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Abstract
In this paper, we study the predict-then-optimize
problem where the output of a machine learn-
ing prediction task is used as the input of some
downstream optimization problem, say, the objec-
tive coefficient vector of a linear program. The
problem is also known as predictive analytics or
contextual linear programming. The existing ap-
proaches largely suffer from either (i) optimiza-
tion intractability (a non-convex objective func-
tion)/statistical inefficiency (a suboptimal general-
ization bound) or (ii) requiring strong condition(s)
such as no constraint or loss calibration. We de-
velop a new approach to the problem called max-
imum optimality margin which designs the ma-
chine learning loss function by the optimality con-
dition of the downstream optimization. The max-
margin formulation enjoys both computational
efficiency and good theoretical properties for the
learning procedure. More importantly, our new
approach only needs the observations of the opti-
mal solution in the training data rather than the ob-
jective function, which makes it a new and natural
approach to the inverse linear programming prob-
lem under both contextual and context-free set-
tings; we also analyze the proposed method under
both offline and online settings, and demonstrate
its performance using numerical experiments.

1. Introduction
The predict-then-optimize problem considers a learning
problem under a decision making context where the output
of a machine learning model serves as the input of a down-
stream optimization problem (e.g. a linear program). The
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ultimate goal of the learner is to prescribe a decision/solution
for the downstream optimization problem using directly the
input (variables) of the machine learning model but without
full observation of the input of the optimization problem. A
similar problem formulation was also studied as prescrip-
tive analytics (Bertsimas & Kallus, 2020) and contextual
linear programming (Hu et al., 2022). While (Elmachtoub
& Grigas, 2022) justifies the importance of leveraging the
optimization problem structure when building the machine
learning model, the existing efforts on exploiting the op-
timization structure have been largely inadequate. In this
paper, we delve deeper into the structural properties of the
optimization problem and propose a new approach called
maximum optimality margin which builds a max-margin
learning model based on the optimality condition of the
downstream optimization problem. More importantly, our
approach only needs the observations of the optimal solution
in the training data rather than the objective function, thus it
draws an interesting connection to the inverse optimization
problem. The connection gives a new shared perspective
on both the predict-then-optimize problem and the inverse
optimization problem, and our analysis reveals a scale in-
consistency issue that arises practically and theoretically for
many existing methods.

Now we present the problem formulation and provide an
overview of the existing techniques and related literature.
Consider a linear program (LP) that takes the following
standard form

LP(c, A, b) := min c⊤x, (1)
s.t. Ax = b, x ≥ 0.

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm are the inputs
of the LP. In addition, there is an available feature vector
z ∈ Rd that encodes the useful covariates (side information)
associated with the LP.

Predict-then-optimize/Contextual LP

The problem of predict-the-optimize or contextual LP is
stated as follows. A set of training data

DML(T ) := {(ct, At, bt, zt)}Tt=1

consists of i.i.d. samples from an unknown distribution
P , where ct ∈ Rn, At ∈ Rm×n, bt ∈ Rm, and zt ∈ Rd.
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Throughout the paper, we assume the constraints have a
fixed dimensionality for notational simplicity, while all the
results can be easily extended to the case of variable dimen-
sionalities. The goal of a conventional machine learning
(ML) model is to identify a function g(·; Θ) : Rd → Rn

that best predicts the objective coefficient vector ct using
the covariates zt with some model parametrized with Θ.
However, the predict-then-optimize problem has a slightly
different pipeline for the testing phase. It aims to map from
the observation of the context and the knowledge of the
constraints to a decision (from data to decision):

(Anew, bnew, znew)→ xnew

without the observation of cnew, where the tuple
(cnew, Anew, bnew, znew) is a new test sample from P . That
is, for this new sample, the decision maker knows the con-
straints (Anew, bnew), and the aim is to predict the unknown
objective cnew from znew and determine xnew accordingly.

There are commonly three performance measures for the
problem (as noted by (Chen & Kılınç-Karzan, 2020))

Prediction loss: lpre(Θ̂) = E
[
∥cnew − ĉnew∥22

]
Estimate loss: lest(Θ̂) = E

[
c⊤newxnew − c⊤newx

∗
new

]
Suboptimality loss: lsub(Θ̂) = E

[
ĉ⊤newx

∗
new − ĉ⊤newx̂new

]
where ĉnew = g(znew; Θ̂) is the predicted output of
the ML model with parameters Θ̂. Here x̂new and
x∗

new are the optimal solutions of LP(ĉnew, Anew, bnew) and
LP(cnew, Anew, bnew), respectively. The expectations are
taken with respect to this new sample.

The prediction loss is aligned with the standard ML prob-
lems, where the L2 loss can also be replaced by other proper
metrics. The estimate loss captures the quality of the rec-
ommended decision xnew under the true (unobserved) cnew
and it is a more natural loss given the interests in the down-
stream optimization task. The suboptimality loss measures
how well the predicted ĉnew explains the realized optimal
solution x∗

new. It is more commonly adopted in the inverse
linear programming literature (Mohajerin Esfahani et al.,
2018; Bärmann et al., 2018; Chen & Kılınç-Karzan, 2020).

Inverse linear programming

Our proposed approach to the predict-then-optimize prob-
lem also solves a seemingly unrelated problem – inverse LP.
In parallel to predict-then-optimize, the problem of inverse
LP considers a set of training data

Dinv(T ) := {(x∗
t , At, bt, zt)}Tt=1 .

Similarly to the previous case, the samples (ct, At, bt, zt)’s
are generated from an unknown distribution P . Differently,
for inverse LP, the optimal solution x∗

t instead of the ob-
jective coefficient vectors ct is given in the training data.

While the classic setting of inverse LP does not consider the
context, i.e., zt ≡ 1 for all t, several recent works (Moha-
jerin Esfahani et al., 2018; Besbes et al., 2021) study the
contextual case. The goal of the inverse LP is similar to that
of the predict-then-optimize problem, to learn a function
g(·; Θ) that maps from the context zt to the objective ct.

We emphasize that inverse LP is a much harder problem than
contextual linear programming for several reasons. First,
the observation of x∗

t gives much less information than that
of ct, which makes the inverse problem information theo-
retically more challenging than the predict-then-optimize
problem. Second, speaking of the objective function, di-
rectly minimizing the suboptimality loss lsub(Θ̂) can lead
to an unexpected failure. To see this, consider the naive
prediction that always predicts ĉ to be zero, always leading
to an optimal zero suboptimality loss. Similar issues have
also appeared in by ignored by the literature (Bertsimas
et al., 2015; Mohajerin Esfahani et al., 2018; Bärmann et al.,
2018; Chen & Kılınç-Karzan, 2020), while our methods
avoid such a problem (see Section 5).

In the following, we briefly review the representative exist-
ing approaches to tackle the two problems.

Predicting the objective

The first class of approaches treats the predict-then-optimize
problem as a two-step procedure. The learner first learns a
function g(·; Θ̂) : z → c from the training data, and then
prescribes the final output xnew by the optimal solution of
LP(g(znew; Θ̂), Anew, bnew). There are mainly two existing
routes for how the parameter Θ̂ should be estimated from
the training data. The first route is to ignore the constraint
(At, bt) (in the training data) and treat the training prob-
lem as a pure ML problem (Ho-Nguyen & Kılınç-Karzan,
2022). The issue of this route is that there can be a mis-
alignment between the ML loss lpre(·) and the downstream
optimization loss lest(·) or lsub(·). Empirically, it may cause
sample inefficiency if one is interested in lest(·). Theoreti-
cally, establishing a performance guarantee for the optimiza-
tion loss, it requires a calibration condition (Bartlett et al.,
2006) which can be hard to satisfy/verify (Ho-Nguyen &
Kılınç-Karzan, 2022). The second route is to employ the
optimization loss lest(·) for the estimation of Θ̂ (Elmachtoub
& Grigas, 2022; Elmachtoub et al., 2020). However, the
loss function is generally non-convex in the parameter Θ.
A convex surrogate loss called SPO+ is proposed, but it
also suffers from the misalignment issue when establishing
a finite sample guarantee. To solve this problem, (Liu &
Grigas, 2021) show that the calibration condition holds, but
an O(T−1/2) convergence rate of the SPO+ loss only leads
to an O(T−1/4) convergence rate of the SPO loss, which is
suboptimal ((El Balghiti et al., 2019)). In the literature of
inverse LP, the (convex) suboptimality loss lsub(·) is often
used instead of lest(·). Specifically, our proposed approach
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falls in this category of first predicting the objective and
then solving the LP.

Predicting the optimal solution

The second class of approaches treats the predict-then-
optimize problem as a one-step procedure and aims to learn
an end-to-end function that maps from the context zt di-
rectly to the optimal solution x∗

t (Bertsimas & Kallus, 2020;
Hu et al., 2022). This end-to-end treatment works well in
the unconstrained setting. But for the constrained setting,
the optimal solution of an LP generally stays at the corner of
the feasible simplex, and the end-to-end mapping can hardly
predict such a corner solution. In the domain of inverse LP,
a recent work (Tan et al., 2020) also proposes a loss function
minimizing the gap between the predicted optimal solution
and the observed optimal solution. The idea is aligned with
the early formulation of inverse optimization (Zhang & Liu,
1996; Ahuja & Orlin, 2001). However, the formulation in
(Tan et al., 2020) is more of a conceptual framework that is
hardly computationally tractable.

Some existing studies on differentiable optimization also fol-
low an end-to-end fashion and do not require objective func-
tions as training data. Since the optimal solution of an LP
is always at the corner, the change of optimal solution with
respect to the coefficient is generally discontinuous, which
restricts the possibility of backward propagation-based gra-
dient descent learning. To address the discontinuity, one
can either add some noise to the objective ((Berthet et al.,
2020)) or add a regularization term in the objective (Wilder
et al. (2019)) to smooth the mapping from the objective to
the optimal solution. Then, they can apply gradient descent
to find the mapping. However, this smoothing technique
only works for problems with fixed constraints but not the
general random constraints as considered in our paper. The
differentiable model training is based on a convex surrogate
loss named Fenchel-Young loss (Blondel et al., 2020) which
also enjoys some surrogate property (Blondel, 2019), yet
no finite sample bound has been obtained for the proposed
algorithms. The training is also computationally costly: it
requires a Monte-Carlo step (suppose we sample M times)
at each gradient computation, which needs solving M times
more linear programs than SPO+. An analogous idea of
turning the non-differentiable case into the differentiable
one is Wilder et al. (2019) which adds a quadratic regular-
ization term to the objective, while the consistency cannot
be guaranteed.

Consistency/Feasibility check.

