SHANKS: SIMULTANEOUS HEARING AND THINKING FOR SPOKEN LANGUAGE MODELS

Anonymous authors

000

001

002 003 004

010 011

012

013

014

016

018

019

021

023

025

026

028

029

031

032

034

037

038

040

041

042

043

045

046

047

048

052

Paper under double-blind review

ABSTRACT

Current large language models (LLMs) and spoken language models (SLMs) begin thinking and taking action only after the user has finished their turn. This can create a high latency for waiting until the model ends the thinking process. Consequently, thinking *after* receiving the full input is not suitable for speechto-speech interaction, where real-time and low-latency interaction is important. We address the above issue by drawing inspiration from the fact that humans can naturally "think while listening". In this paper, we propose SHANKS, a general inference framework that enables SLMs to generate unspoken chain-of-thought reasoning when listening to the user input. SHANKS streams the input speech in fixed-duration chunks and, as soon as an input chunk is received, generates an unspoken reasoning based on all previous speech and reasoning; in the meantime, the user is still speaking. SHANKS uses unspoken reasoning to perform intermediate calculations, make API calls to complete the task, and determine whether to interrupt the user. We demonstrate that SHANKS enhances the real-time user-SLM interaction in two scenarios: (1) When the user is presenting their solution to a math problem, SHANKS can listen to and reason over the user's speech and make interruption when the user makes a mistake. SHANKS interrupts the user 37.1% more accurately compared with a baseline that interrupts the user without thinking. (2) In a task-oriented dialogue setting, where the user's request needs to be completed by calling hotel and flight booking APIs, SHANKS can complete 63.2% of the API calls before the user even ends their turn. In summary, SHANKS provides a promising perspective to thinking when the user is still speaking time to improve user-LLM interaction.

1 Introduction

In recent years, the *thinking* process has been used to improve Large Language Models (LLMs), where the LLM first generates a *hidden* chain-of-thought (CoT) reasoning (Wei et al., 2022; Kojima et al., 2022) invisible to the users, and then generates the final output response (OpenAI, 2024b; Guo et al., 2025). This thinking process improves LLMs on reasoning-intensive tasks, including mathematics (Lightman et al., 2024), coding (Chen et al., 2021), and questions that involve significant domain knowledge (Rein et al., 2024). However, current reasoning LLMs only start to think *after* receiving the complete user input, which is reasonable for turn-based interactions, i.e., the model processes the user's message after it is fully composed and sent.

In contrast, human behavior in *spoken* communication is different. Humans naturally think *while* listening, far before the speaker finishes their turn. Thinking during listening offers two key advantages: (1) It enables timely and well-founded reactions, including interruption, even before the speaker concludes. (2) It reduces response latency by allowing answer preparation to begin before the speaker finishes speaking. Motivated by these observations, we propose a method to enable spoken language models (SLMs) to think while listening to input speech.

In this paper, we introduce SHANKS: <u>Simultaneous Hearing and Thinking</u> with Chunked Input <u>Speech</u>. SHANKS is a general inference framework for SLMs to achieve thinking while listening, which can be obtained by fine-tuning any off-the-shelf SLMs. At inference time, SHANKS processes the user input in a fixed-size chunk. Once a chunk of speech input is received, SHANKS generates a chunk of thinking tokens based on all previous input speech chunks and previous thinking chunks.

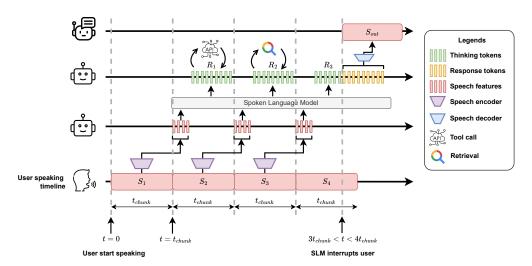


Figure 1: The timing diagram of SHANKS. As the user speaks, their speech is segmented into chunks for every t_{chunk} seconds and streamed to the SLM. After receiving a speaking chunk, SHANKS generates the thinking tokens, which might include calling external tools or performing retrieval. When the user is speaking the i-th speech chunk S_i , SHANKS generates the (i-1)-th thinking chunk R_{i-1} , achieving thinking while listening. When the next speech chunk S_{i+1} is fully spoken by the user, the SLM stops the reasoning for R_{i-1} , adds the newest speech chunk to its context, and begin the i-th thinking chunk. At any point, the SLM can optionally interrupt the user during their speech.

SHANKS alternates between receiving the input speech chunk and generating an unspoken thinking chunk until the user's speech finishes, and then the model generates the spoken response. When the user is still emitting a speech chunk, SHANKS uses the same time to generate a chunk of thinking, achieving the *thinking while listening*. During the thinking process, SHANKS can decide to interrupt the user or make tool calls. The inference workflow of SHANKS is depicted in Figure 1. To the best of our knowledge, we are the first to explore generating unspoken CoT reasoning when the user is still speaking.

We use two scenarios to show how SHANKS can improve real-time user-SLM interaction and reduce latency. First, we study a scenario where the user first describes a math question and then describes their step-by-step solution. SHANKS can listen to the user's problem-solving process and perform internal thinking in the meantime to interrupt the user when the user makes a mistake in their solution. This scenario has great potential in educational use cases, where the SLM serves as a tutor to guide the student. Compared to a baseline that makes an interruption without thinking, SHANKS interrupts 71% more when the user makes a mistake, while the interruption made by SHANKS is 37.1% more

Next, we focus on a task-oriented dialogue setting, where the user requests the SLMs to search for flights and hotels to fulfill the user's travel plan, and the SLM must make API calls (e.g., searching flights or booking hotels) to complete the task. SHANKS enables the model to successfully complete 63% of API calls while the user is still speaking; without SHANKS, these API calls can only be made after the user's speech ends. Hence, SHANKS can reduce the latency that the user needs to wait. We show an example of how SHANKS performs API calls during user speech in Figure 3 in the Appendix.

2 BACKGROUND

Thinking LLMs are trained to perform a deliberate thinking process before emitting the final text responses (Guo et al., 2025; OpenAI, 2024b; Wu et al., 2024). The thinking process is enclosed in some special tokens, e.g., <think> and </think>. The thinking process, which represents the LLM's intermediate steps to solve the user query, is internal to the LLM and hidden from the users.

Different from the rapid development of thinking LLMs, currently, almost all SLMs (speech-inspeech-out models) cannot generate a thinking process before speaking out the final response (Zeng

et al., 2024; Huang et al., 2025; Li et al., 2025; Ding et al., 2025; Wu et al., 2025). Note that SLMs can generate speech responses and are different from audio-aware language models that can only output texts (Xie et al., 2025; Chu et al., 2024). A notable exception is a concurrent work from Chiang et al. (2025). In Chiang et al. (2025), they let the SLM think when the SLM is speaking. The thinking process in Chiang et al. (2025) still happens after the user's turn ends, which is different from our thinking-while-listening.

In our paper, we will use Qwen-2.5-Omni (Qwen-omni for short) (Xu et al., 2025), one of the best open-sourced SLMs, in our experiment, and we introduce the necessary background. Qwen-omni is a *thinker-talker SLM*. The thinker takes speech representation extracted by a speech encoder (Chu et al., 2024) as the input and generates **text tokens**. The talker functions like a text-to-speech (TTS) model, taking the hidden representation from the thinker as the input and generating the output speech.

