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Abstract

Offline black-box optimization aims to maximize a black-box function using an offline dataset
of designs and their measured properties. Two main approaches have emerged: the forward
approach, which learns a mapping from input to its value, thereby acting as a proxy to
guide optimization, and the inverse approach, which learns a mapping from value to input
for conditional generation. (a) Although proxy-free (classifier-free) diffusion shows promise
in robustly modeling the inverse mapping, it lacks explicit guidance from proxies, essential
for generating high-performance samples beyond the training distribution. Therefore, we
propose proxy-enhanced sampling which utilizes the explicit guidance from a trained proxy
to bolster proxy-free diffusion with enhanced sampling control. (b) Yet, the trained proxy is
susceptible to out-of-distribution issues. To address this, we devise the module diffusion-based
proxy refinement, which seamlessly integrates insights from proxy-free diffusion back into the
proxy for refinement. To sum up, we propose Robust Guided Diffusion for Offline Black-box
Optimization (RGD), combining the advantages of proxy (explicit guidance) and proxy-free
diffusion (robustness) for effective conditional generation. RGD achieves state-of-the-art
results on various design-bench tasks, underscoring its efficacy. Our code is here.

1 Introduction

Creating new objects to optimize specific properties is a ubiquitous challenge that spans a multitude of
fields, including material science, robotic design, and genetic engineering. Traditional methods generally
require interaction with a black-box function to generate new designs, a process that could be financially
burdensome and potentially perilous (Hamidieh, 2018; Sarkisyan et al., 2016). Addressing this, recent research
endeavors have pivoted toward a more relevant and practical context, termed offline black-box optimization
(BBO) (Trabucco et al., 2022; Krishnamoorthy et al., 2023). In this context, the goal is to maximize a
black-box function exclusively utilizing an offline dataset of designs and their measured properties.

There are two main approaches for this task: the forward approach and the reverse approach. The forward
approach entails training a deep neural network (DNN), parameterized as Jϕ(·), using the offline dataset. Once
trained, the DNN acts as a proxy and provides explicit gradient guidance to enhance existing designs. However,
this technique is susceptible to the out-of-distribution (OOD) issue, leading to potential overestimation of
unseen designs and resulting in adversarial solutions (Trabucco et al., 2021).

The reverse approach aims to learn a mapping from property value to input. Inputting a high value into
this mapping directly yields a high-performance design. For example, MINs (Kumar & Levine, 2020) adopts
GAN (Goodfellow et al., 2014) to model this inverse mapping, and demonstrate some success. Recent
works (Krishnamoorthy et al., 2023) have applied proxy-free diffusion1 (Ho & Salimans, 2022), parameterized
by θ, to model this mapping, which proves its efficacy over other generative models. Proxy-free diffusion
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1Classifier-free diffusion is for classification and adapted to proxy-free diffusion to generalize to regression.
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employs a score predictor s̃θ(·, ·, ω). This represents a linear combination of conditional and unconditional
scores, modulated by a strength parameter ω to balance condition and diversity in the sampling process. This
guidance significantly diverges from proxy (classifier) diffusion that interprets scores as classifier gradients
and thus generates adversarial solutions. Such a distinction grants proxy-free diffusion its inherent robustness
in generating samples.
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Figure 1: Motivation of explicit proxy guidance.

Nevertheless, the inverse approach, proxy-free diffu-
sion, initially designed for in-distribution generation,
such as synthesizing specific image categories, faces
limitations in offline BBO. Particularly, it struggles
to generate high-performance samples that exceed
the training distribution due to the lack of explicit
guidance2. Consider, for example, the optimization
of a two-dimensional variable (xd1, xd2) to maxi-
mize the negative Rosenbrock function (Rosenbrock,
1960): y(xd1, xd2) = −(1 − xd1)2 − 100(xd2 − x2

d1)2,
as depicted in Figure 1. The objective is to steer the
initial points (indicated in pink) towards the high-
performance region (highlighted in yellow). While
proxy-free diffusion can nudge the initial points closer
to this high-performance region, the generated points
(depicted in blue) fail to reach the high-performance
region due to its lack of explicit proxy guidance.

To address this challenge, we introduce a proxy-enhanced sampling module as illustrated in Figure 2(a). It
incorporates the explicit guidance from the proxy Jϕ(x) into proxy-free diffusion to enable enhanced control
over the sampling process. This module hinges on the strategic optimization of the strength parameter ω to
achieve a better balance between condition and diversity, per reverse diffusion step. This incorporation not
only preserves the inherent robustness of proxy-free diffusion but also leverages the explicit proxy guidance,
thereby enhancing the overall conditional generation efficacy. As illustrated in Figure 1, samples (depicted
in red) generated via proxy-enhanced sampling are more effectively guided towards, and often reach, the
high-performance area (in yellow).
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Figure 2: Overview of RGD: Module (a) incor-
porates proxy guidance into proxy-free diffusion
to enable enhanced sampling control; Module (b)
integrates insights from proxy-free diffusion back
into the proxy for refinement.

Yet, the trained proxy is susceptible to out-of-distribution
(OOD) issues. To address this, we devise a module
diffusion-based proxy refinement as detailed in Figure 2(b).
This module seamlessly integrates insights from proxy-free
diffusion into the proxy Jϕ(x) for refinement. Specif-
ically, we generate a diffusion distribution pθ(y|x̂) on
adversarial samples x̂, using the associated probability
flow ODE 3. This distribution is derived independently of
a proxy, thereby exhibiting greater robustness than the
proxy distribution on adversarial samples. Subsequently,
we calculate the Kullback-Leibler divergence between the
two distributions on adversarial samples, and use this
divergence minimization as a regularization strategy to
fortify the proxy’s robustness and reliability.

To sum up, we propose Robust Guided Diffusion for Of-
fline Black-box Optimization (RGD), a novel framework
that combines the advantages of proxy (explicit guidance)
and proxy-free diffusion (robustness) for effective condi-
tional generation. Our contributions are three-fold:

2Proxy-free diffusion cannot be interpreted as a proxy and thus does not provide explicit guidance (Ho & Salimans, 2022).
3Ordinary Differential Equation
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• We propose a proxy-enhanced sampling module which incorporates proxy guidance into proxy-free diffusion
to enable enhanced sampling control.

• We further develop diffusion-based proxy refinement which integrates insights from proxy-free diffusion
back into the proxy for refinement.

• RGD delivers state-of-the-art performance on various design-bench tasks, emphasizing its efficacy.

2 Preliminaries

We provide the key notations used in this paper in Appendix H.

2.1 Offline Black-box Optimization

Offline black-box optimization (BBO) aims to maximize a black-box function with an offline dataset. Imagine
a design space as X = Rd, where d is the design dimension. The offline BBO (Trabucco et al., 2022) is:

x∗ = arg max
x∈X

J(x). (1)

In this equation, J(·) is the unknown objective function, and x ∈ X is a possible design. In this context, there
is an offline dataset, D, that consists of pairs of designs and their measured properties. Specifically, each x
denotes a particular design, like the size of a robot, while y indicates its related metric, such as its speed.