For the inverse LP problem, a common approach in liter-
ature (Zhang & Liu, 1996; Ahuja & Orlin, 2001; Boyd &
Vandenberghe, 2004; Bertsimas et al., 2015; Bärmann et al.,
2018; Besbes et al., 2021) is to transform the knowledge of
the optimal solution x∗

t equivalently to constraints on the

objective vector ct ∈ Ct for some polyhedron Ct (through
the optimality condition), and then utilize these Ct to make
inference about the objective vector. There can be two is-
sues with this approach. First, many existing results study
the context-free case and require a non-empty intersection
of the polyhedrons, i.e., ∩Tt=1Ct ̸= ∅. This requirement may
fail in a noisy or contextual setting. Second, from a method-
ology perspective, it is difficult to relate the structure of Ct
with the covariates zt. This Ct also highlights the difference
between predict-then-optimize and inverse LP: the former
observes ct in the training data, while the latter only knows
ct ∈ Ct for some polyhedron Ct.

2. LP Optimality and Main Algorithm
Now we first present some preliminaries on LP and then
describe our main algorithm. Let x∗ = (x1, ..., xn)

⊤ be the
optimal solution of the LP(c, A, b). The optimal basis B∗
and its complement N ∗ of an LP are defined as follows

B∗ := {i : x∗
i > 0}, N ∗ := {i : x∗

i = 0}.

For a set B ⊂ [n], we use AB to denote the submatrix of A
with column indices corresponding to B and cB to denote
the subvector with corresponding dimensions. We make the
following assumptions on the LP’s nondegeneracy.
Assumption 2.1 (Nondegeneracy). All the LPs in this paper
are nondegenerate, i.e., satisfying the two conditions:

(a) The LP is feasible and has a unique optimal solution.

(b) All the submatrices AB are invertible for |B| = m. The
optimal basis satisfies |B∗| = m.

The assumption is standard in the literature of LP. It is a
mild one in that any LP can satisfy the assumption under an
arbitrarily small perturbation (Megiddo & Chandrasekaran,
1989). We also note that our focus on the standard-form LP
(1) is without loss of generality because all the LPs can be
written in the standard form and the results in this paper can
be easily adapted to an LP of other forms.

The following lemma describes the optimality condition for
an LP in terms of its input.
Lemma 2.2 ((Luenberger et al., 1984)). Let B ⊂ [n] be
a feasible basis of LP(c, A, b), i.e., A−1

B b ≥ 0, and let
N = [n]\B be its complement. Then, under Assumption
2.1, the following inequality holds (element-wise)

c⊤N − c⊤BA
−1
B AN ≥ 0 (2)

if and only if B = B∗.

The result sets the foundation for the simplex method to
solve LPs. When B = B∗, the vector p∗ := c⊤B∗A

−1
B∗ ∈ Rm

will be the optimal solution of the dual LP of (1), also known
as the dual price.
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2.1. Maximum optimality margin

Now we present the approach of maximum optimality mar-
gin. Consider the following training data

Dinv(T ) = {(x∗
t , At, bt, zt)}Tt=1 .

Note that the training data only consists of the observations
of the optimal solution x∗

t , so all the algorithms and analyses
apply to both the predict-then-optimize problem and the
inverse LP problem. Denote the sets of basic variables and
non-basic variables of the t-th training sample as B∗t ⊆ [n]
and N ∗

t ⊆ [n], respectively. Then the training data can be
equivalently re-written as

Dinv(T ) = {(x∗
t , At, bt, zt,B∗t ,N ∗

t )}
T
t=1 .

Specifically, we start with a linear mapping from the covari-
ates zt to the objective vector ct, i.e.,

g(zt; Θ) := Θzt.

Our maximum optimality margin method solves the follow-
ing optimization problem.

Θ̂ := argmin
Θ∈K

λ

2
∥Θ∥22 +

1

T

T∑
t=1

∥st∥1

s.t. ĉt = Θzt, t = 1, ..., T, (3)

ĉ⊤t,N∗
t
− ĉ⊤t,B∗

t
A−1

t,B∗
t
At,N∗

t
≥ 1|N∗

t | − st,

t = 1, ..., T,

where the decision variables are Θ ∈ Rn×d, ĉt ∈ Rn, and
st ∈ R|Nt|. K is a convex set to be determined.

To interpret the optimization problem (3):

The equality constraints encode the linear prediction func-
tion, and ĉt is the predicted value of ct under Θ.

For the inequality constraints, the vector 1|N∗
t | ∈ R|N∗

t | is
an all-one vector of dimension |N ∗

t |. The left-hand-side of
the inequality comes from the optimality condition (2) in
Lemma 2.2, while the right-hand-side represents the slack-
ness or margin of the optimality condition. From the ob-
jective function, it is easy to see that the optimal solution
will always render st ≥ 0. Then, when st ∈ [0, 1] element-
wise for all t, the inequality constraints fulfill the optimality
condition (2) perfectly, which means that the optimal solu-
tion Θ̂ is consistent with all the training samples. In other
words, when st ∈ [0, 1] element-wise for all t, if we pre-
dict the objective coefficient ct with ĉt = Θ̂zt, the two
LPs, LP(ct, At, bt) and LP(ĉt, At, bt) share the same opti-
mal solution for all t (by Lemma 2.2), and it thus results in
a zero estimate loss lest and a zero suboptimality loss lsub
on the training data. When some coordinate of st is greater
than 1, it means the optimal solution under the predicted

objective ĉt = Θ̂zt no longer satisfies the optimality con-
dition of the original LP(ct, At, bt), and consequently, this
results in a mismatch between the two optimal solutions of
LP(ct, At, bt) and LP(ĉt, At, bt), and thus a non-zero loss
of lest and lsub.

For the objective function, the second part is justified by the
above discussion on the inequality constraints. We desire to
have a smaller value of st as this leads to better satisfaction
of the optimality condition. The first part of the objective
function regularizes the parameter Θ. The rationale is that
the left-hand-side of the inequality constraints that repre-
sents the realized margin of the optimal condition, scales
linearly with Θ. We hope the margin to be large but do not
want that the large margin is due to the scaling up of Θ.

We note that the optimization problem (3) has linear con-
straints and a quadratic objective, and thus it is convex.
Algorithm 1 describes the procedure of maximum optimal-
ity margin for solving the predict-then-optimize problem
and the inverse LP problem. It is a two-step procedure
in that it first estimates the parameter and then solves the
optimization problem based on the estimate Θ̂.

Algorithm 1 Maximum Optimality Margin (MOM)
Input: DatasetD(T ) = {(x∗

t , At, bt, zt,B∗t ,N ∗
t )}Tt=1, test

sample (Anew, bnew, znew), λ, K
1: Solve the optimization problem (3) and obtain the esti-

mate Θ̂
2: Predict ĉnew = Θ̂znew and solve the following LP

min ĉ⊤newx,

s.t. Anewx = bnew, x ≥ 0.

3: Denote its optimal solution as x̂new
Output: x̂new and Θ̂

2.2. Interpreting the formulation

The key idea of the MOM formulation is that it does not
explicitly minimize the error of predicting the objective
ct’s as a stand-alone ML problem, but it aims to minimize
the violation – equivalently, maximize the margin – of the
optimality conditions of the training samples (the inequality
constraint in (3)). Intuitively, as long as we find a prediction
ĉt that shares the same optimal solution x∗

t with ct for most
t (hopefully), we should not bother with the error between
ĉt and ct. This distinguishes from all the existing methods
for predict-then-optimize and inverse LP in that it integrates
the optimization problem’s structure naturally into the ML
training procedure. We make the following remarks.

First, our method does not require the knowledge of ct’s
in the training data. This makes our method the first one
that works for both predict-then-optimize and inverse LP
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problems. Beyond the point, this special feature of our
method has a modeling advantage of scale consistency or
scale invariance. Specifically, we note that for the LP (1),
both the objective vectors c and αc for any α > 0 lead to
the same optimal solution. Hence the loss of training an ML
model should ideally bear a scale invariance in terms of the
objective vector. That is, a prediction of ĉ and a prediction
of αĉ for any α > 0 should incur the same training loss
as both of them lead to the same prescribed solution. Our
method enjoys this scale invariance property, since it only
utilizes the optimal solution x∗

t in the training phase but
does not involve ct. In comparison, a method that minimizes
the prediction loss lpre apparently does not have this scale
invariance, so do some inverse LP algorithms (see Section
3.3). This property can be critical for some application
contexts such as revealed preference or stated preference
(Beigman & Vohra, 2006; Zadimoghaddam & Roth, 2012)
where one aims to predict the utility ct of a customer based
on observed covariates zt. In such contexts, even if we have
observations of the ct’s through surveying the customers’
utilities, these observations might suffer from some scale
contamination because each customer may have their own
scale for measuring utilities. And therefore, striving for an
accurate prediction of the observed ct can be misleading.

Second, the inequality constraint in (3) is critical. Two
tempting alternatives are to replace the inequality constraint
of (3) with the following:

ĉ⊤t,N∗
t
− ĉ⊤t,B∗

t
A−1

t,B∗
t
At,N∗

t
≥ 0, (4)

ĉ⊤t,N∗
t
− ĉ⊤t,B∗

t
A−1

t,B∗
t
At,N∗

t
≥ −st. (5)

For (4), it directly employs the optimality condition (2) in
Lemma 2.2. The issue with this formulation is that there may
exist no Θ that is consistent with all the training data, and
thus (4) will lead to an infeasible problem. In comparison,
the inequality constraints of (3) can be viewed as a softer
version of (4). For (5), it suffers a similar scale invariance
problem as mentioned above. Specifically, the constraint (5)
will drive Θ̂→ 0 as the left-hand-side of (5) scales linearly
with Θ̂. To prevent this, one can impose an additional unit
sphere constraint by ∥Θ∥2 = 1 but this will lead to a non-
convexity issue.

Lastly, we note a few additional points for the formulation.
First, the formulation does not involve bt in the optimization
problem (3) either. This is due to that bt’s information is
encoded by (At,B∗t ,N ∗

t ) under the standard-form LP (1).
Second, the formulation is presented under a linear mapping
of zt to ct; non-linearity dependency can be introduced by
kernelizing the original covariates zt (Hofmann et al., 2008).
Specifically, we can replace the original feature zt0 by a new
T -dimensional feature with (κ(zt0 , zt))

T
t=1 for some kernel

function κ(·, ·). Third, the MOM formulation aims to find a
parameter Θ̂ that best satisfies the optimality condition, and

it measures the quality of satisfaction by the total margin
of optimality condition violation. It does not strive for a
structured prediction of the optimal bases Bt’s which will
lead to a less tractable formulation such as a structured
support vector machine (See Appendix C.1).

3. Theoretical Analysis
Now we analyze the maximum optimality margin method
under both offline and online settings. We make the follow-
ing boundedness assumptions mainly for notation simplicity.
Specifically, we note that the parameter σ̄ captures some
“stability” of the LP’s optimal solution under perturbation
of the constraint matrix. While our algorithm utilizes the
optimal solutions in the training data, better stability of the
optimal solutions will lead to more reliable learning of the
parameter.

Assumption 3.1 (Boundedness). Let the tuple
(c, A, b, z,B∗,N ∗) be a sample drawn from the dis-
tribution P . The following assumptions hold with
probability 1.