Qwen-omni is not capable of performing *unspoken* thinking – every token (and its corresponding hidden representation) generated by the thinker will be sent to the talker model and synthesized into speech. As the main goal of the paper is to make SLMs think silently while listening, where the thinking token should not be spoken out, we will need to teach Qwen-omni to generate unspoken thinking tokens. To do so, we will fine-tune the **thinker** model on a speech-in-**text**-out dataset to teach the model to generate the thinking process.

Here, we unify the terms that will be used throughout the paper. *Thinking* tokens/chunks refer to the output from the thinker enclosed within <think> and </think>. *Response* tokens/chunks refer to the thinker output (text) tokens outside of the <think>/</think> markers. Thinking tokens and response tokens are both text tokens, and they differ in whether they will be spoken out by the talker model.

Since we only want the Qwen-omni to speak out the response tokens, we only pass the response tokens to the talker. After fine-tuning the thinker, it will be necessary to adapt the talker so it can recognize the output from the fine-tuned thinker. Fine-tuning the talker model is quite straightforward and not the focus of this paper, i.e., thinking while listening, and we do not discuss how to adapt the talker here.

To make Qwen-omni think while listening, the main burden lies in how to make the *thinker* model generate thinking tokens when the user is speaking. As a result, we mainly focus on how **thinker** should be trained and how it should be used during inference. In the rest of the paper, we will use SLM to specifically refer to the thinker of Qwen-omni, which takes user input speech and generates thinking and response tokens.

3 METHOD: SIMULTANEOUS HEARING AND THINKING WITH CHUNKED INPUT SPEECH

Current LLMs and SLMs only start to think after the user's input is completed. In contrast, humans can think while listening, where we reason over what we just heard, guess what the speaker might be up to, and prepare the necessary ingredients to cook up a good response. Thinking while listening allows us to react to the speaker better when the speaker is still speaking. In this section, we introduce Shanks, a general framework to make SLMs capable of thinking while listening. Here, we only discuss the basic form of Shanks, and we defer the more advanced usages, including interruption or tool call, to later sections.

3.1 Inference

During inference, SHANKS requires that the user's input speech comes in a streaming manner. SHANKS processes the streaming user input speech by a fixed chunk size of $t_{\rm chunk}$ seconds. We use S_i to denote the i-th user input speech chunk, where S_i is an audio chunk of $t_{\rm chunk}$ seconds, except for the last chunk S_N , which may be shorter. When the user is still speaking, SHANKS alternately takes the user speech S_i and generates the thinking chunks R_i conditioning on all previous user speech and all previous thinking chunks.

Here, we walk through what happens for Shanks during inference. The following contents are best read with Figure 1. At t=0, the user begins to talk. When $t=t_{\rm chunk}$, the user speech from 0 to

 $t_{\rm chunk}$, i.e., S_1 , is sent to the SLM. Here, we append a special token <code>[EOPA]</code> (end of partial audio) after S_1 to let the SLM know that this is the end of a chunk of partial user speech. Based on S_1 , the SLM generates the first thinking chunk R_1 . A thinking chunk is enclosed in two special tokens <code><think></code> and <code></think></code>. The SLM generates R_1 during the interval $t=t_{\rm chunk}$ to $t=2t_{\rm chunk}$, and the user is still speaking the second chunk S_2 at the same time. Since $t_{\rm chunk}$ is the time for the SLM to generate its thinking, the duration of $t_{\rm chunk}$ cannot be selected too small; otherwise, the SLM may not be able to produce meaningful thinking chunks. Unless specified, we select $t_{\rm chunk}=4.0s$ in our paper; a 7B model can generate around 320 tokens on a single A100 GPU in this duration.

At $t=2t_{\rm chunk}$, we take the freshly obtained user speech chunk S_2 (from $t=t_{\rm chunk}$ to $t=2t_{\rm chunk}$) and pass this chunk to the SLM, and again appending the <code>[EOPA]</code> after this chunk. (Assume that the user still has not ended their turn at $t=2t_{\rm chunk}$.) When generating the next thinking chunk R_2 , the SLM conditions on S_1 , R_1 , and S_2 . The SLM will continue the process of taking user input speech chunks and generating the thinking chunks until the user ends their speech in the N-th chunk of speech, S_N . After the user ends their speech, we feed the last speech chunk S_N into the SLM, while this time we append a different special token <code>[EOA]</code> (end of audio), indicating that the user's speech has ended. Based on S_N and all the previous interleaved speech/thinking chunks $\{S_1, R_1, \cdots, S_{N-1}, R_{N-1}\}$, the SLM generates the thinking chunk R_N and then generates a final response chunk S_N .

Since Shanks chunks the user input using a fixed-duration chunk $t_{\rm chunk}$, the model's thinking will lag behind the user's speech by at least $t_{\rm chunk}$ seconds. If the user's speech is less than $t_{\rm chunk}$, Shanks cannot think while listening. However, since long speech can easily happen in real-world interaction, this limitation might not be a significant weakness of Shanks.

3.2 Training

During inference, SHANKS requires the SLM to generate thinking chunks based on all previous user input speech chunks and the model's own thinking chunks. During training, we prepare datasets to make the SLM learn this behavior. Assume that we have a complete user speech S, we can segment it into N chunks $\{S_1, \dots, S_N\}$ with a fixed duration t_{chunk} . Next, assume that we use some method to obtain the thinking chunks $\{R_1, \dots, R_N\}$ and the output response O, which we will explain in later sections. We use the standard language modeling cross-entropy loss to train the SLM to predict R_1 given $\{S_1\}$, predict R_2 given $\{S_1, R_1, S_2\}$, and predict R_N and O given $\{S_1, R_1, \dots, S_{N-1}\}$.

4 Scenario 1: Interrupting User Turn

After introducing the basics of SHANKS, we use two tasks to demonstrate how SHANKS can be applied. In the first scenario, we aim to use SHANKS to make SLMs able to interrupt the user based on their thinking when the user is saying something wrong. The significance of this application lies in its potential in educational use cases, where the SLMs can serve as a tutor and listen to the speaker, a student, describing how they solve a problem. The SLM can make a timely interruption to let the student know that they are making a mistake, allowing them to correct it as early as possible.

This application is highly related to the full-duplex ability of spoken language models (Lin et al., 2025). While most prior works on full-duplex SLMs focus on user interrupting SLMs, we focus on the reverse scenario: SLM interrupting users. As an important note, we do not advocate that it is good to have a model that interrupts the user. Some users might find it annoying and unpleasant when interrupted by an SLM. Here, we are merely introducing how to make the model capable of interrupting the user from a modeling perspective, while the model deployers and the users can choose whether to enable this interruption behavior.

4.1 TASK DESCRIPTION

We explain the precise task we are evaluating. In this task, the user describes a math problem and then solve the problem. The user's solution does not simply state the answer; the user describes a step-by-step problem-solving process, which might be correct or wrong. The SLM needs to interrupt the user when the user is making a mistake, and not to interrupt the user when the solution is correct.