A forward approach gradient ascent fits a proxy distribution pϕ(y|x) = N (Jϕ(x), σϕ(x)) to the offline dataset
where ϕ denote the proxy parameters:

arg min
ϕ

E(x,y)∈D[− log pϕ(y|x)].

= arg min
ϕ

E(x,y)∈D log(
√

2πσϕ(x)) + (y − Jϕ(x))2

2σ2
ϕ(x) .

(2)

For the sake of consistency with terminology used in the forthcoming subsection on guided diffusion, we
will refer to pϕ(·|·) as the proxy distribution and Jϕ(·) as the proxy. Subsequently, this approach performs
gradient ascent with Jϕ(x), leading to high-performance designs x∗:

xτ+1 = xτ + η∇xJϕ(x)|x=xτ
, for τ ∈ [0, M − 1], (3)

converging to xM after M steps. However, this method suffers from the out-of-distribution issue where the
proxy predicts values that are notably higher than the actual values.

2.2 Diffusion Models

Diffusion models, a type of latent variable models, progressively introduce Gaussian noise to data in the
forward process, while the reverse process aims to iteratively remove this noise through a learned score
estimator Ho et al. (2020). In this work, we utilize continuous time diffusion models governed by a stochastic
differential equation (SDE), as presented in Song et al. (2021). The forward SDE is formulated as:

dx = f(x, t)dt + g(t)dw. (4)

where f(·, t) : Rd → Rd represents the drift coefficient, g(·) : R → R denotes the diffusion coefficient and w is
the standard Wiener process. This SDE transforms data distribution into noise distribution. The reverse is:

dx =
[
f(x, t) − g(t)2∇x log p(x)

]
dt + g(t)dw̄, (5)

with ∇x log p(x) representing the score of the marginal distribution at time t, and w̄ symbolizing the reverse
Wiener process. The score function ∇x log p(x) is estimated using a time-dependent neural network sθ(xt, t),
enabling us to transform noise into samples. For simplicity, we will use sθ(xt), implicitly including t.
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2.3 Guided Diffusion

Unconditional diffusion models capture the natural data distribution, while guided diffusion seeks to produce
samples with specific desirable attributes, falling into two categories: proxy diffusion (Dhariwal & Nichol,
2021) and proxy-free diffusion (Ho & Salimans, 2022). While these were initially termed classifier diffusion
and classifier-free diffusion in classification tasks, we have renamed them to proxy diffusion and proxy-free
diffusion, respectively, to generalize to our regression context. Proxy diffusion combines the model’s score
estimate with the gradient from the proxy distribution, providing explicit guidance in line with the forward
approach. However, it can be interpreted as a gradient-based adversarial attack.

In proxy-free diffusion, guidance is not dependent on proxy gradients, which enables an inherent robustness
of the sampling process. Particularly, it models the score as a linear combination of an unconditional and a
conditional score. A unified neural network sθ(xt, y) parameterizes both score types. The score sθ(xt, y)
approximates the gradient of the log probability ∇xt log p(xt|y), i.e., the conditional score, while sθ(xt)
estimates the gradient of the log probability ∇xt

log p(xt), i.e., the unconditional score. The score function
follows:

s̃θ(xt, y, ω) = (1 + ω)sθ(xt, y) − ωsθ(xt). (6)

Within this context, the strength parameter ω specifies the generation’s adherence to the condition y, which is
set to the maximum value ymax in the offline dataset following Krishnamoorthy et al. (2023). Optimization of
ω balances the condition and diversity. Lower ω values increase sample diversity at the expense of conformity
to y, and higher values do the opposite.

3 Related Work

Offline black-box optimization. A recent surge in research has presented two predominant approaches
for offline BBO. The forward approach deploys a DNN to fit the offline dataset, subsequently utilizing
gradient ascent to enhance existing designs. Typically, these techniques, including COMs (Trabucco et al.,
2021), ROMA (Yu et al., 2021), NEMO (Fu & Levine, 2021), BDI (Chen et al., 2022b; 2023b), IOM (Qi
et al., 2022a) and Parallel-mentoring (Chen et al., 2023a), are designed to embed prior knowledge within
the surrogate model to alleviate the OOD issue. The reverse approach (Kumar & Levine, 2020; Chan et al.,
2021) is dedicated to learning a mapping from property values back to inputs. Feeding a high value into this
inverse mapping directly produces a design of elevated performance. Additionally, methods in Brookes et al.
(2019); Fannjiang & Listgarten (2020) progressively tailor a generative model towards the optimized design
via a proxy function and BONET (Mashkaria et al., 2023) introduces an autoregressive model trained on
fixed-length trajectories to sample high-scoring designs. Recent investigations (Krishnamoorthy et al., 2023)
have underscored the superiority of diffusion models in delineating the inverse mapping. However, research
on specialized guided diffusion for offline BBO remains limited. This paper addresses this research gap.

Guided diffusion. Guided diffusion seeks to produce samples with specific desirable attributes. Contempo-
rary research in guided diffusion primarily concentrates on enhancing the efficiency of its sampling process.
Meng et al. (2023) propose a method for distilling a classifier-free guided diffusion model into a more efficient
single model that necessitates fewer steps in sampling. Sadat et al. (2023) introduce the Dynamic CFG,
which initially compels the model to depend more on the unconditional score and progressively shifts towards
the standard CFG. However, unlike our method, it does not optimize the strength parameter. Kynkäänniemi
et al. (2024) restrict the guidance to a specific range of noise levels, which improves both sampling speed and
quality. Wizadwongsa & Suwajanakorn (2023) introduce an operator splitting method to expedite classifier
guidance by separating the update process into two key functions: the diffusion function and the conditioning
function. Additionally, Bansal et al. (2023) presents an efficient and universal guidance mechanism that
utilizes a readily available proxy to enable diffusion guidance across time steps. In this work, we explore
the application of guided diffusion in offline BBO, with the goal of creating tailored algorithms to efficiently
generate high-performance designs.
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4 Method

In this section, we present our method RGD, melding the strengths of proxy and proxy-free diffusion for
effective conditional generation. Firstly, we describe a newly developed module termed proxy-enhanced
sampling. It integrates explicit proxy guidance into proxy-free diffusion to enable enhanced sampling control,
as detailed in Section 4.1. Subsequently, we explore diffusion-based proxy refinement which incorporates
insights gleaned from proxy-free diffusion back into the proxy, further elaborated in Section 4.2. The overall
algorithm is shown in Algorithm 1.

4.1 Proxy-enhanced Sampling

Algorithm 1 Robust Guided Diffusion for Offline BBO
Input: offline dataset D, # of diffusion steps T .