(a) There exists a constant σ̄ such that σmax(A
−1
B∗ ) ≤ σ̄,

where σmax(·) denotes the largest singular value func-
tion of a matrix.

(b) The covariates vector z is bounded by 1, i.e., ∥z∥2 ≤ 1.

(c) All entries of the LP’s input (A, b, c) are within [−1, 1].

(d) The feasible region {x ≥ 0 : Ax = b} is bounded by
the 2-norm unit ball.

3.1. Separable Case

We begin our discussion with the separable case where there
exists a parameter that meets the optimality conditions on
all the training samples with a margin.

Assumption 3.2. There exists Θ∗ such that the following
inequality holds element-wise almost surely,

ĉ⊤N∗ − ĉ⊤B∗A−1
B∗AN∗ ≥ 1 (6)

where ĉ = Θ∗z and (c, A, b, z,B∗,N ∗) is sampled from P.
Suppose ∥Θ∗∥F ≤ Θ̄ for some constant Θ̄ > 0.

The assumption is weaker than assuming c = Θ∗z almost
surely. It only requires the existence of a linear mapping
ĉ = Θ∗z that meets the optimality condition almost surely.
It can happen that Assumption 3.2 holds but c ̸= ĉ almost
surely. The right-hand-side of (6) changes from that of (2)
in Lemma 2.2 from 0 to 1. The change is not essential when
the LP is nondegenerate almost surely; one can always scale
up the parameter Θ∗ to meet this margin requirement.
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Proposition 3.3. Under Assumptions 2.1, 3.1 and 3.2, let
Θ̂ denote the output of Algorithm 1 with T training samples,
λ = 1√

T
and K = {Θ ∈ Rn×d : ∥Θ∥F ≤ Θ̄}. Suppose

(cnew, Anew, bnew, znew) is a new sample from P and denote
ĉnew = Θ̂znew. Let x∗

new and x̂new denote the optimal solu-
tions of LP(cnew, Anew, bnew) and LP(ĉnew, Anew, bnew). Then
we have

E [P (x∗
new = x̂new)] ≥ 1− 28 + 8Θ̄2 + 7mσ̄2

√
T

, (7)

where m is the number of constraints in each LP, the expec-
tation is taken with respect to the training samples, and the
probability is with respect to the new test sample.

The proposition states that under the separable case, the
algorithm can predict the optimal solution accurately with
high probability. We note that the result does not concern
the prediction error in terms of the objective vector, and
this fact is aligned with the design of MOM that focuses
on the optimality condition instead of the objective vector.
Intuitively, even when one makes some error in predicting
the objective cnew, the prediction of the optimal solution
can still be accurate due to the simplex structure of LP.
The proof of the proposition mimics the algorithm stability
analysis (Bousquet & Elisseeff, 2002; Shalev-Shwartz et al.,
2010) where the regularization term in (3) plays a role of
stabilizing the estimation. Here the performance bound is
presented in the sense of on expectation. We remark that a
high probability bound (removing the expectation in (7)) can
also be achieved following the recent analysis of (Feldman
& Vondrak, 2019).

3.2. Inseparable case

Now we move on to the inseparable case where Assumption
3.2 no longer holds. Let Dnew = (c, A, b, z,B∗,N ∗) denote
a new sample from P . Define the margin-violation loss
function

l(Dnew; Θ) := ∥s∥1 where s := 1|N∗|−ĉ⊤N∗−ĉ⊤B∗A−1
B∗

t
AN∗

and ĉ = Θz. The loss function is inherited from the objec-
tive function of the MOM formulation (3). For the insepara-
ble case, we can derive the following generalization bound
as Proposition 3.3.

Proposition 3.4. Under Assumptions 2.1 and 3.1, let Θ̂
denote the output of Algorithm 1 with T training samples,
under the choice of λ = 1√

T
and K = {Θ ∈ Rn×d :

∥Θ∥F ≤ Θ̄} for some Θ̄ > 0. Then we have

E[l(Dnew; Θ̂)] ≤ min
Θ∈K

E[l(Dnew; Θ)] +
28 + 8Θ̄2 + 7mσ̄2

√
T + 1

,

where the expectation is taken with respect to both the new
sample Dnew and the training samples.

The proposition follows the same analysis as Proposition 3.3
and the right-hand-side involves an additional term which
will become zero under the separability condition of As-
sumption 3.2. In the previous section, we motivate the opti-
mization formulation (3) of MOM in its own right. The fol-
lowing corollary reveals an interesting connection between
its objective function and the suboptimality loss. Specifi-
cally, the margin violation loss optimized in MOM can be
viewed as an upper bound of the suboptimality loss.

Proposition 3.5. The following inequality holds for any
Θ ∈ Rn×d,

lsub(Θ) ≤ E[l(Dnew; Θ)].

Therefore, under Assumptions 2.1 and 3.1, and the same
setup as Proposition 3.4,

lsub(Θ̂) ≤ min
Θ∈K

E[l(Dnew; Θ)] +
28 + 8Θ̄2 + 7mσ̄2

√
T

.

The additional term on the right-hand-side in both Propo-
sition 3.4 and Proposition 3.5 can be viewed as a measure
of separability in terms of the LP’s optimality condition.
Specifically, if one can predict the objective c very well
with the covariates z, then this term will become close to
zero; otherwise, this term will become large. While the
standard measurement of the predictive power of z concerns
the minimum error in predicting c, it does not account for
the structure of the downstream LP optimization problem.

3.3. Online maximum optimality margin

The MOM formulation also enables an online algorithm
which reduces the quadratic program of (3) to a sub-gradient
descent step per sample. Specifically, we can view the
margin violation of the t-th sample as a piecewise-linear
function of Θ, i.e.,

l(Dt; Θ) = ∥st∥1 =
∥∥∥1|N∗

t | − ĉ⊤t,N∗
t
− ĉ⊤t,B∗

t
A−1

t,B∗
t
At,N∗

t

∥∥∥
1

where Dt represents the t-th sample in the dataset D(T ).
The function l(Dt; Θ) is a convex function with respect to
Θ and the piecewise linearity enables an efficient calculation
of the sub-gradients. Algorithm 2 arises from an online sub-
gradient descent algorithm with respect to the cumulative
loss

∑T
t=1 l(Dt; Θ).

Proposition 3.6. Under Assumptions 2.1 and 3.1, with the
choice of η = 2Θ̄

(
√
n+σ̄·mn)

√
T

and K = {Θ ∈ Rn×d :

∥Θ∥F ≤ Θ̄} for some Θ̄ > 0, the outputs of Algorithm 2
satisfy

1

T
E

[
T∑

t=1

ĉ⊤t (x
∗
t − xt)

]
≤E

[
min
Θ∈K

T∑
t=1

l(Dt; Θ)

]

+
3Θ̄
√
n+ 3σ̄Θ̄ ·mn√

T
(8)

6



Maximum Optimality Margin for Contextual and Inverse Linear Programming 7

Algorithm 2 Online MOM Algorithm
Input: Dataset D(T ) = {(x∗

t , At, bt, zt,B∗t ,N ∗
t )}Tt=1,

step size η, K
1: Initialize Θ1 = 0 ∈ Rn×d

2: for t = 1, ..., T do
3: Predict the objective by ĉt = Θtzt
4: Solve the following LP and denote its optimal solu-

tion by xt

min ĉ⊤t x,

s.t. Atx = bt, x ≥ 0.

5: Update

Θt+1 = ProjK (Θt − η · ∂Θl(Dt; Θt))

6: end for
Output: {xt}Tt=1, {ΘT }T+1

t=1

where Dnew = (cnew, Anew, bnew, znew) denotes a new sam-
ple.

Moreover, under Assumption 3.2, let ĉnew = Θ̂znew where
Θ̂ is uniformly randomly sampled from {Θt}T+1

t=1 . Let x∗
new

and x̂new denote the optimal solutions of LP(cnew, Anew, bnew)
and LP(ĉnew, Anew, bnew). Then we have

E [P (x∗
new = x̂new)] ≥ 1− 3Θ̄

√
n+ 3σ̄Θ̄ ·mn√

T + 1
(9)

where the expectation is taken with respect to both training
data samples and the new sample.

The proposition states that the results in Proposition 3.3
and Proposition 3.4 can also be achieved by a subgradient
descent algorithm from an online perspective. The bound
(8) also recovers the regret bounds in the online inverse op-
timization literature (Bärmann et al., 2018; Chen & Kılınç-
Karzan, 2020) under a contextual setting. However, the
algorithms therein require the convex set K not containing
the origin (which will significantly restrict the predictive
power of zt → ct). Otherwise, we find numerically that
these existing algorithms will drive the parameter Θt → 0
and ĉt → 0, and consequently provide no meaningful pre-
diction of the optimal solution. This reinforces the point
of scale invariance raised earlier. As mentioned earlier, the
margin-based formulation of MOM resolves the issue of
scale invariance, and as a result, Algorithm 2 can provide
an additional bound (9) and also perform stably well in
numerical experiments, which we refer to Appendix A.4.

3.4. Tighter bound under separability –
optimality-driven perceptron

We conclude this section with Algorithm 3 that achieves
a faster rate under the separability condition (Assumption
3.2). Specifically, the algorithm is an online algorithm that
utilizes the knowledge of separability. The idea is to treat
each inequality constraint in (3) as an individual binary
classification task of distinguishing non-basic variables from
basic variables, and view the margin of optimality condition
as the margin for classification. Then when the margin (the
reduced cost in Algorithm 3) drops below a threshold of
1/2, we perform an update of the parameter.

Algorithm 3 Optimality-driven Perceptron Algorithm
Input: Dataset D(T ) = {(x∗

t , At, bt, zt,B∗t ,N ∗
t )}Tt=1

1: Let Θ1 = 0 ∈ Rn×d

2: %% We use (M)i to denote the i-th row of the matrix
M

3: for t = 1, ..., T do
4: Predict the objective by ĉt = Θtzt
5: Solve the following LP and denote its optimal solu-

tion by xt

min ĉ⊤t x,

s.t. Atx = bt, x ≥ 0.

6: Let Θtmp = Θt

7: for i = 1, ..., n do
8: if i /∈ N ∗

t then
9: Continue

10: end if
11: Predict the objective by ĉ

(i)
t = Θtmpzt

12: Compute the reduced cost

r
(i)⊤
t = ĉ

(i)⊤
t − ĉ

(i)⊤
t,B∗

t
A−1

t,B∗
t
At

13: if r(i)t,i ≤ 1
2 then

14: Update

(Θtmp)i ← (Θtmp)i + z⊤t

(Θtmp)B∗
t
← (Θtmp)B∗

t
−A−1

B∗
t
Atzt

15: end if
16: end for
17: Let Θt+1 = Θtmp
18: end for
Output: {xt}Tt=1, {Θt}T+1

t=1

Proposition 3.7. Under Assumptions 2.1, 3.1 and 3.2, the
number of mistakes made by Algorithm 3 is independent of
T ,

# {t ∈ [T ] : x∗
t ̸= xt} ≤ Θ̄2 + σ̄2Θ̄2m2n.

In addition, suppose (cnew, Anew, bnew, znew) is a new sam-

7
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ple from P and denote ĉnew = Θ̂znew where Θ̂ is uni-
formly randomly sampled from {Θt}T+1

t=1 . Let x∗
new and

x̂new denote the optimal solutions of LP(cnew, Anew, bnew)
and LP(ĉnew, Anew, bnew),

E [P(x∗
new = x̂new)] ≥ 1− Θ̄2 + σ̄2Θ̄2m2n

T + 1
,

where the expectation is taken with respect to both the train-
ing data and the new data.

