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ABSTRACT

Multi-task reinforcement learning (MTRL) has emerged as a challenging problem
to reduce the computational cost of reinforcement learning and leverage shared
features among tasks to improve the performance of individual tasks. However,
a key challenge lies in determining which features should be shared across tasks
and how to preserve the unique features that differentiate each task. This chal-
lenge often leads to the problem of task performance imbalance, where certain
tasks may dominate the learning process while others are neglected. In this paper,
we propose a novel approach called shared-unique features along with task-aware
prioritized experience replay to improve training stability and leverage shared and
unique features effectively. We incorporate a simple yet effective task-specific
embeddings to preserve the unique features of each task to mitigate the poten-
tial problem of task performance imbalance. Additionally, we introduce task-
aware settings to the prioritized experience replay (PER) algorithm to accommo-
date multi-task training and enhancing training stability. Our approach achieves
state-of-the-art average success rates on the Meta-World benchmark, while main-
taining stable performance across all tasks, avoiding task performance imbalance
issues. The results demonstrate the effectiveness of our method in addressing the
challenges of MTRL.

1 INTRODUCTION

Humans can perform a fixed set of real-world tasks alone, such as everyday household tasks. Multi-
task reinforcement learning (MTRL) is a crucial framework for verifying whether the machine also
has this capability. Unlike conventional RL methods have to train separate models for each task,
MTRL methods aim to handle a fixed set of tasks via a single model, which brings the following
benefits: (1) It alleviates the high cost of data collection and training time in conventional RL. (2) It
can further exploit the knowledge synergy of tasks. Because of these benefits, MTRL has recently
gained attention from researchers (Tanaka & Yamamura, 2003; Borsa et al., 2016; Haarnoja et al.,
2018; Yang et al., 2020; Yu et al., 2020a; Sodhani et al., 2021; Sun et al., 2022). We emphasize that
it is necessary and practical to develop MTRL methods.

There are two primary challenges posed by the MTRL problem, including (1) the harmonization of
shared and unique features from different tasks and (2) the data sampling strategy during MTRL
training. Regarding the first challenge, it is intuitive that some knowledge from similar tasks (e.g.,
opening a door and opening a window) can be shared and transferred for more efficient training. In
the meantime, the unique features of each task should also be effectively extracted and preserved,
providing enough information for the machine to know how to perform tasks that are less similar to
other tasks. Consequently, the harmonization of shared and unique features is critical. Methods that
fail to balance shared and unique features may cause a severe performance imbalance of tasks, i.e., a
significant gap in the performance of different tasks, as discussed in (Meng & Zhu, 2023). Besides,
for the second challenge, the training data in MTRL come from different tasks (stored in each task’s
replay buffer). How to sample the stored training data (i.e., transitions) from each task is critical
so that the model can consistently improve the overall performance and strengthen the performance
of more complex tasks. Poor training data sampling strategies may also lead to the performance
imbalance of tasks or slow performance improvement.
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(a) Some tasks in MT10 benchmarks in Meta-World (Yu et al., 2020b).
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(b) Showing task performance imbalance problem in MTRL.

Figure 1: Task performance imbalance problem. (a) Some tasks in MT10 benchmarks in Meta-
World (Yu et al., 2020b). door-open and drawer-open may share some related skills while peg-
insert-side may contains more unique skills. (b) Comparison of average performance using state-
of-the-art methods in MTRL on the Meta-World MT-10 benchmark. Results are averaged across
different tasks. The larger the standard deviation, the more severe the problem of task performance
imbalance. Previous baselinses have encountered serious problem of task performance imbalance.
Our solution outperformes the other methods, consistently maintaining a lower standard deviation.

