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ABSTRACT

To develop computational agents that better communicates using their own emer-
gent language, we endow the agents with an ability to focus their attention on
particular concepts in the environment. Humans often understand a thing or scene
as a composite of concepts and those concepts are further mapped onto words. We
implement this intuition as attention mechanisms in Speaker and Listener agents
in a referential game and show attention leads to more compositional and inter-
pretable emergent language. We also demonstrate how attention helps us under-
stand the learned communication protocol by investigating the attention weights
associated with each message symbol and the alignment of attention weights be-
tween Speaker and Listener agents. Overall, our results suggest that attention is a
promising mechanism for developing more human-like emergent language.

1 INTRODUCTION

We endow computational agents with an ability to focus their attention on a particular concept in the
environment and communicate using emergent language. Emergent language refers to the commu-
nication protocol based on discrete symbols developed by agents to solve a specific task (Nowak &
Krakauer, 1999; Lazaridou et al., 2017). One important goal in the study of emergent language is
clarifying conditions that lead to more compositional languages. Seeking compositionality provides
insights into the origin of the compositional natures of human language and helps develop efficient
communication protocols in multi-agent systems that are interpretable by humans.

Much recent work studies emergent language with generic deep agents (Lazaridou & Baroni, 2020)
with minimum assumptions on the inductive bias of the model architecture. For example, a typical
speaker agent encodes information into a single fixed-length vector to initialize the hidden state
of a RNN decoder and generate symbols (Lazaridou et al., 2017; Mordatch & Abbeel, 2018; Ren
et al., 2020). Only a few studies have explored some architectural variations (Słowik et al., 2020) to
improve the compositionality of emergent language, and there remains much to be discussed about
the effects of the inductive bias provided by different architectures.

We posit that towards more human-like emergent language we need to explore other modeling
choices that reflect the human cognitive process. In this study, we focus on the attention mecha-
nism. Attention is one of the most successful neural network architectures (Bahdanau et al., 2015;
Xu et al., 2015; Vaswani et al., 2017) that have an analogy in psychology (Lindsay, 2020). The
conceptual core of attention is an adaptive control of limited resources, and we hypothesize that this
creates pressure for learning more compositional emergent languages. Compositionality entails a
whole consisting of subparts. Attention allows the agents to dynamically highlight different sub-
parts of an object when producing/understanding each symbol, which potentially results in clear
associations between the object attributes and symbols.

Another reason to explore the attention mechanism is its interpretability. Emergent language is opti-
mized for task success and the learned communication protocol often results in counter-intuitive and
opaque encoding (Bouchacourt & Baroni, 2018). Several metrics have been proposed to measure
specific characteristics of emergent language (Brighton & Kirby, 2006; Lowe et al., 2019) but these
metrics provide rather a holistic view of emergent language and do not tell us a fine-grained view of
what each symbol is meant for or understood as. Attention weights, on the other hand, have been
shown to provide insights into the basis of the network’s prediction (Bahdanau et al., 2015; Xu et al.,
2015; Yang et al., 2016). Incorporating attention in the process of symbol production/comprehension
will allow us to inspect the meaning of each symbol in the messages.
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Figure 1: Illustration of the attention agents in the referential game.

In this paper, we test attention agents with the referential game (Lewis, 1969; Lazaridou et al.,
2017), which involves two agents: Speaker and Listener. The goal of the game is to convey the
type of object that Speaker sees to Listener. We conduct extensive experiments with two types of
agent architectures, LSTM and Transformer, and two types of environments: the one-hot game and
the Fashion-MNIST game. We compare the attention agents against their non-attention counterparts
to show that adding attention mechanisms with disentangled inputs to either/both Speaker or/and
Listener helps develop a more compositional language. We also analyze the attention weights and
explore how they can help us understand the learned language. We visualize the learned symbol-
concept mapping and demonstrate how the emergent language can deviate from human language
and, with experiments with pixel images, how the emergent language can be affected by the visual
similarity of referents. We also investigate the potential of the alignment between Speaker’s and
Listener’s attention weights as a proxy for the establishment of common understanding and show
that the alignment correlates with task success.

2 EXPERIMENTAL FRAMEWORK

2.1 REFERENTIAL GAME

We study emergent language in the referential game (Lewis, 1969; Lazaridou et al., 2017). The game
focuses on the most basic feature of language, referring to things. The version of the referential game
we adopt in this paper is structured as follows:

1. Speaker is presented with a target object otgt ∈ O and generates a message m that consists
of a sequence of discrete symbols.

2. Listener receives the message m and a candidate set C = {o1, o2, ..., o|C|} including the
target object otgt and distractor objects sampled randomly without replacement from O.

3. Listener chooses one object from the candidate set and if it is the target object, the game is
considered successful.

The objects can be represented as a set of attributes. The focus of this game is whether agents can
represent the objects in a compositional message that is supposedly based on the attributes.

