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ABSTRACT

Diffusion probabilistic models have recently achieved remarkable success in gen-
erating high quality image and video data. In this work, we build on this class of
generative models and introduce a method for lossy compression of high resolu-
tion images. The resulting codec, which we call DIffuson-based Residual Aug-
mentation Codec (DIRAC), is the first neural codec to allow smooth traversal of
the rate-distortion-perception tradeoff at test time, while obtaining competitive
performance with GAN-based methods in perceptual quality. Furthermore, while
sampling from diffusion probabilistic models is notoriously expensive, we show
that in the compression setting the number of steps can be drastically reduced.

1 INTRODUCTION

As a new set of generative approaches, denoising diffusion probabilistic models (DDPMs) (Sohl-
Dickstein et al., 2015) have recently shown incredible performance in the generation of high-
resolution images with high perceptual quality. For example, they have powered large text-to-image
models such as DALL-E 2 (Ramesh et al., 2022) and Imagen (Saharia et al., 2022b), which are ca-
pable of producing realistic high-resolution images based on arbitrary text prompts. Likewise, diffu-
sion models have demonstrated impressive results on image-to-image tasks such as super-resolution
(Saharia et al., 2022c; Ho et al., 2022a), deblurring (Whang et al., 2022) or inpainting (Saharia et al.,
2022a), in many cases outperforming generative adversarial networks (GANs) (Dhariwal & Nichol,
2021). Our goal in this work is to leverage these capabilities in the context of learned compression.

Neural codecs, which learn to compress from example data, are typically trained to minimize dis-
tortion between an input and a reconstruction, as well as the bitrate used to transmit the data (Theis
et al., 2017). However, optimizing for distortion may result in blurry reconstructions, and recent
work has identified the importance of perceptual quality. In particular, Mentzer et al. (2020) demon-
strated that a GAN-based image codec is able to output reconstructions that look more realistic to a
human observer than a distortion-optimized codec, at the cost of some fidelity to the original. This
tradeoff between perceptual quality and fidelity is a fundamental one (Blau & Michaeli, 2019), and
finding a good operating point is not trivial and likely application-dependent.

Ideally, one selects this operating point at test time. Although adaptive rate control is commonly
used, only the work of Iwai et al. (2021) allows to balance distortion and perceptual quality dynam-
ically. To the best of our knowledge, our work proposes the first neural codec that can navigate
the full rate-distortion-perception tradeoff at test time. An earlier diffusion-based codec has been
proposed by Theis et al. (2022), but their encoding scheme is prohibitively expensive. Concurrent
work by Yang & Mandt (2022) demonstrated a more practical diffusion-based codec, but we show
that different design choices allow us to outperform their model by a large margin.

Our approach, called DIffusion Residual Augmentation Codec (DIRAC), uses a base codec to pro-
duce an initial reconstruction with minimal distortion, then enhances its perceptual quality using a
denoising diffusion probabilistic model. By varying the number of sampling steps, the DDPM can
smoothly interpolate between a high fidelity output and one with high perceptual quality. Combined
with a multi-rate base codec, this enables a user to navigate the axes of rate-distortion and distortion-
perception independently using separate control parameters. Moreover, by making a high fidelity
initial prediction first, DDPM sampling can be stopped at any point, allowing the codec to operate
more efficiently. We show that we can alter the sampling schedule at test time, and that we obtain
strong performance with 20 sampling steps or less.
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In summary, this paper makes the following contributions:

1. We demonstrate one of the first practical diffusion-based codecs for high-resolution image
compression, with competitive performance in both distortion and perceptual quality.

2. We show that this codec enables fine dynamic control over all independent axes of the rate-
distortion-perception tradeoff at test time. To the best of our knowledge, this is the first
neural codec with this ability.

3. Although DDPMs are notoriously expensive to sample from, we show that our design
choices enable a substantial speedup, allowing sampling in 20 steps or fewer.

2 METHOD

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) are
latent variable models in which the latent variables x1, ...,xT are defined as a T -step Markov chain
with Gaussian transitions. Through the Markov chain, the forward process of DDPMs gradually
corrupts the original data x0:

q(x1:T|x0) =

T∏
t=1

q(xt|xt−1) , q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) . (1)

Here, q(xt|xt−1) is a Gaussian distribution that models step xt conditioned on the previous step
xt−1. It is also possible to further condition these transitions on x0 (Song et al., 2020). The vari-
ances βt are typically chosen empirically and referred to as the noise schedule, although they can be
learned as well (Dhariwal & Nichol, 2021).

The key idea of DDPMs is that, if the corrupted data at step T follows a distribution which
permits efficient sampling, we can construct a generative model by reversing the forward pro-
cess. For example, the series q(xt|xt−1) in Eq. (1) converges to a standard normal distribution
for appropriately chosen βt. This can be easily seen in the closed-form expression for Eq. (1):
xt =

√
ᾱtx0 +

√
1− ᾱtϵ. Here ϵ ∈ N (ϵ;0, I), and we define αt := 1− βt and ᾱt :=

∏t
s=1 αs.

DDPMs are therefore generative models that learn to recover the original data by modeling the
reverse transitions:

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt) , pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) . (2)

Here pθ(xt−1|xt), parametrized by weights θ, models a Gaussian distribution that reverses state xt

back to xt−1, and the base distribution is defined as the standard normal p(xT) := N (xT;0, I). The
variance Σθ is usually chosen to be σ2

t I, and can be learned or chosen empirically. Predictions from
the DDPM can then be generated by iteratively applying the model and following the transitions
pθ(xt−1|xt). We give more details on the sampling procedure in Section 2.3 and Appendix A.5.

The training objective can then be constructed in the context of variational inference, by approximat-
ing the posterior distribution of the latent variables pθ(x1:T|x0) by the forward process q(x1:T|x0).
Using Bayes’ rule to obtain q(xt−1|xt,x0), maximizing the evidence lower bound (ELBO) on
pθ(x0) is then equivalent to minimizing the sum of T Kullback-Leibler (KL) divergences. It can be
shown that this loss can then be rewritten as a simple minimization between true data and a denoising
prediction (more details in Appendix A.1):

LDDPM = E
t,x0,ϵ

[
wt||x0 − gθ(xt, t)||2

]
. (3)

Here gθ(xt, t) is a model that directly predicts x0 from xt, and wt is a weighting factor. Note
that this integrates t into the expectation; while the full loss should sum over all t, it is common
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Figure 1: Top left: distortion-perception curves for DIRAC, a hyperprior baseline, a HiFiC baseline,
and the standard codec VTM, showing that our codec is able to navigate a wide range of distortion-
perception tradeoffs dynamically at test time (increasing marker size indicates number of diffusion
steps). Bottom and right: Example reconstructions for various operating points, as well as the HiFiC
baseline (cross). HiFiC is excellent at synthesizing textures, which often matches the contents of
the image well (e.g. red/leftmost crop), but in some cases the textures appear unnatural (e.g. text in
green/center crop). Image contents may be more perceptually pleasing when slightly blurrier (e.g.
green neon text in blue/rightmost crop), so that a prediction with high fidelity (DIRAC-80, circle)
also has higher perceptual quality. Our codec can adjust this tradeoff dynamically, e.g. to match
user preferences. Rate matching of models is done using cubic spline interpolation.

practice to instead sample t and perform Monte-Carlo integration over time. Ho et al. (2020) found
that reweighting the individual loss terms can improve perceptual quality. The theoretically derived
terms for wt become very for large small t (see Appendix A.1 and Appendix A.3). We instead
choose to set wt = 1 to balance all terms evenly.

