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Abstract

Diffusion models have achieved state-of-the-art performance, demonstrating re-
markable generalisation capabilities across diverse domains. However, the mecha-
nisms underpinning these strong capabilities remain only partially understood. A
leading conjecture, based on the manifold hypothesis, attributes this success to their
ability to adapt to low-dimensional geometric structure within the data. This work
provides evidence for this conjecture, focusing on how such phenomena could
result from the formulation of the learning problem through score matching. We
inspect the role of implicit regularisation by investigating the effect of smoothing
minimisers of the empirical score matching objective. Our theoretical and empirical
results confirm that smoothing the score function—or equivalently, smoothing in
the log-density domain—produces smoothing tangential to the data manifold. In
addition, we show that the manifold along which the diffusion model generalises
can be controlled by choosing an appropriate smoothing.

1 Introduction: Diffusion, manifolds and generalisation

Diffusion models (Sohl-Dickstein et al., 2015; Song and Ermon, 2019; Ho et al., 2020; Song et al.,
2021) have emerged as a powerful generative framework, achieving state-of-the-art performance
across domains (Dhariwal and Nichol, 2021; Kong et al., 2021; Liu et al., 2023; Ho et al., 2022).
Beyond their ability to generate high-quality outputs, they are also capable of producing novel
samples not present in the training data, indicating a surprising capacity for generalisation.

The goal of diffusion models is to produce samples from a target distribution µdata on Rd, given only
a finite number of samples. They do this by learning to reverse a noising process, Xt, which begins
with a random sample of the data distribution X0 ∼ µdata and gradually transforms it into noise.
This process is defined by the stochastic differential equation (SDE),

dXt = −αXtdt+
√
2dBt, X0 ∼ µdata, (1)

for some α ≥ 0, where Bt denotes the d-dimensional Brownian motion. It is well known (Haussmann
and Pardoux, 1986) that the time reversal Yt := XT−t of (1) satisfies

dYt = αYtdt+ 2∇ log pT−t(Yt)dt+
√
2dBt, (2)

where pt denotes the density of Xt. Therefore, the task of generating samples from µdata can be solved
by simulating paths of (2). To that end, the unknown score function, ∇ log pt in (2), is approximated
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Figure 1: Isotropic smoothing of the score function identifies manifold structure. The figure shows
training data (▲) against generated samples (•) from a diffusion model that is run with the smoothed
score ∇ log p̂t ∗ Nσ, where the width of the Gaussian smoothing kernel increases from σ = 0.02 to
σ = 0.12. Notice that for low amounts of smoothing, generated samples are concentrated close to
training data and as σ increases, generated samples begin to fill out more of the manifold without
having seen training samples in those regions.

by minimizing the (population) score matching loss (see Hyvärinen (2005)):

ℓsm(s) =

∫ T

0

E
[
∥s(t,Xt)−∇ log pt(Xt)∥2

]
dt. (3)

In (3), the expectation is taken over samples from Xt (see (1)), when started from the true data
distribution X0 ∼ µdata. In practice, one has access only to a finite dataset of samples {xi}Ni=1 from
µdata and so ℓsm must be approximated empirically. Therefore, during training, the noising process
is not started from the target distribution µdata, but is instead initialized from the empirical measure,
µ̂data =

1
N

∑
i δxi

. This gives rise to the empirical score matching loss,

ℓ̂sm(s) :=

∫ T

0

E
[
∥s(t, X̂t)−∇ log p̂t(X̂t)∥2

]
dt, (4)

where p̂t is the density of forward process, X̂t, which is initialised from the empirical measure µ̂data.

One quirk of this objective is that it possesses a unique minimiser2 identical to the empirical score
function, ∇ log p̂t(x). As a result, if one were to reverse the noising process with this minimiser, one
would arrive close to the empirical measure µ̂data, reproducing the training data instead of generating
novel samples from the target distribution. In fact, it has been shown that any approximation
sufficiently close to ∇ log p̂t will produce samples belonging to the training dataset (Pidstrigach,
2022). However, in practice, diffusion models trained with this objective perform well and avoid
memorisation, suggesting that regularisation is key to their generalisation capabilities.

The study of generalisation in diffusion models can be divided into three parts: (i) formulating
the learning problem via score-matching and its empirical approximation; (ii) the inductive bias of
the training procedure and architecture; and (iii) how regularizing the minimiser of (4) affects the
reverse SDE and generated samples. Of these, (ii) has been widely studied—spanning architectures,
regularisation, and optimisation—and while far from completely understood, there are numerous
studies into how neural network training promotes bias towards smooth functions interpolating the
data (Rahaman et al., 2019; Mulayoff et al., 2021; Ma and Ying, 2021; Vardi, 2023). In contrast, (i)
and (iii) are diffusion-specific and comparatively underexplored, so we focus on these two parts.

To account for the inductive bias during score matching, we propose a simple model built upon
smooth approximations to the minimiser of ℓ̂sm. In particular, we consider the score function sk,
which smooths the empirical score function ∇ log p̂t, with a generic probability kernel k:

sk(t, x) =

∫
∇ log p̂t(y) kx(dy). (5)

While this significantly simplifies the possible inductive bias employed during training, it succeeds in
capturing a defining property of diffusion models: as a result of the approach of score-matching, any
smoothing resulting from inductive bias occurs at the level of the score function—in the log-domain.

Beyond these considerations, understanding the generalisation of diffusion models also requires
an analysis of the data distributions they successfully model. There is growing support for the

2Here we mean in the L2 sense: any minimiser of ℓ̂sm is identical to ∇ log p̂t almost everywhere.
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Figure 2: Density smoothing generates samples off-manifold, whereas score smoothing generates
samples that retain manifold structure. Left: The plots compare samples (•) drawn from a KDE
(top) versus from a diffusion model with the smoothed score (bottom) from Figure 1 (training data is
•). The scale of the smoothing kernel increases from left to right. Right: 1D intuition for data-domain
versus log-domain smoothing. The left sub-figure shows the Gaussian (−) smoothed in data-domain
(−), and the right sub-figure shows the Gaussian smoothed in log-domain (−) with the same kernel.

theory that diffusion models are particularly successful at modelling distributions adhering to the
manifold hypothesis, wherein high-dimensional data concentrates on a lower-dimensional manifold
(Tenenbaum et al., 2000; Bengio et al., 2012; Goodfellow et al., 2016). A standing conjecture is that
generative models, including diffusion models and flow-based approaches, owe their success partly to
their capacity to uncover these hidden structures (Pidstrigach, 2022; De Bortoli, 2022; Loaiza-Ganem
et al., 2024; Farghly et al., 2025). This raises a critical question: what mechanism allows diffusion
models to so effectively identify and leverage this underlying manifold structure? In this work, we
argue that the practice of smoothing in the logarithmic domain plays a key role.

2 Log-domain smoothing retains geometric structure

This work contributes to a small but growing literature on the effect of score-smoothing in diffusion
models (Scarvelis et al., 2025; Chen, 2025; Gabriel et al., 2025). In this section, we provide intuition
for how diffusion models inherently perform smoothing in the log-density domain via their score-
matching objective. We then show that log-domain smoothing is crucial for preserving the underlying
manifold structure of the data. Finally, we revisit the manifold hypothesis and explore how specific
characteristics of the smoothing kernel can guide the model to generalise along different geometries.

2.1 Diffusion models smooth in the log-domain

As outlined in the introduction, we model the inductive bias of neural network training by a smoothing
kernel k (see (5)). Assuming that the nature of the inductive bias does not vary too rapidly over
the spatial parameter, we can treat the kernel as locally constant. In this case, the convolution will
commute with the gradient operation, and we obtain the following simple but consequential equation:

sk(t, x) = k ∗ ∇ log p̂t(x) = ∇ (k ∗ log p̂t(x)) . (6)

Therefore, smoothing the score function corresponds to smoothing the empirical density p̂t in the
log-domain, as opposed to smoothing at the density-level directly. Consequently, when a trained
diffusion model generates samples by following the reverse SDE in (2), it effectively utilises scores
derived from this log-smoothed version of the empirical density:

p̂kt (dx) ∝ exp

(∫
log p̂t(y)kx(dy)

)
dx, (7)

where we use kx to denote the distribution of the smoothing kernel centred at x.

Sampling from a diffusion model involves discretising the backwards process in (2) using the learned
score function approximation. To correct for discretisation and approximation error, so-called
corrector-steps are interspersed between iterations (Song et al., 2021; Karras et al., 2022). This
involves running Langevin Monte Carlo to correct the distribution of the diffusion model, maintaining
correspondence between the diffusion model samples and the distribution associated with the score
function. Furthermore, to account for instability near convergence, the technique of early stopping
is often used, where the reverse process is terminated an amount of time ϵ > 0 before convergence
(Song et al., 2021). With this, we arrive at our approximation of the diffusion model output as the
log-domain smoothed empirical measure, p̂kϵ . Indeed, this is the density recovered by the diffusion
model with score function sk with sufficient correction steps and sufficiently fine discretisation.
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Figure 3: The smoothing kernel influences the manifold on which generated samples lie. The
empirical score function corresponding to the training data (▲) is smoothed with different (data-
dependent) kernels. To visualize the smoothing kernels, we generate samples (•) from kx. We use the
smoothed score functions to generate samples (•) from the resulting diffusion models. Despite using
the same training data, different smoothing kernels generate samples that lie on different manifolds.

This characterisation of diffusion model output through smoothing in the log-domain identifies a
distinction between diffusion models and classical density-level estimators. For example, the classical
kernel density estimation (KDE) (Tsybakov, 2009) approximates the underlying data distribution by
smoothing the empirical measure µ̂data with a kernel k, providing an estimator of the form,

q̂kKDE(dx) =

∫
kx(y)µ̂data(dy)dx.

In words, the KDE also approximates the data distribution by smoothing the empirical data distribu-
tion, but it performs its smoothing in the data-domain as opposed to the log-domain.

2.2 Smoothing in log-domain preserves manifold structure

Capturing the geometry underlying the data distribution is a critical aspect of effective generative
modelling. We briefly provide some intuition for why log-domain smoothing plays a vital role
here. Consider a data distribution that is concentrated on a manifold within the larger data space.
Data-domain smoothing techniques, such as the KDE, yield a positive probability density wherever
the smoothing kernel overlaps with the manifold, leading to a smearing of the density away from the
manifold. In contrast, smoothing in the log-domain offers a distinct advantage—when we transition
to the log-domain, locations where the original density is zero are mapped to −∞. Consequently, if
a smoothing kernel extends into regions off-manifold, the resulting smoothed log-density in those
regions will also equal −∞.

In Section 3, we make this intuition more concrete, theoretically showing that smoothing the empirical
density in the log-domain approximates smoothing along the data manifold. We start by analysing the
case in which the data is supported on a linear manifold (see Section 3.1), where we obtain a perfect
correspondence between smoothing the empirical density in the log-domain and smoothing along
the (linear) data manifold. Then, in Section 3.2, we state our main theoretical result that generalises
this to the curved manifold setting—showing that smoothing in the log-domain approximates a
geometry-adapted smoothing, which generates samples close to the underlying manifold.

2.3 Choosing an interpolating manifold via geometric bias

The manifold hypothesis traditionally assumes that data lies on a low-dimensional true submanifold.
However, in many real-world scenarios, this assumption is too rigid: rather than adhering to a single
well-defined manifold, data likely exhibits geometric structure that different interpolating manifolds
can approximate. This is especially true when the size of the dataset is small relative to the dimension
and curvature of the space. In such settings, the focus is no longer on recovering a true manifold, but
on choosing a plausible interpolating manifold. With this, we arrive at our next question of interest:
how does the algorithm choose the interpolating manifold?

Returning to score smoothing, this reframes our central question to one of understanding how
smoothing induces biases in the geometric structure of generated samples. As Figure 3 illustrates, the
geometry of the output distribution depends entirely on the directions of smoothing. By choosing a
kernel that aligns with certain geometric structures (e.g., tangent to a circle), the diffusion model is
biased to interpolate along the corresponding manifold. We term this relationship between sample
geometry and the smoothing kernel—or more broadly, the inductive bias of the score matching
algorithm—as the geometric bias of the diffusion model. In Section 4, we develop theory and
experiments that identify key structural properties of the smoothing kernel that dictate this bias.
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3 Geometry-adaptivity of log-domain smoothing

In this section, we provide theoretical results that aim to capture and make concrete the intuition
presented in Section 2.2, examining the smoothed density p̂kϵ in (7) as a tractable proxy for the
diffusion model output. We also consider a manifold-adapted counterpart to p̂kϵ , denoted by p̂k

M

ϵ .
The kernel kM acts similarly to k, but restricts the smoothing to occur only along level sets of
the manifold, spreading mass along the manifold without destroying the geometric structure. Note
that a priori, one may not have knowledge of the manifold structure and thus could not construct
such a kernel kM—here, we use it merely as a theoretical tool to represent a desirable behaviour
of a generative model: that interpolation identifies and preserves geometric structure. To show that
smoothing with a generic kernel k is geometry-adaptive, we wish to show that p̂kϵ is close to its
manifold-adapted counterpart p̂k

M

ϵ . In this section, we provide theoretical results analysing this
relationship, and the properties of the data manifold and diffusion model that influence it.

3.1 Warm-up: linear setting

We first restrict our analysis to the setting where the data distribution is supported on a d∗-dimensional
affine subspace M = {x ∈ Rd : Ax = b}, where A ∈ Rd∗×d is a row-orthonormal matrix and
b ∈ Rd∗

. This allows us to provide intuition for our main result in Section 3.2 where we generalise
the linear case. Consider the simplified setting where the kernel k is location-independent

kx := law(x+ ξ),

where ξ is a zero-mean random variable independent of x. In this case, we have the following result.
Proposition 3.1. The log-domain smoothed density satisfies the property,

p̂kϵ = p̂k
M

ϵ , where kMx := law(x+ Pξ), (8)

where P := I −ATA is the projection onto Null(A) = {x ∈ Rd : Ax = 0}.

The kernel kMx is a modification of kx that smooths only along the plane parallel to M passing
through x. From this proposition, we see that in the affine setting, smoothing in the log-domain with
respect to a generic kernel k is equivalent to smoothing with the geometry-adapted kernel kM. In
other words, log-domain smoothing is fundamentally geometry-adaptive.

We now provide a brief exposition of the proof technique which also forms the basis of the proof
in the more general setting. Given the training set {xi}Ni=1, we can directly compute the noised
empirical densities p̂t(x) and the corresponding score functions. Recall that the LogSumExp (LSE)
function is defined on any finite set {ri}i ⊂ R and is given by LSE({ri}i) := log(

∑
i exp(ri)).

Using this function, we can succinctly express the empirical log-density as

log p̂t(x) = LSE
({

− ∥x− µtxi∥2/(2σ2
t )
}N

i=1

)
+ Ct, (9)

for data-independent quantities Ct, µt, σt given in Appendix B.1. We then use the following property.
Fact 3.2. For any {ri}i ⊂ R and any constant c ∈ R, LSE({ri + c}i) = LSE({ri}i) + c.

Using this fact, we can decompose the log-density into directions tangent and normal to the data
manifold. Indeed, using the fact that xi ∈ M we obtain,

log p̂t(x+ ξ) = LSE
({

− (∥P (x+ ξ − xi)∥2 + ∥ATA(x+ ξ − xi)∥2)/(2σ2
t )
}
i

)
+ Ct

= LSE
({

− (∥P (x+ ξ − xi)∥2 + ∥A(x+ ξ)− b∥2)/(2σ2
t )
}
i

)
+ Ct

= LSE
({

− ∥P (x+ ξ − xi)∥2/(2σ2
t )
}
i

)
︸ ︷︷ ︸

tangent

−∥A(x+ ξ)− b∥2/(2σ2
t )︸ ︷︷ ︸

normal

+Ct,

In other words, interactions between the noise ξ and the data occur only in the tangent direction, and
the normal direction is constant with respect to the examples {xi}i. Once taking the expectation
of the above expression, we obtain that the log-density of p̂kt is identical, up to a constant, to the
log-density of p̂k

M

t , which only applies smoothing in directions tangent to the manifold. We refer to
Appendix C for the complete derivation.
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3.2 The case of curved manifolds

In this section, we state the main theoretical contribution of this work in which we show that smoothing
in log-density is fundamentally geometry-adaptive. Similar to the above analysis, we do this by
deriving a relationship between pkϵ using an uninformed kernel k, and pk

M

ϵ using its manifold-adapted
counterpart kM. We consider curved manifolds satisfying the following assumption.
Assumption 3.3. Suppose that µdata lies on a smooth compact submanifold M ⊂ Rd, and that
µdata restricted to M admits a density pµ satisfying cµ := infM pµ > 0.3

Our approach to generalising the proof from the previous section is to use the defining feature of
Riemannian manifolds—that locally the manifold behaves as if it were flat. The distance that one
must be to the manifold depends on its curvature, which we control with an object from differential
geometry called the reach. This object defines the maximum distance from the manifold for which
the projection to the manifold, ΠM, is well-defined, i.e. a unique element of the manifold is closest.
For example, if M were a sphere, the reach would be the radius.
Assumption 3.4 (Manifold reach). The manifold M has a reach no smaller than τ > 0, i.e. for all
x ∈ Rd with dist(x,M) < τ , there exists a unique x⋆ ∈ M such that dist(x,M) = ∥x− x⋆∥.