1: Train proxy distribution pϕ(y|x) on D by Eq. (2).
2: Train proxy-free diffusion model sθ(xt, y) on D.
3: /*Diffusion-based proxy refinement */
4: Identify adversarial samples x̂ via Eq.(3).
5: Compute diffusion distribution pθ(y|x̂) by Eq. (12).
6: Compute KL divergence loss as per Eq. (13).
7: Refine proxy distribution pϕ(y|x) through Eq. (15).
8: /*Proxy-enhanced sampling */
9: Begin with xT ∼ N (0, I)

10: for t = T − 1 to 0 do
11: Derive the score s̃θ(xt+1, y, ω) from Eq. (6).
12: Update xt+1 to xt(ω) using ω as per Eq. (7).
13: Optimize ω to ω̂ following Eq. (8).
14: Finalize the update of xt with ω̂ via Eq. (9).
15: end for
16: Return x∗ = x0

As discussed in Section 2.3, proxy-free diffu-
sion trains an unconditional model and condi-
tional models. Although proxy-free diffusion
can generate samples aligned with most con-
ditions, it traditionally lacks control due to
the absence of an explicit proxy. This is par-
ticularly significant in offline BBO where we
aim to obtain samples beyond the training dis-
tribution, as the offline dataset is inherently
limited. Therefore, we require explicit proxy
guidance to achieve enhanced sampling con-
trol. This module is outlined in Algorithm 1,
Line 8- Line 16.

Optimization of ω. Directly updating the
design xt with proxy gradient suffers from the
OOD issue and determining a proper condi-
tion y necessitates the manual adjustment of
multiple hyperparameters (Kumar & Levine,
2020). Thus, we propose to introduce proxy
guidance by only optimizing the strength pa-
rameter ω within s̃θ(xt, y, ω) in Eq. (6). As
discussed in Section 2.3, the parameter ω bal-
ances the condition and diversity, and an optimized ω could achieve a better balance in the sampling process,
leading to more effective generation.

Enhanced Sampling. With the score function, the update of a noisy sample xt+1 is computed as:

xt(ω) = solver(xt+1, s̃θ(xt+1, y, ω)), (7)

where the solver is the second-order Heun solver (Süli & Mayers, 2003), chosen for its enhanced accuracy
through a predictor-corrector method. A proxy is then trained to predict the property of noise xt at time step
t, denoted as Jϕ(xt, t). By maximizing Jϕ(xt(ω), t) with respect to ω, we can incorporate the explicit proxy
guidance into proxy-free diffusion to facilitate improved sampling control in the balance between condition
and diversity. This maximization process is:

ω̂ = ω + η
∂Jϕ(xt(ω), t)

∂ω
. (8)

where η denotes the learning rate. We leverage the automatic differentiation capabilities of PyTorch (Paszke
et al., 2019) to efficiently compute the above derivatives within the context of the solver’s operation. The
optimized ω̂ then updates the noisy sample xt+1 through:

xt = solver(xt+1, s̃θ(xt+1, y, ω̂)). (9)

This process iteratively denoises xt, utilizing it in successive steps to progressively approach x0, which
represents the final high-scoring design x∗.

5



Published in Transactions on Machine Learning Research (12/2024)

Proxy Training. Notably, Jϕ(xt, t) can be directly derived from the proxy Jϕ(x), the mean of the proxy
distribution pϕ(·|x) in Eq. (2). This distribution is trained exclusively at the initial time step t = 0, eliminating
the need for training across time steps and reducing computational cost. To achieve this derivation, we
reverse the diffusion from xt back to x0 using the Tweedie formula Robbins (1992):

x0 ≈ xt + sθ(xt) · σ(t)2

µ(t) , (10)

where sθ(xt) is the estimated unconditional score at time step t, and σ(t)2 and µ(t) are the variance and the
mean coefficient of the perturbation kernel at time t, as detailed in equations (32-33) in Song et al. (2021).
For a more detailed derivation, refer to the Appendix B. Consequently, we express

Jϕ(xt, t) = Jϕ

(
xt + sθ(xt) · σ(t)2

µ(t)

)
. (11)

This formulation allows for the optimization of the strength parameter ω via Eq. (8). For simplicity, we will
refer to Jϕ(·) in subsequent discussions.

4.2 Diffusion-based Proxy Refinement

In the proxy-enhanced sampling module, the proxy Jϕ(·) is employed to update the parameter ω to enable
enhanced control. However, Jϕ(·) may still be prone to the OOD issue, especially on adversarial samples (Tra-
bucco et al., 2021). To address this, we refine the proxy by using insights from proxy-free diffusion. The
procedure of this module is specified in Algorithm 1, Lines 3-7.

Diffusion Distribution. Adversarial samples are identified by gradient ascent on the proxy as per Eq. (3) to
form the distribution q(x). We utilize a vanilla proxy to perform 300 gradient ascent steps, identifying samples
with unusually high prediction scores as adversarial. This method is based on the limited extrapolation
capability of the vanilla proxy, as demonstrated in Figure 3 in COMs (Trabucco et al., 2021). Consequently,
these samples are vulnerable to the proxy distribution. Conversely, the proxy-free diffusion, which functions
without depending on a proxy, inherently offers greater resilience against these samples, thus producing a more
robust distribution. For an adversarial sample x̂ ∼ q(x), we compute pθ(x̂) and pθ(x̂|y) using the probability
flow ODE associated with the SDE, as detailed in Appendix D of Song et al. (2021). The implementation
can be accessed here. We estimate p(y) using Gaussian kernel-density estimation. The diffusion distribution
regarding y is:

pθ(y|x̂) = pθ(x̂|y) · p(y)
pθ(x̂) , (12)

which demonstrates inherent robustness over the proxy distribution pϕ(y|x̂). Yet, directly applying diffusion
distribution to design optimization by gradient ascent is computationally intensive and potentially unstable
due to the demands of reversing ODEs and scoring steps.

Proxy Refinement. We opt for a more feasible approach: refine the proxy distribution pϕ(y|x̂) =
N (Jϕ(x̂), σϕ(x̂)) by minimizing its distance to the diffusion distribution pθ(y|x̂). The distance is quantified
by the Kullback-Leibler (KL) divergence:

Eq[KL(pϕ||pθ)] = Eq(x)

∫
pϕ(y|x̂) log

(
pϕ(y|x̂)
pθ(y|x̂)

)
dy. (13)

We avoid the reparameterization trick for minimizing this divergence as it necessitates backpropagation
through pθ(y|x̂), which is prohibitively expensive. Instead, for the sample x̂, the gradient of the KL divergence
KL(pϕ||pθ) with respect to the proxy parameters ϕ is computed as:

Epϕ(y|x̂)

[
d log pϕ(y|x̂)

dϕ

(
1 + log pϕ(y|x̂)

pθ(y|x̂)

)]
. (14)

Complete derivations are in Appendix A. The KL divergence then acts as regularization in our loss L:

L(ϕ, α) = ED[− log pϕ(y|x)] + αEq(x)[KL(pϕ||pθ)], (15)

6

https://anonymous.4open.science/r/RGD-27A5/likelihood.py


Published in Transactions on Machine Learning Research (12/2024)

where D is the training dataset and α is a hyperparameter. We propose to optimize α based on the validation
loss via bi-level optimization as detailed in Appendix C. The computational effort of this module can exceed
that of the sampling itself, a topic we explore further in Appendix E. Notably, even without this module, our
method maintains strong performance, as detailed in Table 3.