2.2 AGENT ARCHITECTURES

Our goal in this paper is to test the effect of the attention mechanism on emergent language. The
attention mechanism in its general form takes a query vector x and key-value vectors {y1, ...,yL}.
The key-value vectors are optionally transformed into key vectors and value vectors or used as is.
Then, attention scores {s1, ..., sL} are calculated as the similarity between the query vector and the
key vectors to the attention weights via the softmax function. Finally, the attention weights are used
to produce a weighted sum of the value vectors. A key feature of attention is that it allows the agents
to selectively attend to a part of disentangled vector inputs. Our intuition is that modeling direct
associations between the symbol representations as query and disentangled input representations as
key-value will bias agents toward packing each symbol with the information of a meaningful subpart
of the inputs rather than with opaque and non-compositional information. To test these hypotheses,
we design non-attention and attention agents for both Speaker and Listener (Figure 1).
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2.2.1 OBJECT ENCODER

The objects are presented to the agents in the form of a set of real-valued vectors, e.g., attribute-wise
one-hot vectors or patch-wise pretrained CNN feature vectors, as {o1, ...,oA}.

All the Speaker and Listener agents have their individual object encoders. The input vectors are
independently linear-transformed into the size of the agent’s hidden size and then successively go
through the gelu activation (Hendrycks & Gimpel, 2016). The baseline non-attention agents av-
erage the transformed vectors into a single vector ô for the subsequent computations, whereas the
attention agents leave the transformed vectors intact and attend to the set of vectors {ô1, ..., ôA}.

2.2.2 SPEAKER AGENTS

Speaker has an auto-regressive message decoder that takes the encoded vector(s) of the target object
as input and generates a multi-symbol message m = (m1, ...,mT ). There is a number of possible
choices for the decoder architecture with attention. To provide extensive empirical evidence on the
effect of attention mechanism, we experiment with two common decoder architectures: the LSTM
decoder from Luong et al. (2015) and the Transformer decoder from Vaswani et al. (2017).

At each time step t, the decoders embed a previously generated symbol into a vector mt−1 and
produce an output hidden vector through three steps: (1) recurrent computation; (2) attention; (3)
post-processing. As the decoders basically follow the original architecture, we only briefly describe
each step in the LSTM and Transformer decoder with emphasis on how attention is incorporated.
The more detailed descriptions can be found in Appendix C). The recurrent computation updates
the input vector with the contextual information of previous inputs. The LSTM decoder uses a
LSTM cell (Hochreiter & Schmidhuber, 1997) and the Transformer decoder uses the self-attention
mechanism (Vaswani et al., 2017).

Then, with the contextualized input vector as the query xt and the object vectors as the key-value
vectors {ô1, ..., ôA}, the decoders perform attention. The LSTM decoder uses the bilinear attention,
where the attention score si is computed as sit = x⊤

t Wbô
i, where Wb is a learnable matrix. The

attention vector is calculated as the weighted sum of the original key-value vectors. The Transformer
attention fist linear-transforms the input vector as qt = Wqxt,k

i = Wkô
i,vi = Wvô

i, where
Wq,Wk,Wv are learnable matrices. Then the attention score is calculated using the scaled dot
attention: sit = (q⊤

t k
i)/

√
d, where d is the dimension of the query and key vectors. Finally, the

attention vector is calculated as the weighted sum of the value vectors vi. The original Transformer
also has the multi-head attention mechanism, but in the main experiments, we set the number of the
attention heads to one for interpretability and ease of analysis. The effect of multi-head attention is
investigated in Appendix E.

Finally, in the post-processing step, the original query vector xt and attended vector x̂t are integrated
to produce the hidden vector to predict the next symbol.

Non-attention (NoAT) Speaker is a baseline agent that encodes the target object into a single
vector ôtgt. The source-target attention in the decoder always attends to that single vector and does
not change where to focus during message generation.

Attention (AT) Speaker, in contrast, encodes the target object into a set of vectors {ô1
tgt, ..., ô

A
tgt}

and the source-target attention dynamically changes its focus at each time step.

Our agent design is motivated by a fair comparison of non-attention and attention agents. They have
the same architecture and number of parameters and only differ in whether they can dynamically
change their focus when generating each symbol.

2.2.3 LISTNER AGENTS

Listener tries to predict the target object from a set of candidate objects C = {o1, o2, ..., o|C|} given
the speaker message m by computing message-object matching scores {s1, ..., s|C|} and choosing
the object with the maximum score. Listener first encodes the objects using the object encoder and
also encodes each symbol in the message into vectors {m1, ...,mT } using a message encoder, for
which the LSTM-based agent uses the bidirectional LSTM and the Transformer-based agent uses
the Transformer encoder.
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Non-attention (NoAT) Listener encodes each candidate object into a single vector ôi. The agent
also averages the encoded symbol vectors into a single vector m = 1

T

∑T
i=1 m

i. The message-
object matching score is computed by taking the dot product of the object and message vector
si = ô⊤

i m. In our experiments, the LSTM model uses the bidirectional LSTM encoder and the
Transformer model uses the Transformer encoder.