2.2 NEURAL DATA COMPRESSION

Neural network based codecs are systems that learn to compress data from examples. Most mod-
ern neural codecs are variations of compressive autoencoders (Theis et al., 2017), which transmit
data using an autoencoder-like architecture consisting of three components. With a slight abuse of
notation, let x = x0 be the datapoint to compress. A neural encoder Eθ takes x and outputs a quan-
tized latent variable y. Given this latent variable, a neural decoder Dθ produces a reconstruction x̂.
Typically, a neural prior Pθ models the distribution of latent variables p(y), in order to losslessly
compress latents using an entropy coding algorithm to − log p(y) bits in expectation. Neural codecs
are typically trained using a rate-distortion objective consisting of two terms:

LRD = E
x∼p(x)

[Ldistortion(x, x̂(y)) + λrateLrate(y)] . (4)
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The distortion loss Ldistortion is a distance between the reconstruction x̂ and the ground truth x,
usually measured by mean squared error, Ldistortion(x, x̂) = |x − x̂|2. The rate loss corresponds to
the number of bits needed to transmit the quantized latent variable y under the neural prior, equal
to Lrate(y) = − logPθ(y). The tradeoff parameter λrate determines the expected compression ratio:
for high λrate, few bits should be used, and vice versa. As it is impractical to train one codec per
bitrate, a common choice is to condition the codec on the tradeoff parameter, and learn to operate at
multiple bitrates by varying λrate at training time (Song et al., 2021; Rippel et al., 2021).

2.3 A DIFFUSION-BASED NEURAL CODEC

A DDPM-based decoder While the previous two sections were meant as an introduction to the
necessary background, this section describes contributions made in this work. A DDPM can be
constructed as a conditional model that exploits useful side-information, for example a target class
or desirable latent features. In the data compression setting, one could build a DDPM conditioned on
a compressed (quantized) latent representation y of the input x, as is done in concurrent work (Yang
& Mandt, 2022). In this work we choose to condition our diffusion model on an initial reconstruction
x̃ from a decoder Dd

θ , which leads it to learn to improve perceptual quality, as we outline below.

Assuming a perfect encoder/decoder pair, the reconstruction x̃ will have minimal distortion for the
given bitrate. The DDPM Dp

θ has access to the same information as Dd
θ , meaning that in expectation

it cannot improve fidelity further. As the latent y is a compressed discrete representation, there are
multiple images that result in the same latent, the preimage of y: p(x|y) = p(x|x̃). An optimal
DDPM will model the distribution p(x|x̃) exactly for any given x̃. Although the perceptual metric
that best corresponds to human perception is unknown, Blau & Michaeli (2019) formalize perceptual
quality as a distance between the image distribution and the distribution of reconstructions. Perfectly
modeling p(x|x̃) will trivially result in zero distance, and should thus lead to perfect perceptual
quality under this definition. Note that this definition is also the basis of common perceptual metrics
such as the Frechet Inception Distance (FID) (Heusel et al., 2017).

Furthermore, Blau & Michaeli (2019) show that rate, distortion and perception are in a triple trade-
off. As our initial reconstruction x̃ has the highest fidelity in expectation, and the bitrate is fixed,
we expect an increase in perceptual quality to result in a decrease in fidelity. Intuitively this makes
sense: we know that x̃ minimizes the distortion to all x ∼ p(x|x̃), i.e., it is the distribution mean
when distortion is measured in L2. Samples from p(x|x̃) will have a non-zero expected distance
from the mean, and thus reduced fidelity. As a result we have, in expectation, an initial reconstruc-
tion with optimal fidelity, and a DDPM-enhanced reconstruction with optimal perceptual quality.

Although in practice our encoder, decoder and DDPM are not optimal, we show that the distortion-
perception tradeoff occurs empirically, and that intermediate samples from the DDPM will lead to a
smooth traversal from a high fidelity image to one with high perceptual quality. We choose to only
model residuals r = x − x̃ with the diffusion model, which means the DDPM output is added to
the initial reconstruction. This approach is visualized in Fig. 2. In theory this should be equivalent
to predicting full images, but residuals follow an approximately Gaussian distribution, which we
believe may be easier to model. More details on this choice are given in Appendix A.4.

Optimization Our model is optimized using a rate-distortion-perception loss, a combination of
the rate-distortion loss of Eq. (4) and the DDPM loss term of Eq. (3):

LRDP = E
x∼p(x)

[ LRD(x)︷ ︸︸ ︷
Ldistortion(x, x̃) + λrateLrate(y)+λperceptionLDDPM(x, x̃)

]
(5)

= E
x,ϵ,t

[
||x−Dd

θ(y)||2 − λrate logPθ(y) + λperception||r0 −Dp
θ(rt, t, x̃)||

2
]
, (6)

where we define the residual r0 = r = x− x̃, and the DDPM learns to model p(r0|rt, x̃).
We find that training end-to-end with this objective does not work well. While end-to-end training
of diffusion models with additional encoders has been demonstrated (Preechakul et al., 2022; Yang
& Mandt, 2022), it is a common choice to perform training in separate stages (Rombach et al., 2022;
Pandey et al., 2022). We train our codec in two stages, training only the base codec first using LRD,
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Figure 2: Overview of DIRAC, our proposed codec. A mean-scale hyperprior (optimized for dis-
tortion) transmits the input image x via a quantized latent y, resulting in an initial reconstruction x̃.
This initial reconstruction is used as conditioning for a U-Net based DDPM (optimized for percep-
tual quality) to generate a residual r0. The final reconstruction is then x̂ = x̃+ r0.

then freezing its parameters and training the DDPM using LDDPM. Final finetuning does not yield
any improvements, so we omit it. Details on optimization parameters are given in Section 3.

Fast sampling The computational cost of generation using diffusion models is often much higher
than that of alternative models such as GANs (Ho et al., 2020), as T model forward passes are
required to sample one datapoint. Many efforts in this field were devoted to improving the sampling
speed, see Section 5 for an overview. In this work, we use the deterministic sampling algorithm
introduced by Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020), as it is more robust
to reducing the number of steps than DDPM sampling. We provide more context on this scheme
in Appendix A.5. While we use T = 1000 during training, the number of sampling steps can be
reduced to 100 at test time at negligible cost to performance, by redistributing the timesteps based
on the scheme proposed by Nichol & Dhariwal (2021).