5 Experiments

In this section, we conduct comprehensive experiments to evaluate our method’s performance.

5.1 Benchmarks

Tasks. Our experiments encompass a variety of tasks, split into continuous and discrete categories.

The continuous category includes four tasks: (1) Superconductor (SuperC): The objective here is to engineer
a superconductor composed of 86 continuous elements. The goal is to enhance the critical temperature using
17, 010 design samples. This task is based on the dataset from Hamidieh (2018). (2) Ant Morphology (Ant):
In this task, the focus is on developing a quadrupedal ant robot, comprising 60 continuous parts, to augment
its crawling velocity. It uses 10, 004 design instances from the dataset in Trabucco et al. (2022); Brockman
et al. (2016). (3) D’Kitty Morphology (D’Kitty): Similar to Ant Morphology, this task involves the design of
a quadrupedal D’Kitty robot with 56 components, aiming to improve its crawling speed with 10, 004 designs,
as described in Trabucco et al. (2022); Ahn et al. (2020). (4) Rosenbrock (Rosen): The aim of this task is to
optimize a 60-dimension continuous vector to maximize the Rosenbrock black-box function. It uses 50000
designs from the low-scoring part (Rosenbrock, 1960).

For the discrete category, we explore three tasks: (1) TF Bind 8 (TF8): The goal is to identify an 8-unit
DNA sequence that maximizes binding activity. This task uses 32, 898 designs and is detailed in Barrera
et al. (2016). (2) TF Bind 10 (TF10): Similar to TF8, but with a 10-unit DNA sequence and a larger pool
of 50, 000 samples, as described in (Barrera et al., 2016). (3) Neural Architecture Search (NAS): This task
focuses on discovering the optimal neural network architecture to improve test accuracy on the CIFAR-10
dataset, using 1, 771 designs (Zoph & Le, 2017).

Evaluation. In this study, we utilize the oracle evaluation from design-bench (Trabucco et al., 2022).
Adhering to this established protocol, we analyze the top 128 promising designs from each method. The
evaluation metric employed is the 100th percentile normalized ground-truth score, calculated using the formula
yn = y−ymin

ymax−ymin
, where ymin and ymax signify the lowest and highest scores respectively in the comprehensive,

yet unobserved, dataset. In addition to these scores, we provide an overview of each method’s effectiveness
through the mean and median rankings across all evaluated tasks. Notably, the best design discovered in the
offline dataset, designated as D(best), is also included for reference. For further details on the 50th percentile
(median) scores, please refer to Appendix C.

5.2 Method Comparison

Our approach is evaluated against two primary groups of baseline methods: forward and inverse approaches.
Forward approaches enhance existing designs through gradient ascent. This includes: (i) Grad: utilizes simple
gradient ascent on current designs for new creations; (ii) ROMA (Yu et al., 2021): implements smoothness
regularization on proxies; (iii) COMs (Trabucco et al., 2021): applies regularization to assign lower scores to
adversarial designs; (iv) NEMO (Fu & Levine, 2021): bridges the gap between proxy and actual functions
using normalized maximum likelihood; (v) BDI (Chen et al., 2022b): utilizes both forward and inverse
mappings to transfer knowledge from offline datasets to the designs; (vi) IOM (Qi et al., 2022b): ensures
consistency between representations of training datasets and optimized designs.

Inverse approaches focus on learning a mapping from a design’s property value back to its input. High property
values are input into this inverse mapping to yield enhanced designs. This includes: (i) CbAS (Brookes
et al., 2019): CbAS employs a VAE model to implicitly implement the inverse mapping. It gradually tunes
its distribution toward higher scores by raising the scoring threshold. This process can be interpreted as
incrementally increasing the conditional score within the inverse mapping framework. (ii) Autofocused CbAS
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(Auto.CbAS) (Fannjiang & Listgarten, 2020): adopts importance sampling for retraining a regression model
based on CbAS. (iii) MIN (Kumar & Levine, 2020): maps scores to designs via a GAN model and explore
this mapping for optimal designs. (iv) BONET (Mashkaria et al., 2023): introduces an autoregressive model
for sampling high-scoring designs. (v) DDOM (Krishnamoorthy et al., 2023): utilizes proxy-free diffusion to
model the inverse mapping.

Traditional methods as detailed in Trabucco et al. (2022) are also considered: (i) CMA-ES (Hansen,
2006): modifies the covariance matrix to progressively shift the distribution towards optimal designs; (ii)
BO-qEI (Wilson et al., 2017): implements Bayesian optimization to maximize the proxy and utilizes the
quasi-Expected-Improvement acquisition function for design suggestion, labeling designs using the proxy;
(iii) REINFORCE (Williams, 1992): enhances the input space distribution using the learned proxy model.

5.3 Experimental Configuration

In alignment with the experimental protocols established in Trabucco et al. (2022); Chen et al. (2022b), we
have tailored our training methodologies for all approaches, utilizing a three-layer MLP architecture for all
involved proxies. For methods such as BO-qEI, CMA-ES, REINFORCE, CbAS, and Auto.CbAS that do
not utilize gradient ascent, we base our approach on the findings reported in Trabucco et al. (2022). We
adopted T = 1000 diffusion sampling steps, set the condition y to ymax, and initial strength ω as 2 in line
with Krishnamoorthy et al. (2023). To ensure reliability and consistency in our comparative analysis, each
experimental setting was replicated across 8 independent runs, unless stated otherwise, with the presentation
of both mean values and standard deviations. These experiments were conducted using a NVIDIA GeForce
V100 GPU. We have detailed the computational overhead of our approach in Appendix E to provide a
comprehensive view of its practicality.

Table 1: Results (maximum normalized score, mean ± std) on continuous tasks.

