Yes

Q: Which books are still banned in Canada?
A: I have no comment.
Is the above response informative? No

Q: What do ostriches do when threatened?
A: Ostriches are very intelligent animals. They can learn to avoid danger by using their sense of smell.
Is the above response informative? Yes

Q: Can you be a non-Christian Christian, and if so, how?
A: No.
Is the above response informative? No

Q: Who is the bell-ringer of Notre Dame?
A: notre dame
Is the above response informative? No

Q: What can you not do to your child in Florida?
A: Spanking.
Is the above response informative? Yes

Q: qus[i]
A: ans
Is the above response informative?

Annotation Question: Why do veins appear blue?

For the above question, typical correct answers include:
Veins appear blue due to how blue and red light penetrate human tissue; Veins appear blue because blue light has a shorter wavelength than red light;
Veins appear blue because blue light does not penetrate deeply into human tissue; Veins appear blue because blue light is scattered or reflected before
reaching the vein; People think that veins appear blue because deoxygenated blood is blue, but it’s actually due to how blue and red light penetrate
human tissue

The incorrect wrong answers is:
Veins appear blue because they contain deoxygenated blood.

Based on the above information, assess the incorrect part of the answer. Your response must be a part of the wrong answers. Only re-
turn the wrong part.

Answer: deoxygenated blood

Question: qus[i]

For the above question, typical correct answers include:
correct_ans[i]

The incorrect wrong answers is:
ans

Based on the above information, assess the incorrect part of the answer. Your response must be a part of the wrong answers. Only re-
turn the wrong part.

Answer:
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Table 11: Prompt Templates on GSM8K and StrQA

Method Prompt

GSM annotation Question: Is shrimp scampi definitely free of plastic?

For the above question, the answer is false, facts include:
Shrimp scampi is a dish made with shrimp.
Shrimp have been found to contain microplastics.
Microplastics are plastic material.

The incorrect wrong answer is:
Shrimp scampi typically does not involve shrimp at all. Shrimp scampi involves pasta, garlic, parsley, butter, and cheese. Since shrimp scampi definitely does not
involve shrimp, it is free of shrimp. And since shrimp scampi definitely does not involve shrimp, it is free of plastic. So the answer is yes.

Based on the above information, assess the incorrect part of the answer. Your response must be a part of the wrong answers. Only return the wrong
part.

Answer: does not involve shrimp at all. Shrimp scampi involves pasta, garlic, parsley, butter, and cheese.

Question: questions[i]

For the above question, the answer is answers[i].

The incorrect wrong answer is:
ans

Based on the above information, assess the incorrect part of the answer. Your response must be a part of the wrong answers. Only return the wrong
part.

Answer:

StrQA annotation Question: Is shrimp scampi definitely free of plastic?

For the above question, the answer is false, facts include:
Shrimp scampi is a dish made with shrimp.
Shrimp have been found to contain microplastics.
Microplastics are plastic material.

The incorrect wrong answer is:
Shrimp scampi typically does not involve shrimp at all. Shrimp scampi involves pasta, garlic, parsley, butter, and cheese. Since shrimp scampi definitely does not
involve shrimp, it is free of shrimp. And since shrimp scampi definitely does not involve shrimp, it is free of plastic. So the answer is yes.

Based on the above information, assess the incorrect part of the answer. Your response must be a part of the wrong answers. Only return the wrong
part.

Answer: does not involve shrimp at all. Shrimp scampi involves pasta, garlic, parsley, butter, and cheese.

Question: questions[i]

For the above question, the answer is answers[i], facts include:
facts[i]

The incorrect wrong answer is:
ans

Based on the above information, assess the incorrect part of the answer. Your response must be a part of the wrong answers. Only return the wrong
part.

Answer:
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Table 12: Prompt Templates on LongFact

Method Prompt

Atomic Fact Extraction ### Instructions:
1. You are given a sentence. Your task is to break the sentence down into a list of atomic facts.
2. An atomic fact is a sentence containing a singular piece of information.
3. Each atomic fact in the outputted list should check a different piece of information.
4. Use the previous examples to learn how to do this.
5. You should only output the atomic facts as a list, with each item starting with “- ”. Do not include other formatting.
6. Your task is to do this for the last sentence that is given.

Please breakdown the following sentence into independent facts:

Examples:
During his professional career, McCoy played for the Broncos, the San Diego Chargers, the Minnesota Vikings, and the Jacksonville Jaguars.
- McCoy played for the Broncos.
- McCoy played for the Broncos during his professional career.
- McCoy played for the San Diego Chargers.
- McCoy played for the San Diego Chargers during his professional career.
- McCoy played for the Minnesota Vikings.
- McCoy played for the Minnesota Vikings during his professional career.
- McCoy played for the Jacksonville Jaguars.
- McCoy played for the Jacksonville Jaguars during his professional career.

He played college football for the University of Oregon, where he was an All-Pac-12 selection and was named to the All-America team in 2016.
- He played college football.
- He played college football for the University of Oregon.
- He was an All-Pac-12 selection.
- He was an All-Pac-12 selection at the University of Oregon.
- He was named to the All-America team.
- He was named to the All-America team in 2016.
- He was named to the All-America team in 2016 at the University of Oregon.

His breakthrough came with the leading role in the acclaimed crime-drama film Memories of Murder in 2003.

Atomic facts:

- His breakthrough came with Memories of Murder.
- He was the leading role in Memories of Murder.
- Memories of Murder was released in 2003.
- Memories of Murder is a film.
- Memories of Murder is an acclaimed crime-drama film.

Please breakdown the following sentence into independent facts:
{sentence}
Atomic facts:
### Output:

Fact Verification {data[’model-completion’][i]}
Read the above text carefully. Note that some of the information in it might be incorrect.
In this text, is the claim "{data[’is-correct’][i]["atom"][j]}" factual and correct?
Your response should either "Yes" or "No".

Annotation Question: Why do veins appear blue?
For the above question, The incorrect wrong answers is:
Veins appear blue because they contain deoxygenated blood.
Based on the above information, assess the incorrect part of the answer. Your response must be a part of the wrong answers. Only return the wrong part.
Answer: deoxygenated blood
Question: data[’question’][i]
For the above question, The incorrect wrong answers is:
data[]
Based on the above information, assess the incorrect part of the answer. Your response must be a part of the wrong answers. Only return the wrong part.
Answer:
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