Nonetheless, most existing MTRL methods have not effectively addressed these challenges, result-
ing in the task performance imbalance problem. For example, PaCo (Sun et al., 2022) utilizes a
parameter set to extract shared features for all tasks. And Soft Modularization (Yang et al., 2020)
and CARE (Sodhani et al., 2021) extract task-specific unique features using a routing network and
a pretrained language model-based metadata, respectively. These different approaches neither uti-
lize both shared features and unique features simultaneously, leading to result in Figure 1b. PaCo
achieves fast convergence and overall good average performance. However, it exhibits a significant
standard deviation across different tasks at each step, indicating that the lack of unique features
hinders its effective training on certain tasks, which leads to sub-optimal performance and slower
convergence for such tasks. On the other hand, CARE utilizes task-specific unique features, result-
ing in relatively balanced performance across tasks. However, due to the under-utilization of shared
features, it exhibits slower convergence speed as shown in Figure 1b.

Furthermore, current MTRL algorithms mostly use the basic experience replay approach and have
not incorporated additional techniques in this aspect. We believe that this can lead to conflicts in the
loss functions of different tasks during training, resulting in instability across different tasks in the
overall training process, as depicted in Table 1 and Table 6.

In this paper, we propose an approach called shared-unique features along with task-aware priori-
tized experience replay (PER) to address two challenges in MTRL we mentioned above. Our model
compose of two parts: shared features and unique features. We introduce a simple yet effective task-
specific embeddings. This approach preserves the unique characteristics of each task, particularly in
tasks that require different skills within the task set. By incorporating task-specific embeddings, we
can effectively utilize shared skills while preserving the distinctiveness of each task. Additionally,
We design the prioritized experience replay (PER) (Schaul et al., 2015) with task-aware modifi-
cations to better accommodate multi-task training. With our proposed data sampling strategy, we
ensure that the training process gives sufficient attention to all tasks and prevents certain tasks from
dominating the learning process. This approach leads to improved stability of the training process
across different tasks.

To evaluate the effectiveness of our method, we conduct experiments in the Meta-World (Yu et al.,
2020b) benchmark, which provides a diverse set of robotic manipulation tasks, as shown in Fig-
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ure 1a. As depicted in Figure 1b, our method achieves state-of-the-art performance across various
tasks. Furthermore, our approach consistently maintains a lower standard deviation across differ-
ent tasks, indicating a more balanced performance and addressing the task performance imbalance
problem.

Key contributions of this work are (i) We address task performance imbalance problem and sample
efficiency in MTRL. (ii) We propose a simple yet effective task-specific embeddings to preserve the
distinct characteristics of each task and help unique tasks’ performance. (iii) We introduce a task-
aware prioritized experience replay (TA-PER) for multi task to enhance training stability across
tasks. (iv) We achieve state-of-the-art average success rate on the Meta-World (Yu et al., 2020b)
benchmark and simultaneously maintain acceptable performance across all tasks.

2 RELATED WORK

2.1 MULTI-TASK LEARNING

Multi-task learning (MTL) (Caruana, 1997) has been a long-standing problem that has been exten-
sively researched (Andreas et al., 2017; Sener & Koltun, 2018; Zhang & Yang, 2021; Ruder, 2017;
Zhang & Yang, 2018; Pinto & Gupta, 2017). In real world, similar tasks are often tackled together,
and multi-task learning aims to uncover the relationships among these tasks, utilizing their shared
informations to facilitate faster and more effective learning, resulting in a more robust solution. For
instance, previous studies (Pinto & Gupta, 2017) have demonstrated that models incorporating a
simple parameter sharing structure exhibit superior performance compared to task-specific models
in the context of multi-task learning. The main challenges lie in determining which information to
share and how to address the negative influence of different task losses on a single model.

