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Abstract

We consider the imitation learning problem of learning a policy in a Markov
Decision Process (MDP) setting where the reward function is not given, but demon-
strations from experts are available. Although the goal of imitation learning is
to learn a policy that produces behaviors nearly as good as the experts’ for a de-
sired task, assumptions of consistent optimality for demonstrated behaviors are
often violated in practice. Finding a policy that is distributionally robust against
noisy demonstrations based on an adversarial construction potentially solves this
problem by avoiding optimistic generalizations of the demonstrated data. This
paper studies Distributionally Robust Imitation Learning (DROIL) and establishes
a close connection between DROIL and Maximum Entropy Inverse Reinforcement
Learning. We show that DROIL can be seen as a framework that maximizes a
generalized concept of entropy. We develop a novel approach to transform the
objective function into a convex optimization problem over a polynomial number
of variables for a class of loss functions that are additive over state and action
spaces. Our approach lets us optimize both stationary and non-stationary policies
and, unlike prevalent previous methods, it does not require repeatedly solving an
inner reinforcement learning problem. We experimentally show the significant
benefits of DROIL’s new optimization method on synthetic data and a highway
driving environment.

1 Introduction

We consider the imitation learning setting of learning to perform a task based only on demonstrations
that are provided by experts. There are two main approaches often considered for this learning
problem: Behavioral Cloning [19] and Inverse Reinforcement Learning [18, 1, 24, 14]. In behavioral
cloning, the learner attempts to learn a policy in a supervised learning manner, in which a direct
mapping from states to actions is estimated from the demonstrated trajectories. Behavioral cloning,
while simple, often generalize poorly when attempting to predict goal-directed sequential decisions
due to compounding errors caused by covariate shift and only tends to succeed when given large
amounts of data [22, 23]. Alternatively, inverse reinforcement learning (IRL) rationalizes demon-
strated trajectories by estimating a reward function that makes the expert’s policy optimal. The
problem of determining the reward function is inherently ill-posed, since a single policy can be
optimal for multiple reward functions.

To obtain a unique solution in IRL, many methods have been proposed, with the maximum entropy
principle [31, 32] and margin maximization [20] being two widely employed methods among
researchers. Maximum (causal) entropy IRL [32], in particular, seeks an entropy-maximizing
distribution over sequences that matches expected feature counts [1] with those observed from
demonstrations. For imitation learning in very high dimensional and continuous spaces, where
function approximations such as deep neural networks are often used, IRL methods have generally
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been less efficient than behavioral cloning methods [13] since they require reinforcement learning as
an inner loop. Recent adversarial IRL methods [10, 9, 25], however, seem more likely to be effective.

A common assumption in imitation learning is that all expert behaviors have the same level of
trustworthiness and are optimal/near-optimal [30]. However, it is common for noisy expert behaviors
to violate this optimality assumption in practice. Thus, relying heavily on the optimality of the expert’s
behavior may degrade an imitation learner, making it prone to failure [30]. Existing methods have
proposed to inject noise into the expert’s policy demonstrations to obtain a more robust policy [15],
or to train a discriminator that distinguishes between expert trajectories and generated trajectories
that learns reward functions that are robust to changes in dynamics [11].

An alternative approach to obtain a robust policy, which we adopt in this work, is to search for a policy
that is distributionally robust given the training data. For this purpose, the learner’s policy is obtained
by solving a game between a learner and an adversary [5], where the learner seeks to minimize a
loss defined between them, and the adversary seeks to maximize this loss by choosing a distribution
over policies subject to a set of constraints that match statistics from the training data. This approach
leverages two uncertainty sets as opposed to typical Distributionally Robust Optimization (DRO)
methods [4, 6] where the uncertainty set is only defined over the adversary (demonstrator-estimator)
and the learner’s policy is assumed to have a specific parametric form. Previous work [5] proposed to
solve imitation learning under an adversarial formulation using the Double Oracle method [17] to
solve the corresponding optimization. However, this method may take up to exponential time in the
size of state-action space and decision horizon.

In this paper, we connect Distributionally Robust Imitation Learning (DROIL) and Maximum Entropy
Inverse Reinforcement Learning (MaxEnt IRL) by showing that MaxEnt IRL is a special case of
DROIL when a certain loss function and policy description is used. We then show that DROIL is
a framework for maximizing a general entropy function that is defined based on a particular loss
of interest. We then cast DROIL’s objective function into a convex optimization problem over a
polynomial number of variables, which is simpler to understand and implement and also significantly
improves the training time. We extend the formulation to stationary policies, which enables us to
experimentally show the benefits of learning a robust policy in a highway driving simulation.