Attention (AT) Listener encodes each object into a set of attribute vectors {ô1
i , ..., ô

A
i } and use the

encoded symbol vectors as it is. With each encoded symbol vector mt as query, the model produces
an attention vector m̂t

i with the object attribute vectors as key-value using the dot-product attention.
Intuitively, the attention vector m̂t

i is supposed to represent the attributes of the object oi relevant
to the symbol mt. Then, the symbol-object matching score is computed by taking the dot product
between the attention vector and the message vector: sti = m̂t⊤

i mt. Finally, the symbol-object
matching scores are averaged to produce the message-object matching score: si = 1

T

∑
t s

t
i.

2.3 OPTIMIZATION

The parameters of Speaker θS and Listener θL are both optimized toward the task success.

Speaker is trained with the REINFORCE algorithm (Williams, 1992). The message decoder pro-
duces the probability distribution of which symbol to generate πθS (·|t) at each time step t. At train-
ing time, message symbols are randomly sampled according to the predicted probabilities and the
loss function for the Speaker message policy is Lπ(θS) =

∑
t r log(πθS (mt|t)) where mt denotes

the t-th symbol in the message. The reward r is set to 1 for the task success and 0 otherwise.

As an auxiliary loss function, we employ an entropy regularization loss LH(θS) =
−
∑

t H(πθS (·|t)), where H is the entropy of a probability distribution, to encourage exploration.
We also add a KL loss LKL(θS) =

∑
t DKL(πθS (·|t)∥πθ̄S (·|t)), where the policy πθ̄S is obtained

by taking an exponential moving average of the weights of θS over training, to stabilize the train-
ing (Chaabouni et al., 2022). In summary, the final speaker loss is L(θS) = Lπ(θS) + αLH(θS) +
βLKL(θS), where α and β are hyperparameters.

Listener is trained with a multi-class classification loss. The message-object matching scores are
converted through the softmax operation to pθL(oi|C), the probability of choosing the object oi
as the target from the candidate set C. Then Listener is trained to maximize the probability of
predicting the target object by minimizing the loss function L(θL) = − log pθL(otgt|C). The details
of hyperparameter settings and training procedures can be found in Appendix A.3.

2.4 EVALUATION METRICS

We quantitatively evaluate emergent languages from how well the language can be used to solve the
task and how well the language exhibits compositionality.

Training accuracy (TrainAcc) measures the task performance with objects seen during training.
This indicates how the agent architectures are simply effective to solve the referential game.

Generalization accuracy (GenAcc) measures the task performance with objects unseen during
training. We split the distinct object types in the game into train and evaluation sets and the gen-
eralization accuracy is computed with the evaluation set. As each object can be represented as a
combination of attribute values, what we expect for the agents is to learn to combine symbols denot-
ing each attribute value in a systematic way so that the language can express unseen combinations
of known attribute values.

Topographic similarity (TopSim), also known as Representational Similarity Analysis (Kriegesko-
rte et al., 2008), is one of the most commonly used metrics to assess the compositionality of emergent
language (Brighton & Kirby, 2006; Lazaridou et al., 2018; Ren et al., 2020; Chaabouni et al., 2020).
Intuitively, TopSim checks if similar objects have similar messages assigned. To compute TopSim,
we enumerate all the object-message pairs (o1,m1), ...., (o|O|,m|O|) with a trained Speaker and
define a distance function for objects dO(o

i, oj) and messages dM(mi,mj). Then we compute
Spearman’s correlation between pairwise distances in the object and message space. For the dis-
tance function for objects dO(oi, oj), we use the cosine distance of the binary attribute value vectors
and for the distance function of messages dM(mi,mj) the edit distance of message symbols.
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3 EXPERIMENTAL SETUP

3.1 ONE-HOT GAME

Our first experimental setting is the referential game with objects consisting of one-hot vec-
tors (Lazaridou et al., 2017; Kottur et al., 2017; Chaabouni et al., 2020; Guo et al., 2022). The
objects are represented as a combination of two attributes (e.g., shape and color), which is a popular
setting in the literature (Li & Bowling, 2019; Ren et al., 2020). Each attribute has 8 possible values,
which results in 64 distinct objects. To evaluate generalization to unseen objects, we randomly split
the 64 objects into training and evaluation sets at a ratio of 48/16. The number of candidates is set
to 16, which is the maximum number of objects available in the evaluation set.

Input Representation. The objects are disentangled in terms of attributes and represented as a set
of one-hot vectors where each dimension indicates a different value of a different attribute (i.e., two
16-dim one-hot vectors).

Agent Configurations. The vocabulary size of the agents is set to 16 and the message length of
Speaker is 2. In this setting, a perfectly compositional language that scores the maximum score for
all the compositionality metrics would assign different symbols to each attribute value, and symbols
at each position consistently refer to a single attribute.