2.2 MULTI-TASK REINFORCEMENT LEARNING

With the recent advancements in reinforcement learning, there has been a growing interest in explor-
ing specialized settings and scenarios, leading to the emergence of multi-task reinforcement learning
(MTRL). As a result, several solutions have been proposed to address the challenges associated with
MTRL (Tanaka & Yamamura, 2003; Borsa et al., 2016; Haarnoja et al., 2018; Yang et al., 2020; Yu
et al., 2020a; Sodhani et al., 2021; Sun et al., 2022; Calandriello et al., 2014; Wilson et al., 2007;
Vithayathil Varghese & Mahmoud, 2020; Devin et al., 2017; D’Eramo et al., 2020). One such so-
lution is Soft Modularization (Yang et al., 2020), which introduces a routing network to generate
soft combinations for different tasks as routes for the base policy network. This allows for efficient
sharing of information among tasks. Another approach is Gradient Surgery (Yu et al., 2020a), which
aims to mitigate the negative influence problem in MTRL. This method tackles the issue by project-
ing a task’s gradient onto the normal plane of another task’s gradient, effectively resolving conflicts
that may arise between tasks. In the context of contextual MTRL, CARE (Sodhani et al., 2021) uti-
lizes metadata to determine the representations for each task. This approach leverages the contextual
information to effectively handle the shared and unique features of each task. Also, PaCo (Sun et al.,
2022) proposes a novel structure that involves obtaining a network parameter vector for each task
through a simple matrix multiplication of a task-agnostic parameter set and task-specific composi-
tional vectors. While these methods primarily focus on addressing the issues of sharing information
and negative influence in MTRL, there has been limited exploration on effectively preserving both
shared and unique information for each task. As a result, training instability and task performance
imbalance problem in MTRL still remains a challenge.

2.3 OFF-POLICY REINFORCEMENT LEARNING AND EXPERIENCE REPLAY

Off-policy reinforcement learning is a subfield of reinforcement learning that focuses on learning op-
timal policies from a dataset of previously collected experiences (Mnih et al., 2013). One of the key
advantages of off-policy RL is the ability to separate the data collection policy from the policy being
learned. This decoupling allows for more efficient exploration strategies, as the behavior policy can
prioritize exploration while the learned policy focuses on exploitation using the experiences stored
in the replay buffer. This separation also enables the reuse of existing datasets, making off-policy
RL more sample-efficient. Furthermore, in recent years, there have been several advancements in

3



Under review as a conference paper at ICLR 2024

MLP
state

S

╳
Policy

Algorithm
𝑤𝑖

parameter set
task parameters
(shared features)

task embeddings
(unique features)

final task parameters

ℒ𝑡𝑟𝑖

Φ 𝑠𝑖

𝑢𝑖

(b) Unique features:

(a) Shared features

𝑠𝑖

𝑢𝑖

𝑡𝑎𝑠𝑘𝑁 transitions

𝑡𝑎𝑠𝑘2 transitions

𝑡𝑎𝑠𝑘1 transitions

(c) TA-PER
𝑆𝑡,𝐴𝑡,𝑅𝑡+1,𝑆𝑡+1

𝑆𝑡+1,𝐴𝑡+1,𝑅𝑡+2,𝑆𝑡+2

𝑆𝑡+2,𝐴𝑡+2,𝑅𝑡+3,𝑆𝑡+3

…

Transitions Data

leaves

Data Index

SumTree

ℒSAC

Figure 2: Architecture of our work. Our model compose of (a) Shared features, (b) Unique features,
and (c) TA-PER. We update (a) according to LSAC after apply policy algorithm. We update (b)
according to Ltri described in Eqn.(1). In (c), we handle N SumTrees, in each of them we store the
priorities in the leaves.

different experience replay methods that further enhance sample efficiency (Wang et al., 2016; Zha
et al., 2019; Andrychowicz et al., 2017).

Given these characteristics, many MTRL algorithms utilize the off-policy reinforcement learning
framework with experience replay for policy learning, with Soft Actor-Critic (SAC) being one of
the most commonly used algorithms (Yu et al., 2020b;a; Yang et al., 2020; Sodhani et al., 2021; Sun
et al., 2022). However, as mentioned in section 1, current MTRL algorithms often employ basic
experience replay methods without focusing on sample efficiency. This can contribute to the task
performance imbalance problem and leaves room for further improvement.

3 METHOD

3.1 PROBLEM DEFINITION

A Markov Decision Process (MDP) is defined by a tuple (S,A,R, P, γ), where S represents the
state space. A represents the action space. R : S × A → R represents reward function. P :
S × A → S represents state transition function. γ ∈ [0, 1) represents the discount factors. At each
time step t, the learning agent get a state st ∈ S and take actions at with the policy π(at|st), and
move forward to next state st+1 with probability P (st+1|st, at) and get a reward R(at|st). In RL,
the agent interacts with an environment and learns to make decisions based on a sequence of states,
actions, and rewards. In MTRL, the agent faces multiple MDPs, each corresponding to a specific
task, and aims to learn a policy that can maximize accumulated reward of all tasks.

