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Abstract

Knowledge graph completion (KGC) aims to
predict unseen edges in knowledge graphs
(KGs), resulting in the discovery of new facts.
A new class of methods have been proposed
to tackle this problem by aggregating path in-
formation. These methods have shown tremen-
dous ability in the task of KGC. However they
are plagued by efficiency issues. Though there
are a few recent attempts to address this through
learnable path pruning, they often sacrifice the
performance to gain efficiency. In this work,
we identify two intrinsic limitations of these
methods that affect the efficiency and repre-
sentation quality. To address the limitations,
we introduce a new method, TAGNet, which is
able to efficiently propagate information. This
is achieved by only aggregating paths in a fixed
window for each source-target pair. We demon-
strate that the complexity of TAGNet is inde-
pendent of the number of layers. Extensive
experiments demonstrate that TAGNet can cut
down on the number of propagated messages
by as much as 90% while achieving competi-
tive performance on multiple KG datasets 1.

1 Introduction

Knowledge graphs (KGs) encode facts via edges
in a graph. Because of this, one can view the task
of predicting unknown edges (i.e. link prediction)
as analogous to uncovering new facts. This task is
referred to as knowledge graph completion (KGC)
and has attracted a bevy of research over the past
decade (Bordes et al., 2013; Trouillon et al., 2016;
Schlichtkrull et al., 2018; Zhu et al., 2021). Most
work has focused on learning quality representa-
tions for all nodes (i.e. entities) and edge types (i.e.
relations) in the graph to facilitate KGC.

Recently, methods (Zhu et al., 2021; Sadeghian
et al., 2019; Zhang and Yao, 2022), have been intro-
duced that move away from the embedding-based

1The code is available at https://github.com/
HarryShomer/TAGNet

approach and focus instead on learning directly
from path-based information. One recent GNN-
based method, NBFNet (Zhu et al., 2021), draws
inspiration from the Bellman-Ford algorithm by
computing path information through dynamic pro-
gramming. By doing so, it learns pairwise em-
beddings between all node pairs in an inductive
fashion. It achieves state-of-the-art performance in
both the transductive and inductive KGC settings.
In this work, we refer to such methods as path-
based GNNs. However, a downside of path-based
GNNs is their inefficiency. This limits their ability
in large real-world graphs. Furthermore, it inhibits
their ability to propagate deeply in the graph. Two
recent methods have been proposed to address the
inefficiency problem, i.e., A∗Net (Zhu et al., 2022)
and AdaProp (Zhang et al., 2023), by only propa-
gating to a subset of nodes every iteration. How-
ever, they still tend to propagate unnecessary and
redundant messages.

For path-based GNNs, only the source node is
initialized with a non-zero message at the begin-
ning of the propagation process. Such models often
run a total of T layers, where, in each layer, all
nodes aggregate messages from their neighboring
edges. We identify that this design is inefficient by
making the following two observations. (1) Empty
Messages: In the propagation process, a node only
obtains non-empty messages when the number of
propagation layers is ≥ the shortest path distance
between the source and the node. This means that
a large number of nodes far from the source node
only aggregate “empty” messages in the early prop-
agation layers. Nonetheless, path-based GNN mod-
els such as NBFnet propagate these unnecessary
“empty messages” in these early propagation lay-
ers. (2) Redundant Messages: To ensure path
information from the source reach distant nodes,
the number of layers T needs to be sufficiently
large. However, a large T induces the propaga-
tion of redundant messages for those nodes that

https://github.com/HarryShomer/TAGNet
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are close to the source node. Intuitively, short
paths contain more significant information than
long ones (Katz, 1953). The “close” nodes typi-
cally aggregate enough information from shorter
paths in the early propagation layers. Propagating
messages for longer paths in later layers for “close”
nodes does not provide significant information and
needlessly adds to the complexity. More details on
these two observations are provided in Section 3.1.

To address these limitations and make the prop-
agation process more efficient, we aim to de-
velop an algorithm that limits the propagation of
“empty” and “redundant” messages. In particular,
we propose a new method TAGNet - TruncAted
propaGation Network. TAGNet only aggregates
paths in a fixed window for each source-target pair,
which can be considered a form of path pruning.
Our contributions can be summarized as follows:

• We propose a new path-based GNN, TAGNet,
which customizes the amount of path-pruning
for each source-target node pair.

• We demonstrate that the complexity of TAG-
Net is independent of the number of layers,
allowing for efficient deep propagation.

• Extensive experiments demonstrate that TAG-
Net reduces the number of aggregated mes-
sages by up to 90% while matching or even
slightly outperforming NBFNet on multiple
KG benchmarks.

2 Preliminary

In this section, we first introduce the notation used
throughout the paper. We then introduce the path
formulation from Zhu et al. (2021), the general-
ized Bellman-Ford algorithm (Baras and Theodor-
akopoulos, 2010), and NBFNet (Zhu et al., 2021).

2.1 Notations
We denote a KG as G = {V,R, E} with entities V ,
relations R, and edges E . An edge is denoted as
a triple and is of the form (s, q, o) where s is the
subject, q the query relation, and o the object. for
an incomplete fact (s, q, ?). In such a problem, we
refer to the node entity s as the source node and
any possible answer ? as the target node. Lastly,
we denote the shortest path distance between nodes
s and o as dist(s, o). We assume an edge weight of
1 since KGs typically don’t contain edge weights.

2.2 Path Formulation
Zhu et al. (2021) introduce a general path formu-
lation for determining the existence of an edge

(s, q, o). They consider doing so by aggregating
all paths between s and o, conditional on the query
q. We denote the maximum path length as T (in
their paper they set T = ∞), P t

s,o represents all
paths of length t connecting nodes s and o, and
wq(ei) is the representation of an edge ei condi-
tional on the relation q. The representation of an
edge (s, q, o) is given by hq(s, o):

hq(s, o) =
T⊕
t=1

⊕
p∈P t

s,o

|p|⊗
i=1

wq(ei). (1)

(Zhu et al., 2021) show that this formulation can
capture many existing graph algorithms including
the Katz index (Katz, 1953), Personalized PageR-
ank (Page et al., 1999) and others.

2.3 Generalized Bellman-Ford

Due to the exponential relationship between path
length and the number of paths, calculating Eq. (1)
for large T is unfeasible. As such, Zhu et al.
(2021) instead model Eq. (1) via the general-
ized Bellman-Ford algorithm (Baras and Theodor-
akopoulos, 2010) which recursively computes such
path information in a more efficient manner. It is
formulated as:

h(0)
q (s, o) = 1q(s = o), (2)

h(t)
q (s, o) =

( ⊕
(x,r,o)∈E(o)

h(t−1)
q (s, x)⊗wq(x, r, o)

)
⊕ h(0)

q (s, o), (3)

where E(o) represents all edges with o as the object
entity, i.e., (∗, ∗, o). Zhu et al. (2021) prove that T
iterations of the generalized Bellman-Ford is equal
to Eq. (1) with a max path length of T .

