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Abstract

Non-autoregressive translation (NAT) models
achieve comparable performance and superior
speed compared to auto-regressive translation
(AT) models in the context of sentence-level
machine translation (MT). However, their abili-
ties are unexplored in document-level MT, hin-
dering their usage in real scenarios. In this
paper, we conduct a comprehensive exami-
nation of typical NAT models in the context
of document-level MT and further propose a
simple but effective design of sentence align-
ment between source and target. Experiments
show that NAT models achieve high acceler-
ation on documents, and sentence alignment
significantly enhances their performance.

However, current NAT models still have a sig-
nificant performance gap compared to their
AT counterparts. Further investigation re-
veals that NAT models suffer more from the
multi-modality and misalignment issues in the
context of document-level MT, and current
NAT models struggle with exploiting docu-
ment context and handling discourse phenom-
ena. We delve into these challenges and
provide our code at https://github.com/
baoguangsheng/nat-on-doc.

1 Introduction

Non-autoregressive neural machine translation
(NAT) models achieve significant acceleration on
the inference, with even better translation perfor-
mance, when compared to auto-regressive transla-
tion (AT) models on sentence-level MT (Gu et al.,
2018, 2019; Stern et al., 2019; Ma et al., 2019; Lee
et al., 2020; Huang et al., 2022; Shao and Feng,
2022). However, real applications (e.g., Google
Translation and ChatGPT ) typically need to under-
stand and respond in discourse, which requires a
quick process of document-level content. Different
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from sentence-level MT, document-level MT con-
siders a much larger inter-sentential context and
models discourse dependence, such as anaphora,
ellipsis, and lexical cohesion (Voita et al., 2019).
The sentence-by-sentence translation done by NAT
models cannot possibly produce contextual coher-
ent translations, hindering the usage of NAT models
in real scenarios.

Document-level context enhances the translation
quality of AT models significantly (Werlen et al.,
2018; Maruf et al., 2019; Liu et al., 2020; Bao et al.,
2021; Sun et al., 2022; Bao et al., 2023). However,
no precedent research explores the possibility of ap-
plying NAT models to document-level MT, which
leaves open research questions including: 1) Can
NAT models leverage document context to improve
translation quality? 2) Can NAT models gener-
ate translations with cross-sentential cohesion and
coherence? and 3) Can NAT models achieve the
same performance as AT models? To address these
questions, we investigate the challenges and oppor-
tunities of NAT models on document-level MT.

NAT models primarily face two challenges:
multi-modality (Gu et al., 2018), which causes
failure when one source has multiple possible trans-
lations, and misalignment (Saharia et al., 2020;
Shao and Feng, 2022), which causes repetition and
disorder in translations. Previous studies reduce
modalities using knowledge distillation (Zhou et al.,
2019) and improve alignment using new loss (Sa-
haria et al., 2020; Shao and Feng, 2022; Huang
et al., 2022). These methods have proven effective
on the sentence level, while their efficacy is uncer-
tain on the document level. First, document-level
MT necessitates the modeling of cross-sentential
coherence and discourse structure. Second, the
extended length of input and output sequences in-
tensifies the potential modalities. Last, the align-
ment between the source and target becomes harder
because the enlarged input and output sequences
increase the alignment space exponentially.

https://github.com/baoguangsheng/nat-on-doc
https://github.com/baoguangsheng/nat-on-doc


In this paper, we first assess recent NAT models
on document-level MT tasks to understand their
abilities and limitations, where we observe model
failures and unstable performance. According to
these observations, we further introduce sentence
alignment to NAT models, which equips the en-
coder and decoder of the NAT models with the
group-attention (Bao et al., 2021), restricting the
target-to-source attention inside each target and
source sentence pairs. Since each target sentence
is aligned with a source sentence, we do not need
to consider the possibility of aligning the target
sentence with other source sentences. Therefore,
the alignment space between the input and output
sequences is significantly reduced.

Experiments on three benchmark datasets TED,
News, and Europarl show that NAT models achieve
a translation speed of more than 30 times faster than
their AT counterparts on document-level MT, but
still lag behind on the translation performance. Sen-
tence alignment significantly enhances the transla-
tion performance for NAT models, closing the gap
from 2.59 to 1.46 d-BLEU (document-level BLEU
score) compared to the best AT results. To the best
of our knowledge, we are the first to discuss the
challenges and opportunities of NAT models in the
context of document-level MT. We release our code
and data to stimulate future research.

2 Related Work

Non-Autoregressive Machine Translation. Ex-
isting NAT models include three types: fully NAT
models (Gu et al., 2018; Libovickỳ and Helcl, 2018;
Qian et al., 2021; Huang et al., 2022), iterative NAT
models (Ghazvininejad et al., 2019; Stern et al.,
2019; Gu et al., 2019; Chan et al., 2020), and semi-
autoregressive model (Ran et al., 2020). All these
models generate tokens in parallel at some level.
The fully NAT models generate tokens in a single
forward pass, while the other two types generate
tokens in multiple iterations or steps. In this pa-
per, we take the fully NAT models to investigate
document-level MT.

NAT models face two fundamental challenges:
the multi-modality issue and the misalignment is-
sue. The multi-modality issue happens when one
source has multiple possible translations, breaking
the conditional independence assumption. For ex-
ample, “thank you .” in English can be translated
into “Vielen Dank .” or “Danke .” in German. The
second output token could either be “Dank” or “.”,

which cannot be determined without a condition
on the first token. The multi-modality issue causes
vanilla NAT models to fail on complex datasets.
Previous research leverages knowledge distillation
to reduce modalities of a dataset, so that the con-
ditional independence assumption is more likely
satisfied (Gu et al., 2018). They generate a trans-
lation for each training sample using an AT model
and then train NAT models on this generated train-
ing set. In this paper, we compare NAT models
trained on both raw and knowledge-distilled data.