The reach is inversely related to the maximum curvature of the manifold. Our assumption effectively
requires that the curvature is globally upper-bounded. This assumption, as well as the lower bound
on the density, have been used in several recent works and is common in the manifold hypothesis and
manifold learning literature (Aamari, 2017; Potaptchik et al., 2025; Azangulov et al., 2024). We refer
to Appendix D.2 for further discussion and details regarding the reach of the manifold.

To generalise the manifold-adapted kernel in (8), consider the kernel’s projection onto level sets of
the manifold Mr = {x ∈ Rd : dist(x,M) = r}. We define the manifold-adapted modification by

kMx := (ΠµϵMr(x)
)∗kx, r(x) := EY∼kx [dist(Y, µϵM)2]1/2, (10)

where µϵM is the element-wise scaling of M by µϵ and (ΠµϵMr(x)
)∗ denotes the push-forward by

the projection mapping ΠµϵMr(x)
, that is, the distribution of Π(µϵM)r(x)

(Y ), Y ∼ kx. The function
r(x) approximates the distance of x to the manifold, but with some correction according to the
variance of the kernel in directions normal to the manifold. Therefore, similar to the definition in
(8), the kernel kMx is a modification of kx adapted to the geometry of M by smoothing only in
directions tangential to the manifold. We refer to Appendix B.3 for some additional details regarding
the definition of kM, including a discussion on the well-posedness of the projection function.

The variance of the smoothing kernel k in directions normal to the manifold will prove to be an
important object in our bound, leading us to make the following assumption.
Assumption 3.5. There are constants K,Kmax ≥ 0 such that for all x ∈ Rd, Y ∼ kx,

E
[
|dist(Y,M)− dist(x,M)|2

]
≤ K2, |dist(Y,M)− dist(x,M)| ≤ Kmax, almost surely.

By measuring the change in distance to the manifold under smoothing, K and Kmax quantify noise
in directions normal to the manifold and kernel adaptivity to the manifold structure. If k places most
mass tangentially, then Y ∼ kx stays near the level set through x and so K is small. For example, in
the Gaussian case kx = N (x, σ2Id), we have that K2 ≈ (d− d∗)σ2 whenever σ is taken small.

Unlike in the affine case, p̂kϵ and pk
M

ϵ are not the same in general, so instead we show that these
distributions are close. We consider the Rényi divergence, Dq—a natural generalisation of the
Kullback-Leibler divergence (which is the case q = 1). For the sake of brevity, we leave the definition
and a brief exposition on the Rényi divergence to Appendix B.2 and we state our main result.
Theorem 3.6. Under assumptions 3.3, 3.4, and 3.5 and if Kmax < τ/96, then for any q ∈ [1, 1 +
τ/96K], δ ∈ (0, 1], whenever N > Nmin(δ), ϵ < ϵmax we obtain with probability at least 1− δ that

Dq

(
p̂k

M

ϵ

∥∥p̂kϵ ) ≲ K

τ
max

{
d∗ + 1,

(
c2µN

)− 1
d∗ ϵ−1

}
,

where the quantities ϵmax and Nmin(δ) ≲ (d∗ + log(δ−1))τ−2d∗
are defined in (53) and (45).4

3Here, we take pµ to be the density with respect to the volume measure of the manifold M, which is itself
inherited from the Lebesgue measure.

4Here, ≲ denotes an upper bound that ignores multiplicative logarithmic factors.
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Figure 4: Score smoothing can promote generalisation along curved manifolds, but too much
smoothing can distort the desired structure. Left: Training data (▲) against generated samples
(•) using isotropic Gaussian score smoothing with variance σ2. Right: Corresponding population
negative log-likelihood, calculated for 1000 points on the true circular manifold. See Appendix G.1.

For large N , the right-hand side depends only on dimension, curvature and kernel scale. This bound
shows that for log-domain smoothing to become geometry-adaptive, it is sufficient for the scale of
smoothing normal to the manifold to be small relative to the manifold curvature and dimension.
When N is small relative to ϵ−d∗

, the bound becomes K/τϵ, highlighting the role that early stopping
plays in the data-sparse setting. The dependence on K also provides insight for how the behaviour of
p̂kϵ depends on the kernel’s manifold-alignment—when k is already more aligned with the manifold
structure, K is smaller, and the closer p̂kϵ is to its manifold-adapted counterpart p̂k

M

ϵ .

We once again emphasise the key difference between the log-domain smoothing that we consider, and
the traditional KDE approach which instead smooths the empirical measure in the density-domain.
As KDE bandwidth increases, samples rapidly leave the data manifold, whereas smoothed-score
diffusion models produce new samples along the manifold structure without deviating far from it.

3.3 Log-domain smoothing and generalisation

So far, we have presented results pertaining to the similarity of p̂kϵ and its manifold-adapted counterpart
p̂k

M

ϵ . While it is intuitively clear that smoothing with the manifold adapted kernel kM will help
promote generalisation, we provide two results to validate that this is indeed the case. The following
result demonstrates that p̂kϵ preserves mass concentration around the manifold structure.
Corollary 3.7. Consider the setting of Theorem 3.6, then for any δ ∈ (0, 1], whenever ϵ <
ϵmax, N > max{Nmin(δ), ϵ

−2}, we obtain that with probability at least 1− 2δ that,

PY∼p̂k
ϵ

(
dist(Y,M) ≥ r +m

∣∣∣S) ≤ 2 exp
(
− r2/8ϵ

)
, for all r ≥ 0,

where m > 0 satisfies m2 ≲ K2 + K
τ max

{
d∗ + 1,

(
c2µN

)− 1
d∗ ϵ−1

}
+ ϵd+ (ϵ/cµ)

2/d∗
.

This corollary shows that the distance to the manifold decays exponentially fast, at nearly the same
rate as the noised empirical measure p̂ϵ, prior to smoothing. In other words, log-domain smoothing
preserves concentration to the manifold. We note that when K is large, the concentration bound
becomes less strong. Next, we show that smoothing with kM does indeed distribute mass along the
manifold structure. We let TxM denote the space of vectors tangent to M at x.
Proposition 3.8. Consider the setting of Theorem 3.6, let δ ∈ (0, 1] and suppose that N > Nmin(δ).
Then, with probability at least 1− δ, it holds that for any x ∈ M,

p̂kϵ (x) ≥ p̂kϵ (x
⋆
i ) exp

(
−

CF (K2
max + (c2µN)−1/d∗

)

σ2
ϵ

∥x− x⋆
i ∥
)
, x⋆

i := argmin{xi}N
i=1

∥x− xi∥,

for some C ≲ 1, where F 2 := sup
x∈M,v∈TxM

vT I(x)v
∥v∥2 and I(x) is the Fisher information matrix of kx.

The quantity F upper-bounds the kernel’s Fisher information along the manifold. When k is a
Gaussian kernel with variance σ2Id, we have that F ≈ 1/σ2 for small σ2. Thus, whenever σ2

ϵ = O(ϵ)
is small relative to σ2, arbitrary points on the manifold receive similar density as the training data.

Together, propositions 3.8 and 3.7 show that log-domain smoothing distributes probability mass
along the manifold while preserving geometric structure. While further work must be done to obtain
rigorous generalisation bounds, the above results already suggest an interesting relationship between
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σ = 0.1 σ = 0.25 σ = 1.0

Figure 5: Different smoothing kernels can isolate alternative manifolds, given the same training
data. Training data (▲) against generated samples (•) using isotropic Gaussian score smoothing. By
changing the smoothing variance σ2, different geometries are realised.

smoothing scale and generalisation: as smoothing grows, K increases, and once it becomes large
relative to τ/ϵd∗, the strength of the bound in Corollary 3.7 weakens; meanwhile F decreases,
increasing the distribution of mass along the manifold. This suggests a possible trade-off in the
generalisation error that is governed by the scale of the smoothing and its relationship to ϵ, d∗ and τ .
We explore this in Figure 4, where we plot population error (given by the negative log-likelihood)
against scale of smoothing and observe a U-shaped curve, suggesting moderate smoothing can
improve over the empirical measure p̂ϵ while oversmoothing can worsen generalisation.

4 Rethinking the manifold hypothesis: geometry and inductive bias

So far, we have considered the traditional setting of the manifold hypothesis, where the goal is
to recover the data’s true geometry under a well-defined ground-truth manifold. Yet with finite
data—especially in high dimensions—many plausible interpolations fit. In practice, “correctness"
is task-dependent: if an interpolation meets application-specific criteria, the generative model is
deemed successful. Consequently, practitioners are not recovering a single true interpolation; network
architectures and training algorithms implicitly inject biases that steer models toward desirable
behaviours. This motivates a shift in perspective in this section: rather than assuming a ground truth
manifold, we study how inductive biases make the model choose an interpolating manifold. We refer
to this form of bias as the model’s geometric bias.

4.1 Geometric bias of log-domain smoothing

In Figure 3, we study a toy case where data (red triangles) admit several plausible interpolating
manifolds. When the smoothing kernel is aligned with the wavy-circle level sets, the generated
samples (blue) remain faithful to the wavy geometry, while aligning with the base circle yields
circular samples. This indicates that smoothing the empirical score parallel or tangentially to a target
manifold M induces a geometric bias toward it. The right of Figure 3 shows that tailored kernels
can even alter dimension and connectivity. In Figure 5, we consider isotropic Gaussian smoothing.
Here, the scale of the smoothing controls the bias: small bandwidths preserve fine waviness, larger
bandwidths recover the broader circular shape, and excessive noise leads to eventual sample collapse.

4.2 Geometry-adaptivity and geometric bias

The theoretical analysis of Section 3.2 can also be extended to the present setting, allowing us to
further elucidate the relationship between the smoothing kernel and geometric bias. In particular,
we provide a modification of Theorem 3.6 that quantifies how well log-domain smoothing adapts to
different manifolds, without the requirement for the data to belong to that manifold.

We define the set of permissible manifolds Mµ to be the set of all smooth compact submanifolds
M ⊆ Rd with non-zero reach τM > 0, satisfying the property cM := ess infµdata

pµ,M > 0 where
pµ,M denotes the density of (ΠM)∗µdata with respect to the volume measure on M. In other words,
Mµ consists of all manifolds with bounded curvature, such that the projection of µdata onto M has
full support. Furthermore, given any M ∈ Mµ, we let d∗M denote the manifold dimension and define

K2
M := sup

x∈Rd

EY∼kx

[
|dist(Y,M)−dist(x,M)|2

]
, Kmax,M := ∥ dist(Y,M)−dist(x,M)∥L∞ .

With this, we can state our second main result.
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Figure 6: As smoothing level increases, generations
from the score-smoothed diffusion model remain in the
manifold structure. In contrast, samples from KDE
quickly deviate from the manifold as the kernel scale
increases, leading to poor reconstructions.
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Figure 7: Comparison of distance to
closest point in training data and clos-
est point in M, for score-smoothed
diffusion and KDE. Arrows indicate
increasing amounts of smoothing.

Theorem 4.1. Let M ∈ Mµ and ∆M := dist({xi}Ni=1,M). Then, for any δ ∈ (0, 1], whenever
KM,max +∆M ≤ τM/96 and N, ϵ−1 is sufficiently large, with probability at least 1− δ we have

D2

(
p̂k

M

ϵ

∥∥p̂kϵ ) ≲ KM(d∗M + 1)

τM
+

KM∆M

ϵ
+

K2
M∆2

Md∗M
τM ϵ

. (11)

While Theorem 3.6 controls how closely log-domain smoothing adapts to an underlying true geometry,
Theorem 4.1 instead bounds how well any given manifold describes the geometry induced by log-
domain smoothing. If a manifold M ∈ Mµ makes the right-hand side of this bound small, then
smoothing under a generic kernel k is similar to smoothing under the the M-adapted kernel kM.
Indeed, such a manifold M effectively captures the geometric bias of the smoothing kernel k. Thus
we can identify favoured manifolds by optimising the right-hand side with respect to M ∈ Mµ.

Analysing (11) shows how the smoothing kernel drives geometric bias. The bound trades off curvature
τ−1
M against interpolation error ∆M, modulated by KM, d∗M and ϵ. For small ϵ, the second term

can dominate, so optimisation favours manifolds with small ∆M, even at the expense of a larger
τM. As smoothing increases, KM grows and the KM term dominates, shifting preference toward
lower-curvature manifolds (as in figures 3 and 5). Moreover, if kx emphasises certain directions in its
smoothing, then choosing M tangent to them keeps KM small, yielding a low-dimensional manifold
M aligned with those directions that minimises ∆M and d∗M. That is, a low-dimensional manifold
that is tangent to the smoothing directions while best interpolating the data.

5 High-dimensional experiments

So far, our experiments have focused on illustrative low-dimensional settings to complement our
theory. In this section, we consider higher-dimensional settings to investigate the extent to which the
identified phenomena persist in scenarios more representative of practical applications.

5.1 Generation in latent space

We begin with MNIST and define a 32-dimensional VAE latent space (following Rombach et al.
(2022)). We study the digit-4 manifold M, which comprises a lower-dimensional structure in the
latent space. This ground-truth manifold is approximated using all samples of the digit 4, from which
we use a subset of 100 samples as our training dataset. We compare a smoothed-score diffusion
model using an isotropic Gaussian kernel to KDE, which corresponds to density-level smoothing.

To assess how well the manifold structure is preserved, we visualize samples as smoothing increases
in Figure 6. The top and bottom rows display samples from a score-smoothed diffusion model
and KDE, respectively, at different smoothing scales. With score smoothing, generations perfectly
recover training examples (plotted on the left) at small smoothing levels. As the amount of smoothing
increases, the samples become progressively novel images that are not present in the dataset yet
nonetheless decode to resemble 4’s, indicating mass is spread primarily along the underlying geometry.
KDE, in contrast, deteriorates quickly as bandwidth grows; generated samples move substantially off-
manifold. We provide a quantitative assessment of this behaviour by reporting the average distance of
samples to the manifold against distance to the training set in Figure 7. As KDE smoothing increases,
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Figure 8: Comparison of smoothing kernels for
the synthetic image manifold.
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Figure 9: Comparison of smoothing kernels for
the MNIST image manifold.

the distance to the manifold increases identically with the distance to the data, whereas the diffusion
samples sometimes become closer to other 4s not used for training. See Appendix G.2 for details.

5.2 Generation in pixel space

While latent-space generation is common, diffusion models also succeed directly in pixel space.
We therefore repeat the analysis there, focusing on 1d image manifolds where the geometry can be
controlled and evaluated. Data is naturally more separated in pixel space, yielding many permissible
manifolds; we leverage this to test how kernel choice affects the geometry of the sampling distribution.

Synthetic image manifold We construct a closed 1d manifold ϕ : [0, 2π) → R64×64 that maps an
angle to an image of a bump function centred at the corresponding angle around a circle, and form
a dataset of 16 equidistant points on this curve. For a visualisation of the manifold, see Appendix
G.3. We compare isotropic Gaussian score smoothing against KDE by plotting distance-to-manifold
versus distance-to-data across smoothing scales in Figure 8a. We further test a manifold-adapted
score-smoothing kernel that translates the manifold M to pass through the current point and smooths
along it. Crucially, the sampler “knows" the manifold only via the smoothing mechanism; the
empirical score itself uses only the training dataset. In Figure 8a, the adapted kernel produces samples
significantly closer to the true manifold than isotropic Gaussian smoothing, supporting the discussion
in Section 4. In Figure 8b we examine how changing the bump width η influences the degree to
which this effect occurs. For smaller η, the generated samples deviate further from the manifold.
We anticipate that this reflects our theoretical results that samples are less likely to remain close to
manifolds with higher curvature. We include further details and additional results in Appendix G.3.