As mentioned earlier, the DDPM in DIRAC aims to improve perceptual quality at the cost of fidelity.
We demonstrate in this work that the distortion-perception tradeoff can be navigated smoothly with
the iterative DDIM sampling procedure: in practice, predicted residuals early in sampling have a
low norm and are close to zero, and their norm increases gradually with each step. This means that
the sampling procedure can be stopped at any point, e.g., when the desired perceptual quality is
achieved, or when a compute budget is reached. To indicate how many sampling steps have been
performed, we refer to our model as DIRAC-n, going from DIRAC-1 to DIRAC-100.

While early stopping navigates the perception-distortion tradeoff, we find that it is also possible to
skip initial sampling steps, similar to observations by Dhariwal & Nichol (2021); Lyu et al. (2022).
For the chosen noise schedule, early latents xt are close to Gaussian noise. By inserting appropri-
ately scaled noise as a “latent” at timestep t, we show in Section 4 that up to 80% of the sampling
procedure can be skipped with a negligible decrease in performance. The result is that our codec is
vastly more practical than other diffusion-based approaches in the compression context. Addition-
ally, it suggests that better noise schedules are possible in this setting.

3 EXPERIMENTS

Baselines Our codec is able to dynamically adjust the perception-fidelity tradeoff at test time.
We therefore compare it to the state-of-the-art methods in both rate-perception and rate-distortion
performance. One of the strongest perceptual codecs is HiFiC (Mentzer et al., 2020). Our reimple-
mentation obtains slightly better performance than their reported results. While neural codecs have
obtained strong rate-distortion performance, the standard codec VTM (Bross et al., 2021) is still
one of the best performing codecs in the low bitrate regime. We therefore include VTM as a rate-
distortion baseline. Note that while our hyperprior base model (Ballé et al., 2018; Minnen et al.,
2018) is not state-of-the-art, it is a well-established method for which high quality open source
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Figure 3: Selected CLIC2020 test set crops showcasing three cases where different distortion-
perception operating points are preferred. Based on the authors’ judgement, green dots indicate
best subjective quality. Left shows how DIRAC-100 (percep. quality) fares better than HiFiC on
text input, center shows how DIRAC-1 (fidelity) is beneficial for small text and faces, right shows
HiFiC’s superiority for fine texture generation. Best viewed electronically.

implementations are available. We also include the older JPEG codec (Wallace, 1991). Standard
baselines are evaluated using the VTM reference software, CompressAI framework (Bégaint et al.,
2020) and libjpeg in Pillow. We provide details on how to reproduce baselines in Appendix B.5.

Datasets For training, we use the training split of the high-resolution CLIC2020 dataset (Toderici
et al., 2020) (1633 images of varying resolutions). We follow the three-step preprocessing pipeline of
HiFiC (Mentzer et al., 2020): for each image, randomly resize according to a scale factor uniformly
sampled from the range [0.5, 1.0], then take a random 256×256 crop, then perform a horizontal flip
with probability 0.5. For validation and model selection, we use the CLIC 2020 validation set (102
images). We test on two datasets: CLIC2020 test set (428 images) and the Kodak dataset (Kodak,
1991) (24 images), both common benchmarks for image compression. We evaluate on full resolution
images: we reflect-pad the network input for sides to be multiple of 64—the total downsampling
factor within the encoder and hyper-encoder—and crop the output back to the original resolution.

Metrics We evaluate our method using both distortion and objective perceptual quality measures.
For distortion, we use the common PSNR and MS-SSIM (Wang et al., 2003) distortion measures.
As perceptual quality measures, we use two different metrics: the full-reference LPIPS (Zhang
et al., 2018) metric, and the Frechet Inception Distance (FID) (Heusel et al., 2017) metric, which
measures the distance between the target distribution p(x) and the distribution of reconstructions
p(x̂). We also show Inception Score (Salimans et al., 2016), KID (Bińkowski et al., 2022) and
NIQE (Mittal et al., 2013) in Appendix C.3. The latter requires a large dataset of images; following
HiFiC evaluation, we take half-overlapping 256 × 256 patches from each image in a test dataset
instead of resizing full-resolution images. All metrics are computed on images in the RGB color
space. To report bitrates, we perform entropy coding and take the filesize. This leads to no more
than 0.5% overhead compared to the theoretical bitrate.

Training details We provide full details on the implementation in Appendix B, and report com-
putational cost in Appendix B.4. We only repeat the most important details here. As mentioned
earlier, we separate training into stages, which allows us to ignore the λperception factor in Eq. (5):
(1a) pre-train a single-rate mean-scale hyperprior (Minnen et al., 2018) for 2M iterations using the
LRD loss, (1b) finetune a multi-rate hyperprior for 1M iterations using the resulting weights, and (2)
train the diffusion model for 650k steps using LDDPM, while keeping the hyperprior frozen. Training
is performed using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 10−4 and no
learning rate decay for the diffusion model, while learning rate is decayed by a factor of 0.5 for the
last 500k steps for the hyperprior model.

Our mean-scale hyperprior architecture follows (Ballé et al., 2018). It uses 4 downsam-
pling/upsampling layers on the encoder/decoder, and 2 downsampling/upsampling layers on the
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hyper-encoder/hyper-decoder. The model has 21.4 million parameters in total. For context, the
HiFiC baseline has 181.5 million.

We base our implementation of DDPMs on the official open source implementation of Dhariwal &
Nichol (2021)1, and base most of our default architecture settings on the 256 × 256 DDPM from
Preechakul et al. (2022), which uses a U-Net architecture (Ronneberger et al., 2015). This model has
108.4 million parameters. Conditioning on x̃ is achieved by concatenating x̃ and the DDPM latent
xt. Early experiments revealed that certain architectural choices resulted in improved performance.
To validate these, we perform an ablation study in Appendix B.1, using a smaller version of our
model, and smaller crops of the validation set. In summary, we find that using the training objective
of Eq. (3) (instead of the commonly used ϵ objective of Ho et al. (2020), see Appendix A.2), training
on larger crops with increased model capacity results in large improvements in perceptual quality.
Yet, the study also suggests our final model configuration may have room for further improvement.

4 RESULTS

Distortion-perception tradeoff In Fig. 1 we show the distortion-perception tradeoff for our model
compared to the hyperprior base model and HiFiC. The sampling steps of the diffusion model grad-
ually increase perceptual quality (lower FID), at the expense of fidelity. The figure visualizes this
trajectory for an example image from the CLIC2020 test set. We find that a single sampling step
from our model improves PSNR over the hyperprior base codec, likely due to larger model capacity
and longer training time.

HiFiC performs best in FID, but we emphasize that depending on the setting, PSNR may be more im-
portant. Different content and applications require different distortion-perception operating points.
To support this argument, we provide additional qualitative examples in Fig. 3. For each case, a
different method is preferred between HiFiC, DIRAC-1 (highest fidelity) and DIRAC-100 (highest
perceptual quality). While it is clear from the rightmost example that HiFiC is excellent at syn-
thesizing texture, both left and middle example show that HiFiC hallucinations lead to poor results
on information rich high frequency content like small text. DIRAC’s dynamic test-time control of
distortion-perception tradeoff allows mitigating the issue, as it spans close to the entire distortion-
perception tradeoff, which makes it amenable to more use-cases. Additional qualitative results, as
well as other approaches’ reconstruction of the same examples, can be found in Appendix C.4.