2.4 NBFNet

Zhu et al. (2021) extend Eq. (2) via the inclusion
of learnable parameters. wq(x, r, o) is replaced
with a learnable embedding wq(r) for each relation
r. A linear transformation is further included in
the aggregation. It is formulated as the following
where for convenience we set h(t)

q (s, o) = h
(t)
o and

wq(x, r, o) = wq(r):

h(0)
o = INDICATOR(u, v, q),

h(t)
o = AGG

({
MSG(h(t−1)

x ,wq(r)) |

(x, r, o) ∈ E(o)
}
∪ {h(0)

o }
)
.

(4)



(a) Example of propagating for three iterations with δ=1. (b) Update status of nodes when δ=1.

Figure 1: Example of our algorithm when δ = 1. We note that an undirected blue edge indicates that both nodes
aggregate each other. A directed edge indicates that only the head node aggregates the tail node. E.g., at iteration 2
node 2 aggregates node 1, however node 1 doesn’t aggregate node 2.

The representation of the source node h
(0)
s is ini-

tialized to a learnt embedding, qr, corresponding
to the query relation r. For all other nodes (o ̸= s),
they learn a separate initial embedding. However
in practice they simply initialize the other nodes
to the 0 vector. For the AGG function they con-
sider the sum, max, min and PNA operations. For
the MSG function they consider the TransE (Bor-
des et al., 2013), DistMult (Yang et al., 2015), and
RotatE (Sun et al., 2019) operators. The final rep-
resentation is passed to a score function f which is
modeled via an MLP.

3 The Proposed Framework

In this section, we propose a new approach to im-
prove the efficiency of path-based GNN models.
Inspired by two observations in Section 3.1, we pro-
posed a simple but effective distance-based pruning
strategy. We then introduce a truncated version
of the generalized Bellman-Ford algorithm that
achieves the goal of our proposed pruning strat-
egy. Finally, we describe a neural network model
based on the truncated Bellman-Ford.

3.1 Motivation
In this subsection, we discuss the motivation behind
our framework design. In particular, we suggest
that the inefficiency of path-based GNNs is mainly
due to two observations: (1) the aggregation of
many empty messages and (2) the proliferation of
redundant messages when the number of layers is
large. Next, we detail our observations and how
they inspire us to design a more efficient method.

Observation #1: Empty Messages. Most path-
based GNNs aggregate empty messages that do
not contain any path information. This has the ef-
fect of increasing the model complexity without

any obvious benefit. We provide an illustrative
example. In Figure 1a, during the first iteration,
node 7 will try to aggregate path information from
node 6. However, all node representations, out-
side of the source, are initialized to zero ("empty
messages"). Hence, a non-informative “empty mes-
sage” will be passed to node 7 from node 6. In
fact, in the first iteration, only the 1-hop neigh-
bors of the source aggregate non-empty messages
which contains information on paths with length 1.
Only after two iterations will node 6 contain path
information from the source. Therefore aggregat-
ing any messages before the third iteration will not
lead to any path information for node 7. However,
both NBFNet (Zhu et al., 2021) and A∗Net (Zhu
et al., 2022) will aggregate such messages, leading
to increased complexity without any gain in addi-
tional path information. This observation suggests
that a node o of distance dist(s, o) from the source
can only aggregate path information from iteration
t = dist(s, o) onwards.

Observation #2: Redundant Messages. Due to
their design, path-based GNNs with T layers can
only learn representations for nodes within T hops
of the source node. However, since the time com-
plexity of all existing methods is proportional to
the number of layers, learning representations for
nodes far from the source (i.e., distant nodes) can
be very inefficient. In particular, as we discussed in
Section 1, this mainly afflicts target nodes closer
to the source. Again, we utilize Figure 1a for il-
lustration. In the first two iterations the node 4
aggregates two paths including (source, 4) and
(source, 3, 4). These paths provide significant infor-
mation between the source and 4. Comparatively,
in the 6-th iteration node 4 aggregates paths2 of

2Strictly, these walks are not paths, as they contain re-



length 6, which reach further nodes and return to
node 4. Since these paths already contain informa-
tion present in shorter paths, little information is
gained by aggregating them. Our empirical study
in Section 4.3 also verifies that aggregating paths
of longer length relative to the target node have
little to no positive effect on performance.

These two observations suggest that the effi-
ciency of path-based GNN methods is low when
there are nodes of diverse distances to the source.
We verify this by analyzing the distance distribu-
tion for all test samples on the WN18RR (Dettmers
et al., 2018) dataset. For each sample we calcu-
late the shortest path distance between both nodes
and plot the distribution of the distances over all
samples. The results are shown in Figure 2. We
note that around 25% of samples have a shortest
distance ≥ 5. To aggregate information for these
distant nodes, it is necessary to set T to ≥ 5. In
this case, nodes of larger distance will propagate
empty messages for the first few iterations (Obser-
vation 1). Furthermore, about 35% of the samples
have a shortest distance of 1. Such samples will
aggregate redundant messages after a few iterations
(Observation 2).

Our Design Goal: The key to improving the ef-
ficiency of path-based GNNs is to modify their
aggregation scheme. In particular, based on the
aggregation scheme of path-based GNNs, all target
nodes are aggregating paths with lengths ranging
from 1 to T . Such paths contain many empty and
redundant messages. To reduce the aggregation
of those non-informative messages, we propose to
customize the aggregations for each target node.
Specifically, for close nodes, we do not aggregate
long paths as they are redundant. For distant nodes,
we do not aggregate short paths as they are empty.
As such, we customize the aggregation process for
each target node according to its distance from the
source. Based on this intuition, we reformulate the
path formulation, Eq. (1), as follows.

xq(s, o) =

dist(s,o)+δ⊕
t=dist(s,o)

⊕
p∈P t

s,o

|p|⊗
i=1

w(ei), (5)

where δ ≥ 0 is an offset. The parameter δ can be
considered as a form of path pruning as it controls
the paths we aggregate relative to the shortest path

peated nodes and edges. In this paper, we follow the con-
vention of the path-based GNN papers to loosely call them
paths.

Figure 2: Test Distance Distribution for WN18RR

distance. For example, when δ = 0, it only ag-
gregates those paths of the shortest distance for all
node pairs. Empirical observations in Section 4.3
validate our use of pruning based on an offset δ.