As this is a novel task and there is no available data, we built the evaluation data ourselves. First, we construct the user speech, which should include a math question and a step-by-step solution. We source the math questions from the testing data of GSM8K (Cobbe et al., 2021), a grade-school math word problem dataset commonly used for evaluating mathematical reasoning ability (Wei et al., 2022; Kojima et al., 2022; Wang et al., 2023). Next, we use two LLMs, Llama-2-7B (Touvron et al., 2023) and Llama3.1-8B (Grattafiori et al., 2024), to generate step-by-step answers for those questions, and use GPT-40 to determine if the answer generated by the two models matches the ground truth answer in the dataset. We select these two models since they can generate CoT reasoning to solve the math problem, and their performance on GSM8K is very different: Llama-2-7B is a weaker model and prone to generating wrong solutions, while Llama-3.1-8B is a stronger model, which can generate more accurate solutions.

After we have the texts for the step-by-step solution, we convert them into speech. We use GPT-40 to rewrite the answers generated by the two Llama models to make the solution more colloquial. Next, we concatenate the original question, the colloquial step-by-step answer, and prepend a prefix "I want to solve the following question." to form the transcription of a testing instance. We use GPT-40-mini-TTS (OpenAI, 2024a) to synthesize the speech.

The final testing dataset includes 1280 instances with correct solutions and 1140 with incorrect solutions. We call the former the "correct subset" and the latter the "incorrect subset. The average duration of the user speech is around 49.25 seconds.

4.2 Training Data for Interruption

To teach the model to think while listening and determine whether to interrupt, the training data in this task include two types of instances: (1) The user provides a correct step-by-step solution to the question, and the model does not interrupt the user during the user's speech. After the user finishes the speech, the output response acknowledges the correctness of the answer. (2) The user's turn unfolds an erroneous problem-solving process, and the model interrupts the user when the user makes the first mistake and clearly explains what is wrong.

To construct such a training dataset, we use the math questions in Tulu3-Persona-Math-Grade (Lambert et al., 2024) to construct the user speech S following the previously described procedure, and then segment the speech by a fixed duration $t_{\rm chunk}=4$ seconds to obtain $\{S_1,\cdots,S_N\}$.

We use GPT-40 to generate the thinking chunk R_i . When generating the i-th thinking chunk R_i , the input to GPT-40 includes the transcriptions of all previous user speech chunks $\{S_1, \cdots, S_i\}$ and all previous thinking chunks $\{R_1, \cdots, R_{i-1}\}$. GPT-40 is required to do the following in the thinking chunk: (1) Track the information already known and calculate intermediate variables when they are available. (2) Identify if any errors are present in the user's current transcription. If there is an error, GPT-40 should generate a <code>[INTERRUPT]</code> token at the end of the thinking chunk, indicating that the user should be interrupted. We give GPT-40 four in-context examples to allow GPT-40 to understand the task.

After generating the thinking chunks, we generate the final output response O. For the user speeches with an error-free solution, the output response simply needs to let the user know that their solution is correct. We prompt GPT-40 to generate the final response based on the full user speech and all previous reasoning. Now, we can form a training data sequence by interleaving S_i and R_i and then appending O in the end.

For those user speeches with a wrong solution, the output response will be an interruption to the user's speech. Assume that based on our previous process for generating the R_i 's, GPT-4o decides to interrupt the user after the user speech chunk S_k , i.e., the thinking chunk R_k includes the interruption token <code>[INTERRUPT]</code>. To generate a response for interruption, we give GPT-4o the user's speech up to the k-th user speech chunk, all the previous thinking, and ask GPT-4o to generate a response O to interrupt the user. The interruption should be precise on what error is made by the user and how to correct it. After this process, we can interleave S_1 to S_k with R_1 to R_k and append O in the end to form a training sequence. A figurative illustration of this training instance is shown in Figure 4(b) in the Appendix. Note that in the last thinking chunk R_k , there will be a special token <code>[INTERRUPT]</code>, indicating that the user is going to interrupt the user.

4.3 EVALUATION

During inference, we stream the user speech to the SLM by a fixed chunk size $t_{\rm chunk}$, and follow the inference procedure elaborated in Section 3.1. If the SLM generates the special token [INTERRUPT] in a thinking chunk R_k and outputs a response chunk O (when the user is emitting speech chunk S_{k+1}), we convert the response token into speech to interrupt the user.

We evaluate a model on the testing dataset constructed in Section 4.1. We use the following metrics, separately reported for the correct and wrong subsets:

- (1) **Interrupt ratio**: The ratio of total interrupted instances among the total instances. A good model should have a low interrupt ratio on the correct subset and a high interrupt ratio on the wrong subset. (2) **Valid interrupt ratio**: The number of *valid* interruptions among the total interruption. To judge whether an interruption is valid or not, we use LLM-as-a-judge (Chiang & Lee, 2023; Zheng et al., 2023). We give the judge LLM the user input until the time of interruption¹ and output response O
- 2023). We give the judge LLM the user input until the time of interruption¹ and output response O from the model, and ask the LLM judge to determine if the model's interruption response O correctly interrupts the user when there is unclear or mistakes in the user speech.
- (3) Interruption latency: The time of the model interruption compared to the time when the first error happens in the user's speech, denoted as $t_{\rm error}$. For samples in the incorrect subset, use GPT-40 to determine $t_{\rm error}$. The details on this procedure are included in Appendix C.1. For the correct subset, there are no errors in the user's speech, and the $t_{\rm error}$ is defined as the duration of the audio. Assume that the model interrupts the user at $t_{\rm interrupt}$, then the interruption latency is calculated as $t_{\rm interrupt} t_{\rm error}$. $t_{\rm interrupt}$ is the time when the first response token is generated. In fact, a more accurate $t_{\rm interrupt}$ should consider the time the talker synthesize the audio from the response tokens. However, since the time for synthesizing the audio is fixed across all the model we consider here, we omit this latency when calculating $t_{\rm interrupt}$. A negative latency means that the model interrupts the user when the user has not made an explicit error.

4.4 EXPERIMENTS SETUP

We fine-tune the thinker model in Qwen-omni on training data constructed in Section 4.2 with 5K samples. We refer to this model as Shanks-E2E to draw a distinction with another cascade version to be introduced later. Other training details and hyperparameters are included in Appendix B.1. Since there are no other models that can interrupt the user², we fine-tune two baselines and compare them with Shanks-E2E.

- (1) **No-thinking**: We fine-tune Qwen-omni to predict whether it should interrupt the user without any thinking. The model is trained to predict a special token, <code>[NO_INTERRUPT]</code> or <code>[INTERRUPT]</code>, to indicate whether the model should interrupt the user, given chunked user input speech. This can be think as <code>Shanks</code> while the thinking chunks only contain a <code>[NO_INTERRUPT]</code> or <code>[INTERRUPT]</code> special token.
- (2) SHANKS-Cascade: We set up a cascade version of SHANKS. Precisely, we cascade an ASR with a stronger text-only LLM, Qwen-2.5-7B-Instruct (Qwen et al., 2025), to make the LLM generate thinking chunks while reading the partial transcription. Qwen-2.5-7B-Instruct and Qwen-omni are fine-tuned from the same base model, while Qwen-2.5-7B-Instruct are fine-tuned on a much larger reasoning dataset. We fine-tune Qwen-2.5-7B-Instruct on a similar text-input dataset. This baseline allows us to know what the performance of SHANKS can be if we use a model with better reasoning ability as the backbone.

4.5 EXPERIMENT RESULTS

The results are presented in Table 1. We have the following observations.

SHANKS is more likely to interrupt on the wrong subset. Comparing the interruption ratio of SHANKS on the correct and wrong subsets, the interruption ratio is 54.2% higher on the wrong subset.