2 Preliminaries

We model sequential decision making problems using discrete Markov Decision Processes (MDPs).
A MDPM is specified by a tuple (S,A,Γ,R, γ, P0) where: S and A are state and action (control
input) spaces (assumed to be finite, |S|, |A| <∞); P0 is the initial state distribution; Γ represents
the transition probabilities, the state distribution upon taking action a in state s, P (s′|a, s); reward
functionR : S ×A → R; and discount factor γ ∈ (0, 1]. We assume feature vectors φ : S ×A →
[0, 1]d over state-action pairs that capture the most salient properties distinguishing preferred and
nonpreferred trajectories whereR can be written as a (linear) function of these feature vectors given
a reward vector w: R(s, a) = w · φ(s, a).

A policy π ∈ Π is the probability of taking action a in state s, π(a, s) = P (a|s) and Π represents the
set of all possible stochastic policies. Demonstrations by an expert are given as a set of trajectories
D = {τ1, · · · , τm}. A trajectory is a sequence of state-action pairs τ = (s0, a0, · · · , sT , aT ) over
horizon T . From an optimization perspective, Imitation Learning with a General Loss, finds a policy
π̂ that minimizes the difference between learner behavior and expert behavior πE :

π̂ ∈ argmin
π
L(π, πE), 1

where L measures the dissimilarity between two policies’ behaviors.

Having access to only sample demonstrations of a policy for training, it is essential to quantify the
behavior of a policy. Commonly used in behavioral cloning, one approach is to measure the marginal
distribution of states and actions, P (s, a) induced by a policy. Note that in the case of infinite-horizon
MDPs, expected (discounted) number of visits to state-action pairs is used. A more desirable measure
for long horizons is the expectation of trajectory features [1]. This approach is often used in inverse
reinforcement learning, where a reward function of the features is learned. The expected (discounted

1We overload L for any type of loss in different contexts (e.g., loss between deterministic policies or states).
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if γ ∈ (0, 1)) feature of a policy π (similar to [1]) is defined as:

µ(π) = E

[
T∑
t=0

γtφ(st, at)
∣∣π,Γ] ∈ Rd. (1)

3 Robust Imitation Learning and Maximum Entropy

Foundational work [27, 12] has developed a close relationship between robust Bayes decisions,
maximum entropy, and minimizing worst-case expected loss also known as adversarial learning.
Several works have followed this framework of robustness for different supervised learning problems,
such as cost-sensitive classification [2], multivariate loss prediction [29], ordinal regression [7], and
graphical models [8]. For the imitation learning setting, [5] has applied the adversarial learning
framework on inverse reinforcement learning problem for a restricted class of loss functions and
proposed a double oracle algorithm [17] to solve the corresponding optimization problem.

In the following, we define a general framework of distributional robustness for imitation learning to
obtain the policy that robustly minimizes an imitative loss:

Definition 1. Given an imitative loss function L that measures the distance of two policies’ behavior,
Distributionally Robust Imitation Learning (DROIL) is defined as a two-player zero-sum game
between the learner and the demonstrator, in which each player chooses a distribution over control
policies - constructing a stochastic policy, π̂ and π̌ ∈ Ξ̃, then the players receive the loss between the
behaviors L(π̂, π̌) as their payoff . The minimax strategy for the learner is given by:

min
π̂

max
π̌∈Ξ̃

L(π̂, π̌), (2)

where Ξ̃ is a set of constraints characterized by the demonstrated data.

Generally, Ξ̃ can be in the form of moment matching in (1) that is commonly used in inverse
reinforcement learning:

π̌ ∈ Ξ̃↔ E
[ T∑
t=0

γtφ(st, at)
∣∣π̌,Γ] = µ̃ , E

[ T∑
t=0

γtφ(st, at)
∣∣πE ,Γ],

where πE represents the policy that demonstrated trajectories are generated from.

This formulation assumes that except for certain properties of the limited samples of available
demonstrated behavior, the demonstrator’s policy is the worst-case possible for the learner. This
approach avoids generalizing from available demonstrations in an optimistic manner that may be
unrealistic and lead to a policy that does not work well in practice, especially in situations where
there is noise in the demonstrated behaviors.