Due to the high complexity of Eq. (5), it is not
practical to directly calculate it. Hence, based on
the generalized Bellman-Ford algorithm (Baras and
Theodorakopoulos, 2010), we propose a truncated
version of the Bellman-Ford algorithm for calculat-
ing Eq. (5) in a more efficient fashion.

3.2 Truncated Bellman-Ford
From our design goal, we are interested in captur-
ing all paths of length dist(s, o) ≤ l ≤ dist(s, o) +
δ. To achieve this goal, for node o, we begin ag-
gregating at iteration t = dist(s, o) and stop ag-
gregation after iteration t = dist(s, o) + δ. This
helps avoid aggregating empty messages before
dist(s, o)-th iteration and redundant messages after
dist(s, o) + δ iterations. However, during the itera-
tions between dist(s, o) and dist(s, o)+δ, there are
still potential empty messages. For example, any
node v with the shortest distance to source larger
than dist(s, o)+δ always contains empty messages
during these iterations. Hence, to further avoid ag-
gregating empty messages, we only allow aggrega-
tion from a subset of the neighboring nodes of o.
More formally, we formulate the above intuition
into the following constrained edge set C(s, o, t)
through which node o aggregates information at
iteration t.

C(s, o, t) =


∅, if t < dist(s, o) or

t > dist(s, o) + δ

{(v, r, o) ∈ E(o) |
dist(s, v) < dist(s, o) + δ}, else

(6)

Based on this constraint set of edges for node o,
we update the generalized Bellman-Ford algorithm



(Eq. 2) as follows where C = C(s, o, t):

x(t)
q (s, o) =

( ⊕
(v,r,o)∈C

x(t−1)
q (s, v)⊗wq(v, r, o)

)
⊕ x(0)

q (s, o). (7)

The following theorem shows that the aggregation
scheme proposed in Eq. (7) results in aggregation
of the correct paths as described in Eq. (5).

Theorem 1. Given a source node s, query q, and
target node o, the final representation, xF

q (s, o)
only aggregates all path representations whose
path length is between dist(s, o) and dist(s, o) + δ
for all o ∈ V . It therefore contains all information
present in Eq. (5) such that,

xF
q (s, o) =

dist(s,o)+δ⊕
t=dist(s,o)

⊕
p∈P t

s,o

|p|⊗
i=1

w(ei). (8)

The detailed proof of Theorem 1 is provided
in Appendix A. This design has the following
advantages. (1) We don’t begin aggregating
messages until layer t = dist(s, o). This helps
avoid the aggregation of many empty messages for
nodes far from the source. (2) We stop aggregating
messages at layer t = dist(s, o) + δ. This ensures
that for close nodes we don’t aggregate many
redundant messages. Furthermore, it ensures that
we will always aggregate paths of δ + 1 different
lengths for all target nodes regardless of their
distance from the source. (3) In Section B.2, we
demonstrate that the complexity of this design is
independent of the number of layers, allowing for
deep propagation.

An Illustrative Example. We given an ex-
ample of the effect of constraints on propagation
in Figure 1 where s = source. Figure 1a shows
the involved nodes and edges over three iterations
when δ = 1. We observe that only a portion
of the nodes and edges are involved at any one
iteration. For example, at iteration 1 only the
1-hop neighbors and the edges connecting them
to the source are involved. This is because they
are the only nodes and edges able to receive any
path information at that stage. Figure 1b details the
update status of nodes by distance from the source
node. We note how as the iteration increases
the number of nodes updated shift to the right in
groups of two. Furthermore since we only iterate
for three iterations, the 4+ hop neighbors never

update as there is no available path information for
them until iteration 4.

3.3 Degree Messages
An effect of pruning paths, especially with low δ,
is that it can lead to very few messages being aggre-
gated. This is especially true for smaller or sparser
graphs. One consequence of few messages being
aggregated is that it can make it difficult for a node
to discern the properties of its neighborhood (e.g.
degree). We give an example of node 4 in Figure 1.
For each of the first 2 iterations, it only aggregates
messages from 2/4 of it’s neighbors. As such, it
never aggregates messages from all its neighbors
at the same iteration. This can lead to a failure of
node 4 to properly discern it’s degree, as the num-
ber of non-empty messages in each iteration is only
a portion of the overall degree. Since the degree
is known to be an important factor in link predic-
tion (Newman, 2001; Adamic and Adar, 2003),
we want to preserve the degree information for all
nodes.

In order to preserve the degree information for
each node, we consider encoding the degree via the
use of pseudo messages. Specifically, we want to
add enough messages such that the total number
of messages aggregated for a node o is equivalent
to its degree. We refer to such messages as degree
messages. Going back to our example in Figure 1,
for node 4 at iteration 1 and 2 we would add 2 de-
gree messages so that the total number of messages
is 4. Formally, we denote the degree of a node o as
bo. The number of messages to add at iteration t is
given by ρo = bo − |C(s, o, t)|.

For the value of the messages, we learn a sep-
arate embedding denoted as x(t)

deg that is the same
across all nodes. Since the value of each message
is the same we can avoid explicitly aggregating
each degree message individually. Instead, we just
aggregate one message that is equal to the num-
ber of degree messages multiplied by the degree
embedding,

x
(t)
deg(s, o) = ρo · x(t)

deg, (9)

where x(t)
deg(s, o) is the value of the degree message

for node o at iteration t. This edge is then added
to the set of messages to be aggregated, C(s, o, t).
Since this is equivalent to computing and aggregat-
ing only one edge, it has no effect on the model
complexity. Experimental results in Section 4.4
validate the effectiveness of degree messages.



3.4 GNN Formulation

We follow similar conventions to NBFNet when
converting Eq. (6) and Eq. (7) to a GNN. We denote
the embedding of a source node s and arbitrary
target node o as xq(s, o). We further represent the
indicator query embeddings as xq and the layer-
wise relation embeddings as x(t)

r .
We utilize the INDICATOR function described

in Section 2.4, PNA (Corso et al., 2020) for the
AGGREGATE function, and DistMult (Yang et al.,
2015) for the MSG function. The probability of
a link existing between a source-target pair is de-
termined via a score function f . Both the final
representation of the pair and the query embedding
are given as input. The output of f is then passed
to a sigmoid to produce a probability,

p(s, o) = σ
(
f
(
xF
q(s, o), xq

))
, (10)

where xF
q(s, o) is the final pair representation. The

full algorithm is detailed in Appendix B.1. We
run a total of T layers. We further show in in
Appendix B.2 that time complexity is independent
of the number of layers. This enables TAGNet to
propagate for more layers than existing path-based
GNNs.