Proposition 3.7 provides an upper bound on the number of
mistakes made by Algorithm 3. The algorithm improves
the dependency on T compared with the previous bounds
in Proposition 3.3 and Proposition 3.6. However, we note
this improvement sacrifices the dependency on either the
problem size m and n or the constants of Θ̄ and σ̄. In this
light, the result is more of theoretical interest that completes
our discussion. In the numerical experiments in Appendix
A.4, we observe that the performance of Algorithm 3 is
indeed worse than Algorithm 1 and Algorithm 2.

4. Numerical Experiments
We conduct numerical experiments for two underlying LP
problems – the shortest path problem and the fractional knap-
sack problem. We present one experiment here and defer the
remaining ones to Appendix A. The experiments compare
the proposed MOM algorithms against several benchmarks
and illustrate different aspects, such as loss performance,
computational time, scale consistency/invariance, sample
complexity, kernelized version of MOM, and online setting.

Specifically, we consider a shortest path (SP) problem here
following the setup of (Elmachtoub & Grigas, 2022). The
SP problem is defined on a 5× 5 grid network with n = 40
directed edges associated with a cost vector c ∈ Rn, and
the covariates z ∈ Rd with d = 6. For the training data,
the covariates are generated from the Gaussian distribution,
and the objective vector is generated from a polynomial
mapping from the covariates with additional white noise.
For this numerical experiment, we consider the performance
measure of relative loss defined by

Relative Loss :=
c⊤new(xnew − x∗

new)

c⊤x∗
new

where cnew is the objective vector of a new test sample, xnew
is the predicted optimal solution, and x∗

new is the true optimal
solution. Indeed, this relative loss normalizes the estimate
loss lest with the optimal objective value. We defer more
details on the experiment setup to Appendix A.

Figure 1 presents the experiment results for two MOM al-
gorithms and a few benchmarks, and each panel represents
a different degree of the polynomial that governs the true
mapping from the covariates to the objective vector; a higher

degree indicates a stronger non-linearity between the covari-
ates and the objective. We make the following observations:

First, from an information viewpoint, all four benchmark
algorithms utilize the observations of ct’s on the training
data, while the two MOM algorithms only observe x∗

t ’s on
the training data. In this sense, our algorithms give a better
predictive performance with less amount of information,
and therefore our algorithms are the only ones applicable to
the inverse LP problem.

Second, other than the two MOM algorithms, the SPO+ per-
forms the best among the four benchmark algorithms. How-
ever, the SPO+ takes significantly longer training time than
all the other algorithms. Although SPO+ is a stochastic gra-
dient descent-based algorithm, the calculation of the stochas-
tic gradient at each step requires solving k LPs with k being
the number of training samples in the mini-batch. Com-
paratively, our MOM Algorithm 1 only solves a quadratic
program for once, and its online version of Algorithm 2
allows a direct calculation of the online sub-gradient which
makes it even faster than Algorithm 1.

Third, the three ML-based methods (RF, OLS, Ridge) per-
form generally worse than the other three methods (SPO+,
MOM, MOM-OGD) because they do not take into account
the optimization structure. To see this, for the shortest path
problem, there may be some large entries for the cost vector
c. The ML models treat all the dimensions of c equally and
spend too much effort in fitting those large entries (as they
cause large L2 errors). However, from the optimization per-
spective, an accurate estimation of those large entries is not
useful in that the optimal path will avoid those edges. That
highlights the intuition behind the SPO+ and our MOM algo-
rithms – one needs to incorporate the optimization structure
into the learning model.

5. Discussions
Many existing inverse LP algorithms (Bärmann et al., 2018;
Chen & Kılınç-Karzan, 2020) implement algorithms that
directly minimize the suboptimality loss lsub = ĉ⊤x∗− ĉ⊤x̂
via an online gradient descent (OGD) algorithm. We briefly
showcase a simple example in the linear case ĉ = Θz with
lsub,t(Θ) = ⟨Θ, (x∗

t − x̂t)z
⊤
t ⟩ and regarding the gradient as

(x∗ − x̂)z⊤. One may wonder if such an OGD achieves a
performance guarantee of O(1/

√
T ) (as our result in the

previous sections) following the analysis of OGD of the
convex functions. But we will show its impossibility.

Why not OGD? The reason is that the minimizer of lsub(Θ)
is lsub(0) ≡ 0. The dilemma of OGD starts: if the feasible
region of the parameter K contains the original point 0, Θt

under OGD will be gradually drawn to 0. But this means that
the algorithm does not learn anything meaningful. This is a
common issue for many inverse LP papers (Bertsimas et al.,

8
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Figure 1. Relative loss. The plot (means and confidence intervals) is generated based on 30 random trials each with 1000 training samples
and 1000 test samples (20% of training samples are used for tuning hyper-parameters). The degree indicates the degree of the true
polynomial function that generates the objective c from the covariates z. RF denotes random forests, OLS denotes ordinary least squares,
Ridge denotes the ridge linear regression, SPO+ implements the algorithm of (Elmachtoub & Grigas, 2022), MOM implements Algorithm
1, and MOM-OGD implements Algorithm 2. For all these methods, they first predict the objective vector for a test sample, and solve an
LP with the predicted objective for the optimal solution as the predicted solution for this test sample.

2015; Mohajerin Esfahani et al., 2018; Bärmann et al., 2018;
Chen & Kılınç-Karzan, 2020), regardless of offline and
online. In fact, this is what we refer to as scale inconsistency.

Alternatively, if we constrain the feasible region K to only
contain the unit-norm Θ’s, then the loss is not geodesically
convex on the manifold of the unit sphere. To see this, if we
impose a unit sphere constraint, then the OGD algorithm
(Zinkevich, 2003) will fail, because a basic requirement
for OGD is the underlying problem’s convexity. The OGD
will require additional structures such as convexity over the
manifold of the unit sphere, which does not hold even for
linear functions (Jain et al., 2017).

Following the above arguments, one may find a seeming
contradiction: the suboptimality loss lsub,t(Θ) = ⟨Θ, (x∗

t −
x̂t)z

⊤
t ⟩ seems to be a linear function of Θ at first glance,

but why would the optimal Θ to be at an interior point
0 ∈ K while the theory of linear programs tells us that
the optimal solution of an LP always lies at the boundary?
We need to notice the dependence of x̂t on Θ since xt is
the optimal solution induced by Θzt. Such a dependence
breaks the linearity, which means that (x∗

t − x̂t)z
⊤
t is even

not the gradient. Should one get the gradient right, they
cannot avoid being trapped by the naive prediction Θ = 0
as mentioned before.

Finally, we explain the differences between the Θt → 0
phenomena of the above OGD and our MOM approach but
under the constraints (5). The cumulative suboptimality loss

∑T
t=1 lsub,t(Θ) is actually bounded by

∑T
t=1 ∥st∥1 (proved

in Lemma B.1). The upper bound relation holds when st sat-
isfies either (5) or the original MOM constraints (3). Such
a relation has two implications: (i) the margin mechanism
avoids MOM algorithms converging to zero; (ii) the perfor-
mance guarantee for the MOM objective directly transfers
to that of lsub,t(Θ).

Concluding remarks. In this paper, we develop a new
approach named Maximum Optimality Margin for the prob-
lems of predict-then-optimize and inverse LP. The MOM
framework leads to new characterizations of the difficulty of
the problem through the separability condition of Assump-
tion 3.2 and the violation loss l(Dnew; Θ) which appears
in Propositions 3.4, 3.5, and 3.6. With the MOM perspec-
tive, we derive bounds on correctly predicting the optimal
solution, P(x∗

new = x̂new) in Propositions 3.3, 3.6, and 3.7,
which is rarely seen in the existing literature even under
strong conditions. Without the separability condition of
Assumption 3.2, we draw a connection of our MOM ob-
jective value with the suboptimality loss lsub in the inverse
LP literature and derive performance bounds in terms of
lsub. Numerically, we observe the MOM algorithms also
perform well under the estimate loss lest. To theoretically
quantify the performance of MOM under lest, we conjecture
that one needs to impose stronger structures on the dual
LPs. Besides, another interesting future direction to pursue
is to generalize the algorithms and analyses of MOM to
non-linear optimization problems.
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A. Numerical Experiments
In this section, we provide the details of the experiment setup and more numerical results. The codes and data can be found
on https://github.com/liushangnoname/Maximum-Optimality-Margin.

A.1. Basic Setup

For the numerical experiments, we compare the performance of our proposed algorithms against several benchmark methods,
and we test the performance under both online and offline settings. Specifically, we consider the following benchmark
methods where all of them can only be used to solve the predict-then-optimize problem (but not the contextual linear
programming) as they all require the observations of ct on the training data.

1. Linear regression models where we consider ordinary least squares (OLS) and ridge regression (RR). Accordingly, the
parameter estimation follows the following loss functions:

lOLS =
1

2
∥Θz − c∥22, lRidge =

1

2
∥Θz − c∥22 +

λ

2
∥Θ∥2F .

2. Random Forest (RF). We apply RF algorithm with squared error criterion

lRF = ∥ĉ− c∥22.

3. Predict-then-optimize method. We take SPO+ algorithm (Elmachtoub & Grigas, 2022) as an example, where the loss
function is as follows

lSPO+ = (2Θz − c)⊤x∗(c)− min
Ax=b,x≥0

{(2Θz − c)⊤x}.

Following the previous implementations, we optimize the SPO+ loss under a stochastic gradient descent (SGD)
approach and Frobenius regularization.

Underlying LP problems.

We study two canonical LP problems for the numerical experiments, namely the shortest path (SP) problem and the fractional
knapsack (FK) problem, and we present their results in the following two sections A.2 and A.3, respectively. The experiment
setup follows that of (Elmachtoub & Grigas, 2022; Ho-Nguyen & Kılınç-Karzan, 2022; Besbes et al., 2021).

Performance Measurements.

We compare different algorithms by the performance measure of relative loss for the offline setting and cumulative Regret in
the online setting.

Under the offline setting, the relative loss normalizes the estimate loss lest by the optimal value,

Rel-LossSP :=
c⊤(x− x∗)

c⊤x∗ .

Specifically, for the shortest path (SP) problem, the optimal value is always non-zero (unless for trivial c) so the loss is
well-defined.