MNIST manifold in pixel space We repeat the pixel-space study on MNIST by constructing an
explicit image-space manifold ϕ : [0, 1] → R32×32 by decoding a curve in VAE latent space; the VAE
only defines the manifold, and the diffusion runs entirely in pixel space. In Figure 9a we plot distance
to the manifold M versus distance to the training set, again finding that manifold-adapted smoothing
stays closer to M than Gaussian smoothing. As a complementary measure of visual quality, Figure
9b reports FID to a held-out test set and shows a consistent benefit for score-function smoothing.
Gaussian smoothing is known to produce barycentres of training datapoints (Scarvelis et al., 2025),
which in pixel space appears as increasing blurring and yields a steep increase in the FID at larger
smoothing. The manifold-adapted kernel mitigates this blurring and avoids the same increase in FID
value. Full details and additional plots for different curves ϕ appear in Appendix G.4.

6 Conclusion

In this work, we have investigated how implicit regularisation caused by smoothing of the empirical
score function interacts with the manifold structure of data. In particular, we identify that smoothing at
the level of the log-domain is implicitly geometry-adaptive, behaving similarly to a manifold-adapted
kernel when given enough samples. Beyond the data-rich setting, we observe that the choice of
smoothing kernel can shape the generated distribution. Future work could examine how inductive
biases in deep learning architectures and training influence the smoothing that occurs in practice.
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Technical Appendices and Supplementary Material

A Extended Discussion

Related work In the manifold setting, Pidstrigach (2022) and De Bortoli (2022) provide precise
convergence bounds for diffusion models. Recently, there has been a surge of interest in providing
refined results in the manifold setting (Oko et al., 2023; Chen et al., 2023; Tang and Yang, 2024; Li
and Yan, 2024; Azangulov et al., 2024; Potaptchik et al., 2025), or under other specific structural
settings (Shah et al., 2023; Chen et al., 2024; Wang et al., 2024). Additionally, many works have
focused on empirically validating the manifold hypothesis for data such as images (Fefferman et al.,
2016; Pope et al., 2021; Stanczuk et al., 2024; Brown et al., 2023; Kamkari et al., 2024). Our work
also shares similarities with wider literature regarding how manifold structure interacts with learning
tasks, such as Genovese et al. (2012), Cheng and Wu (2013), Moscovich et al. (2017), and Gao et al.
(2022).

Recently, there has been an increased interest in understanding generalisation and memorisation in
diffusion models. Memorisation of training data has been observed empirically by Somepalli et al.
(2023) and Carlini et al. (2023) when the capacity of the network is large relative to the number of
training samples. Other works investigate how inductive biases of neural network architectures aid
in generalisation (Kadkhodaie et al., 2024; Niedoba et al., 2025; Kamb and Ganguli, 2025). The
recent work of Vastola (2025) examines the role of noise in the objective. The dichotomy between
generalisation and memorisation has been investigated in Yoon et al. (2023), Gu et al. (2023), Wen
et al. (2024), Zhang et al. (2024), and Baptista et al. (2025). The works of Raya and Ambrogioni
(2023), Biroli et al. (2024), and Ventura et al. (2025) examine the roles of distinct regimes in the
generative process.

This work contributes to a small but growing line of research into the effect of score-smoothing in
diffusion models. Scarvelis et al. (2025) previously studied isotropic Gaussian and Gumbel smoothing
of the score function, as a training-free alternative for running diffusion models, and show that this
generates barycentres of training datapoints. Chen (2025) investigates the effect of score smoothing
on generalisation in the 1d linear setting. Concurrently, the work of Gabriel et al. (2025) also studies
the effect of a kernel-smoothed score function and its relation to preserving manifold structure, though
with different analysis techniques.

Limitations and further investigations Our argument that the log-domain smoothed measure p̂kϵ
approximates the output of the diffusion model with score smoothing relies on the exchangeability of
gradients (see (6)), a property that holds for location-independent kernels. Extending our framework
to the more general case of location-dependent kernels is an important next step. Similarly, our
key theorems (theorems 3.6 and 4.1) currently require the scale of noise normal to the manifold,
K, to be small relative to its curvature, τ . A more complete characterisation of the geometric bias
would therefore require relaxing this assumption. Furthermore, a more robust characterisation of
the geometric bias of log-domain smoothing would also benefit from a matching lower bound on
the Rényi divergence. While we have demonstrated through heuristic arguments how our results
show the generalisation potential of log-domain smoothing, our work stops short of deriving a
formal generalisation error bound. Whether log-domain smoothing alone could produce optimal
generalisation bounds is a question that we leave open for future investigation. Finally, we believe this
theoretical framework could be a valuable tool for the related literature analysing the memorisation
and privacy properties of diffusion models.

The experiments presented here illustrate that the type of smoothing can influence the geometric
structure of the generated samples. However, they also highlight the challenges posed by high-
curvature manifolds, where smoothing the empirical score alone may not suffice. Real-world image
manifolds tend to be highly curved, yet diffusion models still generalize well from relatively few
training samples (Kadkhodaie et al., 2024). Furthermore, in practical settings we do not have
knowledge of the ground-truth manifold structure to explicitly apply manifold-adaptive smoothing.
If such adaptation occurs, it must arise implicitly from the model’s inductive biases. This suggests
that other factors must also be at play, such as biases induced by neural architectural choices like
convolutions and attention (Kamb and Ganguli, 2025). We do not examine the behaviour of such
practical architectures in this work, but remark that understanding to what extent architectural designs
choices interact with the ideas presented here is an interesting direction for future study.
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B Notation and omitted details

In this section, we include some technical details concerning the theoretical results of the paper that
were omitted for the sake of readability.

B.1 Properties of the forward process

In Section 1, we introduced the forward process in (1). Throughout the proofs, we use the following
property of the forward process:

Xt|X0 ∼ N(µtX0, σtId), µt = e−αt, σ2
t =

{
α−1(1− µ2

t ), if α > 0,

2t, otherwise.
(12)

When α = 0, this follows immediately from properties of the Wiener process and when α > 0, Xt

becomes the Ornstein-Uhlenbeck process and the result follows from a standard analysis (e.g. see
Pavliotis, 2014).

Using this fact, we have the following closed-form expression for the density p̂t, the density of the
empirical forward process X̂t:

log p̂t = log

(
1

N

N∑
i=1

pXt|X0
(x|xi)

)

= log

(
1

N

N∑
i=1

exp(−∥x− µtxi∥2/2σ2
t )

)
− d

2
log(2πσ2

t )

= LSE

({
− ∥x− µtxi∥2/2σ2

t )

}N

i=1

)
+ Ct,

where Ct = − log(N) − d
2 log(2πσ

2
t ) and we recall the definition of the function LSE({ri}i) :=

log(
∑

i exp(ri)).

B.2 Rényi divergence

We provide a brief exposition of the Rényi divergence, which is a measure of difference between two
measures. Given two measures µ, ν on Rd and q ∈ (1,∞) we define the q-Rényi divergence by

Dq(µ∥ν) =

{
1

q−1 log
∫
(dµdν (x))

q−1µ(dx), if µ ≪ ν,

∞, otherwise.

For the case of q = 1 we set Dq to be the Kullback-Leibler (KL) divergence,

D1(µ∥ν) =
{∫

log dµ
dν (x) µ(dx), if µ ≪ ν,

∞, otherwise.

Indeed, whenever Dq(µ∥ν) < ∞ for some q > 1, it can be shown that limq→1+ Dq(µ∥ν) =

D1(µ∥ν). Furthermore, whenever dµ
dν is bounded µ-almost surely, we obtain,

lim
q→∞

Dq(µ∥ν) = log

(
ess supµ

dµ

dν

)
,

which is taken to be D∞(µ∥ν). Thus, the Rényi divergence provides a natural interpolation between
the KL divergence and the worst-case regret, with Dq increasing in q. This measure of distance
recently gained popularity in the sampling (Vempala and Wibisono, 2019; Chewi et al., 2022; Erdogdu
et al., 2022; Mousavi-Hosseini et al., 2023) and privacy (Mironov, 2017) literatures as a stronger
alternative to traditional divergences. We refer to (Erven and Harremoes, 2014) and (Chewi et al.,
2022) for further properties of this divergence.
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B.3 Projections

Throughout this work, we frequently utilise the projection mapping ΠM : Rd → M which maps
x ∈ Rd to the nearest element of M. In cases where M is curved, we run in to the issue that the
projection is not well-defined as there could be multiple elements that are equally close to x. In most
places in the proof we consider quantities x that are sufficiently close that the projection function is
uniquely defined (see reach in Appendix D.2) but, for example, when we define the manifold adapted
kernel in (10), we use the projection for all x ∈ Rd.

Throughout the proofs of this work we do not utilise any property of the projection aside from the
fact that it maps x to some element of the manifold that is of distance dist(x,M) away from x. For
that reason, ΠM can be taken to be any mapping onto M such that ∥x − ΠM(x)∥ = dist(x,M).
Since M is taken to be a closed set, such a mapping always exists and we will take this choice of
mapping to be fixed throughout the work.

When α > 0 the samples generated at early stopping time ϵ are slightly biased due to contractions of
the Ornstein-Uhlenbeck process. For this reason, we will frequently consider the contracted manifold,

µϵM = {µϵx : x ∈ M},

where µϵ is as defined in (12), and we will frequently use the shorthand Mϵ := µϵM. Given a
projection mapping ΠM onto M, we take the projection mapping ΠMϵ onto Mϵ to be given by

ΠMϵ(x) = µϵΠM(x/µϵ).

C Manifold-adaptivity in the affine setting

We begin with the proof of Proposition 3.1 concerning the affine setting. Recall that we assume that
the support of µdata is restricted to the affine subspace M = {x ∈ Rd : Ax = b}, where A ∈ Rd∗×d

is row-orthonormal and b ∈ Rd∗
, and we write the smoothing kernel in the following form:

kx := law(x+ ξ),

where ξ is a centred random variable independent of x. Throughout the proof, we will use the null
space projection matrix P := I −ATA.

Proof of Proposition 3.1. Since P is the projection matrix onto Null(A), any z ∈ Rd can be decom-
posed as

∥z∥2 = ∥Pz∥2 + ∥(I − P )z∥2

= ∥Pz∥2 + ∥ATAz∥2

= ∥Pz∥2 + ∥Az∥2,

where the final line follows from the fact that A is row-orthonormal and so AAT = Id∗ . Using fact
3.2 and the assumption that Axi = b for every i ∈ [N ], we obtain the identity

log p̂ϵ(z) = LSE

({
− ∥z − xi∥2

2σ2
ϵ

}
i

)
+ Ct (13)

= LSE

({
− ∥P (z − xi)∥2 + ∥A(z − xi)∥2

2σ2
ϵ

}
i

)
+ Ct (14)

= LSE

({
− ∥P (z − xi)∥2

2σ2
ϵ

}
i

)
− ∥Az − b∥2

2σ2
ϵ

+ Ct. (15)

This decomposition separates the influence of z into normal and tangent directions with respect to
M.

Now, let x ∈ Rd and define Yx = (x + ξ) ∼ kx and Ỹx = (x + Pξ) ∼ kMx . Since P = P 2, we
observe that

∥P (Yx − xi)∥ = ∥P (Ỹx − xi)∥.
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Furthermore, using the fact that ξx is centred, we also have,

E[∥AYx − b∥2] = ∥Ax− b∥2 + E[∥Aξ∥2], E[∥AỸx − b∥2] = ∥Ax− b∥2 + E[∥APξ∥2].

In particular, substituting into (15) and taking the expectation, we conclude that

E[log p̂ϵ(Yx)] = E
[
LSE

({
− ∥P (Yx − xi)∥2

2σ2
ϵ

}
i

)]
− ∥Ax− b∥2

2σ2
ϵ

+ C,

and

E[log p̂ϵ(Ỹx)] = E
[
LSE

({
− ∥P (Yx − xi)∥2

2σ2
ϵ

}
i

)]
− ∥Ax− b∥2

2σ2
ϵ

+ C̃,

for constants C, C̃ independent of x. Therefore, the log-density of p̂kϵ and p̂k
M

ϵ are identical up to a
constant.

D Lemmata

For proving the results for the more the general manifold setting, we require several additional
properties of the log-sum-exp function, smooth manifolds and tubular neighbourhoods. In this section
we collect these results.

D.1 Stability of the LSE function

The following lemma provides stability bounds for the LSE function which we make use of throughout
our analysis. It can be seen as a generalisation of Fact 3.2 which is heavily used in the analysis of the
affine case.
Lemma D.1. For any {xi}Ni=1 ⊂ R and {εi}Ni=1 ⊂ R, we have

LSE({xi + ϵi}Ni=1)− LSE({xi}Ni=1) =

∫ 1

0

∑N
i=1 exp(xi + rϵi)ϵi∑N
i=1 exp(xi + rϵi)

dr. (16)

In particular, we have that

LSE({xi + ϵi}Ni=1)− LSE({xi}Ni=1) ≤ max{ϵi}. (17)

Proof. From the chain rule, we compute the partial derivatives,

∂

∂xj
LSE({xi}i) =

exp(xj)∑N
i=1 exp(xi)

.

Therefore, by the fundamental theorem of calculus, we obtain that

LSE({xi + ϵi}i)− LSE({xi}i) =
∫ 1

0

N∑
j=1

ϵj
∂

∂xj
LSE({xi + rϵi}i) dr

=

∫ 1

0

N∑
j=1

exp(xj + rϵj)ϵj∑N
i=1 exp(xi + rϵi)

dr,

completing the proof of (16). To obtain (17), we use the fact that the sum is a weighted average of
the sequence {ϵi}i, and so it has the property that,

N∑
i=1

exp(xi + rϵi)ϵi∑N
j=1 exp(xj + rϵj)

≤ max
i

ϵi.

We also note that if all ϵi are identical, we readily recover Fact 3.2 from (16).

19



D.2 Manifold reach

Next, we collect some facts about the reach of the manifold, which quantifies how far one can extend
from the manifold before the projection onto it ceases to be unique. We refer to (Aamari, 2017) for a
more detailed exposition. We begin with the rigorous definition.

Definition D.2. The reach of a set A ⊂ Rd, is defined by τA = infp∈A d(p,Med(A)), where we
define the set,

Med(A) =
{
z ∈ Rd : ∃p, q ∈ A s.t. p ̸= q, ∥p− z∥ = ∥q − z∥ = d(z,A)

}
.

The reach defines the maximum distance at which the projection to the set is unique. In the case
where the set A is a smooth submanifold of Rd, the reach captures the curvature of the manifold
and provides an upper bound on the distance at which the manifold appears approximately flat. The
following lemma demonstrates this, controlling the curvature of paths along the manifold using the
reach. We use the notation NxM to denote the normal space of the manifold M at x ∈ M which
consists of all vectors perpendicular to the tangent space at x.

Lemma D.3. Suppose that the manifold M has reach τM > 0, then for any x, y ∈ M, v ∈ NxM,

|⟨v, x− y⟩| ≤ ∥v∥
2τM

∥x− y∥2.

Proof. Let x, y ∈ M, v ∈ NxM and define z = x + rv/∥v∥ for some r ∈ (0, τM) so that
z ̸∈ Med(M). Since the projection is uniquely defined with ΠM(z) = x, we have,

∥z − y∥ ≥ dist(z,M) = r.

On the other hand, we have,

∥z − y∥2 = ∥x− y∥2 + r2 +
2r

∥v∥
⟨x− y, v⟩.

Combining these two and rearranging, we obtain the bound,

⟨y − x, v⟩ ≤ ∥v∥
2r

∥x− y∥2.

By replacing v with −v which is also in the normal space, we obtain the opposite direction, hence
obtaining,

|⟨x− y, v⟩| ≤ ∥v∥
2r

∥x− y∥2.