Furthermore, due to its general design, TAGNet
can also be integrated with other efficiency-minded
methods like A∗Net. This is described in more
detail in Appendix B.3. Extensive experiments in
Sections 4.1 and 4.2 also demonstrate that com-
bining both methods can significantly reduce the
number of messages propagated by A∗Net without
sacrificing performance.

3.5 Target-Specific δ

A drawback of our current design is that we as-
sume a single offset δ for all possible node pairs.
However, for some pairs we may want to consider
propagating more or less iterations. For example,
in Figure 1 we may only want to consider δ = 0
for the target node 2 due to the limited number of
paths connecting it to the source. However for node
4, which is concentrated in a denser portion of the
subgraph, we may want to consider a higher value
of δ such as 1 or 2 to capture more path information.
We next detail our method for achieving this.

3.5.1 Target-Specific δ via Attention
A target-specific δ can be attained by realizing the
connection between the hidden representations and

the value of δ. Let’s denote the value of the hy-
perparameter δ as δ̂. For a source-target node
pair (s, o), we only aggregate paths from length
dist(s, o) to dist(s, o)+δ̂. At iteration t = dist(s, o)
we aggregate paths of length dist(s, o) and at iter-
ation t = dist(s, o) + 1 only those paths of length
dist(s, o) + 1, and so on until t = dist(s, o) + δ̂.
The set of hidden representations for a node pair
is as follows where for convenience we represent
xq(s, o) as x(s,o):

Hiddens(s, o) =
[
x

dist(s,o)
(s,o) , · · · ,x(dist(s,o)+δ̂)

(s,o)

]
.

(11)
The first hidden representation only contains paths
of shortest length and therefore corresponds to
δ = 0. Since the paths accumulate over hidden
representations via a self-loop, x(dist(s,o)+1)

(s,o) con-
tains all paths of length dist(s, o) and dist(s, o)+1,
corresponding to δ = 1. As such, the final hidden
representation is equivalent to δ = δ̂. Therefore,
choosing a target-specific δ is achieved by select-
ing one of the hidden representations as the final
representation.

We utilize attention to determine which value of
δ is best for a specific target node. This is formu-
lated as the following:

xF
(s,o) =

δ̂∑
δ=0

αδ
(s,o)x

(dist(s,o)+δ)
(s,o) , (12)

where αδ
(s,o) is the corresponding attention weight

for the hidden representation x
(dist(s,o)+δ)
(s,o) . For

each possible value of δ, αδ
(s,o) is given by:

α̃δ
(s,o) = g

(
x
(dist(s,o)+δ)
(s,o) ,xq

)
αδ
(s,o) = Softmax(α̃δ

(s,o)).

We model g as an MLP that takes both the hidden
representation and the query embedding as input.
Taking inspiration from A∗Net (Zhu et al., 2022),
we conjecture that a well-learned score function
can help determine which representations are better
than others. As such, we further consider modeling
g as its own function or having it share parameters
with the score function f , Eq. (10). Lastly, we
show in Appendix B.2 that the time complexity is
unchanged when using a target-specific δ.

4 Experiment

In this section, we evaluate the effectiveness of our
proposed framework on KGC under both the trans-



Table 1: Transductive Results. Best results are in bold and the 2nd best underlined.

Method Type Method FB15k-237 WN18RR
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

Embeddings

TransE 0.294 - 0.465 0.226 - 0.501
DistMult 0.241 0.155 0.419 0.43 0.39 0.49
ComplEx 0.247 0.158 0.428 0.44 0.41 0.51

GNNs R-GCN 0.273 0.182 0.456 0.402 0.345 0.494
CompGCN 0.355 0.264 0.535 0.479 0.443 0.546

Path-Based

DRUM 0.343 0.255 0.516 0.486 0.425 0.586
RED-GNN 0.374 0.283 0.558 0.533 0.485 0.624
AdaProp 0.392 0.309 0.555 0.553 0.502 0.652
NBFNet 0.415 0.321 0.599 0.551 0.497 0.666
A∗Net 0.414 0.324 0.592 0.547 0.490 0.658

TAGNet
+ A∗Net 0.409 0.323 0.577 0.555 0.502 0.657
Fixed δ 0.421 0.328 0.602 0.562 0.509 0.667
Specific δ 0.417 0.328 0.592 0.565 0.513 0.667

Table 2: Inductive Results (evaluated with Hits@10). Ours results are averaged over 5 runs

Method FB15k-237 WN18RR
v1 v2 v3 v4 v1 v2 v3 v4

NeuralLP 0.468 0.586 0.571 0.593 0.772 0.749 0.476 0.706
DRUM 0.474 0.595 0.571 0.593 0.777 0.747 0.477 0.702
GraIL 0.429 0.424 0.424 0.389 0.760 0.776 0.409 0.687
RED-GNN 0.483 0.629 0.603 0.621 0.799 0.780 0.524 0.721
AdaProp 0.470 0.651 0.620 0.614 0.798 0.836 0.582 0.732
NBFNet 0.607 0.704 0.667 0.668 0.826 0.798 0.568 0.694
A∗Net 0.535 0.638 0.610 0.630 0.810 0.803 0.544 0.743

TAGNet + A∗Net 0.541 0.646 0.604 0.623 0.813 0.805 0.535 0.745
TAGNet (fixed δ) 0.596 0.700 0.677 0.666 0.816 0.796 0.534 0.734
TAGNet (specific δ) 0.596 0.698 0.675 0.661 0.818 0.803 0.544 0.737

ductive and inductive settings. We also empirically
analyze the efficiency and conduct ablation studies
on each component. The experimental details are
listed in Appendix C. We note that for a fair com-
parison between path-based GNNs, we run each
model using 6 layers and a hidden dimension of 32
as is done in both (Zhu et al., 2021) and (Zhu et al.,
2022). Please see Appendix C.2 for more details.

4.1 Effectiveness of TAGNet

In this subsection, we present the results of TAGNet
compared with baselines on both transductive and
inductive settings. We further detail the results
when combining TAGNet with A∗Net.

Transductive Setting: The results on the trans-
ductive setting are shown in Table 1. We observe
that TAGNet achieves strong performance with
just a fixed δ. In particular, it outperforms A∗Net
and AdaProp on most metrics. Also compared to
NBFnet, which doesn’t utilize pruning, TAGNet
achieves comparable or even stronger performance.
This indicates that the proposed pruning strategy

mostly reduces redundant aggregations that do not
impair the models effectiveness.

Inductive Setting: Table 2 shows the results on the
inductive setting. TAGNet achieves strong perfor-
mance on both datasets. In particular, it achieves
comparable performance to the non-pruning ver-
sion of NBFNet. Furthermore, TAGNet signif-
icantly outperforms A∗Net and AdaProp on the
FB15k-237 splits, demonstrating the advantage of
the proposed pruning strategy.