3.2 FASHION-MNIST GAME

Attention has been shown to be able to associate a symbol and a relevant region of an image to
solve the task (Xu et al., 2015; Yang et al., 2016). To develop human-like emergent languages, one
important question is whether the attention agents are able to develop a language such that we can
understand the meaning of each symbol by inspecting the attended region. For this purpose, we
design a multi-item image referential game using the Fashion-MNIST dataset1 (Xiao et al., 2017).

In this game, each object is defined as a combination of two classes from the Fashion-MNIST dataset
(e.g., T-shirt and Sneaker). The dataset contains 10 classes and thus the game has 10C2 = 45 different
types of objects. The 45 types are randomly divided into training and evaluation sets at a ratio of
30/15, and the number of candidates is set to 15.

Input Representation. Each object is presented to the agents as feature vectors extracted from a
pixel image. The image is created by placing two item images, each of which is rescaled to the size
of 48× 48, on a 224× 224 black canvas (Figure 4). The places of the items are randomly sampled
so that the items never overlap.

The specific item images and their positions are randomly sampled every time the agents process the
objects both during training and evaluation time to avoid degenerated solutions that exploit spurious
features of an image (Lazaridou et al., 2018; Bouchacourt & Baroni, 2018). Also, the Speaker
and Listener are presented with different images as the target object to facilitate learning a robust
communication protocol (Rodrı́guez Luna et al., 2020).

Each image is encoded into 7× 7× 768-dim feature vectors with a pretrained ConvNet2 (Liu et al.,
2022). For non-attention models, the feature vectors are averaged across spatial axes into a single
768-dim feature vector.

Agent Configurations. The vocabulary size of the agents is set to 20 and the message length is 2. A
perfectly compositional language would refer to each item in the image with different symbols with
a consistent one-to-one mapping.

4 RESULTS

4.1 ATTENTION AGENTS FIND MORE COMPOSITIONAL SOLUTIONS

We evaluate non-attention agents and attention agents where either/both Speaker and Listener have
dynamic attention. We perform hyperparameter tuning as described in Appendix A and plot the

1https://github.com/zalandoresearch/fashion-mnist
2The pretrained model is registered as convnext tiny in the torchvision library
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(a) One-hot: TrainAcc (b) One-hot: GenAcc (c) One-hot: TopSim

(d) Fashion: TrainAcc (e) Fashion: GenAcc (f) Fashion: TopSim

Figure 2: The results of the referential game. The color of the boxes indicates the base architecture
of the agents (LSTM or Transformer) and the x-axis labels indicates whether Speaker and Listener
use attention.

results of top-10 agents in terms of GenAcc for each setting on Figure 2. We do not discuss the
difference between the LSTM and Transformer agents as they differ in multiple dimension in their
architectures. Here, we focus on the difference between the non-attention and attention agents within
each architecture.

We observe a general trend that the attention agents perform better than the non-attention baseline
(NoAT-NoAT), which is indicated by the better average scores in task generalization (GenAcc) and
compositionality metrics (TopSim) with different degrees of significance. This observation provides
evidence in support of the hypothesis that the attention mechanism creates pressure for learning
more compositional emergent languages.

One possible interpretation is that the attention mechanism adds flexibility to the model and it sim-
ply leads to better learning of the task. We observe the effect in the TrainAcc of the Fashion-MNIST
game, where the attention models consistently outperform their non-attention baselines. However,
we can still see the contribution of the attention mechanism besides the flexibility. We can see some
NoAT-NoAT agents and AT-AT agents exhibit comparable TrainAcc around 75% in the Fashion-
MNIST game, which means they are successful at optimization to a similar degree. However, we
observe all the AT-AT agents significantly outperform any of the NoAT-NoAT agents, which indi-
cates the degree of optimization alone cannot explain the better GenAcc and TopSim scores of the
attention model. Therefore, the results supports our initial hypothesis that the attention mechanism
facilitates developing compositional languages.

In some settings, we observe that adding the attention mechanism to only one of Speaker and Lis-
tener does not lead to better TopSim scores compared the NoAT-NoAT agents to as in the AT-NoAT
LSTM agents in the one-hot game, and the AT-NoAT and NoAT-AT LSTM agents in the Fashion-
MNIST game. However, when both Speaker and Listener agents have the attention mechanism, they
all exhibit more generalizable and compositional languages, which indicates the effect of attention
in Speaker and Listener is multiplicative.

4.2 ATTENTION AGENTS LEARN TO ASSOCIATE INPUT ATTRIBUTES AND SYMBOLS

Having confirmed that the attention agents give rise to more compositional languages, we proceed
to examine if they use attention in an expected way, i.e., producing/understanding each symbol by
associating them with a single input concept. We focus on analyzing the Transformer agents below.
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(a) AT-NoAT: S (b) NoAT-AT: L (c) AT-AT: S (d) AT-AT: L

Figure 3: The distribution of attention weights from Transformer agents in the one-hot game.

(a) Speaker (b) Listener (c) Speaker (d) Listener (e) Speaker (f) Listener

Figure 4: Images with the attention maps produced by a AT-AT agent pair.