3.2 SHARED-UNIQUE FEATURES

We adopted the concept of task-relevant and task-agnostic from (Sun et al., 2022), constructing a
parameter set Φ = [ϕ1, ϕ2, . . . , ϕK ] as a skill set for tasks T = [t1, t2, . . . , tN ] with vector weight
wi, i = 1, 2, . . . , N to select the shared skills they require. For each task i, shared features si
(referred to as task parameters in (Sun et al., 2022)) is computed as si = [ϕ1, ϕ2, . . . , ϕK ]wi

Furthermore, to address more specific tasks, we developed a straightforward MLP that takes the
state as input and generates task embeddings (referred to as unique features) ui specific to each
task. These task embeddings are updated using a triplet loss Ltri as:

Ltri = max(0,m+ d(ua, up)− d(ua, un)) (1)

where we sample three unique features ua, up, un. up is same task with ua and un is different
task with ra. And function d is the euclidean distance of two features. By utilizing triplet loss, it
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Algorithm 1 Training progress of our method
Input: batchsize K, task number N

1: for each step n = 1 . . .MaxEpisodeLength do
2: Calculate ki, i = 1, 2, . . . , N refer to Eq. (5)
3: for task t = 1 to N do
4: Sample kt transitions from SumTreet
5: Compute each transition’s TD-error |δj |, j = 1, 2, . . . , kt refer to Eq. (2)
6: Update each transition’s priority pj ← |δj |, j = 1, 2, . . . , kt
7: end for
8: Calculate shared features si and unique features ui, i = 1, 2, . . . , N
9: Concatenate si and ui for following SAC algorithm

10: Calculate loss LSAC and Ltri

11: Update parameter set Φ according to loss LSAC

12: Update each task’s weight according to each task’s loss in LSAC

13: Update MLP according to loss Ltri

14: end for

encouraging a maximized separation between the embeddings of different tasks. Finally, the final
task parameter θi is obtained by concatenating vector si and ui and will be utilized for policy training
in the SAC algorithm. The complete model architecture is shown in Figure 2. And the whole training
and updating progress of the model is shown in Algorithm 1.

3.3 TASK-AWARE PRIORITIZED EXPERIENCE REPLAY

We implement prioritized experience replay (PER) (Schaul et al., 2015) and made task-aware mod-
ifications to adapt it to SAC. We define the TD-error of a transition sample as the average TD-Error
for two Q-networks in SAC:

|δ| = 1

2

2∑
i=1

|r + γVϕtarg
(s′)−Qθ,i(s, a)| (2)

Following PER (Schaul et al., 2015), the priority of a transition sample i is defined as pi = |δ|+ ϵ,
where ϵ is a small positive constant to allow for the sampling of special edge cases where some TD
errors are zero. And the probability of transition sample i being sampled is:

P (i) =
pαi

ΣN
j=0p

α
j

(3)

Additionally, when a new transition sample is added in buffer, its priority pi will be set to maximum
priority in buffer, and will update it to pi after being sampled once. This ensure every transition will
be at least sampled once. Furthermore, the importance sampling weight is:

wi = (
1

N
· 1

P (i)
)β (4)

In PER, a data structure called SumTree is utilized to store the priorities in the replay buffer. How-
ever, in the context of multi-task settings, if a single SumTree is used in the replay buffer to store
priorities of all transitions, it can lead to computational inefficiency and potential issues with some
task’s transitions not being sampled, resulting in task performance imbalance. Therefore, we con-
struct N SumTree in replay buffer to handle N tasks, each SumTree i handles transition’s priority
which comes from task i. For sampling K transitions from replay buffer, we will sample ki from
SumTree i, and ΣN

i=1ki = K. ki is computed as:

ki = clip(K ·
ΣNi

j=1pij

ΣN
l=1Σ

Ni
j=1plj

, kmin, kmax) (5)

where the term ΣNi
j=1pij is the sum of all priorities in SumTree i, and the term ΣN

l=1Σ
Ni
j=1plj is the

sum of all priorities in replay buffer. In addition, we use a clip function to ensure that each task is
sampled at least kmin times.
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4 EXPERIMENTAL RESULTS