TAGNet + A∗Net: We further test combining the
pruning strategy of both TAGNet and A∗Net to-
gether (see Appendix B.3 for more details). Com-
pared to A∗Net, we observe that TAGNet+A∗Net
achieves comparable if not better performance un-
der all settings despite aggregating much fewer
messages (see subsection 4.2). This suggests that
the pruning strategy in A∗Net fails to prune many
irrelevant paths, allowing TAGNet to work comple-
mentary to it.



4.2 Efficiency of TAGNet

In this subsection, we empirically evaluate the effi-
ciency of our model against NBFNet. Specifically,
we compare the mean number of messages aggre-
gated per sample during training.

Figure 3 shows the % decrease in the number
of messages of TAGNet as compared to NBFNet.
All models are fit with 6 layers. We observe
two trends. The first is that both FB15k-237
datasets follow a similar relationship that is close
to what’s expected of the worst-case complexity
detailed in Appendix B.2. On the other hand, the
WN18RR datasets pass much fewer messages as
they hover above 90% for all δ. This is likely be-
cause WN18RR is a very sparse graph. This gives
TAGNet plenty of opportunities to prune paths.

Figure 3: % Decrease in NBFNet Messages

We further compare the efficiency of just A∗Net
and A∗Net + TAGNet. As before, we calculate the
total number of messages passed for both methods.
We fix δ = 2. Table 3 show the % decrease in
the number of messages when utilizing both tech-
niques compared to just A∗Net. We observe a large
reduction in both the inductive and transductive set-
ting. Since the performance of A∗Net + TAGNet
is on par with just A*Net, it suggests that A*Net
fails to prune many unneeded messages that do not
improve performance. Furthermore, we find that
the reduction in the number of messages becomes
more pronounced with more layers, suggesting that
TAGNet is even more useful when deep propaga-
tion is necessary.

4.3 Effect of δ

In this subsection, we evaluate the effect of the off-
set δ on TAGNet test performance (w/o the target-
specific setting). We fix the number of layers at 6
and vary δ from 0 to 5. We report results for both
the transductive and inductive settings in Figures 4
and 5, respectively. For the inductive setting, we

Table 3: % Decrease in # Msgs for A∗Net vs. A∗Net +
TAGNet

Dataset 6 Layers 7 Layers 8 Layers

FB15k-237 39% 51% 59%
FB15k-237 v1 30% 44% 66%
WN18RR 10% 17% 26%
WN18RR v1 25% 37% 46%

chose version v1 of both datasets as the represen-
tative datasets. For both transductive datasets, we
find that the performance plateaus at δ = 2. A
similar trend is observed for FB15k-237 v1. Inter-
estingly, for WN18RR v1,the performance is con-
stant when varying δ. This suggests that for some
datasets almost all of the important information is
concentrated in paths of the shortest length.

Figure 4: Performance varying δ on Transductive set-
ting.

Figure 5: Performance varying δ on Inductive setting.

4.4 Effect of Degree Messages

We demonstrate the effect of the degree messages
described in Section 3.3. Table 4 shows the per-
formance of TAGNet when trained with and with-
out degree messages. We report the performance
on all of the inductive splits for both FB15k-237
and WN18RR. Interestingly, we observe that while
there is a consistent gain on FB15k-237, it often



hurts performance on WN18RR. This may imply
that preserving the degree information of each node
is more important on FB15k-237 than WN18RR.

Table 4: Effect of Degree Messages on Inductive Splits

Dataset Split w/o Msgs with Msgs

FB15k-237

V1 0.594 0.596
V2 0.684 0.698
V3 0.653 0.675
V4 0.648 0.661

WN18RR

V1 0.815 0.818
V2 0.803 0.781
V3 0.544 0.465
V4 0.737 0.718

5 Related Work

We give a brief overview of different types of
KGC methods. (1) Embedding-Based Meth-
ods: Such methods are concerned with modeling
the interactions of entity and relation embeddings.
TransE (Bordes et al., 2013) models each fact as
translation in the embedding space while Dist-
Mult (Yang et al., 2015) scores each fact via a bilin-
ear diagonal function. ComplEx (Trouillon et al.,
2016) extends DistMult by further modeling the
embeddings in the complex space. Lastly, Node-
piece (Galkin et al., 2021) attempts to improve the
efficiency of embedding-based KGC methods by
representing each entity embedding as a combina-
tion of a smaller set of subword embeddings. Since
this method concerns embedding-based techniques,
it is orthogonal to our work. (2) GNN-Based
Methods: GNN methods extend traditional GNNs
by further considering the relational information.
CompGCN (Vashishth et al., 2019) encodes each
message as a combination of neighboring entity-
relation pairs via the use of compositional function.
RGCN (Schlichtkrull et al., 2018) instead consid-
ers a relation-specific transformation matrix to in-
tegrate the relation information. (3) Path-Based
Methods: Path-based methods attempt to lever-
age the path information connecting two entities to
perform KGC. NeuralLP (Yang et al., 2017) and
DRUM (Sadeghian et al., 2019) learn to weight
different paths by utilizing logical rules. More re-
cently, NBFNet (Zhu et al., 2021) considers path
information by learning a parameterized version of
the Bellman-Ford algorithm. A similar framework,
RED-GNN (Zhang and Yao, 2022) also attempts
to take advantage of dynamic programming to ag-
gregate path information. Both A∗Net (Zhu et al.,

2022) and AdaProp (Zhang et al., 2023) attempt to
prove upon the efficiency of the previous methods
by learning which nodes to propagate to.

6 Conclusion

In this paper we identify two intrinsic limitations
of path-based GNNs that affect the efficiency and
representation quality. We tackle these issues by
introducing a new method, TAGNet, which is able
to efficiently propagate path information. This is
realized by only aggregating paths in a fixed win-
dow for each source-target pair. We demonstrate
that the complexity of TAGNet is independent of
the number of layers. For future work, we plan
on exploring methods to capture path information
without having to perform a separate round of prop-
agation for every individual source node.