¹If the interruption happens in R_i , the user is currently speaking the (i+1)-th speech chunk S_{i+1} , as the thinking R_i happens simultaneously when the user says S_{i+1} . Consequently, we also feed the transcription of S_{i+1} into the judge model when determining whether the interruption is valid.

²We found that closed-source models like GPT-40 cannot interrupt the user when the user is still talking, not to mention open-source SLMs.

Subset	Correct Subset (1280)			Wrong Subset (1140)		
Metrics	Interrupt ratio (%) (↓)	Valid interrupt ratio (%) (†)	Interrupt latency (s)	Interrupt ratio (%) (†)	Valid interrupt ratio (%) (†)	Interruption latency (s)
SHANKS-E2E	30.6%	25.7%	-4.24	84.8%	63.9%	5.08
No-thinking	1.4%	16.7%	-5.68	13.8%	26.8%	6.46
SHANKS-Cascade	24.9%	40.3%	-3.0	86.1%	78.3%	6.90
Ablations for Shanks-E2E						
$t_{\rm chunk} = 3.0$	41.1%	21.4%	-3.33	88.7%	60.3%	1.56
$t_{\rm chunk} = 5.0$	26.9%	36.9%	-11.38	83.1%	66.2%	8.19

Table 1: Results for interrupting the user. We report the interruption ratio and valid interruption ratio in percentage, and the interruption latency in seconds. $t_{\rm chunk} = 4.0$ in the top three rows.

This shows that SHANKS is indeed capable of capturing the errors in the user's speech and interrupt appropriately. Based on the valid interruption ratio for the wrong subset, 2 out of 3 interruptions made by SHANKS are valid. Interesting, on the correct subset, the valid interruption ratio is non-zero. By looking into the instances in the correct subset, we find that even if their final answers are correct, sometimes their intermediate reasoning may be odd or ambiguous, and the model will interrupt and ask for clarification. Prior works also reported that even if the final answer of the model is correct, the CoT reasoning may be wrong (Golovneva et al., 2023). In this case, the LLM judge treats this kind of interruption as valid.

SHANKS interruption latency shows that the model mostly interrupts after the error occurs. On the wrong subset, the interruption latency is 5.08 seconds on average. In Figure 5 in the Appendix, we further plot the distribution of the interruption latency. We find that the interruption latency on the wrong dataset is left-skewed, where more samples fall on the right proportion of the distribution and have a positive interruption latency. This indicates that most interruption happens later than the first error.

Interruption without thinking leads to much poorer performance. The performance of the no-thinking baseline is much worse than SHANKS, which performs reasoning before interrupting. The no-thinking baseline has a much lower interruption ratio on the wrong subset, and the valid interrupt proportion is also much lower than SHANKS. This shows that thinking before interruption is important, justifying the design of SHANKS.

Cascade version of SHANKS with stronger LLM leads to the best performance. When using Qwen-2.5-7B as the backbone model for SHANKS, the performance can be even better. The interruption ratio on the correct subset is lower, and the valid interruption ratio on the wrong subset also grows higher. This shows that the interruption ability of SHANKS is mostly related to the reasoning ability of the backbone model, and using a stronger reasoning LLM can improve the performance.

Varying $t_{\rm chunk}$ at inference time does not significantly affect the performance. When constructing the training data, we fix $t_{\rm chunk}=4$ seconds. Here, we ask whether we can vary $t_{\rm chunk}$ at inference time. Since the thinking of Shanks always lags behind the latest user speech by t seconds, changing $t_{\rm chunk}$ can affect how soon the SLM can hear the latest user speech and affect the response latency. As an ablation, we change $t_{\rm chunk}$ to 3 and 5 during inference without retraining the model. The results are shown in the bottom two rows in Table 1. On the wrong subset, we do not find the interrupt ratio and valid interrupt ratio to change significantly compared with $t_{\rm chunk}=4$. Interestingly, we find that the interrupt latency on the wrong subset for $t_{\rm chunk}=3$ is the smallest, while the $t_{\rm chunk}=5$ has the largest interrupt latency.

5 SCENARIO 2: API CALL WHEN LISTENING

In the second scenario, we focus on a task-oriented dialogue setting, where a user describes their travel plans, and a customer service agent needs to make relevant API calls to complete the request and respond to the user. An example input is: "Help me check the details of the cheapest flight

from Hangzhou to Seoul on December 10, 2024, and the car rental information near Seoul airport." To complete this request, the service agent need to call APIs to search for the flight and car rental information. Current LLMs will complete this task by waiting until the full user input is completed, and then start to call APIs to search for relevant information, and then formulate a final response based on API call responses.

However, one can observe that when the user is halfway through their speech, the search flight API can already be called since the destination and date is already clear. This is where SHANKS can be useful: processing partial user input and perform early actions. In this task, we will give the model a user request the requires to make API calls, and we will evaluate the model's ability to correctly make the API calls and how fast those API calls can be made.

5.1 TASK DESCRIPTION

To evaluate SLM's ability to make API calls based on the user input, we adopt Complex-FuncBench (Zhong et al., 2025). ComplexFuncBench is a complex tool-calling benchmark. A tested model will be given a user query specifying some requirements for a travel plan, including flight searching, hotel reservation, etc, and a list of potential APIs that are required to complete the task, including APIs for searching hotels or flights. The goal of the model is to make relevant API calls and provide the information to the user. ComplexFuncBench provides the ground truth API call (the API calls that must be made to complete the task) for each instance and the API responses for those ground truth API calls, which can be used to evaluate whether the model's API call is correct. To adapt ComplexFuncBench in our use case, we use GPT-40-mini-TTS to synthesize the user speech instruction from the text instructions from ComplexFuncBench.

5.2 TRAINING DATA FOR API CALL

To train SHANKS to perform API calls when listening, we need to teach the model to make API calls based on user input speech chunk S_i when the information for the API call is complete. We split half of the instances in ComplexFuncBench to construct the training data and the other half as the testing data. The speech chunks S_i in the training data can simply be obtained from chunking the audio of the complete speech.

In this task, the thinking chunk R_i is simply the API calls and responses based on the previous speech and thinking chunks $\{S_1, R_1, \cdots, S_i\}$. Since ComplexFuncBench already provides the ground truth API calls to fulfill the task, we only need to determine which API call can be made after a speech chunk S_i . To determine which API calls can be made in R_i , we give GPT-40 the transcription of the speech chunks from S_1 to S_i , and ask GPT-40 whether the user's speech already provide sufficient information about what API call. If GPT-40 thinks the API call can be made, the API call and response are added to R_i . If no API calls can be made in R_i , we put a template message that says there are no additional tool calls that can be made.

The final response O is also generated by GPT-40 by prompting it to generate a final response based on the instructions and all the ground truth API calls and responses. During training (and also inference), the descriptions of the API calls necessary to complete the user's request will be included in the system prompt.

5.3 EVALUATION

During inference, we feed the user speech to a tested model, and let the model make API calls. Given an API call made by the model, we use GPT-40 as a judge to determine if the API call matches one of the ground truth API calls, and return the response of the ground truth API call if a match is found. Using GPT-40 to match the API call made by the model against the ground truth follows one of the evaluation protocols in the original ComplexFuncBench.