Since this bound holds for all r ∈ (0, τM), we can take r → τ−M to obtain the bound in the
statement.

With this, we can control the geodesic distance on the manifold by the standard Euclidean distance.

Lemma D.4. Suppose that the manifold M has reach τM > 0. Let x, y ∈ M such that ∥x− y∥ ≤
τM/2 and let γt be a geodesic (shortest path) between x, y on M. Then, we have the bound,∫

∥∂tγt∥dt ≤ 2∥x− y∥.

Therefore, if we are close enough to the manifold, its inherited metric behaves roughly like the
Euclidean one. The proof of this lemma can be found in Lemma III.21 of (Aamari, 2017).

D.3 Concentration under the manifold hypothesis

We now turn to results concerning probability measures supported on submanifolds with bounded
reach. The next lemma controls the mass of a small ball centred on the manifold, showing that the
rates are similar to the affine case.
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Lemma D.5. Suppose that the measure µdata is supported on a smooth compact submanifold M
with reach τM > 0 and dimension d∗. Then, for any r ≤ πτM/2

√
2, we have

µdata(Br(x)) ≥ cµr
d∗
, cµ = inf

Br(x)
pµ,

where pµ denotes the density of µdata with respect to the volume measure on M.

For the proof of this lemma, we refer to the proof of Proposition 4.3 of (Aamari et al., 2019) or
Lemma III.23 of (Aamari, 2017).

We use this bound, to obtain a result concerning the concentration of the empirical measure on the
manifold. To this end, we recall a bound on the covering number of the manifold. Given r > 0,
the covering number Ncov(M, r) is defined as the minimum number of Euclidean balls of radius r
required to cover the subset of Rd defined by the space M. The following lemma is from Proposition
III.11 of Aamari, 2017.

Lemma D.6. Consider the setting of Lemma D.5 and suppose that cµ > 0, then for any ε ∈ (0, τM/2)
we have,

Ncov(M, 2ε) ≤ 1

cµεd
∗ .

We can now prove a bound on the concentration of the empirical measure.

Lemma D.7. Suppose that the measure µdata is supported on a compact smooth submanifold M
with reach τM > 0 and dimension d∗ and cµ > 0. Then, for any r ∈ (0, τM], δ ∈ (0, 1), we have

P
(

inf
x∈M

µ̂data(Br(x)) ≥ cµ
rd

∗

4

)
≥ 1− δ,

whenever,

N ≥ 64
(
(144d∗ log(2/r) + 144 log(2/cµ)) ∨ log(δ−1)

2

)
r−2d∗

c−2
µ . (18)

Proof. According to Lemma D.6, there exists a set C ⊂ M such that {B2−1/d∗r(c) : c ∈ C} forms
a covering of M with |C| ≤ c−1

µ 2d
∗+1r−d∗

. Thus, for any x ∈ M there exists c ∈ C such that
x ∈ B2−1/d∗r(c) and therefore B2−1/d∗r(c) ⊂ Br(x). From this we deduce the following bound

inf
x∈M

µ̂data(Br(x)) ≥ inf
c∈C

µ̂data(B2−1/d∗r(c)).

Therefore, it suffices to lower bound this object on the right-hand side.

Next, using a rudimentary bound from the empirical processes literature (for example, see Section
4.2 of (Wainwright, 2019) or Section 7.1 of (Handel, 2014)), we obtain the bound,

P
(
sup
c∈C

|µ̂data(B2−1/d∗r(c))− µdata(B2−1/d∗r(c))| ≥ 12

√
log |C|
N

+ ε

)
≤ exp(−2Nε2).

Thus, choosing ε = cµr
d∗
/8, we obtain that under (18), it follows that

P
(
sup
C∈C

|µ̂data(C)− µdata(C)| ≥ cµr
d∗
/4

)
≤ δ. (19)

To conclude the proof, we use Lemma D.5 to obtain that,

inf
c∈C

µ̂data(B2−1/d∗r(c)) ≥ inf
c∈C

µ̂data(B2−1/d∗r(c))− sup
c∈M

|µ̂data(B2−1/d∗r(c))− µdata(B2−1/d∗r(c))|

≥ cµr
d∗
/2− sup

x∈M
|µ̂data(B2−1/d∗r(x))− µdata(B2−1/d∗r(x))|.

Combining this with (19), we arrive at the bound in the statement.

21



D.4 Weyl’s tube formula

The sets Mr and Mϵ
r are related to the notion of tubes that have been investigated in the differential

geometry literature (Gray, 2004; Weyl, 1939). We borrow a result from Weyl, 1939 that computes the
volume enclosing these sets. Let Mϵ

≤r := {x ∈ Rd : dist(x,Mϵ) ≤ r}.
Proposition D.8 (Weyl’s Tube Formula). Suppose Assumption 3.3 holds, then for all r ≥ 0,

λ(Mϵ
≤r) =

⌊d∗/2⌋∑
p=0

k̃2p(Mϵ)rd−d∗+2p,

for some quantities k̃2p(Mϵ) ≥ 0.

The quantities k̃ are related to the integrated mean curvature of M and further details about these
quantities can be found in (Gray, 2004) where the result is stated in Section 1.1. In this work, we
develop upper bounds in such a way that the final result does not depend on these quantities.

Note that using this result, we can obtain estimates for the integrals of functions depending on
λ(Mϵ

≤r) using the expression,∫
Rd

f(dist(x,Mϵ))dx =

∫ ∞

0

f(r)
d

dr
λ(Mϵ

≤r)dr

=

⌊d∗/2⌋∑
p=0

(d− d∗ + 2p)k̃2p(Mϵ)

∫ ∞

0

f(r)rd−d∗−1+2pdr. (20)

E Proofs for the main results

This section of the appendix provides the proofs for theorems 3.6 and 4.1. These theorems establish
the core result that smoothing in the log-domain is approximately geometry-adaptive, meaning that
smoothing with a generic kernel k behaves similarly to smoothing with a manifold-adapted kernel
kM. We begin by proving some lemmas that are involved in the proof of both of these theorems.

E.1 Controlling the log-density ratio

To establish the proximity between p̂kϵ and p̂k
M

ϵ in divergence, we must control the ratio of their
densities. In this section, we fix a permissible manifold M ∈ Mµ, and use KM,Kmax,M, τM and
d∗M as in Section 4.1. We also fix x ∈ Rd and let Y ∼ kx, Ỹ = ΠMr(x)

(Y ), so that Ỹ ∼ kMx . Using
the expression in (9), we can express the density ratio by,

log
dp̂kϵ
dp̂kM

ϵ

(x)

= E
[
LSE

({
− ∥Y − µϵxi∥2

2σ2
ϵ

}N

i=1

)
− LSE

({
− ∥Ỹ − µϵxi∥2

2σ2
ϵ

}N

i=1

)∣∣∣∣S]+ log

(
CM

C

)
,

(21)
where we define the normalising constants,

C =

∫
exp

(∫
log p̂ϵ(y)kx(dy)

)
dx, CM =

∫
exp

(∫
log p̂ϵ(y)k

M
x (dy)

)
dx. (22)

We proceed similarly to the proof in the affine case (see Appendix C), decomposing the LSE function
into normal and perpendicular components. We use the decomposition,

∥y − µϵxi∥2 = ∥y −ΠMϵ(y)∥2 + 2⟨y −ΠMϵ(y),ΠMϵ(y)− µϵxi⟩+ ∥ΠMϵ(y)− µϵxi∥2,
along with Fact 3.2 to obtain that,

LSE

({
− ∥Y − µϵxi∥2

2σ2
ϵ

}
i∈[N ]

)
= LSE

({
− ∥ΠMϵ(Y )− µϵxi∥2 + 2⟨Y −ΠMϵ(Y ),ΠMϵ(Y )− µϵxi⟩

2σ2
ϵ

}
i

)
− ∥Y −ΠMϵ(Y )∥2

2σ2
ϵ

.
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It follows from the definition of Ỹ and r(x) that,

∥Ỹ −ΠMϵ(Y )∥2 = ∥Ỹ −ΠMϵ(Ỹ )∥2

= r(x)2

= E[∥Y −ΠMϵ(Y )∥2].

Therefore we may apply Fact 3.2 once more to obtain,

E
[
LSE

({
− ∥Y − µϵxi∥2

2σ2
ϵ

}
i∈[N ]

)∣∣∣∣S]
= E

[
LSE

({
− ∥ΠMϵ(Y )− µϵxi∥2 + 2⟨Y −ΠMϵ(Y ),ΠMϵ(Y )− µϵxi⟩

2σ2
ϵ

}
i

)
− ∥Ỹ −ΠMϵ(Y )∥2

2σ2
ϵ

∣∣∣∣S]
= E

[
LSE

({
− ∥ΠMϵ(Y )− µϵxi∥2 + 2⟨Y −ΠMϵ(Y ),ΠMϵ(Y )− µϵxi⟩

2σ2
ϵ

− ∥Ỹ −ΠMϵ(Y )∥2

2σ2
ϵ

}
i

)∣∣∣∣S]
= E

[
LSE

({
− ∥Ỹ − µϵxi∥2 +∆i

2σ2
ϵ

}
i∈[N ]

)∣∣∣∣S],
where we define the quantity ∆i := 2⟨Y − Ỹ,ΠMϵ(Y )− µϵxi⟩. Therefore, we obtain the simple
expression,

log
dp̂kϵ
dp̂kM

ϵ

(x) = E[∆LSEM(x)|S] + log

(
CM

C

)
, (23)

∆LSEM(x) := LSE

({
− ∥Ỹ − µϵxi∥2 +∆i

2σ2
ϵ

}
i∈[N ]

)
− LSE

({
− ∥Ỹ − µϵxi∥2

2σ2
ϵ

}N

i=1

)
.

Having expressed the log-density ratio in terms of ∆LSEM, our next task is to bound this quantity.
For the sake of intuition, we can consider the linear setting: In this case, Ỹ − Y is normal to the
manifold and ΠMϵ(Y )− µϵxi is tangent to the manifold, so it would follow that ∆i = 0 and thus
∆LSEM(x) = 0. In the case where the manifold is curved, it is no longer necessarily true that ∆i

is 0 and so we control ∆LSEM using the curvature of the manifold and the stability of the LSE
function.

We begin with a simple lemma.
Lemma E.1. Suppose that ∆M := dist({xi}Ni=1,M) < ∞ and τM > 0. Then, for any x ∈ Rd, i ∈
[N ] we have,

|∆i| ≤ µϵ|ζ|
((

1
2τM

d2i

)
∧ di +∆M

)
, di = ∥ΠM(Y/µϵ)−ΠM(xi)∥,

where we define the quantity,

ζ := ∥Y −ΠMϵ(Y )∥ − E
[
∥Y −ΠMϵ(Y )∥2

]1/2
.

Proof. Using the definition of Ỹ , we obtain that,

Y − Ỹ = (Y −ΠMϵ(Y ))− (Ỹ −ΠMϵ(Y ))

= (Y −ΠMϵ(Y ))− Y −ΠMϵ(Y )

∥Y −ΠMϵ(Y )∥
E
[
∥Y −ΠMϵ(Y )∥2

]1/2
=

Y −ΠMϵ(Y )

∥Y −ΠMϵ(Y )∥

(
∥Y −ΠMϵ(Y )∥ − E

[
∥Y −ΠMϵ(Y )∥2

]1/2)
.
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With this, we can write ∆i in the following form:

∆i = 2ζ

〈
Y −ΠMϵ(Y )

∥Y −ΠMϵ(Y )∥
,ΠMϵ(Y )− µϵxi

〉
. (24)

To control ∆i, we use Lemma D.3 as well as the Cauchy-Schwarz inequality to obtain,

|∆i| = 2

∣∣∣∣ζ(〈 Y −ΠMϵ(Y )

∥Y −ΠMϵ(Y )∥
,ΠMϵ(Y )− µϵΠM(xi)

〉
(25)

+

〈
Y −ΠMϵ(Y )

∥Y −ΠMϵ(Y )∥
, µϵΠM(xi)− µϵxi

〉)∣∣∣∣
≤ 2µϵ|ζ|

(
∥ΠM(Y/µϵ)−ΠM(xi)∥2

2τM
∧ ∥ΠM(Y/µϵ)−ΠM(xi)∥+∆M

)
, (26)

completing the proof of the lemma.

Since ζ is a random variable, we next find ways of controlling it using KM and Kmax,M.
Lemma E.2. Let ζ be as in Lemma E.1 and suppose that KM,Kmax,M < ∞, then we have that,

E[|ζ|2|S]1/2 ≤ 2KM, |ζ| ≤ Kmax
M +KM,

almost surely.

Proof. For the first bound, we use the L2-triangle inequality to obtain,

E[|ζ|2|S]1/2 ≤ E
[∣∣∥Y −ΠMϵ(Y )∥ − ∥x−ΠMϵ(x)∥

∣∣2∣∣∣S]1/2
+

∣∣∥x−ΠMϵ(x)∥ − E[∥Y −ΠMϵ(Y )∥2|S]1/2
∣∣

≤ E
[∣∣∥Y −ΠMϵ(Y )∥ − ∥x−ΠMϵ(x)∥

∣∣2∣∣∣S]1/2
+ E

[(
∥Y −ΠMϵ(Y )∥ − ∥x−ΠMϵ(x)∥

)2∣∣∣S]1/2
≤ 2KM.

Similarly, we can obtain L∞ bounds via,

∥ζ∥L∞ =
∥∥∥∥Y −ΠMϵ(Y )∥ − ∥x−ΠMϵ(x)∥

∥∥∥
L∞

+
∥∥∥∥x−ΠMϵ(x)∥ − E[∥Y −ΠMϵ(Y )∥2|S]1/2

∥∥∥
L∞

≤ Kmax,M +KM.

We now state the bound for ∆LSEM that we use for our two main theorems.

Lemma E.3. Consider the setting of Lemma E.1, then for any x ∈ Rd, it holds that

E[|∆LSEM(x)|S]

≤ 8KM

τM

(
1 + 2 log

(
τM
KM

)
+
+ (∆M + τM +KM +Dx)

12∆M

σ2
ϵ

+
(
5K

1/2
max,MK

1/2
M +Dx

)2P(Ex|S)1/2

σ2
ϵ

+ 2 inf
ε0>0

{
log

(
EY∼kx

[µ̂data(Bε0(ΠM(Y/µϵ)))
−1|S]

)
+
+
(
1 + KM+Dx

τM

) ε20
σ2
ϵ

})
,

for some universal constant C̃ > 0, where we define Ex = {KM + Dx + 2|ζ| ≥ µϵτM/2},
Dx = ∥x−ΠMϵ(x)∥.
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Proof. For this bound, we begin with (16) of Lemma D.1 to obtain

|∆LSEM(x)| ≤
∫ 1

0

∑
i∈[N ] exp(−∥Ỹ − µϵxi∥2/2σ2

ϵ − r∆i/2σ
2
ϵ )|∆i|/2σ2

ϵ∑
i∈[N ] exp(−∥Ỹ − µϵxi∥2/2σ2

ϵ − r∆i/2σ2
ϵ )

dr.

We decompose this further as,

|∆LSEM(x)| ≤
∫ 1

0

∑
i∈I1

exp(−∥Ỹ − µϵxi∥2/2σ2
ϵ − r∆i/2σ

2
ϵ )|∆i|/2σ2

ϵ∑
i∈I1

exp(−∥Ỹ − µϵxi∥2/2σ2
ϵ − r∆i/2σ2

ϵ )
dr

+

∫ 1

0

∑
i∈I∁

1
exp(−∥Ỹ − µϵxi∥22σ2

ϵ − r∆i/2σ
2
ϵ )|∆i|/2σ2

ϵ∑
i∈I0

exp(−∥Ỹ − µϵxi∥2/2σ2
ϵ − r∆i/2σ2

ϵ )
dr

≤ 1|I1|>0 max
i∈I1

{
|∆i|
2σ2

ϵ

}
+

∫ 1

0

∑
i∈I∁

1
exp(−∥Ỹ − µϵxi∥2/2σ2

ϵ − r∆i/2σ
2
ϵ )|∆i|/2σ2

ϵ∑
i∈I0

exp(−∥Ỹ − µϵxi∥2/2σ2
ϵ − r∆i/2σ2

ϵ )
dr

=: A+ B,

where we define the sets,

I0 = {i ∈ [N ] : ∥ΠM(Y/µϵ)−ΠM(xi)∥ ≤ ε0}, I1 = {i ∈ [N ] : ∥ΠM(Y/µϵ)−ΠM(xi)∥ ≤ ε1}
for some random quantities ε0, ε1 > 0.