Limitations

Our work has a couple of limitations. One is that
it our study is limited to only knowledge graph
completion. This excludes non-relational link pre-
diction tasks. Future work can ascertain the effec-
tiveness of TAGNet on other types of link predic-
tion. Second, all path-based GNNs still require to
propagate from each source-relation pair individu-
ally. This can pose a significant bottleneck when
many samples need to be tested. We plan on explor-
ing methods to capture path information without
having to propagate for each individual pair.
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A Proof Details of Theorem 1

We prove Theorem 1 via induction on the path length l. We denote all nodes a distance l from the source
node s as V l

s . The path length offset is represented by δ. Lastly, for convenience we split the constraints
in Eq. (6) into two: a node constraint and an edge constraint. We formulate it as the following where
Nodeδ(s, o, t) represents the node constraint and EdgeCδ(s, o, u) the edge constraint:

Nodeδ(s, o, t) = t− δ ≤ dist(s, o) ≤ t, (13)

EdgeCδ(s, o, u) = dist(s, u) < dist(s, o) + δ (14)

Base Case (l=1): We want to show for all l = 1 hop neighbors of s, o ∈ V 1
s , their final representation

xFq (s, o) aggregates all path representations in the range [0, 1 + δ]. To be true, the embedding xFq (s, o)
must satisfy two conditions:

1. Condition 1: The final embedding xFq (s, o), contains all paths representations of length less than or
equal to 1 + δ between s and o.

2. Condition 2: The final embedding xFq (s, o) contains no other path information.

Condition 1: For it to be true, a node o ∈ V 1
s must aggregate all edges of the form (u, r, o) where u

belongs to the set:
U (0,δ)
s,o = {u | (u, r, o) ∈ Eo, u ∈ {V 0

s , V
1
s , · · · , V δ

s }}, (15)

where Eo represents all edges where o is the target node. It’s intuitive that all paths starting at s of length
∈ [0, δ + 1] must pass through the nodes in the set U (0,δ)

s,o in order to reach o. We prove in Theorem 2 that
o will aggregate all nodes in the set U (0,δ)

s,o .

Condition 2: We want to demonstrate that the representation of node o aggregates no other path
information such that x(δ+1)

q (s, o) = xFq (s, o). This is true as per the node constraint (Eq. (13)) the
representation of a node o stops updating after iteration k = 1 + δ.

Inductive Step: We assume that for all m-hop neighbors of s, o ∈ V m
s , their final representa-

tion xFq (s, o) aggregates all path representations of length between [m,m + δ]. This is achieved by a
node o aggregating all edges (u, r, o) where u belongs to the set:

U (m−1,m−1+δ)
s,o = {u | (u, r, o) ∈ Eo, u ∈ {V m−1

s , · · · , V m−1+δ
s }}, (16)

as all such paths must pass through these nodes. We note that this implies that:

• The set of nodes U (m−1,m−1+δ)
s,o must themselves only contain all path representations of lengths

[m− 1,m− 1 + δ] when aggregated by o ∈ V m
s .

• The set of nodes U (m−1,m−1+δ)
s,o must obtain such path information by iteration k = m− 1+ δ. This

must be true as per the node constraint o will last update at iteration k = m+ δ.

We now want to show for all (m+ 1) hop neighbors of s, o ∈ V m+1
s , their final representation xFq (s, o)

aggregates all path representations of of length between [m+ 1,m+ 1 + δ]. This requires showing that
xFq (s, o) (1) contains all paths representations between [m + 1,m + 1 + δ] between s and o and (2) it
contains no other path information.

Condition 1: For o ∈ V m+1
s to aggregate all paths of length between m + 1 and m + 1 + δ,

their representation must aggregate all edges (u, r, o) where u belongs to the set:

U (m,m+δ)
s,o = {u | (u, r, o) ∈ Eo, u ∈ {V m

s , · · · , V m+δ
s }}. (17)

Such edges are aggregated by o ∈ V m+1
s via the edge constraint. Furthermore,



• From the inductive step we know that nodes U
(m−1,m−1+δ)
s,o = U

(m,m+δ)
s,v \ V m+δ

s have already
aggregated all path representations of lengths [m− 1,m− 1 + δ] by iteration k = m+ δ.

• From both constraints we know that ∀u ∈ V m+δ
s will only contain all path representations of length

m+ δ (i.e. shortest path) by iteration k = m+ δ.

As such, after aggregating the nodes in the set U
(m,m+δ)
s,o the representation x

(m+δ)
q (s, u) will

contain all paths representations between m and m + δ. Per the node constraint, ∀o ∈ V m+1
s last

update at iteration k = m + 1 + δ. Therefore by aggregating U
(m,m+δ)
s,o at iteration k = m + 1 + δ,

the representation x
(m+1+δ)
q (s, o) will contain all path representations between length m+1 and m+1+δ.

Condition 2: Lastly, we want to show that ∀o ∈ V m+1
s the final representation xFq (s, o) will

only contain path representations of length m + 1 to m + 1 + δ. This is true as per the node
constraint the representation of a node o ∈ V m+1

s last updates at iteration k = m + 1 + δ. Therefore
x
(m+1+δ)
q (s, o) = xFq (s, o). As such, the final representation only aggregates paths of length between

m+ 1 and m+ 1 + δ.

Theorem 2. We are given a source node s, query q, and target node o which is a 1-hop neighbor of s. The
final representation of a 1-hop neighbor o, xF

q (s, o), will at minimum aggregate all path representations
whose path length is between 1 and 1 + δ. It therefore at least contains the path information,

η =
1+δ⊕
l=1

⊕
p∈P l

s,o

|p|⊗
i=1

w(ei). (18)

This is equivalent to stating that o will aggregate all nodes in the following set by iteration k = 1 + δ,

U (0,δ)
s,o = {u | (u, r, o) ∈ Eo, u ∈ {V 0

s , V
1
s , · · · , V δ

s }}. (19)

We prove this Theorem via induction on the layer iteration k in our algorithm 1 (denoted their as l).

Base Case (k=1): We want to first show that after one iteration, the representation of a 1-hop
neighbor x1q(s, o) aggregates all paths of length 1 from the source. This is achieved by x1q(s, o)
aggregating all edges connecting o to s, i.e. (s, r, o). Such edges are aggregated by o as both the edge and
node constraints are satisfied:

EdgeCδ(s, o, s) = 0 < 1 + δ, (20)

NodeCδ(s, o, 1) = 1− δ ≤ 1 ≤ 1. (21)

Inductive Step: We assume that at some iteration k = n, s.t. n < 1 + δ, the representation xnq (s, o)
for o ∈ V 1

s aggregates all path representations up to a length n from the source. This is achieved by
aggregating all edges that contain nodes in the set:

U (0,n−1)
s,o = {u | (u, r, o) ∈ Eo, u ∈ {V 0

s , V
1
s , · · · , V n−1

s }}. (22)

Since we assume that xnq (s, o) contains all path representations up to length n, then it follows that

∀u ∈ U
(0,n−1)
s,o their corresponding representation xnq (s, o) must also contain all paths up to length n− 1.

As such, by node o aggregating U
(0,n−1)
s,o it extend the length of each path by 1.