The minimax formulation in Definition 1 is closely related to the principle of maximum entropy,
which is used in Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) [31]. MaxEnt IRL
provides a probabilistic approach under the constraint of matching the reward value of demonstrated
behavior to resolve the ambiguity in choosing a distribution over decisions. Under this model,
trajectories with equivalent rewards have equal probabilities, and trajectories with higher rewards are
exponentially more preferred according to the following:

P (ζi|w) =
1

Z(w)
ew

>φζi , (3)

where ζi and φζi represent a trajectory and its corresponding sum of features.

Note that a distribution over trajectories (paths) is an alternative policy description that provides
a stochastic policy where the probability of an action is weighted by the expected exponentiated
rewards of all paths that begin with that action:

P (a|w) ∝
∑

ζ:a∈ζt=0

P (ζ|w).
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To show the connection between DROIL and MaxEnt IRL, we employ a tool from the general theory
of exponential families [3] that shows for certain classes of two-player zero-sum games, there exists
a parametric distribution for the minimax strategy, as shown in Lemma 1.
Lemma 1 (Barndorff-Nielsen [3]). Let p ∈ Ξ be a probability distribution over space X , where:
Ξ = {p : Ep(T (X)) = C} describes a mean-value constraint; T (X) represents a vector value
statistic; and C is a constant. Let q be also a distribution chosen from the set of all probability mass
functions. For the maximum entropy distribution, maxq∈Ξ̃ minp E[−log q(X)], p∗ = q∗ exists as a
parameterized function of the form p∗ = exp{α0 + α>T (X)} with parameters α0 and α.

Equipped with Lemma 1, we develop a connection between DROIL and MaxEnt IRL in Theorem 1.

Theorem 1. The stochastic policy P (ζi|w) obtained from MaxEnt IRL in Equation (3) is obtained
from DROIL minimax strategy in Definition 1 when the logarithmic loss is used.

Proof. We construct a stochastic policy in Definition 1 as a probability distribution over all possible
trajectories {ζ1, ..., ζM}. Let π̂ = P (ζ) and π̌ = Q(ζ) be the probability distributions of the
learner and the demonstrator, respectively. The expected feature of demonstrator now can be written
as µπ̌ =

∑
iQ(ζi)φζi , which resembles the mean value constraint in Lemma 1, therefore, for

logarithmic loss, P ∗(ζi) = Q∗(ζi) = exp{w0 + w>φζi}.

We can generalize beyond the logarithmic loss and resulting maximum entropy policy (Theorem 1)
to other losses of interest by using Generalized Entropy functions, H(P ) := infQ E[L(P,Q)].
Proposition 1 describes the relation between DROIL and generalized maximum entropy.
Proposition 1. For any policy descriptions and loss functions that DROIL in Definition 1 has Nash
equilibrium, π̂ is a robust action and π̌ is the maximizer of a generalized entropy function.

Proposition 1 provides a general approach to resolve the ambiguity of matching constraints—where
many policies lead to the same feature counts—by choosing either a policy π̌ that does not exhibit
any additional preferences beyond matching feature expectations with respect to a loss of interest L
(maximum generalized entropy) or a policy π̂ that minimizes the worst-case expected loss. This can
be seen as Maximum Generalized Entropy Inverse Reinforcement Learning, where the choice of loss
function is not restricted to the logarithmic loss function.

We extend the following lemma that describes a class of loss functions and policies for which the
solution of the game in Definition 1 exists, thus Proposition 1 can be applied.
Lemma 2. For the game in Definition 1, where learner π̂ and demonstrator π̌ simultaneously choose
a stochastic policy, if the loss function is additive and the payoff can be written as a bilinear function:∑n
i=1

∑m
j=1 lij π̂iπ̌j , the game has a solution and minimax (maximin) strategy producing the solution

as long as m and n are finite.

Proof. In his generalized minmax theorem, Von Neumann [28] shows that bilinear games with
arbitrary nonempty closed, bounded convex sets of actions have saddle points as long as m and n are
finite. Assuming the demonstrated data are generated from a policy (optimality not necessary) the
convex moment matching constrained in Definition 1 keeps Ξ̃ closed, bounded, and non-empty.