The misalignment issue elicits various NAT tech-
niques. Vanilla NAT (Gu et al., 2018) uses an im-
plicit token-alignment approach, enforcing a mono-
tonic alignment between source and target by copy
encoder outputs to decoder inputs. NAT+CTC (Li-
bovickỳ and Helcl, 2018) introduces connectionist
temporal classification (CTC) (Graves et al., 2006)
to model the monotonic alignment explicitly. Oth-
ers introduce non-monotonic alignment between
source and target, such as n-gram matching (Shao
et al., 2020; Shao and Feng, 2022), aligned cross-
entropy (AXE) (Ghazvininejad et al., 2020), and
order-agnostic cross-entropy (OAXE) (Du et al.,
2021). In this paper, we investigate NAT models
using the first two techniques.

Document-Level Machine Translation. Previ-
ous methods on document-level MT are dominated
by auto-regressive models, which can be catego-
rized into two approaches. The first approach splits
a document into sentences and translates each sen-
tence using its context as additional inputs (Zhang
et al., 2018; Maruf et al., 2019; Zheng et al., 2021).
The second approach takes a document as a whole
translation unit and translates the document in one
beam search (Liu et al., 2020; Bao et al., 2021; Sun
et al., 2022; Bao et al., 2023). In this paper, we
follow the second approach for our investigation of
NAT models.

Efficient Model for Long Sequence. Re-
cent advances in efficient models such as Long-
former (Beltagy et al., 2020), Reformer (Kitaev
et al., 2020), Linformer (Wang et al., 2020), and
FlashAttention (Dao et al., 2022) improve the time
and space complexity of the attention mechanism,
which may affect the inference speed of both the
auto-regressive and non-autoregressive MT models.
In this paper, we focus on the relative inference
acceleration of NAT compared to AT models with
standard multi-head attention, leaving advanced
attention mechanisms for the future.



3 Methods

3.1 AT Baselines for Document-Level MT
Document-level MT can be formulated as a
seq2seq problem, where the input document x
and output document y are represented in token
sequence. The auto-regressive factorization is

pθ(y|x) =
T∏
t=1

pθ(yt|y<t, x), (1)

where T denotes the number of target tokens and
yt conditions on all previous tokens y<t.

We choose two AT baselines.
Transformer (Vaswani et al., 2017) is the stan-

dard encoder-decoder model, which is widely used
as a baseline. We represent each document as a
sequence of tokens and train the model to do the
seq2seq mapping.

G-Transformer (Bao et al., 2021) extends Trans-
former by separating the self-attention and cross-
attention into sentence-level group-attention and
document-level global-attention, as Figure 1 illus-
trates. The group-attention enables sentence align-
ment between input and output sequences.

Knowledge Distillation (KD). In addition to the
raw data, we also experiment with KD data for
training NAT models (Zhou et al., 2019), following
previous NAT studies. We use G-Transformer fine-
tuned on sentence Transformer as the teacher to
generate distilled document translations.

3.2 Existing NAT Models
Due to the large amount of NAT models (a non-
exhaustive search shows more than 60 recent NAT
models proposed between 2020 and 2023), we
follow the common practice (Huang et al., 2022;
Qian et al., 2021) to choose representative NAT
models for our investigation, leaving more com-
plex iterative methods, semi-autoregressive meth-
ods, and pre-training settings for future. Specifi-
cally, we select representative fully NAT models for
document-level experiments, where all the models
are transformer-based and implemented in Fairseq
(Ott et al., 2019).

Vanilla NAT (Gu et al., 2018) is the earliest NAT
model, which factorizes translation into two parts

pθ(y|x) = pθ(T |x) ·
T∏
t=1

pθ(yt|x), (2)

where the first part predicts the length T of target
y, the second part predicts target tokens yt given

the length, and x denotes the source input. For
simplicity, we take the model as a whole and use the
θ to denote all the parameters, which includes the
parameters of the length model and the translation
model.

An implicit token alignment is used between
the source and target by copying the outputs of
the encoder to the inputs of the decoder, where if
the source and target have different lengths, they
interpolate the decoder inputs uniformly. During
training, it initializes the decoder with T token po-
sitions, where T denotes the real number of target
tokens. During inference, it first predicts a number
T using pθ(T |x), and then initializes the decoder
with T token positions to predict target tokens.

GLAT (Qian et al., 2021) improves vanilla NAT
with a glancing mechanism, which adopts an adap-
tive glancing sampling strategy, exposing some tar-
get fragments to the decoder inputs so that the de-
coder can fit the training target easier. The glancing
mechanism reduces the difficulty of independent
training of target tokens and improves the perfor-
mance on sentence-level MT significantly.

Latent-GLAT (Bao et al., 2022) further im-
proves GLAT using latent variables, where the la-
tent variables are supposed to alleviate the multi-
modality problem. It represents the modality and
alignment in the latent variables, dividing the learn-
ing of the target tokens into the modeling of the
latent variables and the reconstruction of the target
sequence.