For the fractional knapsack (FK) problem, due to the random noise, the optimal value may be zero with a positive probability.
So we consider another normalization that leads to

Rel-LossFK :=
c⊤(x∗ − x)

∥c∥2
.

Under the online setting, we define cumulative regret as the cumulative sum of the relative loss of each time step.

Overview of the results.

In Appendix A.2, we demonstrate the algorithm performance under the effect of degree (see Figure 1) and also investigate
numerically the issue of scale inconsistency/invariance (see Figure 2). In Appendix A.3, we examine the sample complexity
under the offline setting (see Figure 3) and compare the performance of several online algorithms (see Figure 7). In addition,
we consider the kernelized version of the MOM formulation and present its performance in Figure 4.
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A.2. Shortest Path Problem

For the shortest path problem, we follow the experiment setup of (Elmachtoub & Grigas, 2022). Consider a 5 × 5 grid
network with n = 40 directed edges associated with a cost vector c ∈ Rn. Each edge is either from south to north or
west to east, where the goal is to minimize the cost to traverse from the southwest corner to the northeast corner. For each
node of the network, there is a flow balance constraint, encoded by Ax = b. The problem can then be formulated as the
standard-form LP (1).

For the methods of ordinary least square, ridge regression, and our maximum optimality margin, we solve the corresponding
optimization problems using cvxpy package with GUROBI solver. For the random forest algorithm, we implement the
sklearn.ensemble.RandomForestRegressor package. For the SPO+ algorithm and the online version of our
MOM approach, we implement a gradient descent approach. For each simulation trial, the training sets and test sets both
consist of N = 1000 sample sizes. All regularization parameters are chosen from 10−6 to 102, and all step sizes are chosen
from 10−3 to 101. All projection radius (the diameter of K) are chosen from 0.8∥B∥F to 2.0∥B∥F . The hyper-parameters
are chosen via a validation subset of N/4 samples from the training data.

Synthetic Data Generation. For each trial of our experiments, we generate a gound-truth coefficient matrix V ∈ Rn×d

independently, where each component of V is drawn from Bernoulli(0.5). Here n = 40 and d = 6.

1. We generate the feature vectors {zt ∈ Rd}. The first d − 1 components are taken independently from a standard
Gaussian distribution, and the last component of each zt is set to be 1 (to model the constant in predictors).

2. Then the true cost vectors are generated as follows:

ct,j =

[
(
1√
d
(V zt)j + 3)deg + 1

]
· ϵt,j · αt + η̄ηt,j ,

where deg is a fixed integer to be chosen to represent the nonlinearity of the problem, ϵt,j represents the intrinsic
diverse noise, αt ∈ {1, 1 + ᾱ} stands for a scale noise which depends on zt, and ηt,j is the additive noise. ϵ̄, ᾱ, and η̄
are non-negative parameters chosen to control the power of each noise. Since the distribution of αt depends on feature
zt, it henceforth can be considered as a type of attack that changes the scale of ct. More specifically,

ϵt,j ∼ Unif[1− ϵ̄, 1 + ϵ̄],

αt =

{
1 + ᾱ, if zt,1 > 0.5

1, other cases,

2ηt,j + 1 ∼ Exponential(1).

Results. Using the above data generation process, we test the algorithms Random Forest (RF), Ordinary Least Squares
(OLS), Ridge Regression (Ridge), SPO+, Maximum Optimality Margin (MOM), and MOM-OGD over 30 different trials.
We test the effect of deg (see Figure 1) and ᾱ (see Figure 2) in these problems, where other parameters are tested later in
Fractional Knapsack problem.

The first experiment is to test the model misspecification error of different algorithms, where the deg parameter varies among
{1, 2, 4, 6}. There is no noise at all (i.e. ϵ̄ = ᾱ = η̄ = 0) so as to emphasize the misspecification effect. The results can be
found in Figure 1.

Another experiment is to study the effect of scale noise. As is shown in Appendix C.2, if the scale noise is independent of
the feature vector, the consistency of the linear regressor still holds. So we design a scale noise that is correlated with the
feature vector, which is the αt in our setting. To underline the effects of scale noise, we set deg = 1 and ϵ̄ = η̄ = 0 in our
experiments. The result is shown in Figure 3.

Analysis. From the result of the first experiment (see Figure 1), we can see that for small degrees deg ∈ {1, 2} where the
linear model estimation is not a heavy mistake, our algorithm MOM, SPO+ of (Elmachtoub & Grigas, 2022), and linear
regression type methods behave similarly, where linear methods perform the best if the model is exactly linear while MOM
slightly dominates other methods in the deg = 2 case. The Random Forest algorithm performs not so well in those cases
probably due to the fact that it is a non-parametric method. For high degrees deg ∈ {4, 6}, the model misspecification error

13
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Figure 2. Experiment 2: Rel-LossSP under different ᾱ’s, 30 trials. Here ᾱ represents the power of the scale noise, denoted by Attack
Power.

becomes rather severe. The performance of linear methods falls drastically, while the performance of MOM dominates other
algorithms. The good performance of the MOM approach could possibly be explained in the following way: polynomial
function with a rather high degree magnifies the components of cost vectors that are larger than 1, where those algorithms
which directly predict cost vectors place equal weights on all components and their focus are dragged to those unusually
large components. But for the Shortest Path problem, improving prediction accuracy on those large components hardly
benefits the performance of the algorithm, since the optimal solution will avoid those edges with huge costs. Instead, the
prediction accuracy on those moderate and small components is worsened by focusing on the large components, which
holds back the performance of RF, OLS, and Ridge. The MOM approach behaves alternatively: for those large components
of cost vectors, the estimator does not place any further concern if their corresponding reduced costs are large than 1, so the
MOM estimator outperforms other methods.

Note that the SPO+ method we apply here is a stochastic gradient descent version, which empirically converges with batch
size 5 in 2000 steps. Our online gradient descent version of our MOM approach can also be viewed as a stochastic gradient
descent implementation of our MOM approach with batch size 1 and 1000 time steps. The performance gap between the
offline MOM algorithm and the MOM-OGD algorithm can be partly explained by the small batch size and the lack of
iterations.

The second experiment indicates the effects of feature-dependent scale noise, which can be found in Figure 2. Note that the
scale noise is only added to data when the first component of the feature is larger than 0.5. As a typical ensemble method, RF
performs quite steadily due to the nature of tree estimators. That is not the case for linear regressors, since their estimation
of true coefficients of the first feature component will be heavily disturbed. For the other three methods MOM, SPO+, and
MOM-OGD, their performances are quite stable, thanks to the fact that they are only concerned with the optimal solutions
of linear programs that remain unchanged under scale noises.

A.3. Fractional Knapsack Problem

For this experiment, we follow the problem setup of (Ho-Nguyen & Kılınç-Karzan, 2022). Specifically, each decision maker
is presented with a bunch of items, and their aim is to maximize the utility (or equivalently, to minimize the cost) under a
knapsack constraint. Different from the discrete case, the fractional knapsack problem allows the decision maker to select a
fraction of some certain item, making it a linear program. Mathematically, the decision-maker solves the following LP

min
x,s1,s2

c⊤x, s.t. p⊤x+ s1 = B, x+ s2 = 1, x, s1, s2 ≥ 0.

14
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Here p ∈ Rn can be interpreted as the price vector and B ∈ R is the budget of the decision maker. The corresponding utility
vector should be interpreted as the opposite of the objective vector c since the LP considers a minimization problem. The
slack variables s1 and s2 are introduced simply to convert the problem into a standard form.

As for the offline learning problems, the algorithms we implement are exactly the same as we do in A.2. We also apply the
online setting here with three algorithms: Perceptron (as is illustrated in Algorithm 3), Maximum Optimality Margin with
Follow the Regularized Leader (as is illustrated in Algorithm 4), and Maximum Optimality Margin with Online Gradient
Descent (as is illustrated in Algorithm 2).

Synthetic Data Generation. At the beginning of every trial, we generate a ground-truth coefficient matrix V ∈ Rn×d, where
each component is a Bernoulli random variable with an expectation of 0.5. Here n = 10 and d = 5. We then generate the
price vector, where each component is selected to be a random integer between 1 and 1000 in an offline setting. To ease the
pain of large constants, we re-scale the price vector in an online setting, where each component is uniformly distributed
between 0 and 1. We generate two auxiliary variables low and high, where low = maxj pj and high = 1⊤p− u · low, and
u ∼ Unif[0, 1]. Then the budget is chosen as Unif[low, high].

1. We generate the feature vectors {zt ∈ Rd}. The first d − 1 components are taken independently from a Unif[0, 1]
distribution and the last component of each zt is set to be 1 (to model the constant in predictors).

2. Then the true cost vectors are generated as follows:

ct,j = (V zt)
deg
j · ϵt,j · αt + η̄ηt,j ,

where deg is a fixed integer to be chosen to represent the nonlinearity of the problem, ϵt,j represents the intrinsic
diverse noise, αt ∈ {1, 1 + ᾱ} stands for a scale noise which depends on zt, and ηt,j is the additive noise. ϵ̄, ᾱ, and η̄
are non-negative parameters chosen to control the power of each noise. Since the distribution of αt depends on feature
zt, it henceforth can be considered as a type of attack that changes the scale of ct. More specifically,

ϵt,j ∼ Unif[1− ϵ̄, 1 + ϵ̄],

αt =

{
1 + ᾱ, if zt,1 > 0.5

1, other cases,

2ηt,j + 1 ∼ Exponential(1).

Results. Equipped with such a data generation process, we apply several numerical experiments in both offline and online
settings. We first test the sample complexity under offline setting, with deg = 1, ϵ̄ = 0.1, η̄ = 1.0, and ᾱ = 0.0. We apply
30 trials. For training sets, we generate different T = 100, 200, 500, 1000, 5000, and test the performance against 1000 test
samples. The algorithms we choose contain Random Forest (RF), Ordinary Least Squares (OLS), Ridge Regression (Ridge),
SPO+ of (Elmachtoub & Grigas, 2022), our Maximum Optimality Margin Algorithm 1 (MOM), and our MOM-OGD
Algorithm 2. All regularizing constants are chosen from 10−6 to 102. All step sizes are chosen from 10−3 to 101. All
projection radii are chosen from 0.8∥B∥F to 2.0∥B∥F . The hyper-parameters are decided via a validation set of T/4
samples and the criterion of averaged Relative Loss. The results can be found in Figure 3.

Sample complexity.

Kernelization and non-linear MOM.