Example 1. One illustrating example is to let each player’s pure strategy to be a deterministic policy
δ and define the loss as the expectation over a given loss between each individual deterministic
policies. A mixed strategy now represents a stochastic policy π, which is a probability distribution
over the set of all deterministic policies and Equation (2) can be written as a bilinear game with
payoff

∑n
i=1

∑m
j=1 lijP (δ̂i)P (δ̌j) where lij is L(δ̂iδ̌j).

Lemma 2 describes a restricted class of loss functions (e.g., that the logarithmic loss does not belong
to) for which the resulting policy is the maximizer of a more flexible concept of entropy. A class of
loss functions of interest are loss functions that are additive over state and action spaces. Similar to
Example 1, previous work [5] constructs a policy using a distribution over deterministic policies and
for additive loss function by writing Equation (2) as a bilinear game and solving the corresponding
optimization. We also focus on this class of loss functions. However, we provide an efficient
optimization algorithm for this class of loss functions that avoids the exponential worst-case time
complexity of the previous double oracle [17] approach.
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4 Learning and Inference

To solve the optimization problem in Equation (2), one needs to specify the policy description π,
and the distance measure between two policies’ behaviors L. The choice of π and L can result in
different algorithmic approaches.

4.1 Double Oracle

δ̌1 δ̌2 · · · δ̌j

δ̂1
L(δ̂1, δ̌1)
+ψ(δ̌1)

L(δ̂1, δ̌2)
+ψ(δ̌2)

· · · L(δ̂1, δ̌j)
+ψ(δ̌j)

δ̂2
L(δ̂2, δ̌1)
+ψ(δ̌1)

L(δ̂2, δ̌2)
+ψ(δ̌2)

· · · L(δ̂2, δ̌j)
+ψ(δ̌j)

...
...

...
. . .

...

δ̂i
L(δ̂i, δ̌1)
+ψ(δ̌1)

L(δ̂i, δ̌2)
ψ(δ̌2)

· · · L(δ̂i, δ̌j)
ψ(δ̌j)

Table 1: Payoff matrix ofG(π̂∆, π̌∆|w) with loss function
L, deterministic policies δ and Lagrangian potentials ψ.

In [5], the authors construct the learner
and the demonstrator stochastic poli-
cies as mixtures of deterministic non-
stationary policies. Concretely, let Υ =
{δ1, δ2, ...}, be the set of all possible non-
stationary deterministic policies, then
π̂∆ := P ({δ̂ ∈ Υ}) and π̌∆ = P ({δ̌ ∈
Υ}). Note that |Υ| ∈ O(|A||S|T ) which
is exponential in size of state space and
time horizon, |S|, T . Assuming the
loss function is additive over state-action
pairs, [5] shows that Equation (2) can be
written as a bilinear game:

min
w

G(π̂∆,π̌∆|w)︷ ︸︸ ︷
min
π̂∆

max
π̌∆

∑
i

∑
j

p(δi)p(δj)L(δ̂i, δ̌j) +
∑
j

p(δj)w · E[φ|δ̌j ]︸ ︷︷ ︸
ψ(δ̌j)

−w · µ̃.

This will result in a matrix game of exponential size in the number of states S and time horizon, as
shown in Table 1. To obtain the Lagrange variables w, this matrix game needs to be repeatedly solved
to compute the gradient with respect to w. This requires solving a linear program with O(|A||S|T )
variables with a simplex constraint, which is impractical for even modestly sized problems. To
mitigate this problem, they employed the double oracle method [17] in an attempt to construct a
smaller sub-portion of the matrix by gradually adding pure actions through solving a time-varying
control problem. However, there is no guarantee that the support set of Nash-equilibrium of the
defined game is small and the algorithm may need to solve up to an exponential number of time-
varying optimal control problems.

4.2 State-Action Distribution

We propose an alternative way to transform the optimization in Equation (2) into a convex problem.
Our approach is based on using state-action marginals to construct the stochastic policies of learner
and the demonstrator, where the number of required variables is linear in |S| and |A|, and it can also
be extended to stationary policies. In the following, we first look at the non-stationary case and then
extend our method to stationary policies.