We evaluate the performance of the model on 500 testing instances using two metrics: (1) **Call accuracy**: The number of ground truth API calls that are successfully made by the model, divided by

³ComplexFuncBench is originally designed as an evaluation dataset. Here, we train the model directly on this dataset since Qwen-omni was not trained to perform tool call. Since our training data has the same distribution as the testing data, our results should not be compared with other models that are not trained on this dataset.

the total number of ground truth API calls in the dataset. We also calculate the *early call accuracy*, defined as the ground truth API calls that are successfully made by the model *when the user is still speaking*, divided by the total number of ground truth API calls. Similarly, we calculate the *late call accuracy*, where the dividend is the ground truth API calls that are successfully made *after the user finishes speaking*. This helps us understand how well the model leverages the time when the user is still speaking. (2) **Task success rate**: The percentage of task that are successfully completed. If all the ground truth API calls in an instance are made, the task is considered successful.

In this task, we only focus on whether the API calls made during the thinking process are correct, and we do not assess the final response of the model.

5.4 Experiment Setting

We compare two models, both fine-tuned from Qwen-omni. (1) SHANKS: fine-tuned from the training data in Section 5.2. SHANKS can perform API calls and get the responses when the user is still speaking. (2) "Call-after-listen": In this baseline, the model is trained to take the full user speech and iteratively makes the API calls, takes the responses, and makes new API calls until the task is completed.

5.5 EXPERIMENT RESULTS

The experiment results are presented in Table 2. We find that SHANKS can successfully make 58.3% of the API calls when the user is still

Call Accuracy (%) Success Methods Early Late Total rate (%) SHANKS 58.3% 15.0% 73.3% 37.0% Call-after-listen 88.1% 88.1% 62.4% 63.2%SHANKS + call-after-listen 25.2% 88.4% 72.2%

Table 2: Results for API calls. The early and late do not sum to 100 since the denominator is the total ground truth API calls that should be called, and some ground truth API calls may not be successfully called.

speaking. Compared with the call-after-listen baseline, SHANKS can greatly reduce the time the user needs to wait. This is because call-after-listen needs to wait until the user has finished to start to make API calls, while many calls can readily be made when the user is speaking.

However, the success rate of SHANKS is lower than call-after-listen. We find that this is because SHANKS rarely retries the failed API call attempts, while the call-after-listen baseline tends to iteratively retry failed API calls.

To solve the above issue, a simple method is to use SHANKS when the user is still speaking and back off to call-after-listening when the user speech ends. Precisely, when the user is still speaking, we use SHANKS to call APIs while listening, and only keep the success API calls and their responses. When the user finishes their speech, we switch to the call-after-listening mode, where the input to the SLM is the complete user speech and the success API calls and responses made by SHANKS, and the model continues to make the remaining API calls. Since some API calls have already been made by SHANKS when the user speaks, this combined method enjoys the thinking-while-listening advantage of SHANKS.

In the last row in Table 2, we show the result of combining SHANKS with call-after-listening. This combined method has a high number of early call accuracy while also having a high task success rate. Compared to call-after-listen, where all the API calls need to be made after the user speech ends, the combined method can successfully call 63.2% APIs when the user is still speaking, while the remaining 25.2% API calls will be called after the user's speech finishes. This means that the combined method can reduce the user wait time while maintaining the performance.

6 Conclusion

In this paper, we introduce SHANKS, a framework that enables SLMs to think while listening. SHANKS achieves thinking-while-listening by chunking the user input speech and progressively reasoning over the user input based on all previous thinking processes. When the user is speaking, the SLM is generating thinking chunks for all previous input speech, achieving thinking while listening. On two scenarios, we show that SHANKS enables more accurate interruption behavior and can make API calls when the user is still speaking. We believe SHANKS open new possibility of SLMs.

REFERENCES

- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code. 2021.
- Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human evaluations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15607–15631, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.870. URL https://aclanthology.org/2023.acl-long.870/.
- Cheng-Han Chiang, Xiaofei Wang, Linjie Li, Chung-Ching Lin, Kevin Lin, Shujie Liu, Zhendong Wang, Zhengyuan Yang, Hung-yi Lee, and Lijuan Wang. Stitch: Simultaneous thinking and talking with chunked reasoning for spoken language models. *arXiv preprint arXiv:2507.15375*, 2025.
- Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*, 2024.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song, Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.
- Olga Golovneva, Moya Peng Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step reasoning. In *The Eleventh International Conference on Learning Representations*, 2023.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.
- Ailin Huang, Boyong Wu, Bruce Wang, Chao Yan, Chen Hu, Chengli Feng, Fei Tian, Feiyu Shen, Jingbei Li, Mingrui Chen, et al. Step-audio: Unified understanding and generation in intelligent speech interaction. *arXiv preprint arXiv:2502.11946*, 2025.
- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. *Advances in neural information processing systems*, 35: 22199–22213, 2022.
- Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community library for natural language processing. In Heike Adel and Shuming Shi (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 175–184, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-demo.21. URL https://aclanthology.org/2021.emnlp-demo.21/.

- Tianpeng Li, Jun Liu, Tao Zhang, Yuanbo Fang, Da Pan, Mingrui Wang, Zheng Liang, Zehuan Li, Mingan Lin, Guosheng Dong, et al. Baichuan-audio: A unified framework for end-to-end speech interaction. *arXiv preprint arXiv:2502.17239*, 2025.
- Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=v8L0pN6EOi.
- Guan-Ting Lin, Jiachen Lian, Tingle Li, Qirui Wang, Gopala Anumanchipalli, Alexander H. Liu, and Hung yi Lee. Full-duplex-bench: A benchmark to evaluate full-duplex spoken dialogue models on turn-taking capabilities, 2025. URL https://arxiv.org/abs/2503.04721.
- OpenAI. Introducing next-generation audio models in the api, 2024a. URL https://openai.com/index/introducing-our-next-generation-audio-models/. Accessed on May 12, 2025.
- OpenAI. Learning to reason with llms, 2024b. URL https://openai.com/index/learning-to-reason-with-llms/. Accessed on July 15, 2025.
- Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.
- Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision, 2022. URL https://arxiv.org/abs/2212.04356.
- David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=Ti67584b98.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2609–2634, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.147. URL https://aclanthology.org/2023.acl-long.147/.

- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- Boyong Wu, Chao Yan, Chen Hu, Cheng Yi, Chengli Feng, Fei Tian, Feiyu Shen, Gang Yu, Haoyang Zhang, Jingbei Li, et al. Step-audio 2 technical report. *arXiv preprint arXiv:2507.16632*, 2025.
- Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao, Jason Weston, and Sainbayar Sukhbaatar. Thinking llms: General instruction following with thought generation. *arXiv preprint arXiv:2410.10630*, 2024.
- Zhifei Xie, Mingbao Lin, Zihang Liu, Pengcheng Wu, Shuicheng Yan, and Chunyan Miao. Audioreasoner: Improving reasoning capability in large audio language models. *arXiv preprint arXiv:2503.02318*, 2025.
- Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.
- Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong, and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot. *arXiv* preprint arXiv:2412.02612, 2024.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.
- Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. LlamaFactory: Unified efficient fine-tuning of 100+ language models. In Yixin Cao, Yang Feng, and Deyi Xiong (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, pp. 400–410, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-demos.38. URL https://aclanthology.org/2024.acl-demos.38/.
- Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, and Jie Tang. Complexfuncbench: exploring multi-step and constrained function calling under long-context scenario. *arXiv preprint arXiv:2501.10132*, 2025.