We want to prove that at iteration k = n + 1, the representation x
(n+1)
q (s, o) aggregates all

path representations up to a length n+ 1 from the source. This is achieved by aggregating all edges that
contain the nodes in the set:

U (0,n)
s,o = {u | (u, r, o) ∈ Eo, u ∈ {V 0

s , V
1
s , · · · , V n

s }}. (23)



Algorithm 1 TAGNet Algorithm (fixed δ)
Require:

s = Source node
q = Query relation
T = Max Number of Layers
x = Embeddings
δ = Offset
Agg-Degree = Whether to include degree msgs

1: Initialize:
x
(0)

(s,o) = 0, ∀o ∈ V
x
(0)

(s,o) = xq

2: for t = 1...T do
3: for o ∈ V do
4: if t− δ ≤ dist(s, o) ≤ t then
5: C(s, o, t) = {(u, r, o) ∈ E(o) | dist(s, u) < dist(s, o) + δ}
6: Msgs = {x(t−1)

(s,u) ⊙ x
(t)
r | (u, r, o) ∈ C(s, o, t)}

7: if Agg-Degree then
8: ρo = bo − |Msgs|
9: Msgs = Msgs ∪

{
ρv · x(t)

deg

}
10: end if
11: x

(t)

(s,o) = Aggregate{ Msgs }
12: end if
13: end for
14: end for
15: return x

(dist(s,o)+δ)

(s,o) for all o ∈ V

Per the previous inductive step, we assumed that the representations xnq (s, o) ∀o ∈ V n
s contain all path

representations up to length n. Furthermore we noted that at iteration k = n, the representations for
each node in the set U (0,n−1)

s,o must also contain all path representations up to a length n − 1. Since
U

(0,n)
s,o = U

(0,n−1)
s,o ∪ V n

s , this implies that U (0,n)
s,o contain all path representations up to length n. Thereby

when x
(n+1)
q (s, o) aggregates the nodes in U

(0,n)
s,o it aggregates all path representations up to a length

n+ 1. A node o ∈ V 1
s will aggregate such nodes at iteration k = n+ 1 per both constraints.

This proves by induction that for o ∈ V 1
s , their representation x

(1+δ)
q (s, o) aggregates all path represen-

tations of length less than or equal to 1 + δ.

B Further Details on TAGNet

B.1 TAGNet Algorithm

The algorithm for TAGNet, with a fixed δ, is presented in Algorithm 1.

B.2 Time Complexity Analysis

Per the constraints in Eq. (6), each node can be updated at most δ + 1 times and each edge can be
aggregated at most δ + 1 times. The shortest path distance from a source node s to all other nodes can be
calculated in linear time via a breadth-first search. The worst-case complexity for the standard version of
TAGNet is therefore:

O
(
(δ + 1) ·

(
|V |d2 + |E|d

))
. (24)

Of note is that the worst case-complexity is independent of the number of layers. This allows for much
deeper propagation.

We further discuss the complexity when utilizing degree messages and a target-specific δ. As noted
in Section 3.3, the inclusion of degree messages is equivalent to aggregating an additional edge each
iteration. As such, it doesn’t effect the model complexity. Furthermore, when utilizing a target-specific
δ, an additional (δ + 1) · d2 operations are added to calculate the attention scores. This is equivalent to
updating each one node one additional time and therefore also has no effect on the model complexity.



B.3 TAGNet + A∗Net
We further experiment with combining the pruning strategy of both A∗Net and TAGNet. This is achieved
by taking the intersection of the edge sets produced by both methods for a node pair (s, o) at iteration
t. This is because we only want to aggregate an edge if it is not pruned by both methods. For TAGNet,
the edge set C(s, o, t) is defined as in Eq. (6). We further denote the edge set for A∗Net as A(s, o, t).
Adapting Eq. (7) we arrive at:

x(t)
q (s, o) =

 ⊕
(v,r,o)∈C(s,o,t)∩A(s,o,t)

x(t−1)
q (s, v)⊗wq(v, r, o)

⊕ x(0)
q (s, o). (25)

The performance and efficiency when combining both methods is detailed in Section 4.1 and 4.2, respec-
tively. Lastly, we note that we don’t consider combining with the pruning strategy in AdaProp (Zhang
et al., 2023) due to its strong similarity with that of A∗Net.

C Experimental Settings

C.1 Datasets
We conduct experiments on both the transductive and inductive settings. For the transductive setting, we
consider FB15K-237 (Toutanova and Chen, 2015) and WN18RR (Dettmers et al., 2018). For the inductive
setting, where the train and test entities are disjoint, we consider the splits generated by Teru et al. (2020)
from both FB15K-237 and WN18RR. Four splits are generated from both datasets that vary in size. Of
note is that we omit the NELL-995 (Xiong et al., 2017) dataset from both sets of our experiments. This is
due to concerns raised by Safavi and Koutra (2020), where they argue that most of the triples in NELL-995
are either meaningless or trivial. The statistics for all the transductive and inductive datasets are given in
Tables 5 and 6, respectively.

Table 5: Statistics for Transductive Datasets.

Statistic FB15K-237 WN18RR

#Entities 14,541 40,943
#Relations 237 11
#Train 272,115 86,835
#Validation 17,535 3,034
#Test 20,466 3,134

C.2 Baselines
In the transductive setting, following (Zhu et al., 2021), we consider a variety of different models.
For embedding-based methods we consider TransE (Bordes et al., 2013) (performance from (Nguyen
et al., 2018)), DistMult (Yang et al., 2015), ComlEx (Trouillon et al., 2016). For GNN methods we
include R-GCN (Schlichtkrull et al., 2018) (performance on WN18RR taken from (Zhu et al., 2021))
and CompGCN (Vashishth et al., 2019). For path-based methods we include DRUM (Sadeghian et al.,
2019), NBFNet (Zhu et al., 2021), RED-GNN (Zhang and Yao, 2022), A∗Net (Zhu et al., 2022), and
AdaProp (Zhang et al., 2023). We note that for AdaProp the original results from (Zhang et al., 2023)
utilize 7 and 8 layers for FB15k237 and WN18RR, respectively (see Table 7 in (Zhang et al., 2023)). For
other methods such as TAGNet, NBFNet, and A∗NET, the number of layers is fixed at 6. To facilitate a
fair comparison, we run AdaProp on both datasets using 6 layers. We utilize the official source code 3 and
the published hyperparameters.

For the inductive setting, following (Teru et al., 2020; Zhu et al., 2021), we include GraIL (Teru et al.,
2020), CoMPILE (Mai et al., 2021), and NeuralLP (Yang et al., 2017) in addition to NBFNet and A∗Net.