4.1 SETUP

Benchmarks. The Meta-World (Yu et al., 2020b) benchmark is a popular evaluation framework for
meta-reinforcement learning and MTRL algorithms. It provides a diverse set of robotic manipulation
tasks designed to assess the generalization and adaptation capabilities of learning agents in complex
and realistic environments. Following (Yang et al., 2020) and (Sun et al., 2022), original multi task
benchmarks in Meta-World are fixed goals, so we adopt the MT10-rand setting introduced in (Sun
et al., 2022) to better align with real-world scenarios.

Baselines. We compare our method with the following baselines: (i) Single SAC for each task:
Train a separate SAC agent for each task independently. (ii) Multi-Task Soft Actor–Critic (MT-
SAC) (Yu et al., 2020b): SAC with additional one-hot task encoding as input. (iii) Projecting
Conflicting Gradients (PCGrad) (Yu et al., 2020a): Project conflicting gradients to mitigate neg-
ative influence problem. (iv) Soft Modularization (Yang et al., 2020): Propose a routing network
that generates routes for different tasks in a modularized manner, allowing the base policy net-
work to adapt to each task. (v) Contextual Attention-based REpresentation (CARE)(Sodhani
et al., 2021): Utilize task metadata to dynamically decide the representation for each task, allowing
for context-aware learning. (vi) Parameter-Compositional Multi-Task Reinforcement Learning
(PaCo) (Sun et al., 2022): Propose a parameter-compositional structure that separate the task-
specific and the task-agnostic parameter set.

4.2 RESULTS ON BENCHMARK

The evaluation metric of the multi-task agent is calculated as follows: Every 50,000 steps (for each
environment), the agent is tested in the test environment for 50 episodes. The average success rate of
each task across these 50 episodes is considered as the performance for that time step. Furthermore,
each agent is trained using 10 different random seeds, resulting in 10 success rates for each time
step. Finally, the average of these 10 scores is taken as the overall performance for that time step,
and the highest mean throughout all time steps is the final evaluation score. The result is displayed
in Table 1.

Table 1: Results on MT10-rand (Sun et al., 2022) across 10 different random seeds

Methods success rate(%)
(mean + std)

single SAC for each task 80.6 ± 4.2

MT-SAC (Yu et al., 2020b) 56.7 ± 7.5
PCGrad (Yu et al., 2020a) 59.4 ± 8.9
Soft Modularization (Yang et al., 2020) 65.8 ± 4.5
CARE (Sodhani et al., 2021) 78.2 ± 5.8
PaCo (Sun et al., 2022) 83.1 ± 4.6

Ours 88.5 ± 5.3

Upon observing the table, it is evident that we have exceeded previous state-of-the-art performance.
This improvement can be attributed to our successful resolution of the task performance imbalance
problem. Specifically, we have taken proactive measures to prevent neglecting or overlooking the
training of certain tasks, such as peg-insert-side, push, pick-place as shown in Figure 3, and further
discussion will be proposed in 4.3.

Additionally, it is worth mentioning that we follow the discussion in PaCo (Sun et al., 2022) and
CARE (Sodhani et al., 2021), incorporating the ”single SAC for each task” approach as one of our
baselines. This methodology serves as a reference benchmark to showcase the advantages of training
individual tasks alongside other tasks, leveraging shared features, within the same number of steps.
In our experiments, ”single SAC for each task” achieves 80.6± 4.2 success rate, which is lower than
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our performance. This suggests that our method has indeed successfully leveraged the benefits of
multi-task training. And the further results on MT50 (Yu et al., 2020b) are provided in Appendix B.