NAT+CTC (Libovickỳ and Helcl, 2018) ap-
plies connectionist temporal classification (CTC)
(Graves et al., 2006) alignment to decoder outputs

pθ(y|x) =
∑

a∈β(y)

M∏
i=1

pθ(ai|x), (3)

where a denotes an alignment between y and the
reserved M token positions in the decoder while
β(y) denotes all possible alignments. The align-
ment a is assumed conditional independent given
the source input x. The reserved token positions
are usually set as times of the length of the source
input.

CTC alignment in Eq. 3 requires a summation
over all possible alignments, which is generally in-
tractable. However, with conditional independence
assumption for a, the summation can be achieved
using dynamic programming.

GLAT+CTC (Qian et al., 2021) combines
GLAT with CTC alignment.
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Figure 1: G-Transformer with sentence alignment be-
tween source and target documents, where the low lay-
ers use the group-attention and only the top 2 layers use
the global-attention.
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Figure 2: NAT model with sentence alignment, where
we replace NAT encoder and decoder layers with G-
Transformer layers and we remove the causal mask
from G-Transformer decoder layers.

DA-Transformer (Huang et al., 2022) repre-
sents the output alignment in a directed acyclic
graph (DAG), which contains vertices and edges.
A path in DAG represents a possible alignment. It
models translation as

pθ(y|x) =
∑

a∈β(y)

pθ(a|x)pθ(y|a, x), (4)

where a denotes a path represented in a sequence
of vertex indexes and β(y) here denotes all paths
having the same length as the target y. The right
expression in Eq. 4 can further be expanded as

pθ(a|x) =
M−1∏
i=1

pθ(ai+1|ai, x), (5)

pθ(y|a, x) =
M∏
i=1

pθ(yi|ai, x), (6)

where ai are dependent on each other in a linear
chain and yi are independent with each other given
ai and x.

Similar to CTC alignment, DA-Transformer also
adopts dynamic programming to marginalize all
possible paths. The model provides three decoding
strategies: greedy, lookahead, and beam search.
In this paper, we choose lookahead decoding for
balanced performance and inference speed.

3.3 NAT Models with Sentence Alignment
We propose novel NAT models with sentence align-
ment, as shown in Figure 2. The sentence align-
ment is a key feature in the G-Transformer (Bao
et al., 2021), which is implemented through a
group-attention module. The group-attention stabi-
lizes self-attention and cross-attention in the model
over long sequences. Inspired by the success, we

adopt it in our NAT models to reduce the alignment
space.

Specifically, we adopt the G-Transformer en-
coder and decoder layers by removing the causal
mask from self-attention in the decoder layers. We
replace the encoder and decoder layers in NAT
models with G-Transformer layers and redesign the
initial output to include the special token of begin-
of-sentence “<s>” and end-of-sentence “</s>” for
each target sentence.

Substituting the causal masking layer in G-
Transformer is only a necessary part at the attention
level to facilitate sentence alignment. Its effective-
ness hinges on both model design and training loss.
Specifically, we introduce new length prediction
per sentence in G-Trans+GLAT, improve CTC loss
for sentence alignment in G-Trans+GLAT+CTC,
and improve DAG design to restrict the transition
in each sentence in G-Trans+DAT as follows.

G-Trans+GLAT predicts the target length per
sentence instead of the whole sequence. It factor-
izes the translation as

pθ(y|x) =
K∏

j=1

pθ(Tj |xj) ·
Tj∏
t=1

pθ(yj,t|xj , x)

 , (7)

where K denotes the number of sentences. We
predict the length Tj of the j-th target sentence
and generate tokens yj,t accordingly. In addition to
Eq. 2, where the corresponding source sentence of
yt is unknown, yj,t also conditions on the source
sentence xj .

For each source sentence xj , we predict the
length Tj of the target sentence using a linear clas-
sifier based on the mean pool of output features
of the source sentence tokens. Consequently, we
calculate the length T of the target sequence by
aggregating sentence lengths T =

∑K
j=1 Tj .



Method
TED News Europarl Average

(d-BLEU) (d-BLEU) (d-BLEU) (d-BLEU) Speed
Raw KD Raw KD Raw KD Raw KD -up

AT Baselines
G-Transformer (Bao et al., 2021) 27.23 26.42 27.22 26.38 34.09 32.87 29.51 28.56 -
Transformer (Vaswani et al., 2017) 0.69 26.04 0.23 0.43 33.41 26.43 11.44 17.63 1.0x

Existing NAT Models
Vanilla NAT (Gu et al., 2018) 0.45 0.34 0.12 0.61 1.30 2.43 0.62 1.13 41.2x
GLAT (Qian et al., 2021) 1.77 0.03 0.01 2.56 2.13 8.17 1.30 3.59 40.0x
Latent-GLAT (Bao et al., 2022) 2.10 1.87 0.30 2.30 5.26 4.25 2.55 2.81 29.2x
NAT+CTC (Libovickỳ and Helcl, 2018) 21.54 24.98 15.95 24.03 0.00 31.58 12.50 26.86 27.7x
GLAT+CTC (Qian et al., 2021) 18.49 25.31 10.23 20.01 0.00 29.47 9.57 24.93 26.3x
DA-Transformer (Huang et al., 2022) 20.47 25.02 13.99 23.37 30.34 32.14 21.60 26.84 30.8x

NAT Models with Sentence Alignment
G-Trans+GLAT (ours) 19.96* 24.23* 15.14* 23.04* 25.67* 31.45* 20.26 26.24 30.0x
G-Trans+GLAT+CTC (ours) 24.09* 26.31* 21.68* 25.61* 30.35* 32.24* 25.37 28.05 20.0x
G-Trans+DA-Trans (ours) 23.45* 25.73* 21.43* 24.70* 30.36 32.29 25.08 27.57 25.1x

Table 1: Main results on raw data (Raw) and knowledge distilled data (KD), where the failures are marked and
investigated in section 5.1. We use the official code from the respective papers of NAT models, except NAT+CTC,
which is implemented by ourselves based on the GLAT code. “*” denotes a statistical significance at the level of
p < 0.01 using a t-test, compared to the corresponding baseline NAT model without sentence alignment.