We then develop some kernelized versions of our MOM approach, resulting in three different SVM-based algorithms:
Linear MOM (Linear), Polynomial Kernelized MOM (PolyKer), Radial Basis Function Kernelized MOM (RbfKer).
For those kernelized methods, the original feature zt0 is replaced by an T -dimensional feature (κ(zt0 , zt))

T
t=1, where

{zt}Tt=1 is the training set of features and κ is some pre-chosen kernel function. For the polynomial kernel, we utilize
κγ,d0

(zi, zj) = (z⊤i zjγ
−1+1)d0 . For the radial basis function kernel, we define κγ(zi, zj) = exp(−∥zi−zj∥2

γ ). The degree
of the polynomial kernelized MOM is chosen from {1, 2, 3, 4} and the scale parameters γ’s of both kernelized MOM
methods are chosen from {0.1, 0.5, 1, 2, 3, 4, 5}. All regularizing constants are chosen from 10−6 to 102. The training data
size is now reduced to N = 500. The hyper-parameters are decided via a validation set of T/4 samples and the criterion of
averaged Relative Loss. We paint the boxplots of 30 independent trials. The results can be found in Figure 4.
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Figure 3. Sample complexity of different algorithms.
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Figure 4. Experiment 4: Rel-LossFK under different data generation degrees, 30 trials.

The fourth experiment is about the kernelized versions of our MOM approach, where three MOM algorithms named Linear,
Polynomial Kernelized, and Radial Basis Function Kernelized are implemented (see Figure 4). The performance of linear
MOM is worsened as the degree of the model grows since the model misspecification becomes more severe. But kernelized
MOM methods remains good performance under high degrees. Note that the performance of RBF Kernelized MOM’s
behavior is unsatisfying when the model is perfectly linear. Those kernelized versions of our algorithms reveal the potential
of generalizing our MOM principle to other cases apart from just the linear model.

Analysis. The third experiment we adopt is examining the sample complexity of the aforementioned algorithms under
a noisy environment (see Figure 3). The performance of linear regressors exceeds other algorithms since there is no
model misspecification at all. The performance of the Random Forest algorithm is similar to that of the offline Maximum
Optimality Margin algorithm, which is slightly worse than that of linear regressors. As for the SPO+ method, their averaged
performance is undermined by the noise to a fairly large extent, compared with its performance under a noiseless environment
in Experiment 1 and Experiment 2 (see Figure 1 and Figure 2). The difference in the performance between SPO+ and
MOM can be partially explained by the different ways of dealing with noisy data. SPO+ directly put the optimal solution
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of the noisy data to the gradient, while the optimal solution could probably vary exaggeratedly due to some noise to the
cost vector. MOM acts more steadily: for those noisy cost vectors, their optimal solutions could be far from the noiseless
cost vectors, but the change with respect to optimal basis will usually be only a few components which only affects a few
corresponding lines in estimated Θ. Finally, we note that the small batch size and the lack of iteration could be blamed for
the poor performance of MOM-OGD in noisy data since the noisy data exacerbates the variance.

To complete the argument, we provide some extra numerical experiments to compare our kernelized methods with other
kernelized methods such as kernelized ridge regression. The first extra experiment adopts the same setting as that in Figure
4. We keep the same setup (except for only 10 independent trials instead of 30 trials to save the time cost) again for
6 benchmark algorithms: Random Forest (RF), Ordinary Least Squares (OLS), Ridge Regression (Ridge), Polynomial
Kernelized Ridge Regression (PolyRidge), Rbf Kernelized Ridge Regression (RbfRidge), and SPO+, and 3 of our MOM
algorithms: Maximum Optimality Margin (MOM), Polynomial Kernelized MOM (PolyMOM), and Rbf Kernelized MOM
(RbfMOM). The results can be found in Figure 5.
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Figure 5. An extra comparison of the relative loss for kernelized MOMs and benchmark algorithms for the Fractional Knapsack problem.

We also provide another result under a similar setting for the Shortest Path problem. The training sample size is now
reduced to 200, and the number of independent trials is also reduced to 10 to ease the computational price. To emphasize
the scale consistency of our MOM approach, we apply the same noise setup as the last sub-figure of Figure 2. The results
are summarized in Figure 6.
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Figure 6. Relative loss for kernelized MOMs and benchmark algorithms for the Shortest Path problem.

A.4. Online Setting

Next we analyze the online setting for the MOM algorithms. We compare the performance of the OGD version of MOM
(Algorithm 2), the perceptron version of MOM (Algorithm 3), and also a follow-the-regularized-leader (FTRL) version of
the MOM Algorithm 1 as follows. Basically, Algorithm 4 solves the MOM optimization formulation 3 at each time t and
use the estimated parameter to predict the optimal solution of the next time step.

Algorithm 4 gives another interpretation of the MOM formulation. Under an online setting, if we solve the MOM
optimization problem (3) at each time, this is equivalent to a follow-the-regularized online algorithm to solve the problem.
The theoretical analysis of Algorithm 4 can be extended from Proposition 3.3 and Proposition 3.4.

Figure 7 presents the cumulative regret of several algorithms for a fractional knapsack problem. In this numerical experiment,
we let the objective vector c = Θ∗z almost surely for some fixed Θ∗ so as to achieve the separability condition. We
emphasize that it only ensures the existence of a parameter Θ∗ to meet the optimality condition (2) but not with a margin
of 1 as Assumption 3.2. From the plot, we observe that Algorithm 3 has the worst performance though it features for the
best theoretical dependency on T . We remark that this regret curve does not contradict the bounded number of mistakes
in Proposition 3.7; we find that when we increase the horizon to T = 100, 000, the regret curve of Algorithm 3 becomes
flattened. For Algorithm 2 and Algorithm 4, both achieve significantly better performance. Comparatively, 4 performs better
than Algorithm 2, with the price of more computation cost (to solve a quadratic program at each time period).

Importantly, we also implement the online algorithm of (Bärmann et al., 2018; Chen & Kılınç-Karzan, 2020) under the
same setting, and it incurs a regret linearly increasing with T ; so we do not include its regret curve as it will clap all the
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Algorithm 4 Follow-the-Regularized-Leader MOM
Input: Dataset D(T ) = {(x∗

t , At, bt, zt,B∗t ,N ∗
t )}Tt=1, the set K

1: Initialize Θ1 = 0 ∈ Rn×d

2: for t = 1, ..., T do
3: Predict the objective by ĉt = Θtzt
4: Solve the following LP and denote its optimal solution by xt

min ĉ⊤t x,

s.t. Atx = bt, x ≥ 0.

5: Solve the optimization problem (3) with {(x∗
s, As, bs, zs,B∗s ,N ∗

s )}ts=1, λ = 1/
√
t and K

6: Let Θt+1 be the optimal solution
7: end for

Output: {xt}Tt=1
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Figure 7. Cumulative regret curve (averaged over 30 trials) for online algorithms.

regret curves of Figure 7 to x-axis. A closer investigation shows that the online algorithm of (Bärmann et al., 2018; Chen
& Kılınç-Karzan, 2020) will render the estimate Θt → 0, as noted by the scale inconsistency issue in earlier sections. In
contrast, our margin-based formulation plays an important rule to ensure that a small optimality condition violation is caused
by discovering the correct mapping from z to c but not by the scale of the predicted ĉ.

B. Proofs
B.1. Proof of Lemma 2.2

Here we show a stronger version of Lemma 2.2 as follows.

Lemma B.1. Consider an LP of the standard form (1). For any feasible basis B ⊂ [n] satisfying |B| = m and its complement
N = [n]\B, denote x = (x1, ..., xn)

⊤ and r = (r1, ..., rn)
⊤ as the solution and reduced cost vector corresponding the

basis B, respectively, i.e.,

xB = A−1
B b, xN = 0, r = c−A⊤(A−1

B )⊤cB.

Denote x∗ = (x∗
1, ..., x

∗
n)

⊤ as one optimal solution of LP (1). Then, we have that rB = 0, and

c⊤x− c⊤x∗ ≤ max
i∈[n]

x∗
i ·
∑
i∈N

(−ri)+. (10)

Furthermore, (10) implies that x is an optimal solution if r ≥ 0.
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Proof. First, it is easy to verify that rB = 0. Then, we only need to show that the inequality (10) holds.

For any feasible solution x′ = (x′
1, ..., x

′
n) ≥ 0 satisfying Ax′ = b, we have

x′
B = A−1

B b−A−1
B ANx′

N .

It implies

c⊤x′ = c⊤BA
−1
B b− c⊤BA

−1
B ANx′

N + c⊤Nx′
N = c⊤BA

−1
B b+ r⊤Nx′

N . (11)

Next, from (11), we have

c⊤x− c⊤x′ = −r⊤Nx′
N

≤
∑
i∈N

x′
i(−ri)+

≤ max
i∈[n]

x′
i ·
∑
i∈N

(−ri)+,

where the first line comes from equality (11) directly, and the last two lines come from the non-negativity of x′ and (ri)+
for all i. Note that the above inequality holds for any feasible solution x′; by plugging in x′ = x∗, we obtain (10).

B.2. Proof of Proposition 3.4

We first show Proposition 3.4 and then utilize the result for the proof of 3.3. The key is to utilize the algorithm stability
analysis where we cite the result from (Shalev-Shwartz et al., 2010) as the following proposition. We refer to (Bousquet
& Elisseeff, 2002; Shalev-Shwartz et al., 2010; Feldman & Vondrak, 2019) for more related analysis such as the high
probability bound.

Theorem B.2 (Theorem 3 in (Shalev-Shwartz et al., 2010)). Let f : H × Z → R be such that H is bounded by B and
f(h, z) is convex and L-Lipschitz with respect to h. Let , z0, z1, ..., zT be i.i.d. samples and let

ĥλ = argmin
h∈H

(
T∑

t=1

f(h, zt) +
λ

2
∥h∥22

)
.

Then, we have

E
[
f(ĥλ, z0)

]
≤ inf

h∈H
E [f(h, z0)] +

λ

2
B2 +

4(L+ λB)2

λT
.

Proof. We refer to Theorem 2 and Theorem 3 in (Shalev-Shwartz et al., 2010).

Now we show Proposition 3.4 with Theorem B.2.

Proof. Recall that
Dnew = (c, A, b, z,B∗,N ∗)

denotes a new sample from P , and the loss function

l(Dnew; Θ) := ∥s∥1 where s := (1|N∗| − ĉ⊤N∗ − ĉ⊤B∗A−1
B∗AN∗)+.