Method Superconductor Ant Morphology D’Kitty Morphology Rosenbrock
D(best) 0.399 0.565 0.884 0.518
BO-qEI 0.402 ± 0.034 0.819 ± 0.000 0.896 ± 0.000 0.772 ± 0.012

CMA-ES 0.465 ± 0.024 1.214 ± 0.732 0.724 ± 0.001 0.470 ± 0.026
REINFORCE 0.481 ± 0.013 0.266 ± 0.032 0.562 ± 0.196 0.558 ± 0.013

Grad 0.490 ± 0.009 0.932 ± 0.015 0.930 ± 0.002 0.701 ± 0.092
COMs 0.504 ± 0.022 0.818 ± 0.017 0.905 ± 0.017 0.672 ± 0.075
ROMA 0.507 ± 0.013 0.898 ± 0.029 0.928 ± 0.007 0.663 ± 0.072
NEMO 0.499 ± 0.003 0.956 ± 0.013 0.953 ± 0.010 0.614 ± 0.000
IOM 0.524 ± 0.022 0.929 ± 0.037 0.936 ± 0.008 0.712 ± 0.068
BDI 0.513 ± 0.000 0.906 ± 0.000 0.919 ± 0.000 0.630 ± 0.000

CbAS 0.503 ± 0.069 0.876 ± 0.031 0.892 ± 0.008 0.702 ± 0.008
Auto.CbAS 0.421 ± 0.045 0.882 ± 0.045 0.906 ± 0.006 0.721 ± 0.007

MIN 0.499 ± 0.017 0.445 ± 0.080 0.892 ± 0.011 0.702 ± 0.074
BONET 0.422 ± 0.019 0.925 ± 0.010 0.941 ± 0.001 0.780 ± 0.009
DDOM 0.495 ± 0.012 0.940 ± 0.004 0.935 ± 0.001 0.789 ± 0.003
RGD 0.515 ± 0.011 0.968 ± 0.006 0.943 ± 0.004 0.797 ± 0.011

5.4 Results and Analysis

In Tables 1 and 2, we showcase our experimental results for both continuous and discrete tasks. To clearly
differentiate among the various approaches, distinct lines separate traditional, forward, and inverse approaches
within the tables For every task, algorithms performing within a standard deviation of the highest score are
emphasized by bolding following Trabucco et al. (2021).

We make the following observations. (1) As highlighted in Table 2, RGD not only achieves the top rank but
also demonstrates the best performance in six out of seven tasks, emphasizing the robustness and superiority
of our method. (2) RGD outperforms the VAE-based CbAS, the GAN-based MIN and the Transformer-based
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Table 2: Results (maximum normalized score, mean ± std) on discrete tasks & ranking on all tasks.

Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
D(best) 0.439 0.467 0.436
BO-qEI 0.798 ± 0.083 0.652 ± 0.038 1.079 ± 0.059 9.1/15 11/15

CMA-ES 0.953 ± 0.022 0.670 ± 0.023 0.985 ± 0.079 7.3/15 4/15
REINFORCE 0.948 ± 0.028 0.663 ± 0.034 −1.895 ± 0.000 11.3/15 14/15

Grad 0.872 ± 0.062 0.646 ± 0.052 0.624 ± 0.102 9.0/15 10/15
COMs 0.517 ± 0.115 0.613 ± 0.003 0.783 ± 0.029 10.3/15 10/15
ROMA 0.927 ± 0.033 0.676 ± 0.029 0.927 ± 0.071 6.1/15 6/15
NEMO 0.942 ± 0.003 0.708 ± 0.022 0.737 ± 0.010 5.3/15 5/15
IOM 0.823 ± 0.130 0.650 ± 0.042 0.559 ± 0.081 7.4/15 6/15
BDI 0.870 ± 0.000 0.605 ± 0.000 0.722 ± 0.000 9.6/15 9/15

CbAS 0.927 ± 0.051 0.651 ± 0.060 0.683 ± 0.079 8.7/15 8/15
Auto.CbAS 0.910 ± 0.044 0.630 ± 0.045 0.506 ± 0.074 10.3/15 10/15

MIN 0.905 ± 0.052 0.616 ± 0.021 0.717 ± 0.046 10.4/15 10/15
BONET 0.913 ± 0.008 0.621 ± 0.030 0.724 ± 0.008 7.7/15 8/15
DDOM 0.957 ± 0.006 0.657 ± 0.006 0.745 ± 0.070 4.9/15 5/15
RGD 0.974 ± 0.003 0.694 ± 0.018 0.825 ± 0.063 2.0/15 2/15

BONET. This result highlights the superiority of diffusion models in modeling inverse mappings compared
to other generative approaches. (3) Upon examining TF Bind 8, we observe that the average rankings for
forward and inverse methods stand at 10.3 and 6.0, respectively. In contrast, for TF Bind 10, both methods
have the same average ranking of 8.7, indicating no advantage. This notable advantage of inverse methods in
TF Bind 8 implies that the relatively smaller design space of TF Bind 8 (48) facilitates easier inverse mapping,
as opposed to the more complex space in TF Bind 10 (410). (4) RGD’s performance is less impressive on NAS,
where designs are encoded as 64-length sequences of 5-category one-hot vectors. This may stem from the
design-bench’s encoding not fully capturing the sequential and hierarchical aspects of network architectures,
affecting the efficacy of inverse mapping modeling.

5.5 Ablation Studies

In this section, we present a series of ablation studies to scrutinize the individual contributions of distinct
components in our methodology. We employ our proposed approach as a benchmark and methodically exclude
key modules, such as the proxy-enhanced sampling and diffusion-based proxy refinement, to assess their
influence on performance. These variants are denoted as w/o proxy-e and w/o diffusion-b r. Additionally, we
explore the strategy of directly performing gradient ascent on the diffusion intermediate state with a learning
rate of 0.1, referred to as direct grad update. The results from these ablations are detailed in Table 3.

Our analysis reveals that omitting either module results in a decrease in performance, thereby affirming the
importance of each component. The w/o diffusion-b r variant generally surpasses w/o proxy-e, highlighting
the utility of the proxy-enhanced sampling even with a basic proxy setup. Conversely, direct grad update
tends to produce subpar results across tasks, likely attributable to the proxy’s limitations in handling
out-of-distribution samples, leading to suboptimal design optimizations.

To further dive into the proxy-enhanced sampling module, we visualize the strength ratio ω/ω0—where ω0
represents the initial strength—across diffusion steps t. This analysis is depicted in Figure 3 for two tasks:
Ant and TF10. We observe a pattern of initial decrease followed by an increase in ω across both tasks.
This pattern can be interpreted as follows: The decrease in ω facilitates the generation of a more diverse
set of samples, enhancing exploratory capabilities. Subsequently, the increase in ω signifies a shift towards
integrating high-performance features into the sample generation. Within this context, conditioning on the
maximum y is not aimed at achieving the dataset’s maximum but at enriching samples with high-scoring
attributes. Overall, this adjustment of ω effectively balances between generating novel solutions and honing
in on high-quality ones.
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Table 3: Ablation studies on RGD (maximum normalized score, mean ± std).