G-Trans+GLAT+CTC integrates the sentence
alignment with the CTC alignment. The default
CTC algorithm aggregates all possible latent align-
ments across the entire sequence, which may align
a source sentence to a wrong target sentence (e.g.,
the first source sentence to the second target sen-
tence). Such global alignment not only slows down
the training process but also causes unstable model
performance. Different from the global alignment
in Eq. 3, we apply CTC alignment on each sentence

pθ(y|x) =
K∏

j=1

 ∑
aj∈β(yj)

Mj∏
i=1

pθ(aj,i|xj , x)

 , (8)

where Mj denotes the reserved token positions for
the j-th target sentence. Since CTC alignment is
restricted inside each target sentence, the alignment
space β(yj) is enormously reduced compared to
the β(y) in Eq. 3.

G-Trans+DA-Trans introduces the sentence
alignment into the output DAG of the DA-
Transformer. The default DAG models the whole
sequence, which enables the transition from a ver-
tex in one sentence to a vertex in another sentence,
making the transition space linearly increase with
the enlargement of the sequence length.

To address the issue, we enforce a constraint
to isolate the vertex transitions of each sentence,
forcing the path a on each sentence starting with a
special vertex “<s>” and ending with a special ver-
tex “</s>”. The transition between sentences only
happens from the vertex “</s>” of a previous sen-
tence to the vertex “<s>” of the current sentence.

Formally, we use the same factorization as Eq. 4
but with a different collection β(y) of paths. At the
implementation level, we simply mask the transi-
tion matrix to disable transitions from one sentence
to another sentence, so that the dynamic program-
ming algorithm keeps unchanged.

4 Experiments

4.1 Experimental Settings
We evaluate the models using document-level MT
benchmark (Maruf et al., 2019), which includes
three datasets TED, News, and Europarl, repre-
senting three domains and various data scales for
English-German translation. More details about
each dataset and the preprocessing are in Appendix
A.1. We follow Liu et al. (2020), evaluating the
model performance in sentence-level BLEU score
(s-BLEU) and document-level BLEU score (d-
BLEU), which are explained in detail as Appendix
A.2. We experiment on Base model (where Big
model does not provide a stronger baseline) and
evaluate the speedup using 1 GPU and 4 CPUs of
a Tesla V100 environment as Appendix A.3.

4.2 Overall Results
As shown in Table 1, NAT models achieve high
speedup but still suffer from a significant perfor-
mance gap with their AT counterparts.

Speedup. The inference accelerations of NAT
models on the document level are between 25x and
41x, which surpasses the accelerations on the sen-
tence level (between 2x to 15x) by a big margin.
Specifically, NAT and GLAT provide the biggest



acceleration by around 40x. More complex mod-
els, such as Latent-GLAT, DA-Transformer, and
G-Trans+GLAT, accelerate inference by approxi-
mately 30x. CTC-based models have lower acceler-
ations between 20x and 27x. On average, the accel-
eration on the document level is about 30x, which
means that document-level MT systems could po-
tentially save 96% computational resources and
energy consumption by using NAT models.

Performance. Though NAT models under-
perform G-Transformer, some outpace the Trans-
former. The lengthy text sequence challenges both
the AT models and the NAT models, resulting in
exceptionally low d-BLEU scores (<10) in some
settings. We treat these low scores as model fail-
ures and investigate them in section 5.1.

With the help of sentence alignment, the per-
formance gap between NAT models and AT base-
lines is largely reduced, especially when trained
on KD data. For example, G-Trans+GLAT+CTC
achieves an average d-BLEU of 28.05 on KD data,
which is only 0.51 points lower than the d-BLEU
of 28.56 of G-Transformer. However, its perfor-
mance on Raw data is 4.14 points lower than G-
Transformer, suggesting that NAT models experi-
ence severe challenges with raw data. These results
demonstrate that even though knowledge distilla-
tion and sentence alignment enhance NAT models
largely, there is still a gap between the NAT models
and the strongest AT baseline.

4.3 Breakdown Results

Sentence-level alignment. Sentence alignment
substantially enhances the performance of NAT
models. Specifically, for GLAT, sentence align-
ment enhances the performance on KD data
from an average of 3.59 to 26.24 d-BLEU of G-
Trans+GLAT. For GLAT+CTC, sentence alignment
elevates the performance on KD data from 24.93 to
28.05 d-BLEU on average. This score is compara-
ble to G-Transformer on KD data, leaving a minor
gap of 0.51 d-BLEU on average. The better results
of G-Trans+GLAT+CTC than G-Trans+GLAT sug-
gest that sentence alignment complements output
alignment techniques such as CTC.

The sentence alignment brings more benefits
to models trained on raw data. As the average
scores in Table 1 show, G-Trans+GLAT+CTC out-
performs GLAT+CTC by 15.80 points on raw data
and 3.12 points on KD data. G-Trans+DA-Trans
outperforms DA-Transformer by 3.48 points on

raw data and 0.73 points on KD data. These re-
sults suggest that sentence alignment mitigates the
challenge brought by more modalities in raw data.