Inspecting the distributions of the attention weights assigned to each input attribute vector in the
one-hot game, we observed that most attention weights are around either 0 or 1, indicating that the
attention agents generally learn to focus attention on a single value (Figure 3). We also inspect the
attention weights in the Fashion-MNIST game and confirm that attention agents generally learn to
focus on a single object when generating a symbol as in Figure 4(a)-(d), although there are some
failure cases as shown in Figure 4(e)-(f).

Given the observations above, we can associate each symbol in each message with the concepts
defined in the game via attention weights. We visualize the association between each symbol in
the vocabulary and each concept from a pair of AT-AT agents in Figure 5 to inspect the mapping
patterns developed by the agents. A symbol is considered to be associated with a concept when the
attribute value has the largest attention weight in the one-hot game or the center of gravity of the
attention weights is within the bounding box of the item in the Fashion-MNIST game. Overall, we
observe that the mappings learned by Speaker and Listener are mostly aligned except for the symbol
c in the one-hot game and the symbol i in the Fashion-MNIST game. We identify three types of
symbol-to-concept mapping patterns.

Monosemy. A single symbol always refers to a single concept, e.g., a, b, and d in the one-hot
game; a, e, and g in the Fashion-MNIST game. This is a desired mapping pattern that allows
an unambiguous interpretation of symbols. However, we also observe “synonyms” where a single
concept is referred to by multiple symbols, e.g., 1-3 by d and e in the one-hot game.

Polysemy. A single symbol refers to multiple concepts, e.g., j-n in the one-hot game; b, c, and
d in the Fashion-MNIST game. These symbols are somewhat ambiguous, but it is likely that the
agents develop a way to resolve the ambiguity, especially in the one-hot game where agents achieve
more than 90% average accuracy scores with unseen objects. Moreover, these polysemous symbols
always refer to two values of the different attributes. Given these observations, the agents are likely
to have learned a consistent word order in terms of the object attributes and disambiguated the
polysemous symbols by their position.

The polysemous symbols in the Fashion-MNIST game seem to be affected by the visual similarity
of the fashion items, e.g., b refers to tops (Pullover, Coat, and Shirt) and f refers to shoes (Sandal,
Sneaker, and Boot). This is in contrast to the one-hot game, where the object attribute represen-
tations are initialized randomly, which probably led to an arbitrary assignment of polysemy. The
polysemous patterns in the Fashion-MNIST game demonstrate that the semantics of emergent lan-
guage can be heavily influenced by the property of the input objects.

Gibberish. We observe a few cases where the attention weights do not consistently focus on any
particular regions in the Fashion-MNIST game, e.g., the symbol i. These gibberish symbols could
have conveyed something informative but uninterpretable to humans, but we confirmed that the
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(a) One-hot: Speaker (b) One-hot: Listener (c) Fashion-MNIST: Speaker (d) Fahion-MNIST: Listener

Figure 5: The mappings between symbols and concepts derived from the attention weights of Trans-
former AT-AT agent pairs. The darkness correslates with the frequency of the association.

(a) Onehot (b) Fashion-MNIST

Figure 6: The distribution of attention discrepancy scores from the trials of the AT-AT agents. The
frequency is normalized within successful and failed trials respectively.

communication success rate with the gibberish symbols is much lower (19.4%) than the overall
success rate (45.3%), indicating that the gibberish symbols are the results of optimization failure.

4.3 THE COORDINATION OF SPEAKER AND LISTENER ATTENTIONS PREDICTS THE TASK
PERFORMANCE

An important prerequisite of successful communication is the participants engaging in joint attention
and establishing a shared understanding of each word (Garrod & Pickering, 2004). Here we show
that the degree of the alignment between Speaker’s and Listener’s attention weights can be regarded
as a proxy of their mutual understanding and predictive of communication success.

We define a metric called attention discrepancy, which measures the difference between the attention
weights of Speaker and Listener given the same inputs. The metric is calculated by computing the
Jensen–Shannon Divergence (Lin, 1991) between the Speaker’s and Listener’s attention maps.

Figure 6 shows the frequency of attention discrepancy scores within successful and failed commu-
nications.3 We can see that successful communications can be characterized by lower attention dis-
crepancy compared to failed communications, indicating that the alignment of the attention weights
does correlate with communication success. This suggests that the attention agents largely develop
intuitive communication protocols that require a shared understanding of symbols.

5 RELATED WORK

5.1 EMERGENT LANGUAGE

One of the desired properties of emergent language is compositionality because more compositional
languages are supposed to be intuitive, interpretable, generalizable, and easier to learn (Li & Bowl-

3We observe small peaks around 0.5 in the one-hot game for both successful and failed communications,
and at a closer look, this corresponds to cases where the Speaker and Listener attend to a different attribute at
one of the two symbols in the message.
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ing, 2019; Ren et al., 2020). Compositional languages in this context usually have symbols each
of which corresponds to one of the primitive concepts in the environment and combine them in a
straightforward manner to form a message. Existing studies have investigated various environmental
pressures to improve the compositionality of emergent language: learning across generations (Li &
Bowling, 2019; Ren et al., 2020), learning with a population (Rita et al., 2022), applying noise to
communication channel (Kuciński et al., 2021).