3https://github.com/LARS-research/AdaProp



Table 6: Statistics for Inductive Datasets.

Dataset #Relations Train Validation Test
#Entities #Query #Fact #Entities #Query #Fact #Entities #Query #Fact

FB15k-237

v1 180 1,594 4,245 4,245 1,594 489 4,245 1,093 205 1,993
v2 200 2,608 9,739 9,739 2,608 1,166 9,739 1,660 478 4,145
v3 215 3,668 17,986 17,986 3,668 2,194 17,986 2,501 865 7,406
v4 219 4,707 27,203 27,203 4,707 3,352 27,203 3,051 1,424 11,714

WN18RR

v1 9 2,746 5,410 5,410 2,746 630 5,410 922 188 1,618
v2 10 6,954 15,262 15,262 6,954 1,838 15,262 2,757 441 4,011
v3 11 12,078 25,901 25,901 12,078 3,097 25,901 5,084 605 6,327
v4 9 3,861 7,940 7,940 3,861 934 7,940 7,084 1,429 12,334

We note that embedding methods aren’t applicable to the inductive setting as the train and test entities are
disjoint. For NBFNet, the results on the inductive FB15k-237 splits are reported by us while the results
for the WN18RR splits are from Zhu et al. (2022). This is because we observed that we can achieve better
performance for NBFNet on the FB15k-237 splits than what was reported in Zhu et al. (2022). Lastly, as
with the transductive setting, we run AdaProp with 6 layers to facilitate a fair comparison between it and
other path-based GNNs. We also set the hidden dimension to 32 as is with all other path-based GNNs.

C.3 Evaluation Metrics
In the transductive setting, we report the mean reciprocal rank (MRR), Hits@1, and Hits@10 following
the filtered setting as described in (Bordes et al., 2013). For the inductive setting, following (Zhang et al.,
2023; Zhu et al., 2022), we only report the Hits@10.

C.4 Hyperparameter Settings
We list the parameters settings for TAGNet. Under the fixed-δ formulation it is trained for 20 and 16
epochs on the transductive and inductive setting, respectively. For the specific-δ formulation, we train for
25 and 20 epochs on the transductive and inductive setting, respectively, as we’ve found it takes longer to
converge. For all transductive and inductive experiments in Table 1 and 2 we set the maximum number of
layers to 6 and the hidden dimension to 32. This is to facilitate a fair comparison with NBFNet and A∗Net.
Furthermore the transductive batch size is fixed at 16. The number of negative samples is tuned from
{128, 512, 1024, 2048}, the dropout from the range [0, 0.7], the learning rate decay from {0.9, 0.95, 1},
the weight decay from [1e-8, 1e-3], and the adversarial temperature from {0.5, 1}. For the target specific
setting we further test on setting g as its own function or as equal to the score function, g = f . We further
tune the softmax temperature for attention from {0.5, 1, 5}. For the inductive setting we further tune the
batch size from {16, 32, 64, 128} and the learning rate from [1e-4, 1e-2]. Lastly, for all experiments, the
offset δ is tuned from {1, 2, 3}.

C.5 Implementation Details
The framework is implemented with PyTorch (Paszke et al., 2019). All experiments were run on a single
32G Tesla V100 GPU. We train TAGNet with the binary cross-entropy loss optimized via the Adam
optimizer (Kingma and Ba, 2014). We follow Yang et al. (2017) and augment the graph by including
reciprocal edges, such that for an edge (h, r, t), its reciprocal edge (t, r−1, h) is included. In this scenario
r−1 is considered a distinct relation from r.

D Additional Analysis on TAGNet

In this section we take a closer look as to what kind of messages are pruned by TAGNet. As noted in
Section 3.1 we strive to limit the number of empty and redundant messages. We first analyze how well
TAGNet can prune both of those messages. We then examine the reason why some datasets may prune
more empty or redundant messages.

We first analyze the number of empty and redundant messages pruned for both transductive datasets.
We report the results in Table 7 as a % of the total number of pruned messages. E.g., For FB15k-237
51% of the total number of pruned messages are empty messages. For simplicity, we limit this study to
the the best versions of each model, i.e. δ = 2 for FB15K-237 and δ = 3 for WN18RR. We find that on



FB15k-237, the messages pruned are split evenly between empty and redundant messages. On the other
hand, for WN18RR over 90% of the messages pruned are empty messages.

Table 7: % of Messages Pruned that are either Empty or Redundant

Dataset % Empty % Redundant

FB15k-237 51% 49%
WN18RR 91% 9%

An obvious question is: Why does the composition of pruned messages differ between datasets? We
believe this can be explained via two properties of each datasets, the density and distance distribution.
We measure the sparsity via the mean degree, which is shown in Table 8. We do this as graphs with a
low mean degree will contain few connections between nodes, resulting in fewer paths between different
nodes and thereby fewer redundant paths. Furthermore, there will be a lower chance of a node visiting
another node already on the path, as most nodes are linked to only a handful of nodes. We further show
the distance distribution of the test samples, i.e., the % of test samples that are a distance k from each
other, in Table 9. This is because when nodes are typically far from each other, the target nodes will
aggregate many empty messages. Using Figure 1a as an example, the source and node 7 are a distance
3 from each other. Because of this, in the first two iterations NBFNet will propagate node 6 to node 7,
even though node 6 contains no information. However, this is less of an issue between nodes of shorter
distances as there fewer iterations needed to reach it. From this, we hypothesize that graphs that feature,
on average, a larger distance between nodes will propagate more empty messages.

Table 8: Mean Degree of Transductive Datasets

Dataset Mean Degree

FB15k-237 18.7
WN18RR 2.1

Table 9: Distance Distribution of Test Samples on the Transductive Datasets

Distance FB15k-237 WN18RR

1 0% 35%
2 73% 9%
3 26% 21%
4 0.2% 7%
5 0.005% 9%

6+ 0% 18%

From the results in Table 8 and 9 we make the following observations: (a) WN18RR is much sparser
than FB15k-237. The higher density of FB15k-237 leads to many more paths and subsequent opportunities
to visit a node already on the path. The opposite is true for WN18RR as since the average degree is
low, few paths exist in the graph. This results in many more redundant paths existing in FB15k-237 as
compared to WN18RR. (b) For FB15k-237, the vast majority of test samples are close to each other.
This leads to less empty messages. However, for WN18RR the distance covers a much wider range. For
example, over 33% of test samples have a distance of 4+ between them. This is only true for 0.205% of
samples on FB15k-237. This helps explain why TAGNet mostly prunes empty messages on WN18RR, as
the larger distance between nodes leads to many messages that contain no information.


