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Abstract
Offline-to-online Reinforcement Learning (O2O
RL) aims to perform online fine-tuning on an of-
fline pre-trained policy to minimize costly online
interactions. Existing work uses offline datasets
to generate data that conform to the online data
distribution for data augmentation. However, gen-
erated data still exhibits a gap with the online
data, limiting overall performance. To address
this issue, we propose a new data augmentation
approach, Classifier-Free Diffusion Generation
(CFDG). Without introducing additional classifier
training overhead, CFDG leverages classifier-free
guidance diffusion to significantly enhance the
generation quality of offline and online data with
different distributions. Additionally, it employs
a reweighting method to enable more generated
data to align with the online data, enhancing per-
formance while maintaining the agent’s stabil-
ity. Experimental results show that CFDG out-
performs replaying the two data types or using
a standard diffusion model to generate new data.
Our method is versatile and can be integrated with
existing offline-to-online RL algorithms. By im-
plementing CFDG to popular methods IQL, PEX
and APL, we achieve a notable 15% average im-
provement in empirical performance on the D4RL
benchmark such as MuJoCo and AntMaze.

1. Introduction
Traditionally, Reinforcement Learning (RL) (Haarnoja et al.,
2018) is considered a paradigm for online learning, where
agents learn from online interactions with the environment.
Due to costly online interactions in some real-world appli-
cations, offline RL (Levine et al., 2020) is proposed where
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agents learn from a static dataset pre-collected by arbitrary
policies. Current research in offline RL focuses primarily
on addressing the challenge of distribution mismatch or out-
of-distribution (OOD) actions through the implementation
of a pessimistic update scheme (Kumar et al., 2020) or in
combination with imitation learning (Kumar et al., 2019).
However, when dealing with a fixed and suboptimal dataset,
it becomes exceedingly challenging for offline RL to attain
the optimal policy (Kidambi et al., 2020).

Some recent work addresses the above issues by employing
an offline-to-online setting. Such methods (Lee et al., 2022;
Nair et al., 2020) focus on pre-training a policy using the
offline dataset and fine-tuning the policy through further
online interactions. O2O RL aims to fine-tune a pre-trained
policy using limited online interactions to achieve the op-
timal policy. To utilize the offline dataset, some studies
directly replayed samples in the online phase (Lee et al.,
2022), leading to performance improvements. Nevertheless,
this approach neglects the distribution shift issue, as the
data distribution in the offline dataset may differ from that
induced by the current policy. To address the distribution
shift problem, existing work (Zheng et al., 2023) suggests
that their different characteristics require separate updat-
ing strategies for online and offline data, respectively. In
particular, offline data can deter agents from prematurely
converging to suboptimal policies due to the diversity of
available data, while online data can contribute to train-
ing stability and accelerate convergence (Nair et al., 2020;
Thrun & Littman, 2000).

In addition to fully utilizing offline and online data, there
are also works that leverage generative models for data
augmentation to provide diverse samples for the agent’s
training. Prior work has considered upsampling online data
with VAEs or GANs (Huang et al., 2017; Imre, 2021). To
fully leverage offline data, Energy-guided Diffusion Sam-
pling (EDIS) (Liu et al., 2024) generates data aligned with
the online policy based on the offline dataset to address
the issue of distribution shift. In addition to using a dif-
fusion model to generate data, it formulates three distinct
energy functions to guide the diffusion sampling process,
ensuring alignment with the online policy. Intuitively, on-
line data is more closely aligned with the current online
policy. The limitation of previous works lies in using of-
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fline data for data augmentation, resulting in generated data
that still exhibits significant discrepancies from the online
policy. Although it achieves good results, adding multiple
new models introduces additional training overhead and
time costs, and the entire guidance process becomes quite
complex. Consequently, a fundamental question arises: Can
we use a simpler approach to guide the model in generating
higher-quality data?

To address this issue, we revisit the relationship between
offline data and online data and conduct a distributional anal-
ysis for both types of data and the generated data. Given the
completely distinct characteristics of offline and online data,
we perform data augmentation for both simultaneously. To
simplify the model, we utilize a classifier-free guidance dif-
fusion model for data augmentation. This approach serves
two purposes: first, it treats offline and online data as two
labeled categories, enabling simultaneous sampling of both
types with a single training process, thereby reducing time
costs; second, it avoids using an additional pre-trained clas-
sifier, allowing data augmentation to adapt to varying data
distributions in different RL tasks. After data generation,
we use a reweighting method to prioritize data that is more
aligned with the online policy for agent training, aiming
to improve performance. Experimental results show that
our CFDG method not only enhances the quality of gener-
ated samples compared to existing model-based methods
but also significantly improves the performance of O2O RL.
Our contributions are summarized below:

• We analyzed the distributions of offline data, online
data, and the generated data in O2O RL and found
that the current method still generates data that is not
sufficiently aligned with the online policy.