These recent studies have been mainly conducted with simple RNN-based Speaker and Listener
agents, where the inputs (e.g., attribute values or raw images) are encoded into a single input vec-
tor for subsequence computations. Other agent architectures have been employed for other specific
motivations. Chaabouni et al. (2019) and Ryo et al. (2022) used the LSTM sequence-to-sequence
(with attention) architecture to study how agents transduce a sequential input generated from a cer-
tain grammar to their own emergent language. Gupta et al. (2021) developed a patch-based Speaker
architecture that produces messages by focusing important image patches.

One of our goals in this study is to investigate how the inductive biases of the Speaker and Listener
architectures affect the compositionality of the emergent language. In a similar spirit, Słowik et al.
(2020) compared Speaker agents which process inputs in the form of a graph, sequence, and bag-of-
words and show that the graph architecture exhibits more compositional emergent languages. Our
study offers additional empirical evidence in this direction with the attention mechanism.

5.2 ATTENTION MECHANISM

The attention mechanism has been shown very effective in supervised learning (Xu et al., 2015;
Vaswani et al., 2017) and has become an indispensable modeling piece in modern neural networks.
Conceptually, the attention mechanism models pairwise associations between a query vector and a
subset of key-value vectors. This enables the model to focus on a subpart of compositional represen-
tation and has been shown to enforce composition solutions in various settings such as visual reason-
ing (Hudson & Manning, 2018), symbolic reasoning Korrel et al. (2019), image generation (Hudson
& Zitnick, 2021). Our study demonstrates that by modeling association between a symbol and an
object attribute with attention, the agents can find more compositional languages in the referential
game without any additional supervision.

Another potential benefit of attention is interpretability. Attention has been shown to provide plausi-
ble alignment patterns between inputs and outputs, for example, source and target words in machine
translation (Bahdanau et al., 2015) and image regions and words in image captioning (Xu et al.,
2015; Yang et al., 2016). On the other hand, the alignment patterns may need careful interpretation.
The patterns are not always consistent with human intuitions (Alkhouli et al., 2018; Liu et al., 2020)
and there is an ongoing debate about to what extent the attention weights can be used as explanations
for model prediction (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019; Bibal et al., 2022). In this
paper, our agents show relatively straightforward attention patterns that allow unambiguous inter-
pretations but the interpretability of attention weights with more complex models and environments
needs further investigation in the future.

6 DISCUSSION AND CONCLUSION

When we face a complex object, we are likely to dynamically change our focus on its subpart to de-
scribe the whole (Rensink, 2000). Hearing a word helps us quickly recognize its referent (Boutonnet
& Lupyan, 2015) and affects where to focus in an image (Estes et al., 2008). Motivated by these
psychological observations, we implemented agents with the dynamic interaction between symbols
and input representations in the form of the attention mechanism. We showed that the attention
agents develop more compositional languages than their non-attention counterparts. This implies
that the human ability to focus might have contributed to developing compositional language.

Overall, our results suggest that future work should explore more architectural variations that orig-
inate from human cognitive processing to gain insights into the effect of the cognitive property on
shaping a language. Given the observation that the alignment of Speaker’s and Listener’s attention
is somewhat indicative of successful communication in §4.3, for example, future work can explore
how incorporating joint attention (Kwisthout et al., 2008) into training helps to learn a language.
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REPRODUCIBILITY STATEMENT

The experiments described in this paper are ensured to be reproducible in the following ways:

• We describe the task setup and models in §2 together with more specific descriptions of
each task in §3. The additional details and hyperparameters to reproduce the results are
given in appendix A.

• The artifacts used in the experiments (the Fashion-MNIST dataset and pretrained ConvNet
encoder in §3.2) are all publicly available.

• The source code will be released upon acceptance.
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APPENDIX

A ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

A.1 MINI-BATCH CREATION

Each mini-batch in our referential game is specified via two parameters: the batch size b and can-
didate size |C|. We first sample b objects from the set of the objects available in the game O. Each
object in a mini-batch serves as the target object in a round of the game, and we sample |C| − 1
distractors for each target object. Importantly, we sample the objects so that every object in a round
of the game has a different object type.

A.2 DATA PROCESSING IN THE FASHION-MNIST GAME

The images used in the Fashion-MNIST game (§3.2) are created by sampling item images from the
Fashion-MNIST dataset (Xiao et al., 2017). We first take 5,000 images for each item class in the
dataset, and then create image objects for the referential game by sampling from the image pool.
Instead of generating the image and input features on the fly during training, we precompute 3,000
images and their features for each object class (i.e., each combination of two items), and they are
randomly sampled during training and evaluation.