Token-level alignment. NAT models with im-
plicit alignment such as vanilla NAT, GLAT, and
Latent-GLAT fail on document-level MT, resulting
in messy translations (repetitions, wrong words,
and meaningless phrases). Conversely, NAT mod-
els with explicit alignments, such as NAT+CTC,
GLAT+CTC, and DA-Transformer, produce supe-
rior document-level performance. DA-Transformer
delivers the best overall performance among exist-
ing NAT models, even outperforming Transformer
on Europarl (KD). These results suggest that token-
level alignment plays an important role in NAT
models to achieve good performance.

However, we also observe that training with CTC
loss on documents is not always stable, leading to
occasional failure and a high variance in their per-
formance (e.g., +/-2.66 d-BLEU on raw data and
+/-0.84 on KD data for GLAT+CTC). The failure
happens more frequently on raw data than on KD
data. We speculate that this instability is caused by
the increased alignment space on long sequences,
which can be mitigated by sentence alignment. Ex-
periments on G-Trans+GLAT+CTC show stable
training and lower variance in performance (+/-
0.19 d-BLEU). These results suggest that token-
level alignment alone is not enough to achieve sta-
ble training and good performance.

Knowledge distillation. Intuitively, documents
have more modalities because they are much longer
than sentences. If it is the case, knowledge distil-
lation will become more critical for training NAT
models on document-level MT than on sentence-
level MT. We compare NAT models trained with
and without knowledge distillation.

As Table 1 shows, NAT models trained on KD
data generally outperform the same model trained
on raw data. The improvement is especially signifi-
cant for NAT models with explicit alignment. For
example, DA-Transformer obtains an average of
26.84 d-BLEU on KD data, which is 5.24 points
higher than 21.60 d-BLEU on raw data. In contrast,
DA-Transformer on sentence-level MT achieves
similar results on raw data and on KD data (Huang
et al., 2022). The results suggest that compared
to sentences, documents have more severe multi-
modality issues.

Although knowledge distillation enhances the
performance of NAT models, it also sets a ceiling
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Figure 3: Speedup rises as long as the sequence length
grows, evaluated on TED and News.

to the performance on document-level MT. Com-
paring the performance of G-Transformer on KD
data to raw data, we see that KD data downgrades
the performance by about 1 d-BLEU on average
(from 29.51 to 28.56). These results differ from pre-
vious results on sentence-level MT (Huang et al.,
2022), where knowledge distillation maintains or
even enhances the performance of AT models. The
discrepancy calls for further research on techniques
to reduce the modalities on the document level.

Speedup on different sequence lengths. We
evaluate GLAT and GLAT+CTC on various se-
quence lengths, including the single sentence and
segments with a maximum length of 64, 128, 256,
and 512. As Figure 3 shows, the speedup dis-
plays consistent trends among different datasets
and NAT models. The GLAT generally has a higher
speedup than GLAT-CTC, especially when the seg-
ment length goes above 256. The speedups on TED
and News are almost identical, which is expected
because the time costs are supposed to be irrele-
vant to the data domains. The trends suggest that
we benefit more from the inference acceleration on
longer documents, where document-level MT tasks
provide NAT models with the best scenario.

Speedup on different batch sizes. The previous
study (Helcl et al., 2022) reports that NAT mod-
els have limited acceleration on the sentence-level
MT in parallel inference settings. We evaluate the
models in the settings with different batch sizes,
including 1, 2, 4, and 8 instances per batch. Given
that document-level MT sequences are much longer
than sentence-level MT sequences, we do not eval-
uate using a batch size larger than 8.

As Figure 4 shows, when we increase the batch
size from 1 to 8, the overall speedup of GLAT de-
creases from 40x to 9x. However, if we consider a
more strict calculation of the speedup, excluding
the time for initializing the models (which takes al-
most constant time) from the total evaluation time,
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Figure 4: Speedup with various batch sizes evaluated
on News, where the “/ex” conducts a strict calculation
of speedup by excluding the time cost for model initial-
ization from both the AT baseline and the NAT models.

the inference speedup of GLAT is 125x and 44x for
the batch size of 1 and 8, respectively. These results
suggest that although the speedup ratio decreases
for bigger batch sizes, NAT models on document-
level MT still show significant acceleration in the
parallel inference settings.

5 The Challenge of Long Sequence

The long input and output in document-level MT
bring unexplored challenges to NAT models. In sec-
tion 4, we learn that NAT models have a significant
performance gap with their AT counterparts, and
various NAT models even fail in some settings. We
investigate these challenges in this section, leaving
other discussions in Appendix D.

5.1 The Failure of NAT Models
Previous study (Bao et al., 2021) suggests that
Transformer fails on long sequences because of
local minima of loss values during the training
process. We first investigate this possibility for
the cause of the failure on NAT models. We
evaluate GLAT, GLAT+CTC, Transformer, and G-
Transformer on different lengths of sequences, as
shown in Figure 5a. Overall, the four models pro-
duce different patterns of trends. The d-BLEU
score of the Transformer rises as long as the se-
quence length increases until the failure happens at
the length of 512 tokens. In contrast, the d-BLEU
scores of the GLAT and GLAT+CTC descend pro-
gressively as long as the sequence length increases,
which suggests a performance decline instead of a
training failure on NAT models.

Further evidence on the bigger dataset Europarl
confirms that the low performance of NAT models
is different from the failure of Transformer. Bao
et al. (2021) suggests that the local minima encoun-
tered by Transformer can be escaped by using a big-
ger dataset, resulting in normal scores on Europarl.
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(c) GLAT+CTC detailed BLEU scores
on different sequence lengths.