Comparison to state of the art While the distortion-perception tradeoff is shown in Fig. 1, we
visualize the individual rate-distortion and rate-perception tradeoffs in Fig. 4, showing both FID and
LPIPS as measures of perceptual quality. Note that FID computation on Kodak is not reliable due to
the low number of available samples, and we only show it for completeness. We show our model in
two configurations: DIRAC-100 (100 sampling steps) has maximal perceptual quality, and DIRAC-
1 (single sampling step) has minimal distortion. HiFiC demonstrates the best perceptual quality, but
has poor performance in PSNR. In terms of PSNR, DIRAC-1 is close to VTM in the low-rate regime
and beats it in the high-rate regime. We also show the concurrent work by Yang & Mandt (2022)
for LPIPS on Kodak (scores extracted from their Fig. 2c, scores for other panels not available). Our
model outperforms theirs by a large margin in the low-rate regime.

Efficient sampling In Fig. 5 we show the difference between sampling the full 100 steps (dotted
line), and skipping the first 80 steps (solid line), on the CLIC2020 test set and for two different
bitrates. The left and center panels show the change of PSNR and FID, respectively, as more sam-
pling steps are performed. As seen in Fig. 1, both PSNR and FID decrease over time, traversing the
distortion-perception tradeoff. Sampling can be stopped at any point to achieve the desired balance.
For the lower rate example the change is more gradual, while the high-rate case shows little change
during large parts of the sampling procedure. We further find that there is little difference in FID
when we skip the first 80 sampling steps, while PSNR actually improves for the low-rate example.
Note that the ability to start sampling from step 80 also means that all tradeoff points before that can
be reached with a single one-shot prediction by our model, i.e., by scaling noise to the appropriate
variance and performing a single diffusion step. These findings translate to the distortion-perception
tradeoff in the rightmost panel, where we only show the low-rate example. DIRAC, using only the

1The official implementation of Dhariwal & Nichol (2021): https://github.com/openai/guided-diffusion
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Figure 4: Rate-distortion (left) and rate-perception (middle & right) curves for the CLIC2020 test
set (top) and Kodak dataset (bottom). Although FID on Kodak is based on a low number of crops,
we report it here for completeness.
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Figure 5: Analysis of the effect of early stopping and late starting on the CLIC2020 test set. We
show tradeoffs for rate-distortion (left), rate-perception (center) and distortion-perception (right).
The default sampling schedule of 100 steps is shown as a dotted line (invisible in case of perfect
overlap), the solid line shows performance when skipping the first 80 steps.

last 20 sampling steps, actually performs better than the full sampling procedure in terms of PSNR,
and the final FID is only negligibly worse. This behaviour is rate-dependent: at high bitrates results
are virtually identical, at lower rates (shown in Fig. 5) we see an increase in PSNR.

5 RELATED WORK

Neural data compression Neural codecs have seen major advances in both the image (Minnen
et al., 2017; Rippel & Bourdev, 2017; Ballé et al., 2018; Minnen et al., 2018) and video domain
(Wu et al., 2018; Lu et al., 2019; Rippel et al., 2019; Habibian et al., 2019; Agustsson et al., 2020;
Hu et al., 2021; 2022). By conditioning on a λrate-variable corresponding to a desired bitrate, some
codecs have been extended to operate at multiple bitrates (Wu et al., 2020; Song et al., 2021; Rippel
et al., 2021). Perception-focused compression methods are mainly led by GAN-based approaches
(Agustsson et al., 2019; Mentzer et al., 2020; Yang et al., 2021; Mentzer et al., 2021). Recent GAN-
based works allow trading off fidelity and perceptual quality using control parameters and latent
masking (Wu et al., 2020; Iwai et al., 2021). Unlike existing work that masks the latent to reduce
the bitrate and determine which areas of the input are high fidelity, our codec does not entangle
rate-distortion and perception-distortion tradeoffs.
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Diffusion probabilistic models DDPMs have proved to be successful in various application areas,
including image and video generation (Ho et al., 2022a;b; Yang et al., 2022), representation learning
(Preechakul et al., 2022; Pandey et al., 2022), language-to-image generation (Ramesh et al., 2022;
Saharia et al., 2022b), and image-to-image modelling such as image deblurring (Whang et al., 2022)
and restoration (Kawar et al., 2022; Saharia et al., 2022a).

In the context of data compression, Hoogeboom et al. (2021) show that DDPMs can be used in
the lossless compression setting. In the lossy compression setting, Ho et al. (2020) showed that if
the continuous latents can be transmitted, a DDPM enables progressive coding. Theis et al. (2022)
make this approach feasible in practice by using reverse channel coding. Although their approach
is powerful and elegant, it is currently unlikely to be of practical use due to its high computational
cost. In concurrent work, Yang & Mandt (2022) propose a codec where a conditional DDPM takes
the role of the decoder, directly producing a reconstruction from a latent variable. In contrast, our
codec first creates an initial reconstruction and then models the residuals between it and the ground
truth, which enables direct control over perception-distortion and results in improved performance.

The sampling process for diffusion models is typically inefficient as it requires a high number of
sampling steps to achieve the best performance. Although it is not our main focus, we show in this
work that the compression setting lends itself well to speeding up sampling. Other works have shown
that the diffusion process can be started at late timesteps (Lyu et al., 2022), and that this could mean
that better-suited noise schedules exist (Nichol & Dhariwal, 2021). Various other methods were
proposed to improve the sampling speed, either through model distillation (Luhman & Luhman,
2021; Salimans & Ho, 2021), by altering the sampling procedure (Song et al., 2020), or by working
in a low-dimensional latent space (Rombach et al., 2022). In this work, we use DDIM (Song et al.,
2020) as it provides a training-free sampling scheme based on a generalization of the forward process
to non-Markovian diffusion processes. This choice of forward process leads to “shorter” Markov
Chains, which increases sample efficiency.

6 DISCUSSION AND LIMITATIONS

Our generative codec navigates the rate-distortion-perception tradeoff dynamically at test time,
meaning the user can determine the importance of bitrate, fidelity and perceptual quality themselves.
Although this improves user control over the amount of hallucinated content, we currently do not
control where such hallucinations occur. Similar to GAN-based codecs, we observe that increasing
perception sometimes harms fidelity in small regions with semantically important content, such as
faces and text. Addressing this limitation is an important next step for generative codecs.

Additionally, although we are able to drastically reduce the number of sampling steps, it is still fairly
expensive to use a DDPM on the receiver side. The fact that we see an increase in PSNR after a
single sampling step means that the base hyperprior codec is far from perfect, and that improving
the base model or adopting a standard codec like VTM would increase the fidelity of the initial
reconstruction. This likely means that the DDPM can be made smaller to reduce computational
complexity. We also find that many sampling steps can be skipped without loss in performance.
This suggests that improved noise schedules, or conditioning the DDPM on the noise so that different
schedules can be used at test time (Whang et al., 2022), may further improve performance.