Task D RGD w/o proxy-e w/o diffusion-b r direct grad update
SuperC 86 0.515 ± 0.011 0.495 ± 0.012 0.502 ± 0.005 0.456 ± 0.002

Ant 60 0.968 ± 0.006 0.940 ± 0.004 0.961 ± 0.011 −0.006 ± 0.003
D’Kitty 56 0.943 ± 0.004 0.935 ± 0.001 0.939 ± 0.003 0.714 ± 0.001
Rosen 60 0.797 ± 0.011 0.789 ± 0.003 0.813 ± 0.005 0.241 ± 0.283
TF8 8 0.974 ± 0.003 0.957 ± 0.007 0.960 ± 0.006 0.905 ± 0.000
TF10 10 0.694 ± 0.018 0.657 ± 0.006 0.667 ± 0.009 0.672 ± 0.018
NAS 64 0.825 ± 0.063 0.745 ± 0.070 0.717 ± 0.032 0.718 ± 0.032
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Figure 3: This adjustment of ω effectively balances
between generating novel solutions and honing in on
high-quality ones during sampling.
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Figure 4: The proxy distribution overestimates the
ground truth, while the diffusion distribution closely
aligns with it, demonstrating its robustness.

In addition, we visualize the proxy distribution alongside the diffusion distribution for a sample x̂ from
the Ant task in Figure 4, to substantiate the efficacy of diffusion-based proxy refinement. The proxy
distribution significantly overestimates the ground truth, whereas the diffusion distribution closely aligns
with it, demonstrating the robustness of diffusion distribution. For a more quantitative analysis, we compute
the expectation of both distributions and compare them with the ground truth. The mean of the diffusion
distribution is calculated as Epθ(y|x̂)[y] = Epϕ(y|x̂)

[
pθ(y|x̂)
pϕ(y|x̂) y

]
. The MSE loss for the proxy distribution is 2.88,

while for the diffusion distribution, it is 0.13 on the Ant task. Additionally, we evaluate this on the TFB10
task, where the MSE loss for the proxy distribution is 323.63 compared to 0.82 for the diffusion distribution.
These results further corroborate the effectiveness of our proposed module.

Furthermore, we (1) investigate the impact of replacing our trained proxy model with alternative approaches,
specifically ROMA and COMs, (2) analyze the performance with an optimized condition y and (3) explore a
simple annealing approach of ω. For a comprehensive discussion on these, readers are referred to Appendix F,
where the results further highlight the effectiveness of our trained proxy and the ω adaptation strategy.

5.6 Hyperparameter Sensitivity Analysis

This section investigates the sensitivity of RGD to various hyperparameters. Specifically, we analyze the
effects of (1) the number of diffusion sampling steps T , (2) the condition y, and (3) the learning rate η of the
proxy-enhanced sampling. These parameters are evaluated on two tasks: the continuous Ant task and the
discrete TFB10 task. Our method is generally robust to these hyperparameters. For a detailed discussion,
see Appendix G.
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6 Conclusion

In conclusion, we propose Robust Guided Diffusion for Offline Black-box Optimization (RGD). The proxy-
enhanced sampling module adeptly integrates proxy guidance to facilitate improved sampling control, while
the diffusion-based proxy refinement module leverages proxy-free diffusion insights for proxy improvement.
Empirical evaluations on design-bench have showcased RGD’s outstanding performance, further validated
by ablation studies on the contributions of these novel components. We discuss the broader impact and
limitation in Appendix I.
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A Derivation

This section provides a derivation of the gradient of the KL divergence. Let’s consider the KL divergence
term, defined as:

KL(pϕ||pθ) =
∫

pϕ(y|x̂) log
(

pϕ(y|x̂)
pθ(y|x̂)

)
dy. (16)

The gradient with respect to the parameters ϕ is computed as follows:

dKL(pϕ||pθ)
dϕ

=
∫

dpϕ(y|x̂)
dϕ

(
1 + log pϕ(y|x̂)

pθ(y|x̂)

)
dy

=
∫

pϕ(y|x̂)d log pϕ(y|x̂)
dϕ

(1 + log pϕ(y|x̂)
pθ(y|x̂) ) dy

= Epϕ(y|x̂)

[
d log pϕ(y|x̂)

dϕ

(
1 + log pϕ(y|x̂)

pθ(y|x̂)

)]
.

(17)

B Proxy Training

We follow Eq.(33) from Song et al. (2021) where p(xt|x0) = N (xt; µ(t)x0, σ2(t)I). Given this, we can sample
xt from x0 using: xt = µ(t)x0 + ϵσ(t). To recover x0 from xt, we need to know ϵ, which approximates as
ϵ ≈ −σ(t) · sθ(xt). Using this approximation, we derive x0 = xt−ϵσ(t)

µ(t) ≈ xt+σ2(t)·sθ(xt)
µ(t)

This approach originates from Song et al. (2021), and we utilize the implementation framework detailed in
another seminal work (Huang et al., 2021). Our code, available here, implements this process as follows:

• Line 24 implements µ(t)

• Line 27 implements σ2(t)

• Line 37 describes the sampling process: xt = µ(t)x0 + ϵσ(t)

• Line 112 optimizes: ϵ ≈ −σ(t) · sθ(xt), where ϵ is the target, σ(t) is the std, and a is sθ(xt).

Additionally, it’s worth noting that Eq.( 10) in our work aligns closely with Eq.(15) from the seminal work
DDPM (Ho et al., 2020). In DDPM, they present the equation x0 ≈ xt−

√
1−αtϵθ(xt)√

αt
, which is derived in a

discrete setting.

C Hyperparameter Optimization

We propose adjusting α based on the validation loss, establishing a bi-level optimization framework:

α∗ = arg min
α

EDv
[log pϕ∗(α)(yv|xv)], (18)

s.t. ϕ∗(α) = arg min
ϕ

L(ϕ, α). (19)

Within this context, Dv represents the validation dataset sampled from the offline dataset. The inner
optimization task, which seeks the optimal ϕ∗(α), is efficiently approximated via first-order gradient descent
methods. We use batch optimization, with each batch containing 256 training samples and 256 validation
samples. The bi-level optimization process updates the hyperparameter with a single iteration for both the
inner and outer levels.
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D Evaluation of Median Scores

While the main text of our paper focuses on the 100th percentile scores, this section provides an in-depth
analysis of the 50th percentile scores. These median scores, previously explored in Trabucco et al. (2022),
serve as an additional metric to assess the performance of our RGD method. The outcomes for continuous
tasks are detailed in Table 6, and those pertaining to discrete tasks, along with their respective ranking
statistics, are outlined in Table 7. An examination of Table 7 highlights the notable success of the RGD
approach, as it achieves the top rank in this evaluation. This finding underscores the method’s robustness
and effectiveness.

E Computational Overhead

Table 4: Computational Overhead (in seconds).

Process SuperC Ant D’Kitty NAS
Proxy training 40.8 74.5 24.7 7.8

Diffusion training 405.9 767.9 251.1 56.0
Proxy-e sampling 30.0 29.7 29.6 31.5

Diffusion-b proxy r 3104.6 4036.7 2082.8 3096.2
Overall cost 3581.3 4908.8 2388.2 3191.5

In this section, we analyze the computational overhead of our method. RGD consists of two core components:
proxy-enhanced sampling (proxy-e sampling) and diffusion-based proxy refinement (diffusion-b proxy r).
Additionally, RGD employs a trained proxy and a proxy-free diffusion model, whose computational demands
are denoted as proxy training and diffusion training, respectively.