Figure 5: NAT vs. AT models on trends evaluated on News, where Transformer fails abruptly at the length of 512
while NAT models decrease progressively.

We evaluate Transformer, GLAT, and GLAT+CTC
on Europarl, obtaining d-BLEU scores of 33.41,
2.13, and 0.00, respectively. We could see that
GLAT and GLAT+CTC still give low scores on the
bigger dataset, suggesting a different cause from
the local minima.

We look into the d-BLEU score details, where
BLEU-n (n ∈ [1, 2, 3, 4]) denotes the precision
on n-gram. As the d-BLEU scores on GLAT in
Figure 5b shows, the BLEU-3/4 decreases rapidly,
reaching almost 0.0 at the lengths of 256 and 512.
The BLEU-1 remains relatively high at 27.3 on
the length of 256, resulting in messy translations,
where the generated tokens are related to the con-
tent but are repeated, disordered, or in the wrong
collocation as shown in Table 2. In comparison,
the d-BLEU scores on GLAT+CTC in Figure 5c
decrease slowly, where the BLEU-1 even increases
on the length of 512. We speculate the rapid de-
crease in BLEU-3/4 on GLAT is caused by the
multi-modality and misalignment issues, which can
be mitigated by explicit alignments, such as CTC.

The exceptional zero scores. Table 1 reveals
some unexpected results. Both NAT+CTC and
GLAT+CTC score a 0.00 d-BLEU on the raw
Europarl dataset, a performance notably inferior
to that of NAT and GLAT. This unprecedented
anomaly may stem from the challenges of applying
CTC loss on long sequences. The table further in-
dicates that both combinations, NAT/GLAT+CTC
and NAT/GLAT, experience training failures on the
raw Europarl dataset. These failures are likely due
to multi-modality and misalignment issues. These
results empirically demonstrate that, while CTC
loss can be effective, its application to document-
level training is not consistently stable. We hypoth-
esize that this instability arises from the expanded
alignment space between lengthy input and output
sequences, as detailed in the token-level alignment

Source: companies with a high percentage of floating rate
debt stand to lose the most, Goldman said. outside pure
stock plays, consumers stand to benefit as well through the
rising dollar.

Target: Unternehmen mit einem hohen Anteil an flexi-
blen Zinsen werden am meisten verlieren, sagte Goldman.
außerhalb der reinen Aktienspiele werden Verbraucher
ebenfalls durch den steigenden Dollar profitieren.

GLAT: Unternehmen mit einem hohen , freien freien freien
erverlieren die die meisten meisten , , . . . te te dazu
kräften profitieren profitieren profitieren profitieren profi-
tieren durch durch steigenden steigenden profitieren profi-
tieren .

GLAT+CTC: Unternehmen mit hohen der Schulden , die
verlieren . außerhalb spielt Verbraucher den profitieren .

Table 2: GLAT and GLAT+CTC produce good transla-
tion at the beginning but downgrade later with repeti-
tions and missing translations.

discussion in Section 4.3.

5.2 Document Context

We compare AT and NAT models with document
context to the Transformer baseline without docu-
ment context (trained on sentence) in Appendix B.
The results suggest that document context enhances
AT model (G-Transformer) by 0.70 s-BLEU. How-
ever, NAT models with document context still un-
derperform the Transformer baseline, indicating
that current NAT models have a limited ability to
utilize document context.

We further apply an ablation study on the
document context to quantify its contribution.
As Table 3 illustrates, the performance of G-
Trans+GLAT+CTC without document context
drops by approximately 0.28 s-BLEU on average
over the three benchmarks. Specifically, the target-
side context contributes merely 0.01, while the
source-side context contributes 0.27. The context
contributions in G-Trans+GLAT+CTC are less than
that in G-Transformer (0.23 and 0.70 s-BLEU on



Method (s-BLEU) TED News Europarl Drop
G-Transformer ♢ 25.12 25.52 32.39 -
- target-side context 25.05 25.41 32.16 -0.14
- source-side context 24.56 24.58 31.39 -0.70
G-Trans+GLAT+CTC 24.16 24.09 30.57 -
- target-side context 24.31 24.00 30.47 -0.01
- source-side context 23.96 24.00 30.02 -0.27

Table 3: Impact of document context, evaluated in s-
BLEU. ♢ - the scores are from the paper report, where
the model is trained on the raw datasets. The NAT
models are trained on the KD datasets.

target and source contexts, respectively). The mi-
nor contribution from the target-side context is ex-
pected, given that NAT models predict target sen-
tences independently. The relatively low contri-
bution of source-side context indicates that NAT
models do not fully exploit the source-side contex-
tual information.

Leak of source context information on adja-
cent sentences? We observe serious repetitions in
the translations generated by NAT models without
sentence alignment, raising the concern that the
information in a source sentence may leak into its
adjacent sentences during translation. We measure
the repetitions on NAT models with sentence align-
ment, where the sentence boundaries are assured
by the model design. We find that these models do
not generate obvious cross-sentential repetitions.
For example, on the TED test set, G-Trans+GLAT
generates translations with repetition ratios of 0.14
and 0.02 for 1 and 2 grams, respectively, which are
almost identical to the ratios of the reference.