4.3 TASK IMBALANCE PERFORMANCE PROBLEM

In multi-task reinforcement learning (MTRL), previous baselines have used different model archi-
tectures or employed gradient surgery techniques to mitigate the conflicts in loss functions between
different tasks and minimize negative influences. However, due to the inherent uncertainty of rein-
forcement learning (where results can vary significantly due to random seed initialization), there are
still cases where certain tasks exhibit slow convergence or fail to converge altogether, as described
in Appendix A.

In our work, we employ TA-PER (Task-aware Prioritized Experience Replay) and additional unique
features as introduced in 3.2 and 3.3 to assist in addressing the previously mentioned under-
performing tasks. To emphasize the effectiveness of our approach, we have made modifications
to the evaluation metric of the multi-task agent, which is outlined as follows:

During training, each agent is trained using 10 different random seeds. Every 50,000 steps (for each
environment) in each run, the agent is tested in the test environment for 50 episodes. The average
success rate across these 50 episodes is computed, and then the average of these averages across the
10 different random seeds is considered as the performance measure for each individual task at that
specific time step. Finally, for every 25,000 steps, the mean and standard deviation of the success
rates for the 10 tasks at that time step are calculated. We compare our method with CARE and PaCo,
which are two recent state-of-the-art approaches that have achieved high performance in the field of
MTRL. The result is displayed in Table 2.

Table 2: Results on MT10-rand at each time step across different tasks.

Steps per Env (10k) 25 50 75 100 125 150 175 200

CARE (Sodhani et al., 2021) 31.5 ± 37.3 39.1 ± 36.8 55.0 ± 30.4 52.1 ± 39.7 60.6 ± 20.2 75.8 ± 19.1 58.9 ± 28.2 78.3 ± 22.9
PaCo (Sun et al., 2022) 57.0 ± 38.9 70.3 ± 44.0 73.8 ± 38.1 74.3 ± 39.7 77.1 ± 32.7 83.0 ± 30.6 80.6 ± 31.4 81.7 ± 30.0

Ours 58.8 ± 10.8 70.5 ± 2.4 81.5 ± 6.6 79.2 ± 6.7 80.2 ± 5.7 87.0 ± 3.7 85.0 ± 8.4 85.8 ± 6.0

Table 3: Results of tasks peg-insert-side and pick-place in MT10-rand at each time step across
different seeds.

Steps (10k) 25 50 75 100 125 150 175 200

CARE (Sodhani et al., 2021) 11.6 ± 5.8 19.6 ± 20.1 52.0 ± 39.8 0.0 ± 0.0 60.0 ± 45.0 72.4 ± 41.1 32.0 ± 42.3 35.2 ± 24.9
0.0 ± 0.0 11.2 ± 0.0 16.4 ± 0.0 15.6 ± 1.2 48.4 ± 0.0 35.6 ± 0.0 3.6 ± 0.0 44.0 ± 0.0

PaCo (Sun et al., 2022) 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 37.3 16.7 ± 37.3 45.7 ± 42.0 66.7 ± 47.1 64.5 ± 45.8 66.2 ± 46.8
0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Ours 7.0 ± 7.1 8.5 ± 8.5 33.3 ± 39.2 36.4 ± 46.8 63.4 ± 45.5 78.0 ± 45.3 78.4 ± 45.8 86.1 ± 44.0
49.0 ± 34.1 55.2 ± 6.5 76.4 ± 20.1 72.1 ± 21.8 53.8 ± 7.2 80.1 ± 16.2 78.4 ± 13.7 80.1 ± 16.2

By designing this modified evaluation metric, we aim to highlight the effectiveness of TA-PER and
unique features in assisting under-performing tasks. It allows us to assess the agent’s performance
across tasks more comprehensively. Moreover, the calculation of the mean and standard deviation
for the success rates provides insights into both the average performance and the stability across all
tasks of the agent’s training process.