• By treating offline data and online data as two distinct
labels, we introduce classifier-free guidance to direct
the diffusion model in generating both types of data.
We perform reweighting on the generated data to make
it more aligned with the online policy.

• We conducted experiments on the Locomotion and
AntMaze tasks, demonstrating that our data augmen-
tation method significantly improves multiple O2O
RL algorithms, including IQL, PEX, and APL. Fur-
thermore, our approach outperforms the existing data
augmentation method EDIS.

2. Preliminaries
We represent the environment as a Markov decision pro-
cess (MDP) defined by a tuple (S,A, P,R, ρ0, γ), where
S is the state space, A is the action space, P (s′ | s, a) is
the transition distribution, ρ0 is the initial state distribution,
R(s, a) is the reward function and γ ∈ (0, 1) is the dis-
count factor. The objective of RL agent is to find a policy

π(a | s) that maximizes the expected cumulative return
Eπ[

∑∞
t=0 γ

trt+1].

2.1. Offline Reinforcement Learning

In Offline RL, the agent can only access a static dataset
D collected by a behavior policy πβ(a | s). Offline RL
approaches can take advantage of the offline dataset to train
a critic network (Q-function) Qπ

θ (s, a) with parameters θ,
which estimates the long-term discounted reward achieved
by executing action a in state s and following the policy
π. The critic network can be trained using the following
temporal difference (TD) learning objective:

LQ(θ) = E(s,a,r,s′)∼D

[(
r + γQθ̂ (s

′, πϕ (s
′))−Qθ(s, a)

)2]
,

(1)

where θ̂ denotes the target value network for stabilizing the
learning process. Since πϕ(s

′) is potentially out of the dis-
tribution, Qθ could give an incorrect value, resulting in sub-
optimal policies. To mitigate the well-known extrapolation
error in value networks for OOD actions (Fujimoto et al.,
2019; Kumar et al., 2020), offline RL methods typically
constrain the policy to perform actions close to the dataset
through policy constraint (Fujimoto et al., 2019; Fujimoto
& Gu, 2021; Kumar et al., 2019), value regularization (Ku-
mar et al., 2020; An et al., 2021), etc. One representative
offline RL method is CQL (Kumar et al., 2020). CQL adds
a conservative regularizerR(θ) to prevent overestimation in
the Q-values for OOD actions by minimizing the Q-values
under the policy π. The training objective of CQL is given
by

minλ (Es∼D,a∼π [Qθ(s, a)]− Es,a∼D [Qθ(s, a)])︸ ︷︷ ︸
Conservative regularizer R(θ)

+
1

2
LQ(θ),

(2)

where λ balances the standard policy improvement loss and
conservative regularization.

2.2. Offline-to-online Reinforcement Learning

Building upon the concepts of offline RL, offline-to-online
RL aims at enhancing performance by fine-tuning pre-
trained offline policy, which contains two phases: (i) offline
pre-training, where offline datasets are used to pre-train the
policy, and (ii) online fine-tuning, where online interactions
are used to refine the pre-trained policy.

Currently, in O2O RL algorithms, there are two paradigms
for utilizing offline data and online data. An approach is to
set the ratio of online data to offline data at 1:1, ensuring
each batch contains an equal split of online and offline data,
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such as PEX (Zhang et al., 2023) and Cal-QL (Nakamoto
et al., 2024). Another approach utilizes an online-offline
replay buffer (OORB) in APL (Zheng et al., 2023) and
SUNG (Guo et al., 2023), with each batch having a prob-
ability p of containing online data and a probability 1− p
of containing offline data. As mentioned in Equation (2),
λ is a trade-off coefficient and decides whether we use the
regularizer. When data is sampled from the online buffer,
λ is set to 0, otherwise 1. Formally, this strategy can be
explained below:

λ←

{
0 if (s,a) ∼ online buffer
1 otherwise.