7 CONCLUSION

In this work, we propose a new neural image compression method called Diffusion-based Residual
Augmentation Codec (DIRAC). This codec uses a variable bitrate base model to transmit an initial
reconstruction with high fidelity to the original input, and then uses a diffusion probabilistic model
to improve its perceptual quality. We show that this design choice enables fine control over the rate-
distortion-perception tradeoff at test time, which for example enables users to choose if an image is
decoded with high fidelity or high perceptual quality. Furthermore, although diffusion probabilistic
models are notoriously expensive to sample from, we show that in the compression setting, the
number of sampling steps can be reduced dramatically. Our work shows that diffusion-based codecs
have compelling practical advantages that make them a promising candidate for high perceptual
quality data compression.
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Ethics statement Neural codecs may be biased towards the data they have seen during training,
for example leading to worse reconstructions for data with little support. Additionally, generative
codecs may generate false but plausible details, which can be harmful for use cases where fidelity
is important. We observe this especially when examining reconstructions containing text and faces.
Deploying generative codecs will therefore require careful investigation of the desired operating
points and their failure cases. By giving the user control over the distortion-perception tradeoff, our
codec facilitates selection of this operating point at test-time.

Reproducibility statement All datasets used in this work are publicly available, and we show our
three-step data augmentation pipeline in Section 3. The proposed codec consists of two components:
a base image codec, and DDPM that performs enhancement of the initial reconstruction.

The base image codec is a mean-scale hyperprior (Ballé et al., 2018). High quality implementations
of this neural codec (and similar image codecs) are available via CompressAI, see for example this
mean-scale hyperprior implementation link on GitHub. This library also provides entropy coding
functionality. Relevant hyperparameters for hyperprior training are listed in Appendix B.1.

The DDPM component was trained using the open source implementation of (Dhariwal & Nichol,
2021). The main change in implementation is that our DDPM is conditioned on an initial recon-
struction from a mean-scale hyperprior, which is achieved by concatenating it with the DDPM latent
(these two tensors have the same spatial dimensions). We list all hyperparameter settings in Table 1,
as well as the name of command line arguments corresponding to those parameters. We provide
details on sampling in Appendix A.5, Appendix B.3.

Lastly, we provide information about computational complexity and training compute in Ap-
pendix B.4. Instructions for reproducing baselines are provided in Appendix B.5.
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polation. Proceedings of the European Conference on Computer Vision, 2018.

Lirong Wu, Kejie Huang, and Haibin Shen. A GAN-based tunable image compression system. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2334–
2342, 2020.

13

http://www.compression.cc
https://doi.org/10.1145/103085.103089
https://doi.org/10.1145/103085.103089


Under review as a conference paper at ICLR 2023

Ren Yang, Luc Van Gool, and Radu Timofte. Perceptual learned video compression with recurrent
conditional GAN. arXiv preprint arXiv:2109.03082, September 2021.

Ruihan Yang and Stephan Mandt. Lossy image compression with conditional diffusion models.
arXiv preprint arXiv:2209.06950, 2022.

Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video
generation. arXiv preprint arXiv:2203.09481, Mar 2022.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018. doi: 10.1109/cvpr.2018.00068.

Yinhao Zhu, Yang Yang, and Taco Cohen. Transformer-based transform coding. In International
Conference on Learning Representations, Mar 2022.

14



Under review as a conference paper at ICLR 2023

A METHOD

A.1 DERIVATION OF DDPM LOSS FOR LEARNING x0

Following Sohl-Dickstein et al. (2015), the ELBO on the log likelihood of pθ(x0) can be written as
T -step Kullback–Leibler (KL) divergences: KL(q(xt−1|xt,x0)||pθ(xt−1|xt)) for t = 1, ..., T−1.
Under the assumption that the two distributions of interest are both Gaussian, we further assume
Σθ(xt, t) = σ2

t I to be time dependent constants. This reduces the KL divergence at step t to a
comparison from the model mean to the posterior mean of the forward process, i,e.,

KL(q(xt−1|xt,x0)||pθ(xt−1|xt)) = Eq

[
1

2σ2
t

||µ̃t(xt,x0)− µθ(xt, t)||2
]
+ C, (7)

where C is a constant, and µ̃t denotes the posterior mean of the forward process conditioned on the
data input x0, i.e., q(xt−1|xt,x0).

Note that, using the Bayes’ rule and the Markovian property of the forward process, we can rewrite

q(xt−1|xt,x0) =
q(xt−1,xt|x0)

q(xt|x0)

=
q(xt−1|x0)q(xt|xt−1)

q(xt|x0)
, (8)

where the distribution q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) with αt := 1−βt and ᾱt :=

∏t
s=1 αs.

With the known distribution of q(xt|x0), we can sample xt at an arbitrary step t by

xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I). (9)

Now each of the components on the RHS of Eq. (8) is defined as a Gaussian distribution with known
parameters. As a result, we can find the posterior mean µ̃t in the following explicit form:

µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt = ηtx0 + ξtxt . (10)

By plugging Eq. (10) into Eq. (7), and choosing a parametrization that matches µθ to µ̃t at each
diffusion step t, for example µθ(xt, t) = ηtgθ(xt, t) + ξtϵ (where gθ is a function that directly
predicts x0 from xt), we arrive at an objective function at diffusion step t:

min E
t,x0,ϵ

[
wt||x0 − gθ(xt, t)||2

]
for t = 1, ..., T − 1. (11)

where wt := η2t /2σ
2
t and t is absorbed into the expectation instead of being summed over.

A.2 PARAMETRIZATION FOR LEARNING THE NOISE ϵ

For completeness, we use this section to restate the approach of Ho et al. (2020), who parametrize
models to predict the noise ϵ instead of the data x0.

Ho et al. (2020) reparameterized Eq. (9) to obtain a function of x0: x0(xt, ϵ) = 1√
ᾱt
(xt +

√
1− ᾱtϵ) where ϵ ∼ N (0, I). To minimize the KL divergence (7) at time t, the authors chose

a formulation that learns the noise ϵ, which leads to the following desired equality:

µθ(xt, t) = µ̃t(xt,
1√
ᾱt

(xt +
√
1− ᾱtϵθ)). (12)

Expanding the posterior mean according to Eq. (10), we can derive an objective function that mini-
mizes prediction errors in the ϵ-space:

Lϵ = Ex0,ϵ

[
vt||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

]
, (13)

where the weight coefficients are vt := β2
t /(2σ

2
tαt(1− ᾱt)).
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Figure 6: Distributions of pixel values in a 1000 random 256x256 crops of the CLIC train dataset,
left for the target image x, right for the residual r = x− x̃ where the initial reconstruction x̃ is from
a single-rate mean-scale hyperprior trained with λrate = 0.03. Rows corresponds to the red, green
and blue channels respectively.