For a better understanding of the results, we selected tasks peg-insert-side and pick-place. In pre-
vious works, these two tasks were particularly challenging to train in the MT10 environment (Yu
et al., 2020b; Sun et al., 2022). We obtained the results of these two tasks at various time steps for 10
random seeds. The result is displayed in Table 3, demonstrating that our approach effectively assists
the agent in maintaining good average performance while aiding in the learning of more difficult
tasks.
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Table 4: Results of different Sampling Strategies

Methods success rate(%)
(mean + std)

Model with random sampling 85.1 ± 4.5
Model with average sampling 86.2 ± 4.3
Model with PER 83.3 ± 5.2
Model with TA-PER 88.5 ± 5.3

4.4 SAMPLING STRATEGIES

We have experiments on different sampling strategies to demonstrate the effectiveness of TA-PER.
We consider following four methods: (i) random sampling (ii) average sampling (iii) prioritized
experience replay (PER) (iv) task-aware prioritized experience replay.

Among these four methods, we consider random sampling as the foundational baseline, which has
also been the most common approach in previous MTRL practices.

Subsequently, in pursuit of a training process that enables the model to concurrently attend to each
task, we experimented with the approach of average sampling. However, in most MTRL libraries,
it is already guaranteed that each task has the same amount of new data in the buffer. Due to this
factor, the improvement achieved by average sampling in comparison to random sampling is limited.

Following this, we attempted to use prioritized experience replay (PER). However, a situation may
arise where certain tasks were neglected and not sampled in a batch because their priorities were
overshadowed by the priorities of other tasks, as we mentioned in 3.3. This occurrence was frequent
in our experiments, leading to the outcome that using PER resulted in poorer performance compared
to random sampling.

Finally, TA-PER calculates an importance weight for each task to determine how many experiences
need to be sampled for each individual task. This importance weight is assigned different propor-
tions for each task according to Eqn.(5), and is bounded using kmin and kmax to prevent situations of
excessive or insufficient sampling. By doing so, we were able to adopt the prioritization aspect with-
out encountering the issue of ”all the experiences sampled in a batch originate from a single task”
we mentioned in PER. Consequently, TA-PER outperformed PER significantly in our experiments.

4.5 ABLATION STUDY

In our analysis, we conducted an ablation study on our components to better understand their indi-
vidual contributions, the result is displayed in Table 5.

Table 5: Results of ablation study.

Methods success rate(%)
MT-PER Unique Features (mean+std)

✗ ✗ 83.1 ± 4.6
✓ ✗ 86.4 ± 3.8
✗ ✓ 85.7 ± 6.2
✓ ✓ 88.5 ± 5.3

Task-Aware Prioritized Experience Replay. To demonstrate the effectiveness of TA-PER, we
integrated it into several baseline models. The comparison between the baselines and the models
with TA-PER is shown in Table 6. By comparing it with Table 1, we can observe that our newly
designed experience replay mechanism, TA-PER, indeed improves the learning performance in the
multi-task setting. The incorporation of TA-PER helps to prioritize and sample the most relevant and
informative experiences for each task, leading to enhanced learning and better overall performance.
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Table 6: Results of baselines with TA-PER.

Methods success rate(%)
(mean + std)

MT-SAC (Yu et al., 2020b) 56.7 ± 7.5
MT-SAC (Yu et al., 2020b) + TA-PER 60.1 ± 8.3
PCGrad (Yu et al., 2020a) 59.4 ± 8.9
PCGrad (Yu et al., 2020a) + TA-PER 61.3 ± 10.1
Soft Modularization (Yang et al., 2020) 65.8 ± 4.5
Soft Modularization (Yang et al., 2020) + TA-PER 60.1 ± 4.9

CARE (Sodhani et al., 2021) 78.2 ± 5.8
CARE (Sodhani et al., 2021) + TA-PER 79.1 ± 6.9
PaCo (Sun et al., 2022) 83.1 ± 4.6
PaCo (Sun et al., 2022) + TA-PER 86.4 ± 3.8

5 CONCLUSION

In this paper, by introducing shared-unique features along with task-aware prioritized experience
replay, we address the task performance imbalance problem. The utilization of task-specific em-
beddings preserved the unique characteristics of each task, allowing for more effective learning and
improvement for unique tasks’ performance. The implementation of TA-PER in the training pro-
cess facilitated better prioritization and utilization of the collected experiences, resulting in more
stable and efficient training across tasks. The experimental results on the Meta-World benchmark
demonstrate that our method achieves state-of-the-art average success rates while maintaining stable
performance across all tasks, avoiding task performance imbalance issues. The proposed approach
shows promise in addressing the challenges of MTRL and improving training stability.