(3)

2.3. Diffusion Models

Diffusion models (Ho et al., 2020) are a class of generative
models inspired by non-equilibrium thermodynamics that
learn to iteratively reverse a forward noising process and
generate samples from noise. Diffusion models define a
probability distribution pθ(x0) for the observed data x0 by
marginalizing over the latent variables x1, . . . , xT , where
pθ(x0) :=

∫
pθ(x0:T )dx1:T . A forward diffusion chain

gradually adds noise to the data x0 ∼ q(x0) in T steps with
a pre-defined variance schedule βi, expressed as

q(x1:T |x0) :=
∏T

t=1 q(xt |xt−1),

q(xt |xt−1) := N (xt;
√

1− βtxt−1, βtI).
(4)

A reverse diffusion chain, constructed as pθ(x0:T ) :=

N (xT ;0, I)
∏T

t=1 pθ(xt−1 |xt), is then optimized by
maximizing the evidence lower bound defined as
Eq[ln

pθ(x0:T )
q(x1:T | x0)

] (Blei et al., 2017). After training, sam-
pling from the diffusion model involves sampling xT ∼
p(xT ) and running the reverse diffusion chain to go from
t = T to t = 0.

2.4. Classifier-free Guidance

In practical scenarios, a growing demand exists to condi-
tion the generation on a label c. For example, diffusion
models can generate images consistent with input prompts
in image synthesis. To address this requirement, classifier
guidance (Dhariwal & Nichol, 2021) incorporates an auxil-
iary classifier pϕ(c|xt) to guide the sampling in each reverse
denoising step, thereby increasing the likelihood of c given
xt. While this method has demonstrated some performance
improvements, training a robust classifier for all reverse
steps, particularly for the highly noisy input at the initial
step, poses a significant challenge and incurs additional
training costs.

To avoid training a separate classifier model, classifier-free
guidance (Ho & Salimans, 2021) takes c as another input of

the denoising neural network to model the conditional dif-
fusion score, i.e., ϵθ(xt, c, t) ≈ −σt∇xt log p(xt|c) while
the unconditional score ϵθ(xt, t) is jointly estimated by ran-
domly dropping the text prompt with a certain probability at
each training iteration. Then the gradients for the classifier
pϕ(c|xt) can be estimated as:

∇xt
log p(c|xt) = ∇xt

log pθ(xt|y)−∇xt
log pθ(xt)

= − 1

σt
(ϵθ(xt, c, t)− ϵθ(xt, t)).

(5)

Then the corresponding diffusion score can be derived as:

ϵ̂θ(xt.c, t) = ϵθ(xt, t) + w(ϵθ(xt, c, t)− ϵθ(xt, t)), (6)

where w is set as a global scalar parameter to control the
guidance degree of the condition.

3. Classifier-free Diffusion Generation
In order to perform data augmentation for different types
of data, in this section, we first visualize the data distribu-
tions of offline and online data in O2O RL and analyze the
data generated by EDIS (Liu et al., 2024). To ensure the
generated data aligns better with online data, we chose to
use classifier-free guidance to direct the diffusion model
in generating both online and offline data. This approach
eliminates the need for a pre-trained classifier before sam-
pling, reducing training costs and making it more adaptable
to different RL tasks than other guidance methods.

3.1. Data Distribution Analysis

To effectively perform data augmentation in O2O RL, it is
essential to conduct a detailed analysis of the distributions
of both offline and online data. We conducted experiments
on EDIS and simultaneously analyzed the data generated by
it. We employed t-SNE (Van der Maaten & Hinton, 2008),
a dimensionality reduction technique designed to visualize
high-dimensional data by mapping it into a low-dimensional
space while preserving local structures. This method was
used to analyze three types of data: the offline dataset, the
online data collected during the fine-tuning process, and the
generated data from the diffusion model.

As shown in the left panel of Figure 1, the offline data is
more evenly distributed, while the online data is more dis-
persed. The generated data primarily learns from the offline
data and is adjusted towards the current online policy using
energy guidance. As a result, the generated data retains most
of the characteristics of the offline data while also exhibiting
some similarities to the online data. This is why EDIS opts
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Figure 1: The t-SNE visualization of offline, online, and
generated data. The left plot shows generated data from
EDIS, and the right plot shows data from CFDG (Ours).

to replace the offline data with the generated data during
the agent training process, using the generated data in con-
junction with the online data. Although EDIS allows offline
data to align with online data to some extent, it overlooks
the fact that online data itself can also be augmented. Given
the limited number of online data samples, augmenting on-
line data can better adapt to the current policy and provide
more samples to strengthen the policy’s performance. In the
Section 4.2, we also found that direct use of online data for
generation yields better results than EDIS.

Based on the above analysis, directly augmenting online
data is more effective than augmenting offline data. How-
ever, we also aim to maximize the utilization of both online
and offline data, addressing the limited quantity of online
data while ensuring that both types of data are better aligned
with the current policy. Then, whether to augment both
types of data naturally led us to consider using conditional
diffusion. To better adapt both types of data to the current
policy changes, we use classifier guidance to steer the dif-
fusion model in generating new data that aligns with the
changing data distribution.