The quantity A can be bounded directly using Lemma E.1. From this, we obtain,

A ≤ µϵ

σ2
ϵ

|ζ|
(

1
2τM

ε21 +∆M

)
.

To bound B, we proceed with the following upper bound,

B ≤
∑

j∈I∁
1
exp(−∥Ỹ − µϵxj∥/2σ2

ϵ + |∆j |/2σ2
ϵ )|∆j |/2σ2

ϵ∑
i∈I0

exp(−∥Ỹ − µϵxi∥/2σ2
ϵ − |∆i|/2σ2

ϵ )

≤ |I0|−1 max
i∈I0

∑
j∈I∁

1

exp(∥Ỹ − µϵxi∥2/2σ2
ϵ − ∥Ỹ − µϵxj∥2/2σ2

ϵ + |∆i|/2σ2
ϵ + |∆j |/σ2

ϵ ), (27)

where we have used the fact that r ≤ exp(r). To further control B, we control the quantity inside of
the exponential function by choosing ε0 sufficiently small and ε1 sufficiently large so that the quantity
in the exponential becomes negative. This allows for control of B by taking ϵ sufficiently small.

We start by controlling ∥Ỹ − µϵxi∥2 − ∥Ỹ − µϵxj∥2. For any i ∈ I0, j ∈ [N ], we have that

∥Ỹ − µϵxi∥2 − ∥Ỹ − µϵxj∥2

= ∥ΠMϵ(Y )− µϵxi∥2 + 2⟨Ỹ −ΠMϵ(Y ),ΠMϵ(Y )− µϵxi⟩ − ∥ΠMϵ(Y )− µϵxj∥2

− 2⟨Ỹ −ΠMϵ(Y ),ΠMϵ(Y )− µϵxj⟩. (28)

The first term is bounded using the fact that ∥ΠMϵ(Y )− µϵxi∥ ≤ µϵε0 + µϵ∆M. The second term
is controlled using the technique from the proof of Lemma E.1 to deduce the bound,

⟨Ỹ −ΠMϵ(Y ),ΠMϵ(Y )− µϵxi⟩ (29)

≤ µϵ∥Ỹ −ΠMϵ(Y )∥
((

1
2τM

∥ΠM(Y/µϵ)−ΠM(xi)∥2
)
∧ ∥ΠM(Y/µϵ)−ΠM(xi)∥+∆M

)
≤ µϵ(KM +Dx)

((
1

2τM
ε20
)
∧ ε0 +∆M

)
, (30)

where in the second line, we use that

∥Ỹ −ΠMϵ(Y )∥ = E[∥Y −ΠMϵ(Y )∥2]1/2

≤ E
[∣∣∥Y −ΠMϵ(Y )∥ − ∥x−ΠMϵ(x)∥

∣∣2]1/2 + ∥x−ΠMϵ(x)∥

≤ KM +Dx.
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Similarly, the fourth term of (28) is bounded by,

− ⟨Ỹ −ΠMϵ(Y ),ΠMϵ(Y )− µϵxj⟩

≤ µϵ(KM +Dx)
((

1
2τM

∥ΠM(Y/µϵ)−ΠM(xj)∥2
)
∧ ∥ΠM(Y/µϵ)−ΠM(xj)∥+∆M

)
,

(31)

and finally, the third term of (28) is controlled using Young’s inequality to obtain,

∥ΠMϵ(Y )− µϵxj∥2 = ∥ΠMϵ(Y )−ΠMϵ(µϵxj)∥2 + ∥ΠMϵ(µϵxj)− µϵxj∥2

+ 2⟨ΠMϵ(Y )−ΠMϵ(µϵxj),ΠMϵ(µϵxj)− µϵxj⟩

≥ 3

4
∥ΠMϵ(Y )−ΠMϵ(µϵxj)∥2 − 3∥ΠMϵ(µϵxj)− µϵxj∥2

≥ 3

4
∥ΠMϵ(Y )−ΠMϵ(µϵxj)∥2 − 3µ2

ϵ∆
2
M, (32)

Thus, substituting (30), (31) and (32) in to (28) leads to the bound,

∥Ỹ − µϵxi∥2 − ∥Ỹ − µϵxj∥2

≤ µ2
ϵ(ε0 +∆M)2 + 2µϵ(KM +Dx)

((
1

2τM
ε20
)
∧ ε0 +∆M

)
− 3

4
∥ΠMϵ(Y )− µϵΠM(xj)∥2 + 3µ2

ϵ∆
2
M

+ 2µϵ(KM +Dx)
((

1
2τM

∥ΠM(Y/µϵ)− µϵΠM(xj)∥2
)
∧ ∥ΠM(Y/µϵ)−ΠM(xj)∥+∆M

)
≤ µϵ

(
2µϵ +

1
τM

KM + 1
τM

Dx

)
ε20 + µϵ

(
5µϵ∆M + 4KM + 4Dx

)
∆M

− 3
4∥ΠMϵ(Y )− µϵΠM(xj)∥2

+ 2(KM +Dx)
(

1
2µϵτM

∥ΠMϵ(Y )− µϵΠM(xj)∥2
)
∧ ∥ΠMϵ(Y )− µϵΠM(xj)∥. (33)

Continuing with bounding the contents of the exponential function in (27), we next control |∆i|+
2|∆j |, using Lemma E.1 to obtain,

|∆i|+2|∆j | ≤ 2µϵ|ζ|
(

1
2τM

ε20+2
(

1
2τM

∥ΠM(Y/µϵ)−ΠM(xj)∥2
)
∧∥ΠM(Y/µϵ)−ΠM(xj)∥+3∆M

)
.

(34)
Therefore, combining (33) and (34), we obtain the bound,

∥Ỹ − µϵxi∥2 − ∥Ỹ − µϵxj∥2 + |∆i|+ 2|∆j |

≤ µϵ

(
2µϵ +

1
τM

(|ζ|+KM +Dx)
)
ε20 + µϵ

(
5µϵ∆M + 6|ζ|+ 4KM + 4Dx

)
∆M

− 3
4∥ΠMϵ(Y )− µϵΠM(xj)∥2

+ 2(KM +Dx + 2|ζ|)
(

1
2µϵτM

∥ΠMϵ(Y )− µϵΠM(xj)∥2
)
∧ ∥ΠMϵ(Y )− µϵΠM(xj)∥

≤ µϵ

(
2µϵ +

1
τM

(|ζ|+KM +Dx)
)
ε20 + µϵ

(
5µϵ∆M + 6|ζ|+ 4KM + 4Dx

)
∆M

− 1
2∥ΠMϵ(Y )− µϵΠM(xj)∥2

+ 21Ex(KM +Dx + 2|ζ|)∥ΠMϵ(Y )− µϵΠM(xj)∥,

where the indicator function contains the event Ex = {KM +Dx + 2|ζ| ≥ µϵτM/4}.

Using this bound, we choose a value of ε1 that guarantees that the contents of the exponential function
in (27) is negative. By solving the quadratic, it follows that to have ∥Ỹ − µϵxi∥2 − ∥Ỹ − µϵxj∥2 +
|∆i| + 2|∆j | ≤ −µϵκ, for some κ > 0, it is sufficient to have ∥ΠMϵ(Y ) − ΠMϵ(µϵxj)∥ ≥ µϵε1
with,

µ2
ϵε

2
1 = 6µϵκ+ 6µϵ

(
2µϵ +

1
τM

(|ζ|+KM +Dx)
)
ε20 + 6µϵ

(
5µϵ∆M + 6|ζ|+ 4KM + 4Dx

)
∆M

+ 81Ẽx
(KM +Dx + 2|ζ|)2. (35)
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Substituting this into (27), we then obtain the following bound for B,

E[B|S] ≤ E
[
|I∁1 |
|I0|

∣∣∣∣S] exp(−µϵκ/2σ
2
ϵ ).

We now return to bounding A with this choice of ε1 to obtain that,

E[A|S] ≤ µϵKM

σ2
ϵ

(
1

τMµ2
ϵ

(
6µϵκ+ 6µϵ

(
2µϵ +

3
τM

KM + 1
τM

Dx

)
ε20

+ 6µϵ

(
5µϵ∆M + 16KM + 4Dx

)
∆M

+ 8P(Ex|S)1/2(5K1/2
max,MK

1/2
M +Dx)

2

)
+ 2∆M

)
,

where we utilise the bounds in Lemma E.2 to control |ζ|. We then optimise κ by choosing,

κ =
2σ2

ϵ

µϵ
log

(
E
[
|I∁1 |/|I0|

∣∣∣S] τM
KM

)
+

,

which produces the bound,

E[|∆LSE(x)|S] ≤ KM

τM

(
1 + 12 log

(
E
[
|I∁1 |/|I0|

∣∣∣S] τM
KM

)
+
+

(
2 + 3

τM
KM + 1

τM
Dx

)6ε20
σ2
ϵ

+
(
5∆M + 16KM + 4Dx

)6∆M

σ2
ϵ

+
8P(Ex|S)1/2

σ2
ϵ

(5K
1/2
max,MK

1/2
M +Dx)

2

))
+

2KM∆M

σ2
ϵ

,

where we have used that µϵ ≤ 1 to simplify the expression.

To conclude the proof, we use the fact that |I0| = Nµ̂data(Bε0(ΠM(Y/µϵ)) and |I∁1 | ≤ N . Then,
optimising over ε0 leads to the bound in the statement.

E.2 Manifold concentration under log-domain smoothing

The bound on ∆LSEM developed in the previous section depends on the distance to the manifold,
Dx. Since, to control the Rényi divergence, we must integrate ∆LSEM with respect to p̂k

M

ϵ , we must
develop some bounds on the concentration of this measure to the manifold. Due to the complexity
of log-domain smoothing, this is non-trivial and relies on Weyl’s formula for the volume of tubular
neighbourhoods. In the following lemma, we develop such a concentration inequality.
Lemma E.4. Let δ, ε > 0 such that ess infx∈M(ΠM)∗µ̂data(Bε(x)) ≥ δ, then for all r2 ≥ 2σ2

ϵd,
we obtain the bound,

PZ∼p̂kM
ϵ

(dist(Z,Mϵ) ≥ r|S) ≤ exp

(
d log(8) +

5(K2
M + µ2

ϵ∆M)2 + 4µ2
ϵε

2

2σ2
ϵ

+ 2δ−1 −
(r −

√
2σ2

ϵd)
2

4σ2
ϵ

)
.

Proof. We begin by expressing the probability in integral form,

P(dist(Z,Mϵ) ≥ r) = C−1
M

∫
dist(·,M)≥r

exp

(∫
log p̂ϵ(y)k

M
x (dy)

)
dx.

From the formulation of log p̂ϵ in (9), we readily obtain that

log p̂ϵ(y) ≤ −mini ∥y − µϵxi∥2

2σ2
ϵ

+ log(N) + Cϵ

≤ −mini{(∥y − µϵΠM(xi)∥ − ∥µϵΠM(xi)− µϵxi∥)+}2

2σ2
ϵ

+ log(N) + Cϵ

≤ −
(dist(y,Mϵ)− µϵ∆M)2+

2σ2
ϵ

− d

2
log(2πσ2

ϵ ), (36)
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Letting Z ∼ p̂k
M

ϵ , we use the fact that Z ∈ Mϵ
r(x) to obtain the following lower bound:

dist(Z,M ϵ)

= EY∼kx [dist(Y,Mϵ)2]1/2

≥ dist(x,Mϵ)− EY∼kx
[(dist(Y,Mϵ)− dist(x,Mϵ))2]1/2

≥ dist(x,Mϵ)−KM. (37)

Thus, combining (36) and (37), we obtain the bound,∫
dist(·,M)≥r

exp

(∫
log p̂ϵ(y)k

M
x (dy)

)
dx

≤ (2πσ2
ϵ )

−d/2

∫
dist(·,M)≥r

exp

(
−

(dist(x,Mϵ)− µϵ∆M −KM)2+
2σ2

ϵ

)
dx

≤ (2πσ2
ϵ )

−d/2

∫
dist(·,M)≥r

exp

(
− dist(x,Mϵ)2

4σ2
ϵ

+
(KM + µϵ∆M)2

2σ2
ϵ

)
dx. (38)

Next, we lower bound CM. For this, we use Lemma D.1 with the parameters,

ϵi = − (dist(y,Mϵ)− ∥y − µϵxi∥)2

σ2
ϵ

,

which produces the expression,

log p̂ϵ(y) ≥ LSE

({
− (dist(y,Mϵ) + (∥y − µϵΠM(xi)∥ − dist(y,Mϵ)) + µϵ∆M)2

2σ2
ϵ

}
i

)
+ Cϵ

≥ − (dist(y,Mϵ) + µϵ∆M)2

σ2
ϵ

+

∫ 1

0

∑N
i=1 exp(rϵi)ϵi∑N
i=1 exp(rϵi)

+ log(N) + Cϵ.

We control this further using a similar technique to that used in the proof of Theorem 3.6. We define
the sets I0 = {i ∈ [N ] : ϵi ≥ −µ2

ϵε
2/σ2

ϵ }, I1 = {i ∈ [N ] : ϵi ≥ −2µ2
ϵε

2/σ2
ϵ } for any quantity

ε > 0. With this, we obtain the following bound,

log p̂ϵ(y) = − (dist(y,Mϵ) + µϵ∆M)2

σ2
ϵ

+

∫ 1

0

∑
i∈I1

exp(rϵi)ϵi∑
i∈I1

exp(rϵi)
dr +

∫ 1

0

∑
i∈I∁

1
exp(rϵi)ϵi∑

i∈I0
exp(rϵi)

dr

− d

2
log(2πσ2

ϵ )

≥ − (dist(y,Mϵ) + µϵ∆M)2

σ2
ϵ

+min
i∈I1

ϵi +
|I∁1 |
|I0|

∫ 1

0

min
i∈I∁

1 ,j∈I0

exp(r(ϵi − ϵj))ϵidr

− d

2
log(2πσ2

ϵ )

≥ − (dist(y,Mϵ) + µϵ∆M)2

σ2
ϵ

− 2µ2
ϵε

2

σ2
ϵ

− |I∁1 |
|I0|

∫ 1

0

exp

(
− rµ2

ϵε
2

σ2
ϵ

)
2µ2

ϵε
2

σ2
ϵ

dr

− d

2
log(2πσ2

ϵ ).

This is further controlled using the fact that I0 ⊇ {i ∈ [N ] : ∥ΠM(xi)− ΠM(y/µϵ)∥2 ≤ ε2} and
|I∁1 | ≤ N and hence

|I∁1 |
|I0|

≤ N

|{ΠM(xi)}Ni=1 ∩Bε(ΠM(y/µϵ))|
≤ µ̂data(Bε(ΠM(y/µϵ)))

−1 ≤ δ−1,

where the last inequality holds almost surely. In combination with the bound E[dist(Z,M ϵ)2]1/2 ≤
dist(x,Mϵ) +KM, we obtain that,∫

log p̂ϵ(y)k
M
x (dy) ≥ − (dist(x,Mϵ) +KM + µϵ∆M)2

σ2
ϵ

− 2µ2
ϵε

2

σ2
ϵ

−2δ−1− d

2
log(2πσ2

ϵ ). (39)
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With this, we lower bound CM by,

CM =

∫
exp

(∫
log p̂ϵ(y)k

M
x (dy)

)
dx

≥ (2πσ2
ϵ )

−d/2

∫
exp

(
− 2 dist(x,Mϵ)2 + 2(KM + µϵ∆M)2

σ2
ϵ

− 2µ2
ϵε

2

σ2
ϵ

− 2δ−1

)
dx.