A policy π induces a probability distribution Pt(s) over the states of an MDP M at each time
step. State-action marginals are similarly defined as Pt(s, a) = Pt(s)πt(a|s). A valid state-action
marginal is a set of simplices corresponding to each time-step that satisfy the Bellman flow con-
straints for a given MDP M. Let Pt(s, a) ∈ ∆ be the probability of state-action pairs (a, b) at
time t; a valid marginal distribution P ∈ Ω satisfies the following affine constraints: for all s′,∑
s,a Pt(s, a)P (s′|s, a) =

∑
a Pt+1(s′, a), where P (s′|s, a) ∈ Γ and Ω represents the set of all

valid marginal distribution for a given MDPM.

Employing state-action marginals allows us to write the objective function in Equation (2) as a convex
problem of O(|A||S|T ) variables as shown in Theorem 2 in a vectorized form.

Theorem 2. For an additive loss function over states and actions L, Solving DROIL optimization
in Equation (2) is equivalent to solving the following convex minimax problem over marginal
state-action probabilities of the learner P = (p1, ...,pT ) and demonstrator Q = (q1, ...,qT )
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parameterized with Lagrange multipliers w:

min
w

max
Q∈Ω

min
P∈Ω

[ T∑
t=0

p>t Lqt + w>Φ>qt

]
−w>µ̃, (4)

where pt (similarly qt) is a vector of size |A||S| storing marginal probability of state-action pairs at
time t: Pt(s, a); L is the general loss function that is defined over state-action pairsL : |A||S|×|A||S|.
φ is a d × |A||S| matrix storing the feature function for each state-action pair. We denote system
dynamics with Γ, which is a matrix of size |A||S| × |S| storing transition probabilities P (s′|s, a).

Intuitively, each player in the above formulation searches over a valid state-action distribution to
reach an equilibrium. One of the benefits of constructing a policy using marginals is that the feature
expectation can be written as an inner product of the state-action distribution and the state-action
feature vector. Thus, the demonstrator’s expected feature is µ(Q) =

∑T
t=0 Φqt, and the feature

matching constraint is realized by minimizing w>(
∑T
t=0 Φqt − µ̃) over dual variables w. Writing

the objective function in Equation (2) in terms of state-action marginal probabilities reduces the
number of variables needed to represent the equilibrium from O(|A||S|T ) to O(|A||S|T ). The
unconstrained optimization over dual variables w can be solved using any gradient descent method
where the gradient is given by

∑T
t=0 Φq∗t − µ̃ and Q∗ is the solution of the following game for the

current wt:

G(wt) = max
Q∈Ω

min
P∈Ω

[ T∑
t=0

p>t Lqt + w>t Φ>qt

]
. (5)

4.3 Stationary Policy

Our approach extends with some modifications to the stationary policy setting. Stationary policies
are desirable because they are simpler to describe, and are more natural and intuitive in terms of
the behavior that they prescribe. Similar to state-action marginals, we utilize an occupancy measure
ρπ : S ×A → R+ ∪ 0 to characterize a stationary policy π. It is defined as the expected (discounted)
number of visits to state-action pair (s, a), when following policy π and can be written as a feasible
set of affine constraints:

G = {ρ : ρ ≥ 0 |
∑
a

ρ(s′, a) = p0(s′) +
∑
s,a

γP (s′|s, a)ρ(s, a) ∀s ∈ S}, (6)

where P (s′|s, a) ∈ Γ and p0 is the distribution of starting states.

For a given additive loss L, with the use of an occupancy measure, we write the expected loss
E[L(π1, π2)] as ρ>π1

Lρπ2
and the expected discounted feature as µπ = Φ>ρπ . Theorem 3 shows how

we can write Equation (2) as a convex optimization using occupancy measure:
Theorem 3. For an additive loss function over state and actions L, solving DROIL optimization
in Equation (2) is equivalent to solving the following convex minimax problem over occupancy
measures of the learner P and demonstrator Q:

min
w

max
Q∈G

min
P∈G
P>LQ+ w>(Φ>Q− µ̃). (7)

The convex optimization in Equation (7) can also be solved using any gradient-based method where
the gradient is obtained by solving a constrained game with O(|A||S|) variables.

4.4 Inferred Policy

In the non-stationary case, after obtaining w∗, one can use either Q∗ or P∗ as the produced non-
stationary Markovian stochastic policy by computing π∗(a|st) = pt(a|s) = pt(a,s)∑

a pt(a,s)
. Q corre-

sponds to the policy that maximizes the generalized entropy and P corresponds to the policy that has
minimized the worst-case expected loss.