3.2. Classifier-free Guidance Sampling

Classifier-free guidance (Ho & Salimans, 2021) does not
require an additional classifier but instead trains the model
using both conditional and unconditional inputs based on
labels. For the classifier guidance method (Dhariwal &
Nichol, 2021), the classifier is trained using noise-corrupted
data produced by the forward process of the conditional
diffusion model. Consequently, training an additional clas-
sifier can be difficult, especially when a significant amount
of noise is added to the clean data. Classifier-free guidance
can solve the above issues and eliminate the need for a pre-
trained classifier before sampling, reducing training costs
and making it more adaptable to different tasks than the
classifier guidance method.

We built on the original code implementation of classifier-
free guidance, integrating it into the Elucidated Diffusion
Model (Karras et al., 2022). We chose to train an uncon-
ditional diffusion model pθ(z) parameterized through a

score estimator ϵθ(zλ) together with a conditional model
pθ(z|c) parameterized through ϵθ(zλ, c). We use a sin-
gle neural network to parameterize both models, where for
the unconditional model we can simply input a null token
∅ for the class identifier c when predicting the score, i.e.
ϵθ(zλ) = ϵθ(zλ, c = ∅). We jointly train the uncondi-
tional and conditional models simply by randomly setting c
to the unconditional class identifier ∅ with some probability
puncond, set as a hyperparameter. We then perform sampling
using the following linear combination of conditional and
unconditional score estimates:

ϵ̃θ(zλ, c) = (1 + w)ϵθ(zλ, c)− wϵθ(zλ), (7)

where w is a parameter that controls the degree of the clas-
sifier guidance. ϵ̃θ is constructed from score estimates that
are non-conservative vector fields due to the use of uncon-
strained neural networks, so there in general cannot exist a
scalar potential such as a classifier log likelihood for which
ϵ̃θ is the classifier-guided score.

Algorithm 1 Classifier-free guidance sampling in O2O RL.
Our additions are highlighted in blue.

Input: Offline phase loss function {LQθ

offline,L
πϕ

offline},
online phase loss function {LQθ

online,L
πϕ

online}, classifier-
guidance diffusion model M .
Initialize: θ, ϕ, online buffer Don, offline buffer Doff,
offline synthetic buffer Doff syn, online synthetic buffer
Don syn
while in offline training phase do

Offline policy training using batches from the offline
replay buffer Doff
θ ← θ − λQ∇θLQθ

offline(θ), ϕ← ϕ− λπ∇ϕL
πϕ

offline(ϕ)
end while
while in online training phase do

for each environment step do
Don ← Don ∪ {(s, a, s′, r)}

end for
if step meets M update frequency then

Update the conditional diffusion model M with sam-
ples from Doff and Don
Generate offline samples from M and add them to
Doff syn
Generate online samples from M and add them to
Don syn

end if
for each gradient step do

Sample data from Don ∪Doff∪ Doff syn ∪Don syn

θ ← θ−λQ∇θLQθ

online(θ), ϕ← ϕ−λπ∇ϕL
πϕ

online(ϕ)
end for

end while

In the O2O RL setting, we use the classifier-free diffusion
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model to augment both online data and offline data during
the online phase. Algorithm 1 describes the classifier-free
guidance sampling process in detail. To reduce the high time
cost of constructing the diffusion model and generating data,
we set an update frequency to perform data augmentation
using the diffusion model at regular intervals. During the
online training phase, we update our diffusion model M
using samples from the offline buffer Doff and online buffer
Don. Then the diffusion model M can sample synthetic data
and add them to the synthetic buffer Doff syn and Don syn.
After data generation, we can sample batches from the four
buffers mentioned. To make the most of different types of
data, we need to design specific data utilization methods
tailored to different O2O RL algorithms.

3.3. Data Reweighting

O2O RL algorithms usually combine the offline data and
online data with a ratio during the training process. Since
the addition of synthetic data, another hyperparameter, the
synthetic data ratio r is also required in our framework. In
our data augmentation method, synthetic data are sampled
from Doff syn and Don syn. To better align with the online
policy, we adjust the sampling ratio and reweight the data,
increasing the weight of the online synthetic data.