(40)

Before combining the bounds in (38) and (40) we further simplify their expressions using Weyl’s
formula (see Section D.4). Combining the bound in (38) with the integral formula in (20), we obtain
the bound,∫

dist(·,M)≥r

exp

(∫
log p̂ϵ(y)k

M
x (dy)

)
dx

≤ (2πσ2
ϵ )

−d/2 exp

(
(KM + µϵ∆M)2

2σ2
ϵ

) ⌊d∗/2⌋∑
p=0

(d− d∗ + 2p)k̃2p(Mϵ)

∫ ∞

r

e
− s2

4σ2
ϵ sd−d∗−1+2pds,

where we use the shorthand d∗ = d∗M. The integral on the right-hand side can be analysed by relating
it to the measure of a related spherically symmetric measure (e.g. see equation (4) in Bobkov, 2003).
With this we relate the integral to the concentration of a Gaussian random variable:∫ ∞

r

sk−1 exp(−s2/4σ2
ϵ )ds =

Γ(k/2 + 1)

kπk/2

∫
{x∈Rk:∥x∥≥r}

exp(−∥x∥2/4σ2
ϵ )dx

=
Γ(k/2 + 1)(4σ2

ϵ )
k/2

k
Pξ∼N(0,2σ2

ϵ Ik)
(∥ξ∥ ≥ r).

Thus, we obtain the expression,∫
dist(·,M)≥r

exp

(∫
log p̂ϵ(y)k

M
x (dy)

)
dx

= (2πσ2
ϵ )

−d/2 exp
(

(KM+µϵ∆M)2

2σ2
ϵ

) ⌊d∗/2⌋∑
p=0

wpPξ∼N(0,2σ2
ϵ Id−d∗+2p)(∥ξ∥ ≥ r),

wp : =
Γ((d− d∗ + 2p)/2 + 1)(4σ2

ϵ )
(d−d∗+2p)/2

d− d∗ + 2p
(d− d∗ + 2p)k̃2p(Mϵ).

By a similar argument, we also obtain

CM ≥ (2πσ2
ϵ )

−d/2 exp

(
− 4(KM + µϵ∆M)2 + 4µ2

ϵε
2

2σ2
ϵ

− 2δ−1

) ⌊d∗/2⌋∑
p=0

64−(d−d∗+2p)/2wp.

Dividing the two, we obtain the bound,

PZ∼p̂kM
ϵ

(dist(Z,Mϵ) ≥ r)

≤
∑⌊d∗/2⌋

p=0 wpPξ∼N(0,2σ2
ϵ Id−d∗+2p)(∥ξ∥ ≥ r)∑⌊d∗/2⌋

p=0 64−(d−d∗+2p)/2wp

exp

(
5(K2

M + µ2
ϵ∆M)2

2σ2
ϵ

+
2µ2

ϵε
2

σ2
ϵ

+ 2δ−1

)
≤ 8d exp

(
5(K2

M + µ2
ϵ∆M)2

2σ2
ϵ

+
2µ2

ϵε
2

σ2
ϵ

+ 2δ−1

)
max

p∈{0,...,⌊d∗/2⌋}
Pξ∼N(0,2σ2

ϵ Id−d∗+2p)(∥ξ∥ ≥ r).

We then bound this further using the concentration of the chi-squared distribution (see Example 2.28
of (Wainwright, 2019)), obtaining,

Pξ∼N(0,2σ2
ϵ Ik)

(∥ξ∥ ≥ r) ≤ exp

(
−

(r −
√

2σ2
ϵk)

2
+

4σ2
ϵd

)
≤ exp

(
−

(r −
√

2σ2
ϵd)

2
+

4σ2
ϵd

)
,

completing the proof of the bound.
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E.3 Proof of Theorem 3.6

With the pointwise bound on E[∆LSEM(x)|S] from the previous subsections, we are now prepared
to derive the Rényi divergence bound in Theorem 3.6.

Proof of Theorem 3.6. To bound the Rényi divergence, we begin with the following expression which
follows from (23):

Dq(p̂
kM

ϵ ∥p̂kϵ ) =
1

q − 1
log

∫ (
p̂k

M

ϵ (x)

p̂kϵ (x)

)q−1

p̂k
M

ϵ (dx)

=
1

q − 1
log

∫
exp((q − 1)E[∆LSEM(x)|S]) p̂k

M

ϵ (dx) + log(CM/C),

where the normalisation constants, C and CM, are as defined in (22). Furthermore, we obtain the
following relationship between the normalisation constants:

C =

∫
exp

(∫
log p̂ϵ(y)kx(dy)−

∫
log p̂ϵ(y)k

M
x (dy) +

∫
log p̂ϵ(y)k

M
x (dy)

)
dx

= CM
∫

exp(E[∆LSEM(x)|S])p̂k
M

ϵ (dx).

Therefore, using Jensen’s inequality, we deduce the bound,

Dq(p̂
k
ϵ ∥p̂k

M

ϵ ) ≤ 2

β
log

∫
exp(β|E[∆LSEM(x)|S]|)p̂k

M

ϵ (dx)

=
2

β
logE[exp(β|E[∆LSEM(Z)|S,Z]|)|S], (41)

where, for the sake of brevity, we use the shorthand β = (q − 1) ∨ 1 and Z ∼ p̂k
M

ϵ (dx).

We proceed by applying the bound on ∆LSEM developed in Lemma E.3. The assumptions of
Lemma E.3 hold with ∆M = 0 and hence, we have the bound,

E[|∆LSEM(Z)|S,Z] ≤ 8K

τ

(
1 + 2 log

( τ

K

)
+
+

(5K
1/2
maxK1/2 +DZ)

2

σ2
ϵ

15Kmax+DZ≥µϵτ/4

+ 2 inf
ε0>0

{
log

(
E[µ̂data(Bε0(ΠM(Y/µϵ)))

−1|S,Z]
)
+
+

(
1 + K+DZ

τ

) ε20
σ2
ϵ

})
,

(42)

where we have used the fact that |ζ| ≤ 2Kmax (see Lemma E.2) and therefore, P(EZ |S,Z)1/2 ≤
15Kmax+DZ≥µϵτ/4. To control the infimum term, we utilise the bound on balls of µ̂data given in
Lemma D.7. In this lemma, it is shown that whenever ε0 ≤ τ , with probability 1− δ, we have,

sup
y∈M

µ̂data(Bε0(y))
−1 ≤ c−1

µ ε−d∗

0 /4, (43)

once N is sufficiently large so that the condition in (18) is satisfied with r = ε0. If we set ε20 = d∗σ2
ϵ

and require that σ2
ϵ ≤ (τ/64)2/d∗, then once N is sufficiently large so that (18) is satisfied, we

obtain the bound,

inf
ε0>0

{
log

(
EY∼kZ

[µ̂data(Bε0(ΠM(Y/µϵ)))
−1|S,Z]

)
+
+
(
1 + K+DZ

τ

) ε20
σ2
ϵ

}
≤ inf

ε0∈(0,τM/64]
sup
y∈M

{
log

(
µ̂data(Bε0(y))

−1
)
+
+

(
1 + K+DZ

τ

) ε20
σ2
ϵ

}
≲

(
1 + K+DZ

τ

)
d∗. (44)

Indeed, this would require N ≳ (d∗ + 1)c−2
µ (d∗σ2

ϵ )
−d∗

. If N does not satisfy this, then we instead
set ε0 to be the smallest r such that (18) is satisfied. We have that such a quantity exists and satisfies
ε0 ∈ (0, τ/64] as soon as we assume that,

N ≥ 64
(
(144d∗ log(128/τ) + 144 log(2/cµ)) ∨ log(δ−1)

2

)
(τ/64)−2d∗

c−2
µ =: Nmin(d

∗, τ, δ, cµ).

(45)
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With this, we arrive at a quantity with (c2µN)−1/d∗
≲ ε20 ≲ (c2µN)−1/d∗

. Thus, we obtain the bound,

inf
ε0>0

{
log

(
EY∼kZ

[µ̂data(Bε0(ΠM(Y/µϵ)))
−1|S,Z]

)
+
+

(
1 + K+DZ

τ

) ε20
σ2
ϵ

}
≲ 1 +

(
1 + K+DZ

τ

) (c2µN)−1/d∗

σ2
ϵ

1d∗>0. (46)

We can then combine the bounds in (44) and (46) to obtain that there exists a quantity C2 > 0 that
depends only logarithmically on structural parameters and satisfies,

2 inf
ε0>0

{
log

(
E[µ̂data(Bε0(ΠM(Y/µϵ)))

−1|S,Z]
)
+
+

(
1 + K+DZ

τ

) ε20
σ2
ϵ

}
≤ C2

(
1 +

(
1 + DZ

τ

)
d∗ ∨ ((c2µN)−

1
d∗ σ−2

ϵ )

)
, (47)

where we have also used the fact that K ≤ Kmax ≤ τ/96.

Returning to bounding (41), we use (42) and (47) to derive the upper bound,

2

β
logE[exp(β|E[∆LSEM(Z)|S,Z]|)|S]

≤ 2

β
logE

[
exp

(
8βK
τ

(
1 + 2 log

(
τ
K

)
+
+

(5K1/2
maxK

1/2+DZ)2

σ2
ϵ

15Kmax+DZ≥µϵτ/4 + C2

+ C2

(
1 + DZ

τ

)
d∗ ∨ (c2µN)

− 1
d∗

σ2
ϵ

))∣∣∣S]
≤ 16K

τ

(
1 + 2 log

( τ

K

)
+ C2 + C2d

∗ ∨ (c2µN)
− 1

d∗

σ2
ϵ

)
+

1

20β
logE

[
exp

(
40βK

τ
C2DZ

τ d∗ ∨ (c2µN)
− 1

d∗

σ2
ϵ

)∣∣∣∣S]
+

1

5β
logE

[
exp

(
10βK

τ

(5K1/2K
1/2
max +DZ)

2

σ2
ϵ

15Kmax+DZ≥µϵτ/4

)∣∣∣∣S], (48)

where in the second inequality, we use Hölder’s inequality. We now bound the last two terms, starting
with the second.

We utilise Lemma E.4 which we apply with ε = τ/64. As a result of (43) and the assumed lower
bound on N , the assumptions of Lemma E.4 are satisfied with δ = cµ(τ/64)

d∗
/4, and so, for any

r2 ≥ 4σ2
ϵd,

P(DZ ≥ r|S) ≤ exp
(
C − (r−

√
2σ2

ϵd)
2

4σ2
ϵ

)
, C := log(8)d+

5K2 + 2−10µ2
ϵτ

2

2σ2
ϵ

+ 8c−1
µ (τ/64)−d∗

.

Thus, for any c,R > 0, we have the bound,

E
[
exp

(
cDZ

)∣∣S] = ∫ ∞

0

P(DZ ≥ log(r)/c)dr

≤ exp(cR) +

∫ ∞

exp(cR)

P(DZ ≥ log(r)/c)dr

≤ exp(cR) +

∫ ∞

exp(cR)

exp

(
C −

(log(r)/c−
√
2σ2

ϵd)
2

4c2σ2
ϵ

)
dr.

This is simplified using the change of variables,∫ ∞

exp(cR)

exp

(
C −

(log(r)/c−
√
2σ2

ϵd)
2

4c2σ2
ϵ

)
dr

= c

∫ ∞

0

exp

(
C −

(u+R−
√
2σ2

ϵd)
2

4σ2
ϵ

+ c(u+R)

)
du.
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We then choose R :=
√
2σ2

ϵd + 16cσ2
ϵ +

√
256c2σ4

ϵ + 32σ2
ϵC to further simplify the expression,

obtaining, ∫ ∞

exp(cR)

exp

(
C −

(log(r)/c−
√

2σ2
ϵd)

2

32c2σ2
ϵ

)
dr

= c

∫ ∞

0

exp

(
− u2

32σ2
ϵ

+ u

(
c− R

16σ2
ϵ

)
+ c

√
2σ2

ϵd

)
du

≤ c exp(c
√
2σ2

ϵd)

∫ ∞

0

exp

(
− u2

32σ2
ϵ

)
du

= (32π)1/2 exp(c
√
2σ2

ϵd)cσϵ,

where the last line follows from the Gaussian integral. With this, we obtain a bound on the MGF:

logE
[
exp

(
cDZ

)∣∣S] ≤ log
(
exp(cR) + (32π)1/2 exp(c

√
2σ2

ϵd)cσϵ

)
≤ cR+ (32π)1/2cσϵ

≲ c
√

σ2
ϵd+ c2σ2

ϵ + c(K + τ) + cσϵ(
√
d+ c−1/2

µ (τ/64)−d∗/2).

Substituting values for c into the bound, we obtain,

1

20β
logE

[
exp

(
40βK

τ
C2DZ

τ d∗ ∨ (c2µN)
− 1

d∗

σ2
ϵ

)∣∣∣∣S]
≲

√
σ2
ϵd+

K

τ2

(
d∗ ∨ (c2µN)

− 1
d∗

σ2
ϵ

)(
τ + σϵ(

√
d+ c−1/2

µ (τ/64)−d∗/2) + σ2
ϵ

K

τ2

(
d∗ ∨ (c2µN)

− 1
d∗

σ2
ϵ

))
≲

√
σ2
ϵd+

K

τ

(
d∗ ∨ (c2µN)

− 1
d∗

σ2
ϵ

)(
1 +

σϵ

τ
(
√
d+ c−1/2

µ (τ/64)−d∗/2) +
K

τ3

(
(σ2

ϵd
∗) ∨ τ2

))
.

(49)

Thus, as soon as we require that,

σ2
ϵ ≤

(K2

dτ2

)
∧ τ2

(
√
d+ c

−1/2
µ (τ/64)−d∗/2)2

∧
(τ2
d∗

)
=: σ2

max,1(d, d
∗, τ,K, cµ),

we obtain the bound,

1

20β
logE

[
exp

(
40βK

τ
C2DZ

τ d∗ ∨ (c2µN)
− 1

d∗

σ2
ϵ

)∣∣∣∣S] ≲
K

τ

(
(d∗ + 1) ∨ (c2µN)

− 1
d∗

σ2
ϵ

)
. (50)

We now bound the third term of (48). We once again use the integral formula for the expectation to
obtain,

E
[
exp

(
10βK

τ

(5K1/2K
1/2
max +DZ)

2

σ2
ϵ

15Kmax+DZ≥µϵτ/4

)∣∣∣∣S]
=

∫ ∞

0

P
(
exp

(
10βK

τ

(5K1/2K
1/2
max +DZ)

2

σ2
ϵ

15Kmax+DZ≥µϵτ/4

)
≥ r

∣∣∣∣S)dr
≤

∫ ∞

0

P
(
(5Kmax +DZ)

2
15Kmax+DZ≥µϵτ/4 ≥ σ2

ϵ τ

10βK
log(r)

∣∣∣∣S)dr
= 1 +

(
exp

(
10βK
σ2
ϵτ

(µϵτ/4)
2
)
− 1

)
P(DZ ≥ µϵτ/4− 5Kmax|S)

+

∫ ∞

exp
(
10βK
σ2
ϵτ

(µϵτ/4)2
) P((5K1/2K1/2

max +DZ)
2 ≥ σ2

ϵ τ

10βK
log(r)

∣∣∣∣S)dr. (51)
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We further bound the last term using K ≤ Kmax along with a change of variables, to derive,∫ ∞

exp
(
10βK
σ2
ϵτ

(µϵτ/4)2
) P((5Kmax +DZ)

2 ≥ σ2
ϵ τ

10βK
log(r)

∣∣∣∣S)dr
=

20βK

σ2
ϵ τ

∫ ∞

µϵτ/4

P(5Kmax +DZ ≥ u|S) exp
(
10βK

σ2
ϵ τ

u2

)
udu

≤ 20βK

σ2
ϵ τ

∫ ∞

µϵτ/4

exp

(
C − 1

4σ2
ϵ

(
u− 5Kmax −

√
2σ2

ϵd
)2

+
10βK

σ2
ϵ τ

u2

)
udu

Setting c = 1− 40βK
τ > 1/2, we can simplify this expression by,

20βK

σ2
ϵ τ

∫ ∞

µϵτ/4

exp

(
C − 1

4σ2
ϵ

(
u− 5Kmax −

√
2σ2

ϵd
)2

+
10βK

σ2
ϵ τ

u2

)
udu

=
20βK

σ2
ϵ τ

∫ ∞

µϵτ/4

exp

(
C − c

4σ2
ϵ

(
u− (5Kmax +

√
2σ2

ϵd)c
−1

)2

+
1− c−1

4σ2
ϵ

(5Kmax +
√

2σ2
ϵd)

2

)
udu

≤ 20βK

σ2
ϵ τ

(4σ2
ϵπ/c)

1/2 exp

(
C − c

4σ2
ϵ

(
µϵτ/4− (5Kmax +

√
2σ2

ϵd)c
−1

)2)√
2σ2

ϵ /c,

where the final inequality follows from the concentration of the Gaussian random variable. Using the
fact that Kmax ≤ τ/96, c−1 ≤ 2, and assuming that σ2

ϵ ≤ K2
max

2d ,

20βK

σ2
ϵ τ

∫ ∞

µϵτ/4

exp

(
C − 1

4σ2
ϵ

(
u− 5Kmax −

√
2σ2

ϵd
)2

+
10βK

σ2
ϵ τ

u2

)
udu

≤ 40
√
2πβK

τc
exp

(
C − 1

8σ2
ϵ

(
µϵτ/8

)2)
Similarly, we can bound the second term of (51), in total, obtaining,

1

5β
logE

[
exp

(
10βK

τ

(5K1/2K
1/2
max +DZ)

2

σ2
ϵ

1
5K1/2K

1/2
max+DZ≥µϵτ/4

)∣∣∣∣S]
≲

(
exp

(
10βK
σ2
ϵτ

(µϵτ/4)
2
)
− 1

)
P(DZ ≥ µϵτ/4− 5Kmax|S)

+

∫ ∞

exp
(
10βK
σ2
ϵτ

(µϵτ/4)2
) P((5K1/2K1/2

max +DZ)
2 ≥ σ2

ϵ τ

10βK
log(r)

∣∣∣∣S)dr
≲ exp

(
C + 10βK

σ2
ϵτ

(µϵτ/4)
2 − 1

4σ2
ϵ

(
3µϵτ/16

)2)
+

K

τ
exp

(
C − 1

8σ2
ϵ

(
µϵτ/8

)2)
≲ exp

(
C − 1

8σ2
ϵ

(
µϵτ/8

)2)
.