Here, (·)+ denotes the entry-wise positive part function, and B∗ and N ∗ are defined as in Section 2. Here, with a slight
abuse of notation, we drop the sample tuple Dnew and let l(Θ) = l (Dnew; Θ). Then, under Assumption 3.1, l(Θ) is
(2 +

√
mσ̄)-Lipschitz with respect to Θ in the Frobenius norm for a fixed Dnew. To see this, for any two parameters

Θ = (Θ1, ...,Θn)
⊤, Θ̂ = (Θ̂1, ..., Θ̂n)

⊤ ∈ Rn×d

|l(Θ)− l(Θ′)| =

∣∣∣∣∣∑
i∈N

(
(1−Θ⊤

i z +A⊤
i (A

−1
B∗ )

⊤ΘB∗z)+ − (1− Θ̂⊤
i z +A⊤

i (A
−1
B∗ )

⊤Θ̂B∗z)+

)∣∣∣∣∣
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≤
∑
i∈N

∣∣∣(1−Θ⊤
i z +A⊤

i (A
−1
B∗ )

⊤ΘB∗z)+ − (1− Θ̂⊤
i z +A⊤

i (A
−1
B∗ )

⊤Θ̂B∗z)+

∣∣∣
≤
∑
i∈N

∣∣∣−Θ⊤
i z +A⊤

i (A
−1
B∗ )

⊤ΘB∗z + Θ̂⊤
i z −A⊤

i (A
−1
B∗ )

⊤Θ̂B∗z
∣∣∣

≤
∑
i∈N

(∣∣∣(Θi − Θ̂i)
⊤z
∣∣∣+ ∣∣∣A⊤

i (A
−1
B∗ )

⊤(ΘB∗ − Θ̂B∗)z
∣∣∣)

≤
∑
i∈N

(∥∥∥Θi − Θ̂i

∥∥∥
2
∥z∥2 + σmax

(
(A−1

B∗ )
⊤(ΘB∗ − Θ̂B∗)

)
∥Ai∥2 ∥z∥2

)
≤ 2∥Θ− Θ̂∥F +

√
mσmax

(
(A−1

B∗ )
⊤)σmax

(
ΘB∗ − Θ̂B∗

)
≤ (2 +

√
mσ̄)

∥∥∥Θ− Θ̂
∥∥∥
F
.

Here the first line comes from the definition of l(·), the second and fourth lines are obtained by the convexity of the absolute
value function, the third line comes from a direct computation of the positive part function, the fifth line is obtained by
Cauchy’s inequality and the definition of σmax, the sixth line comes from the inequality that

σmax(XY ) ≤ σmax(X)σmax(Y )

for any two matrices X,Y , and the last line comes from Assumption 3.1 and the inequality σmax(X) ≤ ∥X∥F for any
matrix X .

By Theorem B.2 and Assumption 3.1, we have

E[l(Θ̂)] ≤ min
Θ∈K

E[l(Θ)] +
λ

2
Θ̄2 +

4(2 +
√
mσ̄ + λΘ̄)2

λT
, (12)

where

Θ̂ = arg min
Θ∈K

(
T∑

t=1

l(Dnew,Θ) +
λ

2
∥Θ∥F

)
.

Finally, plugging λ = 1√
T

into (12), we have

E[l(Θ̂)] ≤ min
Θ∈K

E[l(Θ)] +
28 + 8Θ̄2 + 7mσ̄2

√
T

.

B.3. Proof of Proposition 3.3

Proof. Under Assumption 3.2, there exists a Θ∗ ∈ K such that the following inequality holds almost surely

Θ∗
N∗z −A⊤

N∗(A−1
B∗ )

⊤Θ∗
B∗z ≥ 1.

Thus we have
min
Θ∈K

E[l(Θ)] = 0,

where l(Θ) is defined following the previous proof of Proposition 3.4. Then, from Proposition 3.4,

E[l(Θ̂)] ≤ 28 + 8Θ̄2 + 7mσ̄2

√
T

. (13)

For a new sample (cnew, Anew, bnew, znew) with ĉnew = Θ̂znew, we can utilize Lemma B.1 and bound the suboptimality loss as
follows

E
[
ĉ⊤newx

∗
new − ĉ⊤newx̂new

]
≤ E

max
i∈[n]

(x̂new)i ·
∑

i∈N∗
new

(−ri)+


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≤ E

 ∑
i∈N∗

new

(−ri)+


≤ E

 ∑
i∈N∗

new

(1− ri)+


≤ 28 + 8Θ̄2 + 7mσ̄2

√
T

. (14)

Here the first line comes from Lemma B.1, the second line comes from Assumption 3.1, the third line comes from the
monotonicity of the positive part function, and the last line comes from (13).

Now, we note that if Θ̂ renders any non-basic variables in N ∗ as basic variables, i.e.,

ĉ⊤new,N∗
new
− ĉ⊤new,B∗

new
A−1

new,B∗
new
Anew,N∗

new
≥ 0

does not hold, we have l(Dnew; Θ̂) ≥ 1. Thus, by applying Markov’s inequality to , we have that with probability no less
than 1− 28+8Θ̄2+7mσ̄2

√
T

, Θ̂ can identify both the true optimal basis and the true optimal solution correctly.

B.4. Proof of Proposition 3.6

The proof in this part is basically an application of the following lemma.

Lemma B.3 (Theorem 3.1 in (Hazan, 2016)). Let {ft(x)}Tt=1 be a sequence of convex functions defined on {x : ∥x∥2 ≤ K}.
Suppose ∥∇ft(x)∥2 ≤ G for all x such that ∥x∥2 ≤ K and all t = 1, ..., T . Let xt+1 = xt − 2K

G
√
t
∇ft(xt). Then, the

following inequality holds
T∑

t=1

ft(xt)− min
x:∥x∥2≤K

T∑
t=1

ft(x) ≤ 3KG
√
T .

Proof. We refer to Theorem 3.1 in (Hazan, 2016).

Next, we show Proposition 3.6.

Proof. Recall the definition of lt(Dt,Θ) as follows

l(Dt; Θ) =
∥∥∥(1|N∗

t | − ĉ⊤t,N∗
t
− ĉ⊤t,B∗

t
A−1

t,B∗
t
At,N∗

t
)+

∥∥∥
1
,

where ĉ = Θzt, and (·)+ denotes the entry-wise positive part function. For the sake of simplicity, we use lt(Θ) to denote
l(Dt; Θ). By calculating the derivative of lt(Θ), we have

∇ΘNt
lt(Θ) = −gtz⊤t , ∇ΘBt

lt(Θ) = (A−1
t,Bt

)⊤At,Ntgtz
⊤. (15)

Here, gt ∈ Rn−m is defined as follows. For the i-th element in Nt for i = 1, ...,m, correspondingly, we define the i-th
element of gt as

gt,i =

1, if
((

eNt
−ΘNt

zt +A⊤
t,Nt

(A−1
t,Bt

)⊤ΘBt
zt

)
+

)
i

> 0

0, otherwise.

Then, we have

∥∇lt(Θ)∥F ≤ ∥gtz⊤t ∥F + ∥(A−1
t,Bt

)⊤At,Ntgtz
⊤∥F

≤ ∥gt∥2∥zt∥2 + ∥A−1
t,Bt
∥F ∥At,Nt∥F ∥gt∥2∥zt∥2

≤
√
n+ ∥A−1

t,Bt
∥F ∥At,Nt∥F ·

√
n
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≤
√
n+ σ̄mn,

where the first line comes from the equalities in (15) and the triangle inequality inequality ∥A+B∥F ≤ ∥A∥F + ∥B∥F for
any two matrices A,B with the same size, the second line comes from the inequality ∥AB∥F ≤ ∥A∥F ∥B∥F for any two
matrices A,B and the fact that ∥g∥F = ∥g∥2 for any vector g, the third line comes from the definition of gt and Assumption
3.1 that ∥zt∥2 ≤ 1, and the last line comes from Assumption 3.1 that all entries of At are in [−1, 1] and the inequality
∥A∥F ≤

√
mσmax(A) for any matrix A ∈ Rm×m. Next, by Lemma B.3, with η = 2Θ̄

(
√
n+σ̄mn)

√
T

,

T∑
t=1

lt(Θt)− min
Θ:∥Θ∥F≤Θ̂

T∑
t=1

lt(Θ) ≤
(
3Θ̄
√
n+ 3σ̄Θ̄mn

)√
T . (16)

Then, we show inequality (8) by

1

T
E[z⊤t Θ⊤

t (x
∗
t − xt)] ≤ E

[
T∑

t=1

lt(Θt)

]

≤ E

[
min

Θ:∥Θ∥F≤Θ̂

T∑
t=1

lt(Θ)

]
+

3Θ̄
√
n+ 3σ̄Θ̄ ·mn√

T
.

Here, we can obtain the first line by Lemma B.1 and a similar proof as in the proof of Proposition 3.3, and obtain the second
line by inequality (16).

Furthermore, under Assumption 3.2, we have with probability 1,

min
Θ:∥Θ∥F≤Θ̂

T∑
t=1

lt(Θ) = 0,

which implies

E

[
T∑

t=1

lt(Θt)

]
≤ 3Θ̄

√
n+ 3σ̄Θ̄ ·mn√

T
. (17)

Recall that Θ̂ denotes the matrix sampled uniformly from {Θt}Tt=1, x∗
new denotes the optimal solution of LP(cnew, Anew, bnew),

x̂new denotes the optimal solution of LP(ĉnew, Anew, bnew), and ĉnew = Θ̂znew. Similar to the last paragraph of the proof of
Proposition 3.3, we have if Θ̂ misclassifies any non-basic variable in Nnew, we have l(Dnew; Θ̂) ≥ 1. Thus,

E[P(x∗
new ̸= x̂new)] ≤ E[P(l(Dnew; Θ̂) ≥ 1)]

≤ E[l(Dnew; Θ̂)]

=
1

T + 1
E

[
T+1∑
t=1

l(Dnew; Θt)

]

=
1

T + 1
E

[
T+1∑
t=1

l(Dt; Θt)

]

≤ 3Θ̄
√
n+ 3σ̄Θ̄ ·mn√

T + 1
,

by which we have shown that, with probability no less than 1 − 3Θ̄
√
n+3σ̄Θ̄·mn√

T+1
, Algorithm 2 can identify both the true

optimal basis and the true optimal solution correctly. Here, the first line comes from the fact that l(Dnew; Θ̂) ≥ 1 if
x∗
new ̸= x̂new, the second line comes from Markov’s inequality, the third line comes from the definition of Θ̂, the forth line

comes from the fact that Dt and Dnew are two i.i.d. samples that are also independent of Θt, and the last line comes from
inequality (17).
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B.5. Proof of Proposition 3.7

The proof follows the standard analysis of the perceptron method.

Proof. In this part, we denote Θt,i as the value of matrix Θtmp at the beginning on the t-th iteration of the outer loop and the
i-th iteration of the inner loop for t ∈ [T ] and i ∈ [n]. Also, we view Θt,n+1 and Θt+1,1 as the same to avoid undefined
boundary cases. Recall the definition of the reduced cost vector

rt(Θ) = Θzt −A⊤
t (A

−1
t,Bt

)⊤ΘBtzt, for t = 1, ..., T ,

which is a linear function of Θ entry-wisely. Thus, we have that for each t = 1, ..., T and i ∈ [n], there exists a matrix

Wt,i ∈ Rn∗d such that r(i)t,i (Θ) = Trace(W⊤
t,iΘ) and ∥Wt,i∥F ≤ 1 + σ̄

√
mn, where Trace(W ) =

n∑
i=1

wii for any square

matrix W = (wij)
n
i,j=1 ∈ Rn×n. Then, we define

ht,i(Θ) = sign(Trace(W⊤
t,iΘ)− .5),

where sign(·) denotes the sign function. Moreover, if there is an i ∈ Nt at some time t such that ht,i(Θt,i) = −1, we have
Θt,i+1 = Θt,i +Wt,i. The updating rule in Algorithm 3 is obtained as mentioned above. Specifically, as in Algorithm 3, for
any i ∈ Nt and t ∈ [T ], Wt,i is defined as follows

(Wt,i)i = z⊤t , (Wt,i)B∗
t
= A−1

B∗
t
Atzt,

and all other entries are 0. Then, we have

∥Wt,i∥2F = ∥zt∥2F + ∥A−1
B∗

t
Atzt∥2F

≤ ∥zt∥2F + ∥AB∗
t
∥2F ∥At∥2F ∥zt∥2F , (18)

≤ 1 + σ̄2m2n

where the first line comes directly from the definition of Wt,i, the second line comes from the inequality that ∥AB∥F ≤
∥A∥F ∥B∥F for any two matrices A,B, and the last line comes from Assumption 3.1.