We first treat the online synthetic data and offline synthetic
data as a whole and define how they should be used in
relation to the offline data and online data. According to the
two data usage methods mentioned in Section 2.2, we design
two new data usage methods for synthetic data. For the first
method, which combines 50% online data and 50% offline
data, we use a simple method that concatenates synthetic
data with sampled online data and offline data. The synthetic
data ratio r represents the proportion of synthetic data in
each batch. Each batch is a concatenation of online data,
offline data, and synthetic data.

For the second method for utilizing data, online data and
offline data are sampled from OORB following a Bernoulli
distribution. With a probability p, data is sampled from the
online buffer, and with probability 1− p, they are sampled
from the offline buffer. Besides, when data is sampled from
the online buffer, λ is set to 0, otherwise 1, as Equation 3
shows. Since we add synthetic data into the framework, we
use a simple method where synthetic data can be seen as
part of online data or offline data and be used for training as
the online data or offline data does. The synthetic data ratio
r is also used to represent the proportion of synthetic data
in each batch. Each batch is a concatenation of online data
and synthetic data or offline data and synthetic data.

For the ratio of the two types of synthetic data, since online
synthetic data aligns better with the current online policy,
we choose to increase the weight of online synthetic data.
This ensures that the entire synthetic data set supports better

exploration for the agent. In the right plot of Figure 1, we
also show the data distribution generated by our CFDG
method. By reweighting and increasing the weight of online
synthetic data, we enable the agent to perform sufficient
exploration. Compared to EDIS, our data aligns better with
the current online policy.

4. Experiments
In this section, we show the efficiency of our CFDG method
through empirical validation. Section 4.1 commence by
showcasing its excellent performance on the D4RL bench-
mark (Fu et al., 2020) and also shows generalizability and
statistical improvements on baselines like IQL (Kostrikov
et al., 2021), PEX (Zhang et al., 2023) and APL (Zheng
et al., 2023). Section 4.2 compares our method, CFDG,
with other model-based approaches such as SynthER (Lu
et al., 2024) and EDIS (Liu et al., 2024), highlighting the
superiority of our conditional diffusion model over other
diffusion models. In Section 4.3, we perform an ablation
study to examine two key components of our method, gen-
erating online data and generating offline data using CFDG.
Both are shown to effectively improve the performance of
the algorithm.

4.1. Offline-to-online RL Experiments

Datasets Our method is mainly validated on two
D4RL (Fu et al., 2020) benchmarks: Locomotion and
AntMaze, which are used by IQL (Kostrikov et al., 2021)
and PEX (Zhang et al., 2023). Locomotion includes di-
verse environmental datasets collected by varying quality
policies. We assess algorithms on hopper, halfcheetah, and
walker2d environment datasets, each with four quality lev-
els. AntMaze tasks involve guiding an ant-like robot in
mazes of three sizes (umaze, medium, large), each with
two different goal location datasets. We focus on the two
larger size mazes (medium, large), as opposed to using the
umaze, which leaves little room for further improvement).
The evaluation environments are listed in Table 1’s first col-
umn. Additional experiments on the Adroit benchmark are
shown in Appendix A.1.

Baselines We consider the following baselines:
(i) IQL (Kostrikov et al., 2021) learns a value net-
work to match the expectile of the critic network to address
out-of-distribution problems. (ii) PEX (Zhang et al.,
2023) freezes the pre-training policy and introduces policy
expansion to enhance exploration. (iii) APL (Zheng et al.,
2023) leverages the distinct advantages of offline and online
data for adaptive constraints. These three are SOTA O2O
RL algorithms and cover two paradigms of data utilization.
, achieving excellent performance on the D4RL benchmark.
According to Section 2.2, IQL and PEX, they follow the
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Table 1: Enhanced performance achieved by CFDG after online fine-tuning on the Loco-
motion and AntMaze tasks. We evaluate the normalized scores of standard base algorithms
(including IQL (Kostrikov et al., 2021), PEX (Zhang et al., 2023) and APL (Zheng et al., 2023),
denoted as ”Base”) in comparison to the base algorithms augmented with CFDG (referred to as
”Ours”). All results are assessed across 5 random seeds. The superior scores are highlighted in
blue .