Thus, by requiring that,

σ2
ϵ ≤ 210

(
log(8)d+ 8c−1

µ (τ/64)−d∗
)
log(τ/K) =: σ2

max,2(d
∗, d, τ,K, cµ),

we obtain the upper bound,

1

5β
logE

[
exp

(
10βK

τ

(5K1/2K
1/2
max +DZ)

2

σ2
ϵ

1
5K1/2K

1/2
max+DZ≥µϵτ/4

)∣∣∣∣S] ≲
K

τ
. (52)

Thus, by substituting (50) and (52) into (48) we obtain that, with a probability of at least 1− δ, we
have,

2

β
logE[exp(β|E[∆LSEM(Z)|S,Z]|)|S] ≲ K

τ
max

{
d∗ + 1,

(c2µN)−
1
d∗

σ2
ϵ

}
,
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completing the proof. We collect the required upper bounds on σ2
ϵ , which when combined with the

fact that σ2
ϵ ≤ ϵ, leads to the sufficient condition,

ϵ ≤ σ2
max,1(d, d

∗, τ,K, cµ)∧σ2
max,2(d

∗, d, τ,K, cµ)∧
K2

max

2d
∧ τ2

(64)2d∗
=: ϵmax(d, d

∗, τ,K,Kmax, cµ).

(53)

E.4 Proof of Theorem 4.1

Proof. Let M ∈ Mµ and let τM, d∗M,KM,Kmax,M,∆M and cµ,M be as defined in Section 4.1
and assume that ∆M < ∞ and Kmax,M ≤ τ/96. Using the same argument that produced (42), we
obtain the bound,

D2(p̂
k
ϵ ∥p̂k

M

ϵ ) ≤ 2 logE[exp(|E[∆LSEM(Z)|S,Z]|)|S],

where Z ∼ p̂k
M

ϵ (dx). Using Lemma E.3, we obtain the pointwise bound,

E[|∆LSEM(Z)|S,Z]

≤ 8KM

τM

(
1 + 2 log

(
τM
KM

)
+

(5K
1/2
max,MK

1/2
M +DZ)

2

σ2
ϵ

1DZ≤µϵτ/4

+
(
∆M + τM +KM +DZ

)12∆M

σ2
ϵ

+ 2 inf
ε0>0

{
log

(
E[µ̂data(Bε0(ΠM(Y/µϵ)))

−1|S,Z]
)
+

(
1 + KM+DZ

τ

) ε20
σ2
ϵ

})
.

To bound the term with the infimum, we proceed similarly to the proof of Theorem 3.6, bounding it
using Lemma D.7. Given that N is sufficiently large, we obtain from this lemma that,

sup
y∈M

µ̂data(Bε0(x))
−1 ≤ c−1

µ ε
−d∗

M
0 /4,

with probability 1− δ. With this we can choose ε20 = d∗σ2
ϵ to obtain the upper bound,

2 inf
ε0>0

{
log

(
EY∼kZ

[µ̂data(Bε0(ΠM(Y/µϵ)))
−1|S,Z]

)
+

(
1 + KM+DZ

τM

) ε20
σ2
ϵ

}
≤ C3

(
1 +

(
1 + KM+DZ

τM

)
d∗M

)
,

for some quantity C3 > 0 which depends only logarithmically on structural parameters. With this,
we obtain the bound,

2 logE[exp(|E[∆LSEM(Z)|S,Z]|)|S]

≲
KM

τM

(
1 +

(
∆M + τM +KM

)∆M

σ2
ϵ

+ d∗M

)
+ logE

[
exp

(
40KM
τM

(
C3d

∗
M

τM
+

12∆2
M

σ2
ϵ

)
DZ

)∣∣∣∣S]
+ logE

[
exp

(
10K
τ

(5K1/2K
1/2
max +DZ)

2

σ2
ϵ

15Kmax+DZ≥µϵτ/4

)∣∣∣∣S]. (54)

We bound the second and third terms similarly to as in the proof of Theorem 3.6. However, the
concentration of DZ differs slightly due to the additional error from ∆M > 0. We apply Lemma E.4
with ε = K/2 to obtain that for any r2 ≥ 2σ2

ϵd,

P(DZ ≥ r|S) ≤ exp
(
C − (r−

√
2σ2

ϵd)
2

4σ2
ϵ

)
,

where the constant is given by

C = log(8)d+ 5(K+µϵ∆M)2+K2

2σ2
ϵ

+ 8c−1
µ (τ/64)−d∗

M

≤ log(8)d+ 6(K+µϵ∆M)2

2σ2
ϵ

+ 8c−1
µ (τ/64)−d∗

M .
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To bound the third term of (54), we can directly use the argument in the proof of Theorem 3.6 that
produces (51). Indeed, taking σ2

ϵ sufficiently small, we obtain,

logE
[
exp

(
10KM
τM

(5K1/2K1/2
max+DZ)2

σ2
ϵ

1DZ≤µϵτM/4

)∣∣∣∣S] ≲
KM

τM
.

Similarly, we can borrow the argument that produces (49), to obtain

logE
[
exp

(
40KM
τM

(
C3

τM
+

∆2
M

σ2
ϵ

)
d∗MDZ

)∣∣∣∣S]
≲ c

√
σ2
ϵd+ c2σ2

ϵ + cKM + cσϵ(
√
d+ c−1/2

µ (τ/64)−d∗/2)

≲
KM

τM

(
1

τM
+

∆2
M

σ2
ϵ

)
d∗M

(
KM +∆M + σϵ(

√
d+ c−1/2

µ (τ/64)−d∗/2)

+ σ2
ϵ

KM

τM

(
1

τM
+

∆2
M

σ2
ϵ

)
d∗M

)
.

With this, we obtain that as soon as σ2
ϵ is sufficiently small, we obtain,

logE
[
exp

(
40KM
τM

(
C3

τM
+

∆2
M

σ2
ϵ

)
d∗MDZ

)∣∣∣∣S] ≲
K2

M
τM

(
1

τM
+

∆2
M
σ2
ϵ

)
d∗M.

Therefore, returning to (54) we obtain the bound,

2 logE[exp(|E[∆LSEM(Z)|S,Z]|)|S]

≤ KM

τM

(
1 +

(
∆M + τM +KM

)∆M

σ2
ϵ

+ d∗
)
+

K2
M

τM

(
1

τM
+

∆2
M
σ2
ϵ

)
d∗M

≲
KM(d∗ + 1)

τM
+

KM∆M

σ2
ϵ

(
1 +

KMd∗M
τM

∆M

)
.

F Proofs of other results

This appendix contains the proofs for Corollary 3.7 and Proposition 3.8. These results elucidate some
of the generalisation properties of log-domain smoothing, specifically regarding how it concentrates
mass near the manifold and distributes mass along it.

F.1 Proof of Corollary 3.7

To prove this corollary, we utilise Lemma E.4. As remarked in the proof of Theorem 3.6, there exists
ε0 ∈ [0, τ/64] such that with a probability of at least 1− δ, we obtain the bound,

PY∼p̂kM
ϵ

(dist(Y,M) ≥ r|S) ≤ exp
(
C − (r−

√
2σ2

ϵd)
2

4σ2
ϵ

)
, C := log(8)d+

5K2+4µ2
ϵε

2
0

2σ2
ϵ

+ 8c−1
µ ε−d∗

0 ,

for any r2 ≥ 4σ2
ϵd, where ε0 must be chosen according to the size of N and the condition in (18). In

particular, we have the bound,

PY∼p̂kM
ϵ

(dist(Y,M) ≥ r +
√

2σ2
ϵd+

√
4σ2

ϵC
2|S) ≤ exp

(
− r2

4σ2
ϵ

)
.

When N is large enough, we choose the optimal value of ε20 = σ
4

d∗+2
ϵ c

− 2
d∗+2

µ , so that,

σ2
ϵ

(
4µ2

ϵε
2
0

2σ2
ϵ

+ 8c−1
µ ε−d∗

0

)
≲ σ

4
d∗+2
ϵ c

− 2
d∗+2

µ .

If N is not sufficiently large, we choose ε0 to be the smallest value such that (18) is satisfied, yielding
(c2µN)−1/d∗

≲ ε20 ≲ (c2µN)−1/d∗
and also,

σ2
ϵ

(
4µ2

ϵε
2
0

2σ2
ϵ

+ 8c−1
µ ε−d∗

0

)
≲ (c2µN)−1/d∗

.
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With these choices of ε0, we obtain the bound,√
4σ2

ϵC
2 ≲

√
σ2
ϵd+K +max{(c2µN)−1/d∗

, σ
2

d∗+2
ϵ c

− 1
d∗+2

µ }.

Next we transfer this concentration property to the measure p̂kϵ by utilising the Rényi divergence
bound in Theorem 3.6. By utilising Lemma 21 of Chewi et al., 2022, we obtain the bound,

PY∼p̂k
ϵ

(
dist(Y,M) ≥ r +

√
2σ2

ϵd+
√

4σ2
ϵC

2 +
√
4σ2

ϵD2(p̂kϵ ∥p̂k
M

ϵ )
∣∣∣S) ≤ 2 exp

(
− r2

8σ2
ϵ

)
.

Finally we use Theorem 3.6 to bound the 2-Rényi divergence with probability at least 1− δ.

F.2 Proof of Proposition 3.8

Let x ∈ M, choose and let γi
t be the shortest constant velocity path on the manifold M connecting

points x and xi. Choose i such that
∫
∥∂tγt∥dt is minimised, i.e. so that xi is the closest example

according to the metric on the manifold. Then the density ratio at x compared with xi can be
expressed as

p̂kϵ (x)

p̂kϵ (xi)
= exp

(∫
log p̂ϵ(y)kx(dy)−

∫
log p̂ϵ(y)kxi

(dy)

)
= exp

(∫ ∫ (
log p̂ϵ(y) +

d

2
log(2πσ2

ϵ )
)
⟨∇xkx(y)|x=γt , ∂tγt⟩dydt

)
.

We control this using the Fisher information matrix,

I(x) =
∫
(∇x log kx(y))(∇x log kx(y))

T kx(dy),

and the quantity F 2 = supx∈M supv∈NxM
vT I(x)v
∥v∥2 . From the Cauchy-Schwarz inequality, we

obtain the following bound:∫ (
logp̂ϵ(y) +

d

2
log(2πσ2

ϵ )
)
⟨∇xkx(y)|x=γt

, ∂tγt⟩dy

≤
(∫

|⟨∇x log kx(y)|x=γt , ∂tγt⟩|2kx(dy)
)1/2(∫ (

log p̂ϵ(y) +
d

2
log(2πσ2

ϵ )
)2

kx(dy)

)1/2

≤
(
(∂tγt)

TI(x)(∂tγt)
)1/2

(∫ (
log p̂ϵ(y) +

d

2
log(2πσ2

ϵ )
)2

kx(dy)

)1/2

≤ F

(∫ (
log p̂ϵ(y) +

d

2
log(2πσ2

ϵ )
)2

kx(dy)

)1/2

.

Using the argument in the proof of Corollary 3.7, we can choose ε0 ∈ [0, τ/64] so that,

2µ2
ϵε

2
0 + 8σ2

ϵ ε
−d∗

0 ≲ max{(c2µN)−1/d∗
, σ

4
d∗+2
ϵ c

− 2
d∗+2

µ }.

Thus, borrowing the argument from (39) in the proof of Lemma E.4, we have that for all y ∈ Rd,∣∣∣ log p̂ϵ(y) + d

2
log(2πσ2

ϵ )
∣∣∣ ≲ dist(y,Mϵ)2

σ2
ϵ

+max{(c2µN)−1/d∗
, σ

4
d∗+2
ϵ c

− 2
d∗+2

µ }.

Since x ∈ M, we also have the bound,

EY∼kx [dist(Y,Mϵ)4]1/4 ≤ E[(dist(Y,Mϵ)− dist(x,Mϵ)4]1/4 +Kmax

≤ 2Kmax.

In particular, there exists a quantity C ≲ 1, such that the following bound on the density ratio holds:

p̂kϵ (x)

p̂kϵ (xi)
≥ exp

(
−

CF (K2
max + (c2µN)−1/d∗

)

σ2
ϵ

∫
∥∂tγt∥dt

)
.
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Finally, we must control the distance of the path γt. We recall from the definition of Nmin(δ) in (45)
and Lemma D.7, that whenever N ≥ Nmin(δ), we obtain

P
(

inf
x∈M

µ̂data(Bτ/2(x)) ≥ cµ
(τ/2)d

∗

4

)
≥ 1− δ.

From this, it follows that with high probability, infi∈[N ] ∥x− xi∥ ≤ τ/2. Once we combine this with
Lemma D.4, we obtain the bound, ∫

∥∂tγt∥dt ≤ 2∥x− xi∥,

completing the proof of the proposition.

G Experimental details

In this section, we provide detailed descriptions of the experimental settings used in the paper.

G.1 2-dimensional circle example

The plots in Figure 4 illustrate the trade-off that score-smoothing can provide for generalisation, to
complement the theoretical results and discussion in Section 3.3. We consider an empirical dataset of
12 uniformly spaced points on the unit circle, and generate samples using the smoothed score function
with an isotropic Gaussian kernel. We use a variance exploding diffusion model with T = 9 and a
geometric noise schedule, an Euler-Maruyama discretisation with 100 steps, and 1000 samples in the
smoothing evaluation. In Figure 4 we show how the resulting samples behave for different smoothing
parameter σ. Too little smoothing generates only training data, while too much smoothing causes
generated samples to move towards the centre of the circle. There is a good choice of smoothing that
balances between the two, promoting generalisation along the manifold (a phenomenon noticed by
Scarvelis et al. (2025)).

To further illustrate this trade-off, we also plot how the population negative log-likelihood changes
as the degree of smoothing increases, averaged over 1000 points on the true circular manifold.
We recall that one can calculate the log-likelihood of a point by integrating the divergence of the
probability-flow ODE drift function along the probability flow ODE trajectory (Chen et al., 2018).
In our case, the drift of the probability flow ODE is a smoothed empirical score function. As we
are considering isotropic Gaussian smoothing, the divergence and the kernel convolution can be
interchanged, allowing us to compute the log-likelihood by integrating the smoothed divergence
of the empirical score function. The resulting plot exhibits a U-shape, clearly demonstrating the
generalisation trade-off that arises from varying the smoothing level.