A.3 NOISE SCHEDULE AND LOSS WEIGHTS

We choose the noise schedule βt such that the ᾱt follow a cosine-shaped curve. This is one of
the most common choices for the noise schedule. We also reweight the individual loss terms from
Eq. (3) to wt = 1, inspired by Ho et al. (2020) who do the same for loss formulation given in
Eq. (13) (meaning they set vt = 1). The theoretically derived wt = η2/(2σ2

t ) results in extremely
large weights for small t. We find that wt = 1 works better, likely because of the more evenly
distributed loss scales, but it is possible that better weights exist.

A.4 MOTIVATION FOR DDPM MODELING IN RESIDUAL SPACE

DIRAC outputs an initial reconstruction x̃, then models the distribution of residuals p(r|x̃) using a
DDPM, where r = x− x̃. In theory, one could model the image distribution p(x|x̃) directly. From
an entropy perspective, the two approaches are equal: the entropy of p(r|x̃) is equal to the entropy of
p(x|x̃) since, given the data x, the residual r is a deterministic function of the initial reconstruction.
Yet, while their entropy might be similar, the shape of these distributions is different.

In Fig. 6, we show the histogram of pixel values in the target image (left) and the residuals (right)
for each RGB channel. We observe that residual values approximately follow a normal distribution,
whereas the pixel values in image space show a more intricate distribution. Given the fact that
DDPMs (in their typical formulation) map Gaussian noise to the target distribution, we conjecture
that it is desirable that the target distribution is close to a normal distribution, and that it helps reduce
the number of sampling steps required to obtain satisfactory perceptual quality.

A.5 SAMPLING DESCRIPTION

We use 100 DDIM sampling steps by default (Song et al., 2020). We describe modified sampling
schemes, namely the early stopping and late start procedures, in more detail. Both schemes speed
up sampling by skipping steps entirely.
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Early stopping The DDPM enhancement model of DIRAC predicts the (often sparse) residual
r = x− x̃. We find that we are able to stop sampling at any point before we reach the final step, by
simply using the intermediate prediction for the residual r̂0(rt) = Dp

θ(rt, t, x̃) as the final sample.
Specifically, we observed that during sampling, early intermediate predictions are close to zero, and
that they become sharper over time. Stopping early then typically means higher PSNR, whereas
stopping late results in high perceptual quality. Intuitively, this makes sense as well: we know that
in the limit of perfect models, x̃ has the highest possible expected fidelity, and the DDPM can only
increase quality by decreasing fidelity.

Stopping early in this manner is somewhat similar to the scheme proposed by Ho et al. (2020), who
use this intermediate prediction to describe a progressive coding scheme. However, we have already
transmitted the initial reconstruction x̃, and all DDPM sampling happens on the receiver side, so
the settings are quite different. It is the receiver-side generation of residuals that allows to navigate
the the distortion-perception tradeoff (Blau & Michaeli, 2019), and that enables early stopping to
achieve a desired tradeoff or to reduce compute requirements. Optimizing sampling trajectories of
diffusion models is an active field, and further research on the sampling in different (conditional)
settings may lead to actionable insights (Deja et al., 2022).

Late start Similar to findings of Nichol & Dhariwal (2021) and Lyu et al. (2022), we observe that
it is possible to skip several sampling steps. In particular, we take an initial sample ϵ ∼ N (0, 1)
and scale it to match the expected standard deviation at timestep t given by the forward process,
then plug this “latent” into the reverse process. Nichol & Dhariwal (2021) mainly use the late-
start observation to motivate the use of a different noise schedule. Based on the similarity of our
observations to theirs, we believe there may be noise schedules that are better suited for the image
compression setting, but we leave that investigation for future work. The key finding in our work is
that we can skip a large part (up to 80%) of the initial steps without performance degradation.

B IMPLEMENTATION DETAILS

B.1 ARCHITECTURE AND TRAINING

Base codec We use the “mean-scale hyperprior” architecture from Minnen et al. (2018). This is
an hierarchical VAE with quantized latent variables. The first level encoder and decoder produce
the quantized latent variable and decode it to a reconstruction. The second level, which is the prior
model, uses a hyper-encoder to produce a so-called quantized hyper-latent z, then maps that to
parameters µy, σy using a hyper-decoder. The hyper-latent distribution is typically modeled using
an unconditional prior p(z). The probability of the quantized latent under the prior is then equal to
p(y|z) = N (y|µy, σy).

The encoder consist of 4 stride 2 convolutions with kernel size 5, and similar transpose convolution
layers for the decoder. The hyper-encoder consists of a stride 1 convolution with kernel size 3,
followed by 2 stride 2 convolutions with kernel size 5. We use 320 channels for every layer in the
encoder/decoder, and 192 channels for the hyper-encoder/hyper-decoder.

As the codec uses 4+2 stride 2 convolutions, it has a so-called downsampling factor of 24+2 = 64×
. To enable transmission of images that have spatial dimensions not divisible by this factor, we use
‘reflect’ padding to pad the image, transmit the padded image, then crop to the original resolution
on the receiver side. We transmit the original spatial dimensions as 16 bit integers. This bit cost is
negligible compared to the cost of transmitting the content.

Latent quantization is performed using a “mixed” strategy: both decoders see the quantized latents
during training, and a straight-through estimator is used to make sure gradients pass through the
hard quantization operation; the prior computes the loss based on latents quantized using additive
uniform quantization noise u ∼ U(−0.5, 0.5) (Guo et al., 2021). For more details and architecture
visualizations, we refer the reader to Ballé et al. (2018); Minnen et al. (2018).

Multi-rate training Multi-rate capabilities are added using a scheme similar to that of Song et al.
(2021); Rippel et al. (2021), by conditioning on λrate during training and evaluation.
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During training, the multi-rate codec must see range of tradeoff parameters in order to learn the
desired effect of λrate. For each batch, we sample a value λ′ ∼ U [0, 1], then skew this by a factor γ
to obtain λ′′ = λ′γ . We set γ = 3.0 to favor sampling of high bitrate batches, as we found that this
improves fidelity for low bitrate settings as well. The final sampled tradeoff parameter λrate is then
obtained via linear interpolation in log space:

log2 λrate = (log2(λmax)− log2(λmin))× λ′′ + log2(λmin) , (14)

where λmax = 0.0128 and λmin = 0.0001. λrate is used for the loss, while λ′′ is provided to the base
codec. It is embedded in a soft one-hot vector of 4 dimensions λ⃗, following (Rippel et al., 2021).
For example, this means the vector [1, 0, 0, 0] corresponds to the value λ′′ = 1, and [0, 0.5, 0.5, 0]
corresponds to λ′′ = 0.5.

Each layer in the codec (sender and receiver side) is conditioned on the tradeoff parameter using
output activation scale-and-shift, following (Song et al., 2021). This works as follows: for each
activation in the codec hact, which has Cact channels, a linear layer projects the 4-element tensor λ⃗
onto a tensor with 2·Cact elements. The first Cact elements correspond to the scale sact, the remainder
corresponds to the shift dact The conditioned output activation is then equal to hact · sact + dact.