A ENCODING THE USER SPEECH

In the main content of the paper, we say that we chunk the user input audio into fixed-size chunks of $t_{\rm chunk}$ seconds. In fact, what we do is perform chunking at the level of feature representation instead of the level of audio waveform. Precisely, when encoding the $i \geq 2$ speech chunks S_i , we feed the full speech through the audio encoder, and only take the speech representation for the corresponding speech chunk. If we directly chunk the audio waveform and encode each audio chunk independently, the representation of later audio chunks will not be able to depend on the earlier audio chunks, which can potentially lead to performance degradation.

B DETAILS IN TRAINING

We fine-tune the models using the Llamafactory (Zheng et al., 2024) toolkit. One thing we omit in the main content is that when generating the training data using GPT-40, we do not feed the audio of the user speech into GPT-40. Instead, we feed the transcription of the speech chunks. This is because using the speech chunk will increase the cost and time to call the API. To obtain the transcription of each chunk, we use Whisper-large to obtain the transcription and timestamp for each word in the user speech, and then segment the transcriptions into chunks based on the timestamp.

Figure 2: Examples of the evaluation samples in the interruption scenario, including the thinking and response from Shanks. For each time slot from $nt_{\rm chunk}$ to $(n+1)t_{\rm chunk}$, the chunks in green (SLM thinking chunks), blue (API call responses), and orange (output response) happen sequentially, while the user speech chunk (in red) happens concurrent to other blocks in the same time slot.

B.1 FINE-TUNING FOR INTERRUPTION

To prepare the training data, we randomly sample 5K samples from Tulu-3-SFT-Math-Grade (Lambert et al., 2024), which can be loaded from Huggingface datasets (Lhoest et al., 2021). We follow the procedure detailed in Section 4.2 to construct the training data. We additionally filter out audios that are longer than 80 seconds, so the final training dataset is slightly less than 5K.

We fine-tune the thinker on the training data for two epochs on 8 A100 GPUs. The effective batch size is 64. We set the learning rate to 1.0e-4 with cosine learning rate scheduling and a 0.1 warm-up ratio.

Figure 3: Examples of the evaluation samples in the API call scenario, including the thinking and response from Shanks. For each time slot from $nt_{\rm chunk}$ to $(n+1)t_{\rm chunk}$, the chunks in green (SLM thinking chunks), blue (API call responses), and orange (output response) happen sequentially, while the user speech chunk (in red) happens concurrent to other blocks in the same time slot. The t=T means the time when the user's speech terminates.

A significant part of the training data is generated by prompting GPT-40. We include the prompts here. We list the prompt to generate the reasoning chunks in Table 3 and 4, the prompt to generate the interruption in Table 5, and the prompt to generate the response without interruption in Table 6.

B.2 FINE-TUNING FOR API CALLS

We use the procedure detailed in Section 5.2 to construct the training data. The training data consists of 500 samples. The prompt used to determine when an API call can be made is shown in Table 8. The prompt used to generate the final response is shown in Table 9.

We fine-tune the model using LoRA (Hu et al., 2022), as the sequence length for this dataset is very large and full fine-tuning will result in out-of-memory. We also fine-tune the LM head and the token embedding of the talker model; otherwise, the model will not be able to recognize and generate special tokens. As the training dataset is smaller, we fine-tune the model for 10 epochs, while other training hyperparameters follow those in Appendix B.1.

C DETAILS IN EVALUATION

C.1 EVALUATION DETAILS FOR INTERRUPTION

To determine the time of interruption, we apply the following procedure. We use Whisper-large (Radford et al., 2022) to obtain the timestamp of each word in the user speech, and we use GPT-40 to determine when the first error in the user speech occurs by giving GPT-40 the question, the ground truth answer, the transcription of the user speech, and the word-timestamp alignment. The prompt used to determine the first error time $t_{\rm error}$ is shown in Table 7.

The prompt used to determine whether an interruption is valid is shown in Table 10. Note that if an interruption occurs in R_i , the user is saying S_{i+1} at the current point, and the user speech used for judgement will include the the latest speech chunk S_{i+1} . When calculating the latency, we do not consider the time for the talker to synthesize the audio. Since this latency due to the talker is fixed for all the models we compare, excluding the latency will not affect our comparisons in Table 1.

```
761
762
                            # Generate Internal Thinking While Listening
763
                             ## Task Introduction
Humans are capable of thinking while listening to others speak. Based on the partial information received, we parse important details, clarify ambiguities, recall relevant facts, and compute intermediate variables. Your task is to simulate this process. You will be the previous chunks of user's speech in text, and you will also see your previous inner thinking when listening to those chunks. Your job is to generate the next internal thinking as if you had listened up to the newest chunk.
764
765
766
                             When generating internal thinking spans, follow these guidelines:
767
                             1. The inner thinking span should be fewer than 400 words.
2. Your internal thinking should reflect the user's emotion, intent, and what you already know from the user. If any relevant information can be recalled or intermediate variables can be calculated based on current information, include them
768
                             in your inner thinking.

3. The inner thinking should read more like full, coherent sentences rather than shorthand notes. Using short notes will be very hard to understand and possibly making logical errors.

4. If the user's query involves a question, you **must generate your own step-by-step answer in the internal thinking before the user finishes speaking**.
769
770
771
                            the user finishes speaking**.

5. Later internal thinking spans must not repeat information already covered in earlier ones. However, if later transcription spans update or contradict earlier information, explicitly point that out and correct it. You may start with phrases like (Wait, the user previously..., but now...".

6. Always think independently in your internal thinking. When the user is providing there solution, you should have you own solution and then compare your own solution with the user's solution. If you identify any error, you should interrupt the user immediately. Indicate the interruption by ending your internal thinking with the special token [INTERRUPT].
772
773
774
775
                             ## Samples
776
                             ### Example 1:
777
                             User (partial) input transcription 1
Betty is saving money for a new wallet which
778
                             Prior Inner Thinking 1
779
                             The user's tone is neutral. The user describes a situation where someone named Betty is saving money for a new wallet. The user hasn't finished yet. Perhaps they want me to give advice on how to save money.
                             User (partial) input transcription 2
781
                             costs $100. Betty has only half of the money she needs.
782
                             Now the user gives more information. We know the wallet Betty wants to buy costs $100, and she has only half of that. I can calculate this: $100 / 2 = $50, so she currently has $50. The user's intent is still unclear.
783
784
                             Her parents decided to give her $15 for that
785
                             Inner thinking to Generate Well, it seems that Betty's parents will contribute as well. She will get $15 from them. Now she has $50 + $15 = $65. She still needs $100 - $65 = $35. It seems the user wants to know how to plan Betty's budget.
786
787
                             ### Example 2:
User (partial) input transcription 1
788
                             I want to answer the following math question: Is the function f(x) =
789
                            Prior Inner Thinking 1
The user uses a neutral tone and describes a math question they want to solve. I will try to solve the question when the user is speaking. I can verify if the user's solution is correct by comparing my solution with the user's solution. The question is about a function in x. The user has not finished yet. I will wait until they complete the question.
790
791
792
                             User (partial) input transcription 2 4x^2 + 4x + 1 always above the x axis?
793
                            Prior Inner Thinking 2
The user has finished describing the question. They want to determine if the function f(x) = 4x^2 + 4x + 1 is always above the x-axis. I am ready to answer this question. Let's compute the discriminant: D = b^2 - 4ac = 4^2 - 4 * 4 * 1 = 16 - 16 = 0. The function touches the x-axis at one point. I have the solution. Since the user wants to solve the question by themselves, I will not interrupt the user and listen to the solution. However, I will interrupt the use if there is any
794
796
797
                             User (partial) input transcription 3 Here is my solution: Based on the formula D = b^2 - 2ac,
798
                             Inner thinking to Generate
799
                             Now I see that the user wants to solve the question themselves. I should verify whether their solution is correct. The user says the formula is D = b^2 - 2ac, but that's incorrect. The correct formula is D = b^2 - 4ac. The user has made a mistake, and I need to interrupt them. [INTERRUPT]
800
```