Dataset1 IQL PEX APL
Base Ours Base Ours Base Ours

halfcheetah-r-v2 53±6 65 ± 3 78±2 81 ± 7 93±8 103 ± 7
halfcheetah-mr-v2 54±0 65 ± 2 68±3 83 ± 3 76±40 96 ± 2
halfcheetah-m-v2 69±2 75 ± 1 78±5 87 ± 3 77±39 86 ± 28
halfcheetah-me-v2 95 ± 1 93±1 90±3 93 ± 0 96±3 98 ± 2
hopper-r-v2 16 ± 13 10±1 8±0 8 ± 0 51 ± 30 30±40
hopper-mr-v2 66±33 86 ± 30 66±25 83 ± 20 88±29 100 ± 15
hopper-m-v2 93±6 97 ± 7 91±30 100 ± 7 103 ± 2 99±11
hopper-me-v2 68±28 103 ± 17 74±22 94 ± 19 104±10 112 ± 1
walker2d-r-v2 15±8 18 ± 16 18±10 65 ± 37 12±11 27 ± 42
walker2d-mr-v2 81±17 108 ± 2 101±7 112 ± 12 70±35 109 ± 12
walker2d-m-v2 88±7 96 ± 4 101±8 108 ± 5 92±26 102 ± 21
walker2d-me-v2 113±0 118 ± 3 116 ± 1 111±4 111±1 120 ± 10
Locomotion total 810 933 890 1024 972 1081
antmaze-mp-v2 82 ± 13 76±5 82±13 88 ± 11 – –
antmaze-md-v2 82±10 86 ± 5 90±14 98 ± 5 – –
antmaze-lp-v2 48±13 52 ± 18 54±19 56 ± 21 – –
antmaze-ld-v2 38±16 52 ± 22 38±16 42 ± 16 – –
AntMaze total 250 266 264 284
1 r: random, mr: medium-replay, m: medium, me: medium-expert, mp: medium-play, md: medium-

diverse, lp: large-play, ld: large-diverse.

first paradigm, while APL follows the second, allowing us
to test the generality of our algorithm.

We use the original papers’ implementation for all three
baselines. Every experiment starts with training a model
only using the offline dataset, the same as in the original
work. We note that, since APL did not conduct experiments
on the AntMaze dataset, we also did not perform experi-
ments on it.

Settings For IQL and PEX, we perform 1M update steps
for offline pre-training and then 1M environment steps for
online fine-tuning. For APL, we perform 1M pre-training
steps and 0.1M fine-tuning steps to ensure consistency with
the original paper. For our data augmentation method, the
synthetic buffer size is set to 1M. The update frequency of
M is 10K in APL and 100K in IQL and PEX. The generated
data ratio r is set to 1/3. Therefore, the percentage of
online data, offline data and generated data is 1 : 1 : 1.
In the generated data, the ratio of generated online data to
generated offline data is 8 : 2. The above configurations
keep the same across all tasks, datasets and methods. Some
detailed CFDG parameters are included in Appendix A.2.

As shown in Table 1, the integration of CFDG outperforms
all baselines. Using a diffusion model with classifier-free
guidance to generate offline data and online data can surpass

the baseline algorithm on over 10 datasets in Locomotion
tasks and 4 datasets in AntMaze tasks. After using CFDG
for data augmentation, APL’s performance improved by
11%, while both IQL and PEX achieved a 15% performance
improvement.

4.2. Comparisons between CFDG and Model-based
Methods

In addition to demonstrating the effectiveness of incorpo-
rating CFDG into standard O2O RL algorithms, we also
aim to prove that CFDG outperforms current SOTA data
augmentation methods. We compare CFDG with two model-
based methods, SynthER (Lu et al., 2024) and EDIS (Liu
et al., 2024). In O2O RL, SynthER directly uses a diffu-
sion model to augment online data, while EDIS employs an
energy-guided diffusion model to generate new data from
offline data. The key difference between CFDG and these
two methods is that CFDG separates offline data and online
data into two distinct labels and uses a conditional diffusion
model for generation. By accounting for the differences in
the distributions of these two types of data and their dis-
tinct roles in O2O RL, performing data augmentation for
each separately can significantly enhance the algorithm’s
performance. The base algorithm is IQL, and the results are
shown in Figure 2 and Figure 3.
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Figure 2: Learning curves of base algorithm augmented with model-based methods SynthER, EDIS and CFDG. Results are
averaged over 5 random seeds.
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Figure 3: Aggregated learning curves of normalized return
over 5 seeds on 12 Locomotion tasks.

Based on the experimental results, SynthER which using
online data for data augmentation outperforms EDIS, which
performs data augmentation based on offline data. It aligns
with the intuition that online data are more aligned with
the current policy. However, using CFDG to augment both
online and offline data simultaneously further improves per-
formance. This is particularly evident in the halfcheetah
environment, where CFDG achieves a 15% performance
improvement over previous model-based methods across 12

Locomotion tasks, shown in Figure 3.