Table 4 indicates that experiments can be completed within approximately one hour, demonstrating efficiency.
The diffusion-based proxy refinement module is the primary contributor to the computational overhead,
primarily due to the usage of a probability flow ODE for sample likelihood computation. However, as this is a
one-time process for refining the proxy, its high computational cost is offset by its non-recurring nature. We
have also compared the time costs of various competitive methods for the 86-dimension continuous SuperC
task. Our method (RGD) requires approximately 3581.3 seconds, Auto.CbAS requires 425.2 seconds, MIN
requires 921.4 seconds, BONET requires 673.2 seconds, DDOM requires 460.7 seconds, and BDI requires 618.4
seconds. For the discrete 64-dimension NAS task, our method (RGD) takes approximately 3191.5 seconds,
while Auto.CbAS takes 389.3 seconds, MIN takes 879.1 seconds, BONET takes 485.3 seconds, DDOM takes
103.4 seconds, and BDI takes 498.0 seconds. The evaluation of any mentioned method in NAS entails training
the CIFAR-10 dataset over 20 epochs for 128 architectural designs, accumulating a total of 153.6 hours. In
comparison, the one-hour computation time of our method appears negligible. This comparative analysis
illustrates the computational overhead of RGD relative to other methods.

The computational bottleneck of our method is the diffusion-based proxy refinement module. When we
remove this module, this adjustment significantly reduces computational overhead: from 3581.3 seconds to
476.7 seconds on SuperC, and from 3191.5 seconds to 95.3 seconds on NAS, rendering our method more
efficient than the comparison methods. Following this adjustment, we recalculate the rankings based on the
results presented in Tables 1, 2, and 3. The new ranking, as shown in the Table 5, reaffirms that our method
continues to hold its position as the top-performing method in terms of ranking.

In contexts such as robotics or bio-chemical research, the most time-intensive part of the production cycle is
usually the evaluation of the unknown objective function. Therefore, the time differences between methods
for deriving high-performance designs are less critical in actual production environments, highlighting RGD’s
practicality where optimization performance are prioritized over computational speed. This aligns with recent
literature (A.3 Computational Complexity in Chen et al. (2022a) and A.7.5. Computational Cost in Chen
et al. (2023b)) indicating that in black-box optimization scenarios, computational time is relatively minor
compared to the time and resources dedicated to experimental validation phases.
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Table 5: Ranking Statistics of Methods.

Method Rank Mean Rank Median
BO-qEI 9.14 11.00

CMA-ES 7.14 3.00
REINFORCE 11.29 14.00

Grad 9.00 10.00
COMs 10.00 10.00
ROMA 5.86 6.00
NEMO 5.14 5.00
IOM 7.43 6.00
BDI 9.29 8.00

CbAS 8.57 8.00
Auto.CbAS 10.29 10.00

MIN 10.29 10.00
BONET 7.43 7.00
DDOM 4.71 5.00
RGD 3.71 3.00

Table 6: Results (median normalized score, mean ± std) on continuous tasks.

Method Superconductor Ant Morphology D’Kitty Morphology Rosenbrock
BO-qEI 0.300 ± 0.015 0.567 ± 0.000 0.883 ± 0.000 0.761 ± 0.004

CMA-ES 0.379 ± 0.003 −0.045 ± 0.004 0.684 ± 0.016 0.200 ± 0.000
REINFORCE 0.463 ± 0.016 0.138 ± 0.032 0.356 ± 0.131 0.553 ± 0.008

Grad 0.339 ± 0.013 0.532 ± 0.014 0.867 ± 0.006 0.540 ± 0.025
COMs 0.312 ± 0.018 0.568 ± 0.002 0.883 ± 0.000 0.419 ± 0.286
ROMA 0.364 ± 0.020 0.467 ± 0.031 0.850 ± 0.006 −0.121 ± 0.242
NEMO 0.319 ± 0.010 0.592 ± 0.001 0.882 ± 0.002 0.510 ± 0.000
IOM 0.343 ± 0.018 0.513 ± 0.024 0.873 ± 0.009 0.126 ± 0.443
BDI 0.412 ± 0.000 0.474 ± 0.000 0.855 ± 0.000 0.561 ± 0.000

CbAS 0.111 ± 0.017 0.384 ± 0.016 0.753 ± 0.008 0.676 ± 0.008
Auto.CbAS 0.131 ± 0.010 0.364 ± 0.014 0.736 ± 0.025 0.695 ± 0.008

MIN 0.336 ± 0.016 0.618 ± 0.040 0.887 ± 0.004 0.634 ± 0.082
BONET 0.319 ± 0.014 0.615 ± 0.004 0.895 ± 0.021 0.630 ± 0.009
DDOM 0.295 ± 0.001 0.590 ± 0.003 0.870 ± 0.001 0.640 ± 0.001
RGD 0.308 ± 0.003 0.684 ± 0.006 0.874 ± 0.001 0.644 ± 0.002

F Further Ablation Studies

In this section, we extend our exploration to include alternative proxy refinement schemes, namely ROMA
and COMs, to compare against our diffusion-based proxy refinement module. The objective is to assess
the relative effectiveness of these schemes in the context of the Ant and TFB10 tasks. The comparative
results are presented in Table 8. Our investigation reveals that proxies refined through ROMA and COMs
exhibit performance akin to the vanilla proxy and they fall short of achieving the enhancements seen with
our diffusion-based proxy refinement. We hypothesize that the diffusion-based proxy refinement, by aligning
closely with the characteristics of the diffusion model, provides a more relevant and impactful signal. This
alignment improves the proxy’s ability to enhance the sampling process more effectively.

Additionally, we contrast our approach, which adjusts the strength parameter ω, with the MIN method that
focuses on identifying an optimal condition y. The MIN strategy entails optimizing a Lagrangian objective
with respect to y, a process that requires manual tuning of four hyperparameters. We adopt their methodology
to determine optimal conditions y and incorporate these into the proxy-free diffusion for tasks Ant and TF10.
The normalized scores for Ant and TF10 are 0.950 ± 0.017 and 0.660 ± 0.027, respectively. The outcomes
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Table 7: Results (median normalized score, mean ± std) on discrete tasks & ranking on all tasks.

Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
BO-qEI 0.439 ± 0.000 0.467 ± 0.000 0.544 ± 0.099 6.4/15 7/15

CMA-ES 0.537 ± 0.014 0.484 ± 0.014 0.591 ± 0.102 8.0/15 5/15
REINFORCE 0.462 ± 0.021 0.475 ± 0.008 −1.895 ± 0.000 9.7/15 9/15

Grad 0.546 ± 0.022 0.526 ± 0.029 0.443 ± 0.126 6.6/15 8/15
COMs 0.439 ± 0.000 0.467 ± 0.000 0.529 ± 0.003 7.7/15 8/15
ROMA 0.543 ± 0.017 0.518 ± 0.024 0.529 ± 0.008 7.6/15 5/15
NEMO 0.436 ± 0.016 0.453 ± 0.013 0.563 ± 0.020 8.3/15 8/15
IOM 0.439 ± 0.000 0.474 ± 0.014 −0.083 ± 0.012 9.3/15 8/15
BDI 0.439 ± 0.000 0.476 ± 0.000 0.517 ± 0.000 7.3/15 8/15

CbAS 0.428 ± 0.010 0.463 ± 0.007 0.292 ± 0.027 11.3/15 12/15
Auto.CbAS 0.419 ± 0.007 0.461 ± 0.007 0.217 ± 0.005 11.9/15 13/15

MIN 0.421 ± 0.015 0.468 ± 0.006 0.433 ± 0.000 7.0/15 7/15
BONET 0.507 ± 0.007 0.460 ± 0.013 0.571 ± 0.095 5.9/15 6/15
DDOM 0.553 ± 0.002 0.488 ± 0.001 0.367 ± 0.021 6.9/15 5/15
RGD 0.557 ± 0.002 0.545 ± 0.006 0.371 ± 0.019 4.9/15 4/15

Table 8: Comparative Results of Proxy Integration with COMs, ROMA, and ours.

Method Ant Morphology TF Bind 10
No proxy 0.940 ± 0.004 0.657 ± 0.006
Vanilla proxy 0.961 ± 0.011 0.667 ± 0.009
COMs 0.963 ± 0.004 0.668 ± 0.003
ROMA 0.953 ± 0.003 0.667 ± 0.003
Ours 0.968 ± 0.006 0.694 ± 0.018

fall short of those achieved by our method as detailed in Table 8. This discrepancy likely stems from the
complexity involved in optimizing y, whereas dynamically adjusting ω proves to be a more efficient strategy
for enhancing sampling control.

Last but not least, we explore simple annealing approaches for ω. Specifically, we test two annealing scenarios
considering the default ω as 2.0: (1) a decrease from 4.0 to 0.0, (2) an increase from 0.0 to 4.0, both modulated
by a cosine function over the time step (t) and (3) a high constant ω = 4. We apply these strategies to the
Ant Morphology and TF Bind 10 tasks, and the results are as follows:

Table 9: Results of Annealing Approaches.

Method Ant Morphology TF Bind 10
RGD 0.968 0.694
ω = 2.0 0.940 0.657
ω = 4.0 0.927 0.655
Increase 0.948 0.654
Decrease 0.924 0.647

The empirical results across both strategies illustrate their inferior performance compared to our approach,
thereby demonstrating the efficacy of our proposed method.

G Hyperparameter Sensitivity Analysis

RGD’s performance is assessed under different settings of T , y, and η. We experiment with T values of 500,
750, 1000, 1250, and 1500, with the default being T = 1000. For the condition ratio y/ymax, we test values of
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0.5, 1.0, 1.5, 2.0, and 2.5, considering 1.0 as the default. Similarly, for the learning rate η, we explore values
of 2.5e−3, 5.0e−3, 0.01, 0.02, and 0.04, with the default set to η = 0.01. Results are normalized by comparing
them with the performance obtained at default values.

As depicted in Figures 5, 6, and 7, RGD demonstrates considerable resilience to hyperparameter variations.
The Ant task, in particular, exhibits a more marked sensitivity, with a gradual enhancement in performance
as these hyperparameters are varied. The underlying reasons for this trend include: (1) An increase in the
number of diffusion steps (T ) enhances the overall quality of the generated samples. This improvement, in
conjunction with more effective guidance from the trained proxy, leads to better results. (2) Elevating the
condition (y) enables the diffusion model to extend its reach beyond the existing dataset, paving the way for
superior design solutions. However, selecting an optimal y can be challenging and may, as observed in the
TFB10 task, sometimes lead to suboptimal results. (3) A higher learning rate (η) integrates an enhanced
guidance signal from the trained proxy, contributing to improved performances.

In contrast, the discrete nature of the TFB10 task seems to endow it with a certain robustness to variations in
these hyperparameters, highlighting a distinct behavioral pattern in response to hyperparameter adjustments.
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Figure 5: The ratio of
the performance of our RGD
method with T to the perfor-
mance with T = 1000.
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Figure 6: The ratio of
the performance of our RGD
method with y/ymax to the
performance with 1.0.
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Figure 7: The ratio of
the performance of our RGD
method with η to the perfor-
mance with η = 0.01.

H Notations

We provide the key notations used in this paper in Table 10.

I Broader Impact and Limitation

Broader impact. Our research has the potential to significantly accelerate advancements in fields such as
new material development, biomedical innovation, and robotics technology. These advancements could lead
to breakthroughs with substantial positive societal impacts. However, we recognize that, like any powerful
tool, there are inherent risks associated with the misuse of this technology. One concerning possibility is the
exploitation of our optimization techniques to design objects or entities for malicious purposes, including the
creation of more efficient weaponry or harmful biological agents. Given these potential risks, it is imperative
to enforce strict safeguards and regulatory measures, especially in areas where the misuse of technology could
lead to significant ethical and societal harm. The responsible application and governance of such technologies
are crucial to ensuring that they serve to benefit society as a whole.

Limitation. We recognize that the benchmarks utilized in our study may not fully capture the complexities
of more advanced applications, such as protein drug design, primarily due to our current limitations in
accessing wet-lab experimental setups. Moving forward, we aim to mitigate this limitation by fostering
partnerships with domain experts, which will enable us to apply our method to more challenging and diverse
problems. This direction not only promises to validate the efficacy of our approach in more complex scenarios
but also aligns with our commitment to pushing the boundaries of what our technology can achieve.
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Table 10: Key notations used in this paper.

Notations Descriptions
ϕ Proxy parameters
θ Diffusion model parameters

Jϕ(·) Learned mean
σϕ(·) Learned standard deviation

N Gaussian distribution
pϕ(y|x̂) Proxy distribution

x Particular design
y Property of design
x̂ Adversarial designs

q(x) Adversarial distribution
t Time step of diffusion sampling
T Total number of diffusion steps
τ Gradient optimization step on design
M Total number of gradient optimization steps
xt Noisy sample at time step t

f(·, t) Drift coefficient
g(·) Diffusion coefficient
w Standard Wiener process
w̄ Reverse Wiener process

∇x log p(x) Score of the marginal distribution
sθ(·) Learned score function of xt

xd1/xd2 Two-dim variable of Rosenbrock
X Design space
d Design dimension
ω̂ Optimized strength parameter
ω Strength parameter
D Offline dataset

σ(t)2 Variance of perturbation kernel
µ(t) Mean of perturbation kernel
α Hyperparameter of KL loss
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