A.3 HYPERPARAMETERS

The training setups and hyperparameters are shown in Table 1. The hyperparameter tuning is con-
ducted for the weight of entropy loss α, and the scores in the paper are computed from the agents
with the best 10 generalization accuracy score for each agent.

One-hot (4, 4) Fashion-MNIST

Speaker message embedding dim 64 256
Speaker LSTM decoder hideen dim 64 256
Speaker Transformer decoder dim 64 256
Speaker Transformer decoder feed-forward dim 128 512
Listener message embedding dim 64 256
Listener Bi-LSTM encoder hidden dim 32 128
Listener Transformer encoder dim 64 256
Listener Transformer encoder feed-forward dim 128 512
Training Batch size 48 480
Max Training steps 15K 50K
Evaluation Rounds 1500 15000
Entropy loss weight α [0.1, 0.01, 0.001] [0.1, 0.01, 0.001]
KL loss weight β 0.1 0.1
Learning rate 1e-4 1e-4

Table 1: Hyper-parameters of the experiments.

B ADDITIONAL RESULTS

For the configuration of the one-hot game in the main experiments, the number of attributes is 2
and the number of the possible values is 8. We denote this game setting as the one-hot game (8, 2).
Here, we show results from the one-hot games with different configurations with more attributes (4,
4) and more values (16, 2). The capacity of the communication channel is set to |V | = 16, T = 4
and |V | = 32, T = 2 respectively. Also, to accommodate the increased task complexity, we double
the model size (i.e., every hidden vector dimension) and set the training batch size to 192 and the
max training steps to 30K.

The results are summarized in Figure 7. We generally observe the same trend as discussed in §4.1:
AT-AT agents outperform their corresponding AT-AT baselines in GenAcc and TopSim. The only
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(a) One-hot (8, 2): TrainAcc (b) One-hot (8, 2): GenAcc (c) One-hot (8, 2): TopSim

(d) One-hot (4, 4): TrainAcc (e) One-hot (4, 4): GenAcc (f) One-hot (4, 4): TopSim

(g) One-hot (16, 2): TrainAcc (h) One-hot (16, 2): GenAcc (i) One-hot (16, 2): TopSim

Figure 7: The results of the one-hot game with different configurations. The color of the boxes
indicates the base architecture of the agents (LSTM or Transformer) and the x-axis labels indicates
whether Speaker and Listener use attention.

exception is GenAcc of the AT-AT Transformer agents in the one-hot (4, 4) game. The AT-AT agents
show significantly lower GenAcc average score than NoAT-NoAT agents (Figure 7e) as well as the
TrainAcc score (Figure 7d). We think that this is caused by the instability of jointly coordinating
attention between Speaker and Listener during training. This can be particularly problematic with
a long message length. Yet, the average TopSim score is still higher than the NoAT-NoAT agents
(Figure 7f), indicating the inductive bias towards more compositional languages is still effective in
this case.
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C THE DETAILS OF THE SPEAKER ARCHITECTURES

In this section, we provide detailed descriptions of the Speaker agents used in the paper.

(a) LSTM (b) Transformer

Figure 8: The architecture of the LSTM and Transformer decoders used in this paper.

C.1 SPEAKER

Speaker has an auto-regressive message decoder that takes the encoded vector(s) of the target object
{ô1, ..., ôA} as input and generates a multi-symbol message m = (m1, ...,mT ).

At each time step t, the decoders embed a previously generated symbol into a vector mt−1 and
produce an output hidden vector ht, which is fed into the output projection layer to predict the next
symbol mt. The LSTM and Transformer decoders differ in how they transform the symbol vector
mt−1 into the output hidden vector ht. We decompose the internal computation into three steps (1)
recurrent computation; (2) attention; (3) post-processing, and how each step is implemented.

C.1.1 LSTM

The LSTM decoder is based on the global attention decoder introduced in Luong et al. (2015).

Recurrent computation. The LSTM decoder updates the input symbol vector mt−1 with the con-
textual information using the LSTM cell (Hochreiter & Schmidhuber, 1997). We initialize the mem-
ory cell vector with the average of the object vectors 1

A

∑A
i=1 ô

i followed by a linear transformation
and the hidden vector with zero. We also apply layer normalization (Ba et al., 2016) to the hidden
vector at each time step.

Attention. With the output of the LSTM cell xt, the attention vector is computed over the object
vectors {ô1, ..., ôA} using the bilinear attention. The attention score for each object attribute oi is
computed as sit = x⊤

t Wbô
i, where Wb is a learnable matrix. Then the scores are used to produce

the attention weights via the softmax function ait = exp(sit)/
∑

j exp(s
j
t ). Finally, the object vectors

are used as the value vectors to produce the output attention vector x̂t =
∑A

i=1 a
i
tô

i.
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Post-processing. Finally, the attention vector x̂t is concatenated with xt and the vector is pro-
jected into the dimension of the object vector followed by the tanh activation function: ht =
tanh(Wo[x̂t;xt]), where Wo is a learnable matrix.