Table 3: Prompt for generating the thinking chunks in the training data for the interruption experiment (part 1).

```
810
811
         ### Example 3:
         User (partial) input transcription 1
         Bella bought stamps at the post office. Some of the
813
814
         Prior Inner Thinking 1
815
         The user uses a neutral tone and describes a math question he wants to solve. The
         question is to The user is introducing a word problem involving someone named Bella
816
         and her purchase of stamps. It seems like a math problem, likely about counting.
817
         The exact numbers and relationships haven't been shared yet. I will hold off making
         any calculations until I know more about the stamps.
818
819
         User (partial) input transcription 2
820
         stamps had a snowflake design, some had a truck design,
821
         Prior Inner Thinking 2
822
         We now know there several types of stamps: snowflake and truck. There seems to
         be more, but the user is still speaking. There are still no numbers provided, so I
823
         can't compute yet. I will wait for more information.
824
825
         User (partial) input transcription 3
         and some had a rose design. Bella bought 11
826
827
         Prior Inner Thinking 3
         Now we know that there are three types of stamps: snowflake, truck, and rose.
828
         Bella bought 11, but it is unclear which this number corresponds to. I will wait
829
         for the complete detail from the user to be sure before computing.
830
         User (partial) input transcription 4
831
         snowflake stamps. She bought 9 more truck stamps
832
         Prior Inner Thinking 4
833
         Now I know that Bella bought 11 snowflake stamps. I am also told she bought 9 more
834
         truck stamps than snowflake stamps. I can calculate the number first: she bought
         11 + 9 = 20 truck stamps. The information we have now is:
835
         - Snowflake: 11
836
         - Truck: 20
837
         The user is still talking, and I am waiting for more information.
838
         User (partial) input transcription 5
839
         than snowflake stamps, and 13 fewer rose stamps than
840
         Prior Inner Thinking 5
841
         Now the user states that Bella bought 13 fewer roses than something, but it is
         unclear what is compared here. I will wait until the user finishes.
842
843
         User (partial) input transcription 6
844
         truck stamps. How many stamps did Bella buy in all?
845
         Inner thinking to Generate
846
         Now I know that Bella bought 13 fewer roses than the truck stamps. There are 20
         truck stamps, so I can calculate the number of rose stamp is 20^{-}-13=7. The user
847
         finishes with a question: total number of stamps. I already have all counts:
         - Snowflake:
849
         - Truck: 20
         - Rose: 7
850
         Total = 11 + 20 + 7 = 38 stamps. I have the answer and I can provide it to the
851
         user.
852
853
854
         This is the end of the examples. Now, this is the (partial) user input
         transcription, and you need to generate a inner thinking. You do not need to explain why the inner thinking you generate is a good one. Simply generate a good
855
856
         one without explaining it.
857
         {interleaved_transcription_and_thinking}
858
859
         Inner thinking to generate (Do not generate anything else other than the inner
         thinking)
860
```

Table 4: Prompt for generating the thinking chunks in the training data for the interruption experiment (part 2).

862

912

913

914

915

916 917 {inner_thinking}

Your Response (Act like the voice assistant)

<Write only the final spoken response here>

```
865
866
              # Task: Interrupt the user to correct an error
              A user is talking to an AI assistant. You will be given a partial user turn. There is an error in the user turn and the AI assistant has identified that error. The AI assistant needs to interrupt the user.
867
868
               Your job is to generate the response for the AI assistant that interrupts the user's turn. You will be given:
              (1) A (possibly incomplete) user turn
(2) The inner thinking of the AI assistant. This inner thinking hasn't been spoken out by the AI assistant and is only silently kept in the assistant's mind. We provide you this inner thinking for you to better craft a response.
869
870
              When correcting and interrupting the user, be precise about what the error is and how to correct it. You only need to generate the response without saying anything else. The conversation between the user and the assistant is in spoken form, so you need to make your response easy to be spoken while not overly informal and colloquial.
871
872
873
               #### User (partial) input
874
               I want to answer the following math question: Is the function f(x) = 4x^2 + 4x + 1 always above the x axis? Here is my solution: Based on the formula D = b^2 - 2ac, D = 4^2 - 2 * 4 * 1 = 8 > 0
875
               #### Inner thinking of the assistant
876
              #### Inner thinking of the assistant
The user uses a neutral tone and describes a math question he wants to solve. The question is to determine if a 2-degree function is above the x-axis. f(x) = 4x^2 + 4x + 1. Let's use D = b^2 - 4ac = 4^2 - 4 * 4 * 1 = 0. So the function happens to intersect with x-axis at one point. I can answer the user if the user wants me to do so.

But wait, the user themselves want to solve the question, and the user says D = b^2 - 2ac, which is clearly wrong. The correct formula should be D = b^2 - 4ac. I should interupt the user here and tell them the correct formula with a friendly and reminding these.
877
878
               and reminding tone.
879
880
              Wait, I think the correct formula should be b^2 - 4ac, not b^2 - 2ac. The coefficient you mentioned was wrong.
881
               ## Now it is your turn
882
               #### User (partial) input
883
               #### Inner thinking of the assistant
884
               {inner_thinking}
885
               <Write the interrupting response here. Be precise about the error and the correction; keep it concise and easy to speak. Do</p>
886
              not include anything else.>
887
                                    Table 5: Prompts for generating an interrupting correction response.
888
889
890
891
892
               # Task:
                             Generate the spoken response given full user turn and assistant's inner
893
              thinking
894
895
              A user is chatting with a voice assistant. Your job is to act as the voice
              assistant and generate a valid response that fits in the context. You will be
896
              given:
897
               (1) The full user turn
               (2) The inner thinking of the voice assistant. Note that the voice assistant may
              generate the inner thinking when the user hasn't finished, so it is possible that
899
              some contents in the inner thinking is incorrect.
900
              Guidelines:
901
              1. Do not generate anything else except the response.
902
                     The inner thinking might mention a drafted response. If the drafted response is
               still valid considering the full user turn, follow the draft and start the response.
903
              If the draft is invalid considering the full user input, neglect the draft and craft
904
              a response that is suitable.
               3. This is a spoken dialogue. Keep the response easy to follow for spoken form.
905
              However, there is no need to deliberately use very colloquial words or phrasing,
906
              making things awkward.
907
               ## Input
908
909
               #### Full user input
               {query}
910
911
               #### Inner thinking of the voice assistant
```