To verify that the data generated by our method has
higher quality and is better aligned with the current on-
line policy, we analyzed the Jensen-Shannon (JS) diver-
gence (Menéndez et al., 1997) between the data generated
by EDIS and CFDG and the online data. We also compared
the JS divergence between offline data and online data, as
shown in Table 2. Our CFDG method generates data that
is more closely aligned with the online data, which can be
used for agent training, leading to improved performance.

Table 2: Divergence comparisons for generated data
from (lower is better). Each result is the average
score over 5 random seeds.

Divergence Offline Generated Generated
EDIS CFDG

State 0.69±0.01 0.56±0.02 0.50±0.01
Action 0.32±0.03 0.31±0.02 0.27±0.02
Transition 0.69±0.03 0.64±0.04 0.61±0.03

Compared to other model-based methods, CFDG can gen-
erate higher-quality data samples. In summary, performing
data augmentation on both online and offline data allows
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the agent to train on more comprehensive samples, leading
to better performance.

4.3. Ablation Studies

The two main differences between the CFDG method and ex-
isting model-based approaches are: (i) It uses classifier-free
guidance to steer the diffusion model in generating new data.
(ii) It performs data augmentation on both offline data and
online data. Therefore, we need to demonstrate that both
components effectively enhance performance. We conduct
an ablation study on the Locomotion tasks to compare the
full CFDG method against its variants: one without classifier
guidance and another with classifier guidance but without
offline data augmentation. We evaluate performance across
three environments: halfcheetah, hopper, and walker2d, av-
eraging the performance across four tasks.

Table 3: Ablation results of CFDG on Locomotion tasks.
All results are averaged over the four datasets and are as-
sessed across 5 random seeds.

Dataset CFDG CFDG CFDGw/o guidance w/o offline DA
Halfcheetah 80.65±2.43 81.22±1.78 84.44±2.15
Hopper 65.75±9.91 67.50±7.35 68.22±4.74
Walker2d 75.99±6.12 81.59±4.83 93.65±6.00
Average 74.13 76.77 82.10

As shown in Table 3, compared to standard diffusion, using
classifier guidance improves the quality of data generation
and enhances the performance of the agent after data aug-
mentation. Building on classifier guidance, applying data
augmentation to both offline and online data further im-
proves the agent’s performance. This highlights that both
classifier guidance and data augmentation for both types of
data are essential components of our CFDG method, con-
tributing significantly to performance improvement.

5. Related Work
Offline-to-online Reinforcement Learning Offline-to-
online RL aims to improve suboptimal offline policies
through online fine-tuning. Prior works usually improve
the agent by adding a regularizer to mitigate the distribution
shift problem or leverage both offline data and online data in
online fine-tuning. IQL (Kostrikov et al., 2021) incorporates
a weighted behavioral cloning step to enhance online policy
improvement and is applicable in both online and offline-to-
online scenarios. OFF2ON (Lee et al., 2022) employs a bal-
anced replay scheme to address the distribution shift issue.
It uses offline data by only selecting near-on-policy samples.
However, practical scenarios may involve agents pretrained
by various offline RL algorithms, highlighting the necessity
for developing a generic offline-to-online RL framework.

Recent studies place a growing emphasis on adaptability.
PEX (Zhang et al., 2023) freezes the pre-trained policy and
initializes a random policy to enhance exploration. From
a data-centric perspective, APL (Zheng et al., 2023) and
SUNG (Guo et al., 2023) impose constraints exclusively on
data from offline datasets and data with high uncertainty,
respectively. Our method also focuses on data utilization, us-
ing data augmentation to expand the available data, thereby
enabling more comprehensive learning and improving the
agent’s performance.

Diffusion Models in RL Pearce et al. (Pearce et al., 2022)
propose using a diffusion model to better imitate human
behaviors due to their expressiveness and stability. Dif-
fuser (Janner et al., 2022) applies a diffusion model as a
trajectory generator, where the full trajectory of state-action
pairs forms a single sample for the diffusion model. Ad-
ditionally, a separate return model is trained to predict the
cumulative rewards of each trajectory sample, and its guid-
ance is incorporated into the reverse sampling stage. This
approach is similar to Decision Transformer (Chen et al.,
2021), which also learns a trajectory generator through GPT-
2 with the help of the true trajectory returns. However, when
used in online settings, sequence models can no longer pre-
dict actions from states autoregressively since the states
are an outcome of the environment. Additionally, diffusion
models are also used for data augmentation in RL. Syn-
thER (Lu et al., 2024) directly uses a diffusion model to
augment online data. EDIS (Liu et al., 2024) employs an
energy-guided diffusion model to generate new data from
offline data. Our method also uses diffusion models for data
augmentation. However, considering the unique character-
istics of the O2O RL settings and the differences between
offline and online data, we utilize classifier-free guidance to
generate new data.