G.2 Comparing Gaussian smoothing and KDE

We here describe the experimental setup used in Section 5.1, which aims to illustrate how score-
function smoothing can preserve the geometry of the data, in contrast to density-level smoothing
which quickly loses such structure. In order to consider a well-structured manifold, we follow
Rombach et al. (2022) and use a 32-dimensional VAE latent-space encoding of MNIST digits, and
perform generation in the latent space. We consider M to be the set corresponding to the digit 4,
which comprises a lower-dimensional structure in the latent space. This ground-truth manifold is
approximated using all samples of the digit 4, from which we use a subset of 100 samples as our
training dataset. We consider a smoothed-score diffusion model using an isotropic Gaussian kernel,
and compare with kernel density estimation which corresponds to smoothing at the density level.

VAE We train the VAE on 10,000 samples from the MNIST database. The VAE uses 16 initial
feature channels, with scaling multiples of (1, 2, 2, 2) during downsampling, a convolutional kernel
size of 3, a dropout rate of 0.1, and 4 groups for group normalisation. It maps into a 32-dimensional
latent space. It is trained for 10,000 training steps with a batch size of 64, using the Adam optimiser
(Kingma and Ba, 2015) with learning rate 1e-3 and default parameters 0.9, 0.999.
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(c) Digit 5

Figure 10: Verifying that latent representations of a digit class lie on a lower-dimensional structure in
the latent space, by performing a PCA decomposition on the differences between nearby points.
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Figure 11: Additional generations, as in Figure 6.

Dataset construction We use the remaining 60,000 points not used to train the VAE. The latent
representations of the individual classes comprise lower-dimensional structures in the space, which
we verify in Figure 10. To show this, for a particular class we map all points to the latent space.
We then pick one of the latent points z, and look at its 50 closest neighbours zi. We perform a
PCA decomposition on the vectors z − zi to analyse their local structure. In Figure 10 we plot
the cumulative explained variance, and observe that most of the variance is captured by fewer than
the full 32 dimensions, suggesting that the latent representations for a particular class lie on a
lower-dimensional manifold within the latent space.

We restrict to considering the digit 4, of which there are 5842 samples. We use these points to
approximate the ‘true’ manifold M, and randomly choose 100 points for use as the empirical dataset.

Experiment hyperparameters We use a variance-exploding diffusion model with T = 9.0, a geo-
metric noise schedule, and 100 generation steps with an Euler-Maruyama discretisation scheme. We
generate 500 samples to calculate the L2 distances reported in Figure 7. For the isotropic Gaussian
kernel, we used smoothing with standard deviations σ ∈ {0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1},
and we use 1000 smoothing samples at each generation step. For KDE, we use σ ∈
{0.006, 0.01, 0.014, 0.018, 0.022, 0.026}, which were chosen to induce comparable average dis-
tances to the dataset from the generated samples (plotted along the x-axis).

To obtain the samples plotted in Figure 6, we use Gaussian-smoothing with standard deviations
σ ∈ {0.04, 0.05, 0.06, 0.07}, and KDE scales σ ∈ {0.015, 0.03, 0.045, 0.06}. These were selected
to induce comparable lateral distances along the manifold, computed as (d(x, µ̂data)

2 − d(x,M)2)
1
2

and averaged over 500 generated samples, which corresponds to inducing the same degree of ‘novelty’
relative to the training set. We display the same plot showing more samples in Figure 11. The quality
of the reconstruction provides a proxy for how well the manifold structure is preserved. For the
score-smoothed diffusion model, as the amount of smoothing increases, the samples become novel
images that are not present in the dataset yet nonetheless decode to resemble samples from the class
of 4’s, suggesting that they remain close to the underlying geometry. For KDE, we see that the quality
of the reconstructed quickly deteriorates, indicating that in order to induce the same degree of novelty
and difference from the training set, the KDE moves significantly further off-manifold, thereby failing
to preserve the geometric structure of the data.
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Figure 12: Visualisation of traversing the synthetic image manifold.

(a) Isotropic Gaussian smoothing, σ = 2.6 (b) Adapted smoothing, σ = 5.0

Figure 13: Samples generated using the Gaussian and manifold-adapted smoothing kernels. The
manifold-adapted smoothing generates samples that are visually more ‘on-manifold’, in that the
samples appear more spherically symmetric. See also Figure 16 for a quantitative measure of the
spherical symmetry of the samples.

G.3 Synthetic image manifold

We now describe the experimental setup used in the synthetic image manifold experiment in Section
5.2. As working in pixel space is more challenging, we will focus on a simple one-dimensional
image manifold. Now that we are operating in the pixel space, the training datapoints are further
apart and thus there are many permissible manifolds that interpolate the data. In Section 4, we
considered how the type of smoothing can induce different structures in the generated samples,
and illustrated this effect with low-dimensional experiments. We therefore aim to assess to what
extent this intuition transfers to higher-dimensional settings by also considering smoothing kernels
adapted to the manifold structure, and seeing whether this can influence the geometric structure of
the sampling distribution.

Dataset generation We construct the synthetic image dataset using a function ϕ : [0, 2π) → R64×64

that maps an angle θ to an ‘image’. The ‘image’ is constructed as the density of a η2-variance Gaussian
distribution centred on the point on the circle with radius 0.5 corresponding to the angle θ (where the
overall image corresponds to [−1, 1]× [−1, 1]). The density is scaled to take values between 0 and 1.
The resulting manifold in image space therefore consists of a closed curve of ‘Gaussian bumps’ that
move around the 0.5-circle as θ moves from 0 to 2π. We provide a visualisation of traversing the
manifold in Figure 12. For the experiment in Figure 8a, we use η = 0.2, and use 16 equally spaced
points along the curve as the training dataset.

The manifold-adapted smoothing kernel is defined as follows. For a point x in the generation
procedure, the projection ΠM(x) is computed. We define a shifted manifold as M+ (x−ΠM(x)),
which is a translated copy of the manifold that passes through x. Gaussian noise of standard deviation
σ is added to x, then we project onto this shifted manifold. All manifold projections are approximated
by generating 1024 equally spaced points along the manifold and taking the closest one.

Experiment hyperparameters We use a variance-exploding diffusion model with T = 9.0,
a geometric noise schedule, and 100 generation steps with an Euler-Maruyama discretisa-
tion scheme. For the isotropic Gaussian kernel, we used smoothing with standard devia-
tions σ ∈ {1.0, 1.4, 1.8, 2.0, 2.2, 2.4, 2.6}. For the manifold-adapted smoothing, we used σ ∈
{1.6, 2.4, 3.2, 3.5, 3.8, 4.4, 5.0}. These values were chosen to induce comparable average distances
to the training dataset in the generated samples (plotted along the x-axis).

For the isotropic Gaussian smoothing, we took 50,000 kernel samples at each generation step. For
the manifold-adapted smoothing, we take 1000 smoothing samples at each generation step (note that
this can be much lower than for Gaussian smoothing, as the manifold along which we smooth is only
1-dimensional). We generate 100 samples, and average the closest distances to the manifold and to
the empirical dataset. As with the projections, the closest distance to the manifold is calculated by
generating 1000 points on the manifold and taking the minimum L2 distance.
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(a) Gaussian kernel, σ = 1.4
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(b) Gaussian kernel, σ = 2.2
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(c) Gaussian kernel, σ = 2.6
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(d) Adapted kernel, σ = 2.4
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(e) Adapted kernel, σ = 3.8
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(f) Adapted kernel, σ = 5.0

Figure 14: Plots showing the projected θ values for the generated samples, for different amounts of
smoothing. As the smoothing increases, the generated samples spread along the manifold structure,
and populate the space between the points in the training dataset (indicated by red vertical lines).
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Figure 15: Additional plots demonstrating the ef-
fect of changing curvature on the manifold-adapted
smoothing, as in Figure 8b. Different plots show
different numbers of datapoints N in the empirical
dataset.
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Figure 16: Plot showing the average
‘anisotropy’ of the generated samples, as a
measure of the visual quality of samples.
Values close to 1 indicate a spherically-
symmetric generated sample, as would be the
case on the true manifold.

In the experiment in Figure 8b in which we vary the parameter η, we use 32 equally spaced
points along the curve. We run the manifold-adapted smoothing with smoothing levels σ ∈
{0.8, 1.2, 1.6, 1.75, 1.9, 2.2, 2.5}, and vary the parameter to take values η ∈ {0.1, 0.15, 0.2, 0.25}.
In Figure 15 we provide additional results in which we repeat the same experiment, but now change
the number of datapoints N in the empirical dataset. In each plot, we see a similar effect to in Figure
8b—for larger η, the manifold-adapted smoothing is able to effectively generate new samples close
to the manifold, but this ability is lessened as η decreases.

G.3.1 Additional plots

The results in Figure 8a indicate that an adapted smoothing kernel can induce different structure in
the generations compared to isotropic Gaussian smoothing—as the degree of smoothing increases,
the generated samples deviate away from the training data for both kernels, but remain comparatively
closer to the manifold structure when using the adapted smoothing kernel. We here include some
additional plots that further elucidate this observed effect.

Spread along the manifold While the L2 distances reported in Figure 8a show that the generations
have deviated away from the training data, it is not necessarily clear how the scale of such deviations
corresponds to the degree of spreading along the manifold structure. We therefore also examine the
extent to which the generated samples become spread along the manifold as the smoothing increases,
to confirm that the generations do indeed deviate sufficiently far from the training points to reasonably
be considered ‘novel’.
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Figure 17: Comparing L2 distance to data and M, for a 2d synthetic image manifold.

In Figure 14, we plot histograms showing the projected θ values of the generations, in order to see
how far the generated distribution has spread along the 1d synthetic manifold. We provide histograms
for three different smoothing values used in Figure 8a, for both types of smoothing. For small
smoothing levels, we recover only training points as expected, but as the smoothing increases we
see that the generations do indeed deviate far from the training datapoints relative to the manifold
structure, and spread out to fill the gaps in the manifold between the points in the training dataset.

Assessing the visual quality of samples The plot in Figure 8a reports the average L2 distance
from the manifold M, relative to the average L2 distance from the training dataset. It is clear that
the Gaussian-smoothed samples deviate comparatively further from the manifold than the adaptive-
smoothing samples according to this distance. We here additionally report an alternative measure of
how ‘on-manifold’ the generations are, related to the visual properties of the generations.

Note that samples from the true manifold consists of renormalised Gaussian density functions.
Visually, being ‘on-manifold’ therefore corresponds to the generated images being spherically
symmetric. In Figure 13 we display generated samples for the isotropic Gaussian and manifold-
adapted smoothing mechanisms (for the largest smoothing values that were used in Figure 8a), and see
that the manifold-adapted smoothing generates samples appear visually more spherically symmetric.
This property is however somewhat difficult to assess by eye, as any such changes can be subtle, so in
Figure 16 we also quantitatively measure the spherical symmetry to assess this visual property.

In order to do so, we report the ‘anisotropy’ of the generated samples. Namely, we consider the
renormalised generated samples as a probability density function on [0, 1] × [0, 1], and record the
anisotropy of the corresponding distribution (that is, we compute the covariance matrix Σ ∈ R2, and
report λmax

λmin
for eigenvalues λmax, λmin). Samples that are ‘on-manifold’ will have values close to

1.0. In the computation, we set values less than 0.1 to zero, so that the noise in the generations do not
impact the calculation. We report the results in Figure 16.

The results are consistent with the pattern of L2 distances reported in Figure 8a—as the degree
of smoothing increases and the generated samples deviate away from the training datapoints, the
generations using the adapted smoothing have lower anisotropy and are therefore more ‘round’ than
those obtained from Gaussian smoothing. Indeed, we know from Scarvelis et al. (2025) that Gaussian
smoothing will generate barycentres of training points, which will skew the generated samples away
from being perfectly round; it appears that the manifold-adapted smoothing somewhat mitigates this
effect by shaping the geometry of the generated samples towards a different interpolation.

2-dimensional synthetic image manifold We now consider a similar 2-dimensional image manifold
example, so see whether similar effects hold in this setting too. Now, rather than considering Gaussian
bump images with the centres located around a circle, we consider the manifold induced by placing
the centres of the Gaussian bumps covering the [−0.5, 0.5]× [−0.5, 0.5] square. As before we take
a small training dataset, which now consists of 116 points positioned on a lattice of equilateral
triangles covering the square, each with side-length 0.1. We run sampling as in the 1d case, now using
smoothing with standard deviations σ ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} for the Gaussian kernel, and
σ ∈ {0.4, 0.8, 1.0, 1.2, 1.4, 1.6, 3.0} for the manifold-adapted kernel. In Figure 17 we plot distance
to the manifold (approximated with 2879 samples, on a triangular grid with triangle side-length 0.02)
versus distance to the training dataset, and observe a similar effect to in the 1-dimensional case.
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(a) L2 distances, for
curve in 2s class.
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(c) L2 distances, for
curve in 7s class.
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Figure 18: Comparison of Gaussian and manifold-adapted smoothing kernels, for alternative curves
ϕ in the manifold of digits 2 and 7. Arrows indicate increasing smoothing.

G.4 MNIST manifold

We now provide the details for the MNIST manifold experiment in Section 5.2.

Dataset generation Similarly to the synthetic case, we construct a manifold by defining a curve
ϕ : [0, 1] → R32×32 in pixel space, which interpolates between samples of the same digit from the
MNIST dataset (LeCun et al., 2010). To obtain such an interpolation, we train a convolutional VAE
(Kingma and Welling, 2014). We then choose three datapoints from the same digit class (in this case,
the digit 4), and draw a triangle between their latent representations. We construct ϕ(t) by decoding
this triangle, which results in a closed loop in pixel space. We use the decodings of 10 equidistant
points along the latent triangular interpolation to define the training dataset. We emphasise that the
VAE is only used to construct a manifold structure in pixel-space, and the actual diffusion procedure
takes place directly in the pixel-space without any interaction with the VAE.

Experiment hyperparameters We use a variance-exploding diffusion model with T = 9.0, a
geometric noise schedule, and 100 generation steps with an Euler-Maruyama discretisation scheme.
We used smoothing with standard deviations σ ∈ {0.0, 0.3, 0.6, 0.8, 0.9, 1.0, 1.05, 1.1} for isotropic
Gaussian smoothing, and σ ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 4.0, 7.0} for manifold-adapted smoothing
(which again were chosen to induce similar distances from the data points in Figure 9a). For the
isotropic Gaussian smoothing, we took 50,000 kernel samples at each generation step. For the
manifold-adapted smoothing, we take 1000 smoothing samples at each generation step (this can
be much lower than for Gaussian smoothing, as the manifold along which we smooth is only 1-
dimensional). As before, we generate 100 samples, and report the average closest distances to the
manifold and to the empirical dataset. The closest distance to the manifold is calculated by generating
1000 points on the manifold, and taking the minimum L2 distance to these points.

FID calculation As we work with a 1-dimensional cuve in pixel space, neighbouring points in the
empirical dataset look very similar. It is therefore difficult to visually judge the quality of obtained
samples from both smoothing mechanisms, so we use FID (Heusel et al., 2017) as measure of
similarity to the true manifold that also provides an indication of sample quality. To obtain the
features used for the FID calculation, we train a convolutional classifier (using the 10,000 points
also used to train the VAE). The model consists of two convolutional layers with 32 and 64 features
respectively, followed by a fully connected hidden layer of size 128. The 128-dimensional feature
vector is used for the FID calculation. It is trained for 5,000 steps using the Adam optimiser with
a learning rate of 1e-3. We calculate the FID scores of the generated samples relative to the 1000
random samples from the manifold.

Different manifolds We also ran the same experiment with manifolds for different digits, and
observe similar behaviour. Results for the curves for digits 2 and 7 are plotted in Figure 18. The
selected points were generally chosen to be the first three examples of that digit in the dataset (other
than when these datapoints induced a poorly-decoded manifold, in which case we used the first that
made the constructed manifold of good quality).

Licenses: MNIST digits classification dataset (LeCun et al., 2010), CC BY-SA 3.0 License
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Justification: Error bars are not appropriate for the experimental settings that we consider.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include details regarding computing resources in Appendix G.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics, and confirm that our work conforms to
it.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work advances the theoretical understanding of diffusion models, though
it does not propose a specific methodology. While the insights may inform future algorithmic
developments, we consider potential negative impacts speculative and therefore beyond the
scope of this broader impact statement—such considerations apply to most research.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are neither releasing new data or newly trained models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We report the licences for data used in the Appendix.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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