Table 6: Prompts for generating the response for the interruption application.

```
919
921
922
923
         # Task: Detect the first reasoning or calculation error with timestamps
924
         You a user's query. In the user query, the user describes a math problem and
925
         then attempt to solve the problem by themselves. This user query is in a spoken form, and I provide you with the transcription. I will also provide you the force
926
         alignment result of the transcription, which corresponds timestamp of each word in
927
         the spoken response.
928
         Your job is to determine where the problem solving process has the first calcaultion
929
         or reasoning error. In your response, you should solve the math problem by
930
         yourself, and carefully check the spoken response. When you see the first error
         in the spoken response, use the provided timestamp to determine when the first
931
         error happened. Conclude you respond with: "First error: [time]", where 'time'
932
         is the time where the first error happens. If the user's problem solving process is
933
         completely correct, please use -1 to indicate that there is no error, i.e., "First
         error: -1"
934
935
         ## Example
936
         ### User Query
937
         I want to solve the following math question: Natalia sold clips to 48 of her
938
         friends in April, and then she sold half as many clips in May. How many clips did
         Natalia sell altogether in April and May? Here is my solution: Our goal is to
939
         calculate the total number of clips sold in April and May. In April, she sold 48.
940
         In May, she sold the half of that, which is 96. So she sold 48 in April plus 96 in
         May, making it 144 in total.
941
942
         ### Word-Timestamp
         I - 0.00
943
         want -0.50
944
945
         96. - 36.50
946
         total. - 44.00
947
         ### Correct Answer
948
         72.
949
         ### Output
         The math problem wants to know how many clips Natalia sold in total. In April, she
951
         sold 48. In May, she sold half as many, so she sold 48 / 2 = 24. In total, she
952
         sold 48 + 24 = 72. In the problem solving process, the user says that 'half of that, which is 96.' This is incorrect. The correct number for May should be 24.
953
         This is where the first error occurs. Based on the Word-Timestamp information, the
954
         word 96 is emitted at second.
         First error: 36.50
955
956
         ## Now, it is your turn.
957
         ### User Query
958
         {question}
959
960
         ### Word-Timestamp
         {alignment}
961
962
         ### Correct Answer
         \{answer\}
963
964
         ### Output
         <Write the reasoning here and conclude with "First error: [time]">
965
```

Table 7: Template for detecting the first error in the interruption task.

1002 1003

1005

1007

1023

```
973
974
         # Task:
                 Earliest possible time to call tools during a spoken user query
975
976
         You are given a user spoken query, which requires some tool usage for answering.
        You will be given the tool calls (including their parameters) which are useful for
977
         responding to the user query. You will also be given the timestamp of each word in
978
         the user's utterance. Your job is to determine the earliest time that a tool call
         can be called when the user is speaking. That is, when the user is still speaking,
979
         the information that has been spoken by the user may already be sufficient enough
980
        to call some of the tools. Your job is to determine the **earliest time** during
         the utterance that a tool call can be called. A tool can be called if only if it is
981
         clear what tool should be call and what the paramaters are for the tool call.
982
983
         ### User Spoken Query
        {question}
984
985
         ### Time Stamp of Each word
986
        {alignment}
987
         ### Tools that needs to be called
988
         {tools}
989
         ### Total number of tool calls
990
         {count}
991
         ### Output Format
992
         Your response should be a python dictionary. They key of this dictionary is an
993
         integer index of the tool call shown above, and the value is the earliest time the
         tool can be called. Your response should only include a python dictionary. The
994
         first character in your response should be the left bracket while the last character
995
         in your response should be the right bracket. Your response should be able to be
         directly converted into a python dictionary using eval(). If there are N tools that
996
        need to be called, your output dictionary should have N items. I also provide you
997
         the number of tool calls, so you should verify if your output dictionary matches the
        number of tool calls.
998
999
         ### Your response:
1000
         <Return only a python dictionary, e.g., {0: 12.5, 1: 18.0}>
1001
```

Table 8: Template for checking the earliest callable time for an API.

```
1008
                 Generate the final user-facing response from tool call results
1009
        You will be given a user query. The user query can only be responded based on
1010
        the results of some external tool call. I will show you the tool calls and call
        responses. Your task is to generate a final response to the user based on the tool
1011
        call results. The final response to the user should satisfy the user's original
1012
        query and omit unnecessary information. Some intermediate processes in the tool
1013
        call may simply be some process to resolve the variables, and they are not necessary
        to be included in the final response to the user.
1014
1015
         ### User Query
        {transcription}
1016
1017
         ### Previous API Calls
        {previous_tool_calls}
1018
1019
         ### Response to the User Query (Only provide the response. Do not include anything
1020
        else.)
         <Write only the final user-facing response here, distilled from the tool results and
1021
        satisfying the query. Exclude setup steps and variable-resolution details.>
```

Table 9: Prompts for generating a final response O in the API call application.

```
1027
1028
1029
1030
1031
                 Judge if the assistant's interruption is reasonable
        # Task:
1032
1033
        A user is speaking to a voice assistant. When the user is speaking, the assistant
        tries to interrupt the user. Your job is to judge if the assistant is interrupting
1034
        the user in a reasonable way. A reasonable interrupt is when the user said
1035
        something wrong and ambiguous and the assistant is trying to help correct or clarify
1036
        the user's statement.
1037
        Here is the user's speech before the assistant interrupted:
        {user_speech_before_interrupt}
1039
        Here is the assistant's speech that attempts to interrupt the user:
1040
        {assistant_speech_after_interrupt}
1041
        Please judge if the assistant is interrupting the user in a reasonable way. If the
        assistant is interrupting the user in a reasonable way, return "yes". Otherwise,
1043
        return "no". Please provide some explanation for your judgement and conclude with
        "Final verdict: Yes/No". A valid interruption is when the user is indeed making a
1044
        mistake and the assistant is trying to help correct or clarify the user's statement.
1046
        ### Output
        <Write your explanation here. Conclude with "Final verdict: Yes" or "Final</pre>
1047
        verdict: No">
1048
```

Table 10: The prompt used for judging whether an interruption is reasonable.

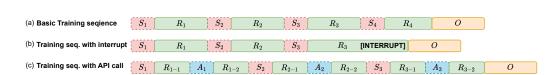


Figure 4: Illustration of the training data. S_i : the speech features for the i-th user speech chunk; R_i : the i-th thinking block after S_i ; O: the final response token block; A_i : the API call responses after the speech chunk S_i . Blocks in dashed lines do not contribute to the training loss, while blocks in solid lines are included for loss calculation. (a) The general training sequence: Alternating between user speech block and SLM thinking token chunks (Section 3.2), followed by a final response chunk. (b) Training data with interruption: Alternating between user speech blocks and the thinking token chunks, while the last thinking chunk includes a special token <code>[INTERRUPT]</code>. (c) Training data with API calls: Similar to (a), while each thinking chunk is separated into two blocks R_{i-1} and R_{i-2} by the API call response A_i .

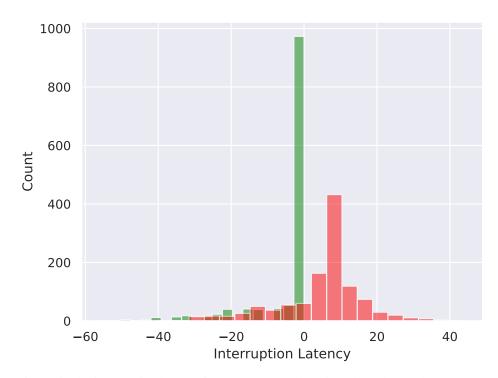


Figure 5: The interruption latency for SHANKS. The bars in red are the results on the wrong subset, while the bars in gree are the results on the correct subset. One can observe that the red bars are mostly positive, meaning that the model tends to interrupt after the first error occurs.