For the stationary case, [26] has proved that there is a one-to-one mapping between G and Π, in a
sense that for an occupancy measure P ∈ G, π(a|s) , P(a,s)∑

a P(a,s) is the only policy that results in Pπ .
Therefore, one can similarly use P or Q as the produced stationary stochastic policy.
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For either case, assuming the reward function can be written asR(s, a) = w · φ(s, a), then w∗ plays
the role of the reward weight vector that rationalizes the demonstrated behaviors. Consequently,
we can use w∗>Φ to obtain the optimal reward function R∗ and use an MDP solver to obtain the
(deterministic) corresponding policy.

5 Optimization

In both stationary and non-stationary cases, any gradient descent method can be used to optimize
over dual variables w. To compute the gradient, one needs to compute Q∗ for non-stationary and Q∗.
However, since w is unconstrained, by adding a norm of w with hyperparameter λ, one can directly
solve w and replace it in the objective. Since the optimization algorithms are similar in both cases,
we only mention the non-stationary case:

min
w

max
Q∈Ω

min
P∈Ω

[
T∑
t=0

p>t Lqt + w>Φ>qt

]
−w>µ̃ +

λ

2
‖w‖2, (8)

and setting: w =
µ̃−Φ

∑T
t=0 qt

λ we have:

max
Q∈Ω
− 1

2λ

∣∣∣∣∣
∣∣∣∣∣µ̃− Φ

T∑
t=0

qt

∣∣∣∣∣
∣∣∣∣∣
2

+ min
P∈Ω

T∑
t=0

p>t Lqt, (9)

which is a constrained quadratic optimization in Q. Using Danskin’s theorem, the gradient of qt is
given by

1

λ
(Φ>µ̃− Φ>Φ

1∑
t=0

Tqt)− Lp∗t ,

where p∗ can be found using linear programming (linear objective with affine constraints) effi-
ciently using standard linear programming toolbox. An alternative approach is to solve the dual of
optimization over pt and maximize it along with Q.

Algorithm 1 Distributionally Robust Imitation Learning (DROIL)

Input: D = {τ1, τ2, · · · , τm},Γ, p0

Initialize Q0, compute µ̃ using D, and set i = 0
repeat

Compute ∇if(Qi) in Equation (9)
i = i+ 1
Using∇if(Qi) calculate with Q̄i+1

if Q̄i+1 ∈ Ω then
Qi+1 = Q̄i+1

else
Qi+1 =project (Q̄i+1) where projection function is defined in Equation (10)

end if
until convergence

Projection Step

At each iteration of the algorithm, we need to project Q to a convex domain to maintain a valid
state-action distribution given Γ and the initial state distribution. Essentially,

min
Q

1

2

T∑
t=0

||q∗t − qt||2 s.t. Q ∈ Ω, (10)

from which, by using a Lagrangian method and strong duality, we obtain:

max
V

min
Q∈∆

T∑
t=0

1

2
‖q∗t − qt‖2 +

(
q>t−1Γ− q>t Z

)
vt, (11)

where Z operator computes the state distribution: q>t Z =
∑
a qt(s, a). To compute the gradient V,

a quadratic program over Q with probability simplex constraints needs to be solved. This can be
analytically determined by sorting each qt, which takes O(|S||A| log(|S||A|)) time.
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6 Experimental Results

In our experiments, we compare DROIL with prior methods on several imitation learning tasks. We
investigate: 1) How our convex optimization improves the training time compared to the double
oracle method; 2) How the choice of loss function affects the performance of DROIL; and 3) How
accurately DROIL predicts actions compared to other IRL methods.

6.1 Training Time

Size DROIL
Time

DROIL
Cost

DO
Time

Do
Cost

128 1.6 −7.39 30.1 −7.39
432 1.8 −21.61 42.1 −21.74
1024 6.0 −20.0 141.1 −20.0
2000 98.6 −30.1 608.1 −30.1
3500 496 −39.2 2020 −39.1
5500 881 −58.7 4970 −58.9

Table 2: Elapsed time in second until convergence
with 10−3 tolerance.