5.3 Discourse Phenomena

We assess the discourse ability of NAT models
using a human-annotated test suite in English-
Russian MT (Voita et al., 2019). We train both
the AT baselines and NAT models using the 1.5M
document (only 4 sentences) pairs. In contrast to
previous work (Bao et al., 2021), we do not use the
additional 6M sentence pairs for training for the
purpose of highlighting their discourse capabilities.

As Table 4 shows, the NAT models signifi-
cantly underperform G-Transformer across the four
discourse phenomena. The performance of G-
Trans+GLAT+CTC matches the Transformer base-
line (without document context) on deixis and
lexical cohesion (lexcoh), but excels on the el-
lipsis of inflection (el.infl.) and ellipsis of verb
phrase (el.VP). G-Trans+DA-Trans achieve rela-
tively higher deixis than G-Trans+GLAT+CTC be-

Method deixis el.infl. el.VP lexcoh
Transformer (sent) ♡ 50.0 53.0 28.4 45.9
G-Transformer ♢ 87.1 82.4 79.8 58.6
G-Trans+GLAT+CTC 50.0 55.2 46.6 45.9
G-Trans+DA-Trans 56.7 33.0 21.0 45.2

Table 4: Discourse phenomena. el.infl. - ellipsis of in-
flection. el.VP - ellipsis of verb phrase. lexcoh - lexical
cohesion. ♡ - Transformer baseline trained on sentences.
♢ - G-Transformer baseline trained on documents.

cause its DAG link models the target-side depen-
dence somehow. These results suggest that current
NAT models have some discourse abilities but still
struggle with handling discourse phenomena.

6 Conclusion and Future Work

We investigated NAT models on document-level
MT, revealing more severe affections of multi-
modality and misalignment issues on documents
than on sentences. We proposed NAT models with
sentence alignment, reducing the possible align-
ment space, and achieving the best results across
three benchmarks. Our experiments show that NAT
models significantly accelerate text generation in
documents while their performance still lags be-
hind their AT counterparts. Further analysis shows
that fully NAT models underutilize document con-
text, leading to loose discourse relations.

As the first research of NAT models on
document-level MT, we hope this work could stim-
ulate future research on reducing the modalities,
exploiting document contexts, and modeling dis-
course dependence.

Limitations

We do not enumerate all recent NAT models. For
the purpose of our investigation, we only evaluate
the pure (fully) NAT models, leaving other NAT
models, such as semi-autoregressive and iterative
NAT models, out of our scope.
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Dataset Sentences Documents Segments Sents per Segment Tokens per Segment
train / dev / test train / dev / test train / dev / test train / dev / test train / dev / test

TED 0.21M / 9K / 2.3K 1.7K / 92 / 22 11K / 483 / 123 18.3 / 18.5 / 18.3 436 / 428 / 429
News 0.24M / 2K / 3K 6K / 80 / 154 18.5K / 172 / 263 12.8 / 12.6 / 11.3 380 / 355 / 321
Europarl 1.67M / 3.6K / 5.1K 118K / 239 / 359 162K / 346 / 498 10.3 / 10.4 / 10.3 320 / 326 / 323

Table 5: English-German datasets for evaluation, where we split each document into segments with a maximum of
512 tokens.

Method (s-BLEU) TED News Europarl Average
Raw KD Raw KD Raw KD Raw KD

AT Baseline
Transformer (sent baseline) 24.63 - 24.97 - 31.34 - 26.98 -
G-Transformer (doc baseline) 25.12 - 25.52 - 32.39 - 27.68 -

NAT Models
G-Trans+GLAT 17.05 21.81 13.37 21.16 23.49 29.66 17.97 24.21
G-Trans+GLAT+CTC 21.87 24.16 20.18 24.09 28.80 30.57 23.62 26.27
G-Trans+DA-Trans 21.02 23.48 19.79 23.10 28.64 30.55 23.15 25.71

Table 6: Sentence-level performance with and without document context.

A Experimental Settings

A.1 Datasets
We evaluate the models using document-level MT
benchmark (Maruf et al., 2019), which includes
three datasets covering three domains and various
data scales for English-German translation.

TED is from IWSLT17, which is transcribed
from TED talks that each talk forms a document.
tst2016-2017 is used to test the model, and the rest
for development.

News is from News Commentary v11 for train-
ing set. For testing and development sets, it uses
newstest2016 and newstest2015, respectively.

Europarl is from Europarl v7, where the train-
ing, development, and testing sets are randomly
split.

Table 5 shows the detailed statistics. We prepro-
cess the documents by tokenizing and truecasing
using MOSES (Koehn et al., 2007) and applying
BPE with 30,000 merge operations. We follow Bao
et al. (2021) to split each document into segments
with a maximum length of 512 tokens.

A.2 Evaluation Metrics
We follow Liu et al. (2020), evaluating the model
performance in s-BLEU and d-BLEU.

s-BLEU is calculated on each pair of sentences,
which are obtained using the sentence alignment
between source and target documents.

d-BLEU is calculated on each pair of segments,
taking the whole segment as a translation unit to
compute the BLEU score.

We calculate the BLEU score (Papineni et al.,
2002) using sacreBLEU on the detokenized cased

words.

A.3 Model Configuration

All the experiments are run on the Base model,
which has 6 layers, 8 heads, 512 embedding di-
mensions, and 2048 hidden dimensions. We train
the models on 4 Tesla V100/A100 GPUs for both
AT and NAT. By default, we use the Tesla V100,
but in case out-of-memory happens, we switch to
Tesla A100 to re-train the model. We do not change
the code of existing NAT models, and we obtain
the default training and testing arguments from
their official code. We update the arguments max-
source-positions and max-target-positions to fit the
enlarged input and output sequences. We run all
main experiments three times and report the me-
dian.