At test time, the user picks the rate-distortion operating point by selecting a λrate value. Conditioning
is then performed in the same way as during training. Of course, we need to transmit λrate to the
receiver end as well. To do so, we quantize λ′′ to a 16 bit integer, and transmit it at negligible bitrate
cost.

DDPM architecture Many of our U-Net architecture choices were adopted from the open-source
implementation of Dhariwal & Nichol (2021), and we refer the reader to those works for a detailed
explanation of the meaning of all hyperparameters. Table 1 provides an overview of the hyperpa-
rameter settings for the full DIRAC model, as well as the DIRAC-small, which is the base model for
our ablation study. Horizontal lines separate U-Net parameters, diffusion process parameters, and
training hyperparameters.

The channel multiplier corresponds to the increase in width with respect to the base number of
channels in each layer. Following Preechakul et al. (2022), we train our largest models using a
U-Net with 6 separate blocks, increasing the multiplier every 2 blocks. Self-attention layers are
removed from all layers except the bottleneck of the U-Net. We use the cosine noise schedule of
(Nichol & Dhariwal, 2021), as we saw better performance with this schedule in early experiments.
However, an ablation study in Appendix B.2 shows that even better hyperparameters may exist.

Training DIRAC We separate training into two steps: 1) train our base codec for a rate distortion
objective Eq. (4), and 2) then train the DDPM using the perceptual objective of Eq. (3).

Step 1 is split into two steps as well. First, we train a single rate hyperprior for 2 million iterations
using λrate = 0.001. Then, we add λrate conditioning layers, and finetune the multi-rate hyperprior
for 1M additional iterations, as described in the paragraph “Multi-rate training”. Although rate-
distortion performance is important, the choice of base codec likely is not critical, and any multi-rate
image codec may suffice.

In step 2, we use the base codec to produce initial reconstructions x̃, and train a x̃-conditional
DDPM to perform enhancement. In order to support the multi-rate hyperprior, the DDPM needs
to see reconstructions for many different λrate at training time. In practice, this can be achieved
by using the sampling schedule used for multi-rate hyperprior training. The DDPM is trained for
650,000 iterations, see the hyperparameter settings specified in Table 1.

B.2 ARCHITECTURE ABLATION STUDY

We adopt most architecture settings for the DDPM from Dhariwal & Nichol (2021), but observed
that certain architectural choices provided a significant performance improvement in early exper-
iments on low-resolution data. To validate this, we ablate some architecture choices in Figure 7.
Ablation studies were performed on a smaller reference model called DIRAC-small (details in Ta-
ble 1) to enable training on a single V100 GPU, whereas DIRAC is trained on 2 A100 GPUs. For
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Parameter Command line DIRAC DIRAC-small

Channel multiplier channel mult 1,1,2,2,4,4 1,2,3
Base num. channels num channels 128 32
Learn σt learn sigma false false
Group normalization group norm true true
Attention resolutions attention resolutions none none
Num. attention heads num heads 1 1
Objective Eq. (3) predict xstart true true
Num. ResBlocks num res blocks 2 2
Scale shift conditioning use scale shift norm false false

Diffusion steps diffusion steps 1000 1000
Noise schedule noise schedule cosine cosine

Batch size batch size 128 32
Learning rate lr 10−4 10−4

Training steps iterations 650k 600k
Input resolution image size 256x256 256x256

Use DDIM sampling use ddim true true
Resampling timesteps timestep respacing ddim100 ddim100

Table 1: Hyperparameters for DIRAC and the smaller ablation model during training and sampling.
We refer the reader to the official open source implementation of Dhariwal & Nichol (2021) for
more details on these parameters.
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Figure 7: Architecture ablation study for DDPM model. Ablation reference (DIRAC-small) model
is defined in Table 1.

all ablations, we sample using DDIM, reducing sampling to 100 timesteps, in a similar manner to
Nichol & Dhariwal (2021). We evaluate PSNR and FID metrics on 512x512 center crops of the
CLIC validation dataset.

We make the following observations. Training on smaller crops, using the ϵ objective of Ho et al.
(2020) instead of the r0 objective of Eq. (3) results in much worse performance. However, disabling
group normalization and using a linear noise schedule both improve performance. Our final model
does not use these settings, meaning further improvements may be possible for DIRAC. The full
DIRAC model performs better than DIRAC-small, especially in FID at lower bitrates, meaning that
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increased model capacity likely contributes to performance. Nevertheless, using a smaller DDPM is
possible if compute cost is more important than FID.

B.3 SAMPLING

We use DDIM sampling with 100 timesteps for all experiments, following Song et al. (2020), unless
stated otherwise. Sampling for 100 timesteps instead of the 1000 used during training requires
“timestep respacing” of the noise schedule, which we achieve using the scheme in proposed in
Nichol & Dhariwal (2021).

To enable sampling for images with shapes not divisible by the downsampling factor of the U-Net,
we pad the conditioning using ‘reflect’ padding, sample an image of the resulting size, then crop to
the original spatial dimensions. This does not affect the bitrate, as all information already lives on
the receiver end.

As mentioned earlier, for all early stopping and late start experiments, we use the intermediate
timestep t prediction r̂0(rt) = Dp

θ(rt, t, x̃) as the best-so-far prediction. This is the only sensible
choice: the latent rt is still close to random noise at earlier iterations.

B.4 COMPUTE

We provide information on the computational complexity of model components, and the cost of
sampling, in Table 2. We run benchmarking on a desktop workstation with a Nvidia 3080 Ti card,
CUDA driver version is 455.32.00, CUDA 11.1. We use 1,000 forward passes on square inputs of
size 256× 256 and 1024× 1024, use GPU warmup, and record inference time using CUDA events.
We do not include time to entropy code here.

Parameter count Runtime 256 (ms) Runtime 1024 (ms)

DIRAC hyperprior 21.4M 13.9± 1.0 82.7± 1.81
DIRAC U-Net 108.4M 39.3± 1.2 485.6± 1.17

HiFiC 181.5M 18.4± 1.1 129.2± 0.64

Table 2: Computational complexity for each model. Runtime mean and standard deviation were
obtained using 1,000 forward passes. Note that none of the models here were explicitly optimized
for inference speed, numbers are indications only.

All our (base codec) multi-rate hyperpriors were trained on a single Nvidia V100 card. Final DIRAC
models were trained on 2 Nvidia A100 cards using data paralellism. Ablation model (DIRAC-small)
settings were chosen so that training could be performed on one Nvidia V100 card.

A fair comparison between methods would not only require equalization of bitrate, but ideally also
equalization of training and test-time compute. For example, HiFiC decoding complexity is sub-
stantially lower than that of DIRAC if many sampling steps are used, which will give DIRAC-100
an unfair advantage. DDPMs also see more datapoints than HiFiC during training as a larger batch
size is used. In this work, we mainly focused on feasibility of the approach, and have therefore not
equalized compute.
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B.5 BASELINES

Standard codec baselines We run VTM-17.0 https://vcgit.hhi.fraunhofer.de/
jvet/VVCSoftware_VTM/-/releases/VTM-17.0, and use CompressAI https://
github.com/InterDigitalInc/CompressAI to prepare the encoding command. Com-
pressAI converts given input RGB images to YUV444 before coding them in “all intra” mode, then
converts the reconstructed YUV444 images back to RGB. These conversions are lossless. We use
the default all intra configuration, and use QPs {22, 27, 32, 37, 40}, where higher QPs corresponds
to low bitrate and vice versa.