To compare the training time of our pro-
posed convex optimization with the double
oracle approach [5], we adopt their experi-
mental setup in GridWorld. In this experi-
ment, trajectories are collected from simu-
lated navigation across a discrete 2D grid
where the agent starts from a random start-
ing point, and navigates through the grid to
reach a specified target location. Taking a
step in the grid has a cost and the agent’s
goal is to reach the target location while
minimizing the accumulated navigation cost
(maximizing the reward). This problem can
be formulated as an optimal sequential decision-making problem in a finite Markov decision process
where the optimal policy is non-stationary. We consider linear cost function C(s) = w∗>φ(s) + ε(s),
where feature function φ(s, a) and weight vector w∗ are drawn from U(0, 1)d, and ε ∼ U(0, 1).
Transition function is non-deterministic with parameter pm ∈ (0, 1] which navigates the agent to
randomly choose neighbors with probability (1− pm).

The loss function for this experiment is set to E
[∑T

t=0

√
(X̂t − X̌t)2 + (Ŷt − Y̌t)2

]
, where

(X,Y ) represents the grid position of the agent. We generate trajectories from the optimal policy that
is obtained by solving the true reward function and train DROIL and DO until convergence. Along
with expected loss, we report the elapsed time that it takes to converge for our proposed method and
double oracle (DO) in Table 2, averaged over eight repetitions of the experiment for this result and
our later results. As Table 2 shows, our proposed method requires significantly less training time for
the same performance and scales very well with the size of state space.

6.2 Loss Function Effect
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Figure 1: Performance of DROIL when
different loss functions are used.

For the second question, we show that different choices
of loss function result in different performance for the
learned policy in the imitation learning setting. There-
fore, the choice of loss function provides an extra tool
to incorporate certain domain knowledge, and design
a problem-specific loss that potentially results in better
produced policies. For the purpose of comparison of
different losses, we revisit the GridWord environment,
however, we train several stationary policies with differ-
ent losses. We consider 0-1 loss, which equally penal-
izes any mismatch between state-action pairs; action-
loss, which incurs loss only when an action differs
from another pair in the same state; random loss, which
is drawn from a uniform distribution; and finally Eu-
clidean distance between two positions in the grid. It
is clear from Figure 1 that the policy produced from
Euclidean loss outperform other policies from other
losses, which shows the benefit of using a task-specific
loss function.
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6.3 Highway Driving

To evaluate DROIL in a complex environment with more realistic behavior, we compared it with
several other IRL methods in a highway driving simulator with non-linear reward function: MMP
[20], the projection algorithm of Abbeel and Ng [1], and LEARCH [21].

Following the setting in Levine et al. [16], the task is to drive a car on a three-lane highway in which
the agent can switch lanes and drive at up to four times the speed of traffic while all other vehicles
move at a constant speed. The set of features includes the distance to the nearest vehicle in each lane
(in front and behind), current speed, and current lane. We also evaluate each method on the original
environment and on four additional random environments, denoted as "transfer". We set a uniformly
random loss for DROIL and train all methods using examples sampled from the stochastic MaxEnt
IRL policy which can intuitively be viewed as noisy samples of an underlying optimal policy. To
evaluate the performance of each method, we use the misprediction rate, which is defined as the
ratio of incorrect actions compared to the optimal policy, and the expected value difference, which
measures the suboptimality of the learned policy under the true reward. Since DROIL is able to
produce stochastic policy, with the same argument from [16], we could evaluate the optimal stochastic
policies. However, this would unfairly penalize other methods. Therefor, we first obtain the reward
weight vector and find the optimal deterministic policy the corresponding reward function. Then, we
measure its expected sum of discounted rewards under the true reward function, and subtract this
quantity from the expected sum of discounted rewards of the optimal policy.

Figure 2: Expected value differences for 64-car-length highways with varying example counts. Lower
values are better.

As shown in Figure 2 and Figure 3, DROIL performs very well in terms of the obtained reward
and the accuracy of the produced policy in both the original and transfer environments. In contrast,
we find that MMP and Abbeel & Ng’s approach degrade as the number of examples increase. This
matches theory since the suboptimality of the demonstrations becomes more apparent as the number
of examples increases. This indicates that under noisy demonstrations (samples from a stochastic
policy), a robust approach has the potential to outperform alternative approaches.
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Figure 3: Misprediction rate results for 64-car-length highways with varying example counts. Lower
values are better.