However, there is room for further improvement in our approach. In recent years, various versions
of experience replay, such as Hindsight Experience Replay (HER), have been proposed. Integrating
these advancements in experience replay into the context of multi-task learning could potentially
yield even greater improvements in sample efficiency and training stability.

Limitations. As the TA-PER approach utilizes the SumTree data structure, the selection of prior-
ities and updates within the SumTree can lead to higher time complexity compared to the original
random sampling approach. This can result in longer overall training times. Exploring ways to
reduce the time required for sampling while incorporating the concept of priorities is a potential
direction for future research. Furthermore, as the number of tasks increases, the assistance provided
by the unique feature set gradually diminishes, as depicted in Appendix B. Incorporating additional
metadata and leveraging pretrained language models, as seen in the CARE (Sodhani et al., 2021)
approach, holds great potential for further enhancing task-specific embeddings.
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A COMPARISON OF EACH TASK’S PERFORMANCE IN BASELINES
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Figure 3: Comparison of task performance using state-of-the-art methods in MTRL on the Meta-
World MT10-rand (Sun et al., 2022) benchmark. Results are averaged over 10 random seeds.

In the comparative analysis shown in Figure 3, we can observe the performance of different methods
on specific tasks. Specifically, we analyze the results for PaCo (Figure 3a), CARE (Figure 3b), and
our proposed method (Figure 3c).
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Table 7: Results on MT50-rand (Sun et al., 2022) across 10 different random seeds

Methods success rate(%)
(mean + std)

MT-SAC (Yu et al., 2020b) 38 ± 2.1
PCGrad (Yu et al., 2020a) 45 ± 3.8
Soft Modularization (Yang et al., 2020) 48 ± 2.6
CARE (Sodhani et al., 2021) 52.3 ± 3.7
PaCo (Sun et al., 2022) 55.1 ± 2.4

Ours 56.2 ± 3.1

For PaCo, as depicted in Figure 3a, it encounters difficulties in tasks such as peg-insert-side, push,
and pick place. These tasks exhibit lower performance compared to others, indicating that PaCo
struggles to effectively learn and generalize the required skills for these particular tasks.

On the other hand, CARE, as shown in Figure 3b, demonstrates slower performance improvement
for tasks like peg-insert-side, push, and window-close. This can be attributed to the under-utilization
of shared features in CARE, which hinders its ability to efficiently learn and transfer knowledge
across tasks, particularly for tasks that require different and distinct skills.

In contrast, our proposed method, illustrated in Figure 3c, overcomes these limitations and effec-
tively facilitates the learning of tasks that demand specialized and unique skills during training. By
incorporating TA-PER and leveraging shared-unique features, our approach enables these tasks to
achieve average task performance while also demonstrating remarkable convergence speed. This
indicates that our method successfully addresses the task performance imbalance problem and en-
hances the learning process, leading to improved performance and efficiency across a wide range of
tasks.

B RESULTS ON MT50

We conducted a comparative evaluation of our proposed method with other baselines on the MT50-
rand benchmark (Sun et al., 2022). This benchmark consists of 50 diverse robotic manipulation
tasks, and we evaluated the performance using the metrics described in Section 4.2. The results,
depicted in the Table 7, were obtained by averaging the performance over 10 random seeds and
reporting both the mean and standard deviation.

C VISUALIZATION OF UNIQUE FEATURE

Using our simple MLP network and triplet loss, we can bring states belonging to the same task closer
together while pushing different task states apart on the MT10 dataset, as evident from the Figure 4.
However, as shown in the Figure 5, we did not achieve a clear separation of state embeddings
for each task. As the number of tasks increases, we believe that designing more intricate MLP
architectures or modifying loss, such as finding a more suitable margin in triplet loss or using other
contrastive loss, becomes necessary to prevent issues such as the one depicted in the Figure 5.
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Figure 4: T-SNE visualization of unique features on MT-10.
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Figure 5: T-SNE visualization of unique features on MT-50.
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