We say that Algorithm 3 misclassifies one non-basic variable i ∈ Nt if ht,i(Θt,i) ≤ 0, and misclassifies one basic variable
i ∈ Bt if ht,i(ΘT ) > 0. Since the values of entries of the reduced cost vector corresponding to the true basis Bt are 0 for all
t and i, algorithm 2 makes a mistake only if it misclassifies one non-basic variable. Denote the number of identification

mistakes at the t-th iteration as Kt for t = 1, ..., T . Let K =
T∑

t=1
Kt be the number of all mistakes. From the updating rule,

inequality (18) and the triangle inequality of the Frobenius norm, we have ∥Θt,i+1∥2F ≤ Kt(1 + σ̄2m2n), and then,

∥ΘT+1∥2F ≤ K(1 + σ̄2m2n). (19)

Moreover, under Assumption 3.2, there exists a matrix Θ∗ such that

Trace(W⊤
t,iΘ

∗) ≥ 1, if i ∈ Nt,
Trace(W⊤

t,iΘ
∗) ≤ 0, if i ∈ Bt,

for all t = 1, ..., T . Then, we have once a mistake is made for some i ∈ Nt at time t

Trace((Θt,i+1 −Θt,i)
⊤Θ∗) = Trace(W⊤

t,iΘ
∗) ≥ 1,

which implies

trace(Θ⊤
T,n+1Θ

∗) ≤ K. (20)

Then, combining inequalities (19) and (20), we have

K ≤ trace(Θ⊤
T,n+1Θ

∗)
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≤ Θ̄∥ΘT,n+1∥F
≤ Θ̄

√
K(1 + σ̄2m2n),

where the first line comes from (20), the second line comes from Assumption 3.2 that ∥Θ∗∥F ≤ Θ̄ and Cauchy inequality,
and the last line comes from (19). Dividing each side by

√
K and taking square,

K ≤ Θ̄2 + σ̄2Θ̄2m2n.

Moreover, Lemma 2.2 tells that one can recover the optimal solution if the optimal basis is identified. This statement implies
that K is an upper bound of times that we cannot identify the true optimal solutions by Algorithm 3. Thus, we have

|{t ∈ [T ] : x∗
t ̸= xt}| ≤ Θ̄2 + σ̄2Θ̄2m2n.

For the generalization bound, we apply the symmetry of samples, follow similar steps in the last paragraph of the proof of
Proposition 3.6 and have

E(P(x∗
new ̸= x̂new)) ≤

Θ̄2 + σ̄2Θ̄2m2n

T
.

C. Additional Discussions
C.1. Why structured prediction does not work

One might wonder if our Maximum Optimality Margin approach can be directly solved as a structured classification problem
by using structured SVM classifier. In this section, we will argue that the classical ways of structured SVM without any
surrogate loss functions are computationally intractable.

The goal of such structured SVM classifier to estimate the optimal basis (or equivalently, the non-basic variables) by observing
{(z,A)} and a predictor trained on {(zt, At)}’s and their corresponding labels {yt}’s, where we define (yt)i = +1 for
i ∈ Nt and (yt)i = −1 for i ∈ Bt. The Maximum Optimality Margin approach is a principle to maximize the estimated
reduced cost vectors for non-basic variables. To express this principle more explicitly, the margin term one wants to
maximize in structured SVM can be written as

max
Θ∈K

∑
j∈N

r̂j ,

where r̂j’s are to be specified later.

For the simplicity of notations, we define some auxiliary vectors and matrices named as 1, JBt , JNt , and Φt,yt , where

1 ∈ Rn−m, 1j = 1,∀j ∈ [n−m],

JBt
v = vBt

, ∀v ∈ Rn,

JNtv = vNt , ∀v ∈ Rn,

Φt,yt
:= JNt

−A⊤
t,Nt

A−⊤
t,Bt

JBt
.

Specifically, the estimated reduced cost with respect to yt can be written as

r̂t,yt
= Φt,yt

Θzt.

Hence the margin term (where the subscript t is sometimes omitted for simplicity) is∑
j∈N

r̂j = 1⊤r̂ = ⟨Θ,Φ⊤
y 1z

⊤⟩,

which implies the feature map
ϕ((zt, At), yt) = Φ⊤

t,yt
1z⊤t .
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Note that the corresponding label space

Y = {y ∈ {−1,+1}n,#{t, yt = +1} = m}

is exponentially large in n in general cases. We also define some measurement of difference ∆(·, ·) ∈ Y × Y → R, where
∆(y, y′) ≥ 0 and ∆(y, y) = 0. For example, the ∆(y, y′) function can be 1{y ̸= y′} and we retrieve the multiclass Hinge
loss. Such ∆(y, y′) can also be defined to be the Hamming distance and so on.

Equipped with those notations, the structured SVM problem can now be formulated as:

min
Θ∈K,s∈RT ,y∈Y

λ

2
∥Θ∥2 + 1

T

T∑
t=1

st,

s.t. st ≥ ∆(yt, y)− ⟨Θ, ϕ((zt, At), yt)⟩+ ⟨Θ, ϕ((zt, At), y)⟩, ∀t ∈ [T ], ∀y ∈ Y,
st ≥ 0, ∀t ∈ [T ].

We thereby note that solving the above problem requires solving another sub-problem where

gt(Θ) := s∗t = max
y∈Y
{∆(yt, y)− ⟨Θ, ϕ((zt, At), yt)⟩+ ⟨Θ, ϕ((zt, At), y)⟩} .

But the above sub-problem is computationally intractable since the precise evaluation of gt(Θ) requires solving a discrete
optimization problem with exponentially large feasible set Y . Such an obstacle makes the training hard to implement.
Besides, even if we get the training result Θ̃, the following inference problem

f̃(z,A) = argmax
y∈Y

⟨Θ̃, ϕ((z,A), y)⟩

is still highly intractable.

C.2. Scale consistency of least squares linear regression

In the previous sections, we raise the point of scale consistency several times. Specifically, the key point made is that the
objective vectors of c and αc for α > 0 produce the same optimal solution. Therefore, the algorithm should account for this
scale invariance as there might be some scale contamination of the training data in application contexts such as revealed
preference/stated preference. Here we present a self-contained result on the scale consistency of the linear regression model
that might be of independent interests.

Consider the linear regression model where one wants to estimate the true coefficient matrix using cost vectors ct ∈ Rn and
feature vectors zt ∈ Rd. Instead of observing true ct’s, we only observe their perturbed/contaminated versions with scale
noises (1 + αt)ct’s, where αt’s here are some random variables. We claim that if αt’s are i.i.d. generated and independent
of zt and ct, then the ordinary least squares method is still consistent if E[α] = 0.
Proposition C.1 (Scale Consistency of Ordinary Least Squares). Assume c = Θ∗z+ ϵ, where E[ϵ|z] = 0, Θ∗ ∈ Rn×d is the
true underlying coefficient matrix. Assume α is independent of z and c. Assume we observe T i.i.d. samples (zt, (1+αt)ct)’s.
Assume zt, ct, and αt have finite second-order moments, which implies that they follow the strong law of large numbers.
Further assume that ct and αt have finite fourth order moment, which implies the strong law of large numbers for c2t and α2

t .
Assume E[ztz⊤t ] = Σ, and Σ is non-singular. We estimate the underlying coefficient matrix by the ordinary least squares
method:

Θ̂T = argmin
Θ

{
fT (Θ) :=

T∑
t=1

1

T
∥(1 + αt)ct −Θzt∥22

}
.

Then
Θ̂T

a.s.−−→ (1 + E[α])Θ∗, as T →∞.

Proof. W.l.o.g. we only prove the one-dimensional case c ∈ R, since multi-dimensional cases can be proved similarly by
breaking Θ = (Θ1, . . . ,Θn)

⊤ into n independent Θi’s. For the one-dimensional case, the estimator is now minimizing

fT (Θ) =
1

T

T∑
i=1

∥z⊤t Θ− (1 + αt)ct∥22
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= Θ⊤

[
1

T

T∑
i=1

ztz
⊤
t

]
Θ−

[
1

T

T∑
t=1

2(1 + αt)ctz
⊤
t

]
Θ+

1

T

T∑
t=1

(1 + αt)
2c2t .

Note that we assume that zt’s, ct’s, c2t ’s, αt’s, α2
t ’s all have finite second-order moments, which implies

1

T

T∑
t=1

ztz
⊤
t

a.s.−−→ Σ, as T →∞,

1

T

T∑
t=1

2(1 + αt)ctz
⊤
t

a.s.−−→ 2E[(1 + α)cz⊤], as T →∞,

1

T

T∑
t=1

(1 + αt)
2c2t

a.s.−−→ E[(1 + α)2c2] = (1 + 2E[α] + E[α2])E[c2] <∞, as T →∞.

Combining the boundedness of the last component with the fact that Σ is non-singular and positive semidefinite and the fact
that 2E[(1 + α)cz⊤] is bounded (which will be shown later), we have

fT
a.s.−−→ f, as T →∞,

where f is a positive definite quadratic function of Θ.

Therefore, the unique minimizer of f must be its first-order stationary point. We now compute the partial derivatives. We
have

E[(1 + α)cz⊤] = E[1 + α]E[cz⊤]
= (1 + E[α])E[E[cz⊤|z]]
= (1 + E[α])E[E[Θ∗⊤zz⊤ + ϵz⊤|z]]
= (1 + E[α])E[Θ∗⊤zz⊤],

= (1 + E[α])Θ∗⊤Σ.

where the first equality is from the fact that αt’s are independent of zt’s and ct’s, the second equality follows the tower
law of conditional expectation, the third equality comes from the linear assumption, and the fourth equality comes from
E[ϵ|z] = 0. It follows immediately that

∂f

∂Θ
= 2ΣΘ− 2(1 + E[α])ΣΘ∗.

Since Σ is non-singular, we have proved that the unique minimizer of f is exactly (1 + E[α])Θ∗.

Then from the fact that fT
a.s.−−→ f and f is positive definite quadratic function, we have

Θ̂T = argmin fT
a.s.−−→ argmin f = (1 + E[α])Θ∗, as T →∞.

Specifically, if E[α] = 0, we retrieve the true Θ∗.
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