7 Discussion & Conclusion

We demonstrated a connection between DROIL, which accepts any loss of interest, and Maximum
Entropy Inverse Reinforcement Learning—one of the widely used IRL approaches—which robustly
minimizes logarithmic loss. We showed that MaxEnt is a special case of DROIL framework when
logarithmic loss function is used and showed that DROIL can be seen as the maximizer of a
generalized concept of entropy. We provided a novel approach to cast DROIL’s objective into a
convex optimization over a polynomial number of variables and experimentally showed our proposed
algorithm provides faster training time. DROIL is naturally designed to perform robustly against
noisy demonstrations. Our experiment in the highway driving task showed that when demonstrations
are noisy, it robustly learns an appropriate policy.

Improvements in imitation learning have the potential for both societal benefits and harms. For
example, better imitating top surgeons could scale their abilities to a broader populations that are
medically under-served. Enabling robots that better imitate effective soldiers could cause great harm
if used inappropriately. Like all general purpose tools, avoiding intentional harms while still providing
benefits is an unsolved challenge. We take the position that providing methods that are more robust
to noise will help to avoid unintentional harms—the application of methods in a well-intentioned
manner that fail to maximize their benefits and may instead produce harms through their fragility.

Our presented experiments are restricted to discrete/low-dimensional decision processes. For future
work, we are interested in finding a connection between DROIL and the Generalized Exponential
family and applying DROIL on very high dimensional state and action spaces that need function
approximators such as deep neural networks.
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A Proof of Theorem 2 & 3

Suppose the loss function L is decomposable over state action pairs, then we can write, Equation (2)
as following:

min
π̂

max
π̌

T∑
t=1

[∑
ŝ,â
š,ǎ

[
P (Ŝt = ŝ, Ât = â|π̂,Γ)L(ŝ, š, â, ǎ)P (Št = š, Ǎt = ǎ|π̌,Γ)

]]
(12)

subject to:
T∑
t=1

∑
š,ǎ

Pt(Št = š, Ǎt = ǎ|π̌,Γ)φ(š, ǎ) = µ̃.

By introducing dual variables w for the feature expectation constraints, the Lagrangian function of
Equation (12) is given by:

min
π̂

max
π̌

min
w

T∑
t=1

[∑
ŝ,â
š,ǎ

[
P (Ŝt = ŝ, Ât = â|π̂,Γ)L(ŝ, š, â, ǎ)P (Št = š, Ǎt = ǎ|π̌,Γ)

]]
(13)

+ w ·
( T∑
t=1

[∑
š,ǎ

Pt(Št = š, Ǎt = ǎ|π̌,Γ)φ(š, ǎ)
]
− µ̃

)
The optimization in Equation (13) is over π̂ and π̌. However, the objective function Equation (13),
decomposes over the state-action distribution induced by policies π̂ and π̌. We directly optimize over
the marginals:

min
(p1,p2,...,pT )

max
(q1,q2,...,qT )

min
w

T∑
t=1

[∑
ŝ,â
š,ǎ

[
pt(ŝ, â)L(ŝ, š, â, ǎ)qt(ŝ, â)

]]
(14)

+ w ·
( T∑
t=1

[∑
š,ǎ

qt(š, ǎ)φ(š, ǎ)
]
− µ̃

)
,

where pt(ŝ, â) = P (Ŝt = ŝ, Ât = â) and qt(š, ǎ) = P (Št = š, Ǎt = ǎ). This optimization needs to
be over valid state-action marginals (marginals induced by a policy). So the following constrained
need to be satisfied:

Ω :=
∑
ŝ,â

pt(ŝ, â)P (ŝ′|ŝ, â) =
∑
â

pt(ŝ
′, â) ∀ t, s′

Similarly for qt,
∑
š,ǎ

qt(š, ǎ)P (š′|š, ǎ) =
∑
ǎ

qt(š
′, ǎ) ∀ t, s′

Since Equation (14) is convex in all variables pt, qt, and w, the order of optimization can be changed:

min
w

max
Q∈Ω

min
P∈Ω

[ T∑
t=1

[∑
ŝ,â
š,ǎ

pt(ŝ, â)L(ŝ, š, â, ǎ)qt(ŝ, â) + w ·
∑
š,ǎ

qt(ŝ, â)φ(š, ǎ)
]
−w · µ̃,

where P = (p1, p2, ..., pT ) and Q = (q1, q2, ..., qT ).

The proof for stationary case is similar.
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