C.1.2 TRANSFORMER

The Transformer decoder is based on the original architecture introduced in Vaswani et al. (2017).
We first explain some building blocks repeatedly used in the computation.

Multi-head QKV Attention. The attention used in Transformer takes the query vector x and key-
value vectors {y1, ...,yL} as input and is based on the QKV attention. It first project the vec-
tors into query, key, value vector spaces respectively by a linear transformation: q = Wqx,k =
Wky,v = Wvy, where Wq,Wk,Wv are learnable matrices. Then the attention score is cal-
culated using the scaled dot attention: sit = (q⊤

t k
i)/

√
d, where d is the dimension of the query

and key vectors. The scores are transformed into the attention weights via the softmax function
ait = exp(sit)/

∑
j exp(s

j
t ). Finally, the attention vector is calculated as the weighted sum of the

value vectors: x̂t =
∑A

i=1 a
i
tv

i.

Transformer further combines the QKV attention with the multi-head mechanism. In essence, it
divides the query, key and value vectors into sub-spaces with the same dimension, and perform the
attention computation as above within each sub-space, and then concatenate each output. We denote
the attention computation as x̂ = MultiHeadQKV(x, {y1, ...,yL}) below.

Sub-layer connection. The Transformer architecture combats the gradient vanishing problem using
sub-layer connection after each module. Let the input or hidden vector of the current time step be
x and a module to update the vector as Module, and the sub-layer connection can be described as:
x̂ = SubLayer(x,Module(·)) = LN(Module(x) + x), where LN denotes layer normalization.

Recurrent computation. The Transformer decoder updates the input symbol vector mt−1 with
the contextual information using the self-attention mechanism. The vector mt−1 attends to the
previous inputs with the multi-head attention mechanism and produce the updated vector: x′

t =
MultiHeadQKV(mt−1, {m1, ...,mt−1}). Then the sub-layer connection is applied to produce xt =
LN(x′

t +mt−1).

Attention. The updated vector xt is further updated by attending to the object vectors {ô1, ..., ôA}:
x̂′
t = MultiHeadQKV(xt, {ô1, ...,oA}), followed by the sub-layer connection: x̂t = LN(x̂′

t + xt).

Post-processing. Finally, the attended vector x̂t undergoes the feed-forward layer: h′
t =

W2ReLU(W1x̂t), where W1 and W2 are learnable matrices. The dimension of h′
t should be the

same as the input x̂t to apply the sub-layer connection: ht = LN(ĥ′
t + x̂t).
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D ANOTHER POSSIBLE BASELINE

(a) One-hot: TrainAcc (b) One-hot: GenAcc (c) One-hot: TopSim

Figure 9: The comparison of different types of baseline object encoders.

In the main experiments, we used the object encoder that simply averages the attribute vectors for the
non-attention baseline, which is equivalent to the model attending to the attribute vectors uniformly
(i.e., with the same attention weights). Another possible baseline that aggregates multiple attribute
vectors into one fixed-sized vector can incorporate the concatenation of the attribute vectors. Such
method creates an object vector where the attribute information is disentangled across the dimension
and thus may lead to better compositionality in the emergent language.

Here, we replace the object encoder of the NoAT-NoAT agent in the one-hot game with the
concatenation-based one. It firstly projects the input attribute vectors {o1, ...,oA} into the dimen-
sion of d/A, where d is the dimension of the final object vector, with a learnable matrix parameter.
Then, the final object vector ô is derived by concatenating the projected vectors.

Figure 9 shows the result from the average-based and concatenation-based object encoder. We
observe that the concatenation-based encoder outperforms the average-based encoder in TopSim,
indicating that having the attribute information disentangled across the vector dimension facilitates
learning compositional languages. Still, the AT-AT agents perform the best, which shows that having
dynamic attention at each symbol generation is more effective.
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E THE EFFECT OF MULTI-HEAD ATTENTION

In the main experiments, we used a single-head attention for the Transformer decoder to facilitate a
simpler analysis. In this section, we check whether using the multi-head attention affects the perfor-
mance of the agents. We modify the number of heads in the source-target attention of the attentional
Transformer Speaker and experiment with the non-attention Listener in the one-hot game. We could
expect that the multi-head attention may improve the performance by adding more flexibility in
learning or to the contrary hurt the performance to lose the inductive bias of one-to-one mapping
between a symbol and an object attribute.

(a) One-hot: TrainAcc (b) One-hot: GenAcc (c) One-hot: TopSim

Figure 10: The comparison of different numbers of heads in the source-target attention of the Trans-
former Speaker. Listener is the non-attention Transformer model.

From Figure 10, changing the number of heads basically does not affect the performance except for
the two-head attention, where GenAcc is significantly lower than the singe-head agent (p < 0.01)
but the TopSim is significantly higher (p < 0.01). This possibly stems from some optimization
instability. Overall, we do not observe significant impact of the multi-head attention in this case.
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