We assess the speedup on the test set using
a batch size of 1 within a virtual environment
equipped with 1 GPU and 4 CPUs of a Tesla V100.

B Contribution of Document Context

Previous studies demonstrate that document
context can significantly enhance MT perfor-
mance (Zhang et al., 2018; Zheng et al., 2021; Bao
et al., 2021). We evaluate its contribution as shown
in Table 6. Comparing Transformer on sentence-
level MT and G-Transformer on document-level
MT, we can see that document context enhances
s-BLEU by 0.49, 0.55, and 1.05 on TED, News,
and Europarl, respectively. However, the best NAT
results produced by G-Trans+GLAT+CTC on KD
data are still lower than the Transformer baseline by
0.47, 0.88, and 0.77 on TED, News, and Europarl,



Source: companies with a high percentage of floating rate debt stand to lose the most, Goldman said. outside pure stock
plays, consumers stand to benefit as well through the rising dollar. savers could see gains as well through higher yields at the,
though experts differ on how quickly that will take hold.

Target: Unternehmen mit einem hohen Anteil an flexiblen Zinsen werden am meisten verlieren, sagte Goldman. außerhalb
der reinen Aktienspiele werden Verbraucher ebenfalls durch den steigenden Dollar profitieren. Sparer könnten Gewinne
durch höhere Erträge sehen, auch wenn Experten unterschiedlicher Meinung sind, wie schnell das stattfinden wird.

GLAT: Unternehmen mit einem hohen , freien freien freien erverlieren die die meisten meisten , , . . . te te dazu kräften
profitieren profitieren profitieren profitieren profitieren durch durch steigenden steigenden profitieren profitieren . die könnten
könnten Gewinne Erträge höhere höhere erzielen erzielen erzielen , obwohl sich sich sich sich , , schnell schnell diese diese
Fuß wird wird . werden werden . . . . . . . . . der die die die , , , , , , , , , , erzielen erzielen erzielen , , sich sich sich sich , , , ,
sich sich sich sich , , , , , die die die , , halten nehmen .

G-Trans+GLAT: Unternehmen mit einem hohen Prozentsatz freier Zinsen werden am am meisten verlieren , sagte Goldman
Goldman . außerhalb reinreinen Aktien würden die Verbraucher ebenso durch durch den steigenden Dollar profitieren . die
Sparer könnten durch höhere Erträge Erträge Gewinne erzielen , auch sich die Experten darüber unterscheiden , wie schnell
das das einnehmen wird .

GLAT+CTC: Unternehmen mit hohen der Schulden , die verlieren . außerhalb spielt Verbraucher den profitieren . könnten
Gewinne höhere Renditen , sich Experten sich , schnell sich . Verbraucher Aktien werden wird Aktien .

G-Trans+GLAT+CTC: Unternehmen mit einem hohen Prozentsatz freier Zinsen würden am meisten verlieren , sagte
Goldman . reine Aktienspielen würden die Verbraucher durch den steigenden Dollar . Sparer könnten Gewinne ebenso durch
höhere Renditen sehen , auch sich die Experten darüber sind , wie schnell dies haben wird .

Table 7: Case study. GLAT and GLAT-CTC show good translation quality at the beginning but poor quality at
the end of the document. G-Trans+GLAT and G-Trans+GLAT+CTC show more consistent translation quality for
sentences at different positions.

respectively, not to mention the G-Transformer
baseline. These results indicate that NAT models
have a limited ability to utilize document context.

C Case Study.

As a case in Table 7 shows, even though the source
is not a lengthy document, sentence alignment en-
hances the translation quality significantly. Specif-
ically, on the one hand, G-Trans+GLAT and G-
Trans+GLAT+CTC estimate the target length more
accurately than GLAT and GLAT+CTC because
of their fine-grained length prediction on each tar-
get sentence. On the other, G-Trans+GLAT and
G-Trans+GLAT+CTC show consistent translation
quality between the beginning and the end of the
document, while GLAT and GLAT+CTC show
good quality at the beginning and poor quality at
the end. This case illustrates the challenge of long
text sequences to NAT models that the translation
quality degrades as long as the distance to the begin-
ning of the document increases, and demonstrates
the advantage of sentence alignment to stop the
degradation.

D More Discussion

Can a larger model handle longer input se-
quences? A larger model does not necessarily
solve the longer input sequence issue given the
same amount of training data. For pre-trained

language models, a larger model typically shows
a stronger ability to handle long sequences be-
cause the increased parameters enable the model
to capture more complex long-context dependen-
cies. However, for a non-pretraining setting, a
larger model does not necessarily show better per-
formance on the current document-level MT bench-
marks. The longer input makes the model more
likely to overfit and a larger model will make it
worse given the limited training corpus. Take the
AT baseline G-Transformer as an example. When
we increase the model size from Base to Big, the
d-BLEU scores decline by 0.36, 1.41, and 0.10
on TED, News, and Europarl, respectively. When
we further increase the model size to Large, the
d-BLEU scores further decline by 16.53, 8.49, and
0.56 on TED, News, and Europarl, respectively.

Can the model handle more complex sentence
alignments, such as one source sentence divided
into multiple target simple sentences? Actu-
ally, the current model can handle the case. The
sentence-level alignment between the source and
target is achieved by the same group tag assigned
to the source tokens and the target tokens. We can
treat the multiple simple sentences as a whole trans-
lation unit, assigning them the same group tag to
map them to a single complex sentence.