6. Conclusion
In this paper, we analyze the distributions of offline and on-
line data in the O2O RL setting and improve upon existing
data augmentation methods by addressing their limitations.
We use a diffusion model with classifier-free guidance to
simultaneously augment both types of data. In the online
phase, we input offline data and online data as two distinct
labels into the diffusion model. With a single round of train-
ing, we can sample both types of data. Our method, CFDG,
is simple and can be easily integrated with existing O2O RL
algorithms, significantly boosting their performance while
surpassing other data augmentation methods. Although our
method has achieved superior performance, there is still
room for future work. We can explore fine-tuning large
pre-trained models and leveraging their generalization capa-
bilities to synthesize new pixel-based environment data in
RL.
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frameworks that require fine-tuning with limited online in-
teractions.
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A. Appendix
A.1. Adroit Results

To further validate the effectiveness and generalization of our method, we conduct additional experiments on the Adroit
benchmark (relocate-human-v1, pen-human-v1, and door-human-v1), a suite of challenging and realistic continuous control
tasks designed to test fine motor skills in a human-like hand. Our base algorithm in the Adroit setting is IQL, as EDIS is
also evaluated on top of IQL. As shown in Table 4, our proposed method, CFDG, significantly outperforms both the base
model and the prior state-of-the-art approach EDIS across all three tasks.

Table 4: Comparisons between CFDG and EDIS on Adroit
tasks. Each result is the average score over 5 random seeds.

Dataset Base EDIS CFDG
relocate-human-v1 0.4±0.4 0.2±0.6 1.5±1.8
pen-human-v1 72.2±64.0 73.4±10.3 96.8±59.4
door-human-v1 4.5±7.9 6.2±3.2 31.7±6.5
Average 25.7 26.6 43.3

Our results show that CFDG achieves over 50% improvement over baselines and the model-based EDIS approach on Adroit
tasks. These results demonstrate that CFDG is not only effective in standard benchmark settings but also robust in more
realistic and difficult environments, further supporting its applicability to real-world scenarios.

A.2. Details and Hyperparameters of CFDG

We use the PyTorch implementation of IQL and PEX from https://github.com/Haichao-Zhang/PEX, and the implementation
of APL from https://github.com/zhan0903/APL0 and primarily followed the authors’ recommended parameters. The
hyperparameters used in our CFDG module are detailed in Table 5:

Table 5: Hyperparameters and their values in CFDG.

Hyperparameter Value
Denoising Network Residual MLP
Denoising Network Depth 6 layers
Denoising Steps 128 steps
Denoising Network Learning Rate 3× 10−4

Denoising Network Hidden Dimension 1024 units
Denoising Network Batch Size 256 samples
Denoising Network Activation Function ReLU
Denoising Network Optimizer Adam
Learning Rate Schedule Cosine Annealing
Training Epochs 100K epochs
Training Interval Environment Step 10K steps (APL), 100K steps (IQL & PEX)

The formulation of diffusion we use in our paper is the Elucidated Diffusion Model (Karras et al., 2022). We parametrize the
denoising network Dθ as an MLP with skip connections from the previous layer. The base size of the network uses a width of
1024 and depth of 6. We use a batch size of 256 for all tasks. For the diffusion sampling process, we use the stochastic SDE
sampler (Karras et al., 2022) with the default hyperparameters used for the ImageNet. We use a higher number of diffusion
timesteps at 128 for improved sample fidelity. We use the implementation at https://github.com/lucidrains/denoising-
diffusion-pytorch.

A.3. Computational Resources

We train CFDG integrated with base algorithms on an NVIDIA RTX 2080Ti, with approximately 23 hours required for
10K fine-tuning on MuJoCo Locomotion tasks in APL, while 16 hours for 100K fine-tuning in IQL & PEX. The detailed
computational consumption is shown in Table 6. As pointed out in (Karras et al., 2022), the sampling time is faster than
prior diffusion designs, which is much shorter compared with training. The introduction of the diffusion model does indeed
entail an inevitable increase in computational and time costs. However, this tradeoff between improved performance and
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higher computational cost is a common consideration in diffusion model research. In our future work, we aim to further
refine and optimize the extra costs.

Table 6: Computational consumption of different algorithms.

Algorithm Online phase training time Maximal GPU memory
APL 20h 2G
APL-CFDG 23h 3G
PEX 14h 2G
PEX-CFDG 17h 3G
IQL 12h 2G
IQL-CFDG 15h 3G

12