Specifically, the command used to gather VTM-17.0 evaluations is:

python -m compressai.utils.bench vtm <path-to-image-folder>
-c <path-to-VTM17.0-software>/cfg/encoder_intra_vtm.cfg
-b <path-to-VTM17.0-software>/bin
-q [22, 27, 32, 37, 40]

For JPEG evaluations, we use JPEG functionality in Pillow. We again use CompressAI to prepare
the encoding command.

python3 -m compressai.utils.bench jpeg <path-to-image-folder>
-q [5, 10, 15, 20, 25, 30, 35, 40, 45, 55]

Hyperprior baselines We train mean-scale hyperpriors for various rate-distortion tradeoff points
by setting λrate to one of {0.006, 0.005, 0.004, 0.003, 0.002, 0.001, 0.0003}, where 0.006 corre-
sponds to the lowest bitrate model. Baseline models were trained for up to 2 million iterations,
where we select the best model based on Kodak PSNR. Selecting baseline models based on their
test dataset performance may be unfair to other methods, but ensures the baseline is strong.

HiFiC baselines We train HiFiC models, as described by (Mentzer et al., 2020), for 5 bitrate
targets: {0.15, 0.225, 0.3, 0.375, 0.45}. Each model is trained in two stages. In the first stage,
we train a mean-scale hyperprior with a rate-distortion objective for 1 million iterations, where
the distortion objective combines mean squared error with the perceptual distortion metric LPIPS
(Zhang et al., 2018). In the second stage, a conditional discriminator is added and the model is
finetuned for an additional 1 million iterations using a rate-distortion-GAN loss. In both stages,
learning rate is decayed from 10−4 to 10−5 after 500,000 iterations. We use the models at the final
timestep (2 million iterations) as baseline models.

We follow the training procedure described in the paper, with two important deviations. First, we use
λrate warmup for 100K iterations, instead of the 50K iterations used in the paper. Second, we enable
this warmup schedule for GAN finetuning as well. We find that these changes result in slightly
improved performance with respect to the scores reported by Mentzer et al. (2020), especially at low
bitrate.

C ADDITIONAL RESULTS

C.1 ROBUSTNESS TO DIFFERENT BASE CODECS

In Fig. 8 we apply DIRAC-100 (maximum perceptual quality), which was trained with a hyperprior
base codec, directly on top of other base codecs, without finetuning. Specifically, we use JPEG and
VTM as examples of standard codecs, and SwinT (Zhu et al., 2022) as a state-of-the-art neural codec.
We find that our model still improves perceptual quality, indicating that it is robust to the choice of
base codec. It is reasonable to assume that training on these base codecs would improve performance
further. On VTM and SwinT, the gain in perceptual quality is still large, close to what we achieve
for the hyperprior base codec. Using JPEG, the increase is only moderate. We believe this is due to
the fact that JPEG exhibits strong artifacts at low rates, specifically blocking. Reconstructions from
VTM and SwinT, on the other hand, are pretty similar to those from the hyperprior, in that low-rate
reconstructions tend to be blurry.
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Figure 8: We apply DIRAC-100, trained with a mean-and-scale hyperprior base codec, to recon-
structions from other base codecs, namely JPEG and VTM-17.1, on the CLIC2020 test set. Without
finetuning, our model can still tradeoff fidelity and perceptual quality effectively.

C.2 COMPARISON TO IMAGE ENHANCEMENT APPROACHES

As we do not train our model end-to-end, it can also be viewed as an image enhancement method.
We therefore compare it to two recent image enhancement works that focus on perceptual quality.
While it is difficult to achieve perfect configuration parity, both works enhance a version of VTM
and report scores on a CLIC dataset. We take DIRAC-100 trained on a hyperprior base codec and
apply it on top of VTM-17.1 without finetuning. Our scores are calculated on the same dataset that
each method reports on

Kim et al. (2020) train a model on the CLIC2020 train dataset combined with MS COCO (Lin
et al., 2014) to enhance VTM-7.3. They report scores on the CLIC2020 test set, and use the Percep-
tual Index (PI) as a perceptual metric, which is defined as:

PI =
(10−Ma) +NIQE

2
. (15)

Ma is a no-reference quality metric defined in Ma et al. (2017), going from 0 (poorest quality) to 10
(best quality).

Wang et al. (2022) base their approach on the Enhancement Compression Model (ECM)2, which
in turn is built on VTM. They train a model to enhance its output in an in-loop fashion, meaning it’s
not a post-processing approach. As a recent enhancement approach focused on perceptual quality,
we still decided to include it. They train on DIV2K (Agustsson & Timofte, 2017) and report scores
on the CLIC2022 validation set, using LPIPS as a perceptual metric.

Even though we apply our model on VTM without finetuning, we achieve performance comparable
to Wang et al. (2022) with similar perceptual quality improvement, at the cost of more PSNR. We
assume that with additional finetuning, our approach would outperform theirs.

C.3 PERCEPTUAL METRICS

In Fig. 10 we show additional metrics, namely the Inception Score (IS) (Salimans et al., 2016),
Kernel Inception Distance (KID) (Bińkowski et al., 2022) and NIQE (Mittal et al., 2013). IS and
KID are distribution metrics and thus not very reliable on Kodak, which only contains 24 images. As

2https://vcgit.hhi.fraunhofer.de/ecm/ECM.git
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Figure 9: We compare DIRAC-100 with a VTM-17.1 base codec (trained on a hyperprior base
codec, without finetuning) with two different methods, namely the work by Kim et al. (2020) (top
row) and the ArabicaPerceptual method from Wang et al. (2022) (bottom row). The former reports
PI (see Eq. (15)) as a perceptual metric on CLIC2020 test set, while the latter reports LPIPS on the
CLIC2022 validation dataset. Note that PI computation is very expensive, and results for our model
will be added as soon as available.

a result, we observe negative values for HifiC and our model, because we use an unbiased estimator.
While overall the relative performance is similar to that seen for FID (see Fig. 4), we were surprised
to see unstable scores for HiFiC in NIQE. All other methods, including ours, show a smooth decay
with rate increase.

C.4 QUALITATIVE RESULTS

We include more qualitative results below, including additional baselines JPEG and VTM. Dis-
tributed over Fig. 11, Fig. 12, Fig. 13 we show 9 images from the CLIC 2020 test set, with selected
crops to zoom on salient regions.
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Figure 10: Additional perceptual metrics for CLIC2020 test set (top) and Kodak dataset (bottom).
Note that distribution metrics (Inception Score and KID) are not reliable for small datasets like
Kodak. Solid black lines show original data scores for no-reference metric NIQE.
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