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Abstract—This paper presents a novel approach for automated
fluid resuscitation by modeling hemodynamics with a machine
learning method and controlling it with a model predictive
control (MPC) algorithm. The modeling framework, called the
robust nonlinear state-space modeling (RNSSM), uses variational
autoencoders to predict hemodynamic responses from limited
and noisy critical care data during hemorrhage resuscitation.
The MPC controller, designed for the RNSSM models, leverages
its predictive capabilities for precise control of fluid dosages
in resuscitation. Simulation results demonstrate the potential
of this approach in improving the safety and efficacy of fluid
resuscitation in critical care settings.

Index Terms—Fluid resuscitation, robust nonlinear state-space
modeling, autoencoder learning, variational autoencoder, model
predictive control

I. INTRODUCTION

Fluid resuscitation is a therapeutic approach used to restore
the volume of fluid in the circulatory system for critical care
patients [1]. Precise control of fluid dosages is crucial for
ensuring patient safety and promoting recovery [2]. Com-
putational modeling and advanced control methods can aid
in regulating the volume and rate of fluid delivery. These
techniques help reduce delays in care, minimize dosing errors,
and decrease the cognitive load on clinicians, resulting in
improved patient safety and outcomes.

In recent years, there has been growing interest in applying
advanced mathematical models and controllers to fluid resus-
citation [2]–[10]. Most methods suggested for automated fluid
resuscitation have been control-oriented low-order models.
These models are limited in handling complex, nonlinear
physiological processes, lack adaptability to individual patient
variations, and struggle with real-time data integration. In con-
trast, machine learning-based models potentially offer superior
predictive performance, scalability, and real-time adaptability
for complex physiological systems such as fluid resuscitation.
However, there has been very limited work on applying
machine learning to fluid therapy [5]. The suggested machine
learning methods often leverage model-free reinforcement
learning (RL) [5], which requires a substantial amount of
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clinical data and relies on the unrealistic assumption of access
to a patient simulator as an environment for interacting with
the RL controller [5]–[7].

Motivated by the above discussions, we introduce a pio-
neering approach to fluid resuscitation by developing a novel
machine learning-based model for hemodynamic identification
and a model predictive control (MPC) algorithm for fluid
dosage adjustment. The modeling framework, called robust
nonlinear state-space modeling (RNSSM), seamlessly inte-
grates autoencoder learning and variational Gaussian inference
(VGI) within a variational autoencoder (VAE) platform to
develop nonlinear state-space models from limited and noisy
critical care data. The proposed VAE framework is highly
amenable to closed-loop control design, utilizing an MPC
algorithm for optimal prediction of hemodynamic responses
to fluid changes while accounting for dosing and model
constraints.

The MPC’s ability to incorporate constraints into the control
problem ensures that the control actions are not only optimal
but also safe and feasible in real-world scenarios. For instance,
desired ranges for the control inputs (drug dosage) and the sys-
tem outputs (physiological responses) can be specified as con-
straints within the MPC formulation. Additionally, the VAE’s
capability to capture complex, nonlinear relationships within
physiological systems enhances predictive accuracy, allowing
for more precise and anticipatory control of fluid delivery.
Furthermore, the proposed VAE-based MPC is data-efficient,
requiring less data to build an effective model compared to
model-free RL methods, while offering greater stability and
robustness than low-order lumped-parameter models. To the
best of the authors’ knowledge, this is the first attempt at
developing VAE-based MPC in fluid resuscitation.

II. METHODOLOGY

In this section, we present our proposed methodology
for automatically regulating mean arterial pressure (MAP)
responses to fluid infusion in hemorrhage scenarios using
RNSSM modeling framework and MPC algorithm.

A. Robust Nonlinear State-Space Modeling (RNSSM)

We propose a novel modeling methodology to predict
robust, subject-specific MAP responses to fluid infusion. The



Fig. 1. The RNSSM framework integrates autoencoder learning and varia-
tional Gaussian inference to identify hemodynamics from limited and noisy
clinical data.

RNSSM methodology is centered on identifying reliable non-
linear state-space models from limited, noisy clinical data
using machine learning algorithms. The model is a multiple-
input/multiple-output nonlinear state-space model of the form:

xk+1 = f(xk, uk, θ) + vk

yk = g(xk, uk, θ) + wk

(1)

where xk is the (hidden) state variable, uk denotes the
observed input, and yk represents the measured output. The
functions f(.) and g(.) capture the state transition and output
measurement, respectively, while θ represents a vector of
unknown parameters. The terms vk and wk account for dis-
turbance and measurement noise, respectively, both described
by Gaussian probability density functions.

To properly capture complex hemodynamic relationships,
the RNSSM approach integrates autoencoder learning with
VGI techniques to identify nonlinear state-space models.
These models will be used in designing the MPC algorithm
in the next step, as will be shown later.

The autoencoder is an artificial neural network (ANN) that
compresses input data into a lower-dimensional representation
(encoding) and then reconstructs it to its original form (de-
coding). It is commonly used for tasks such as dimensionality
reduction, feature extraction, and data denoising. However,
regular autoencoders struggle to handle uncertainties from
external sources (e.g., measurement noise) and internal sources
(e.g., unmodeled dynamics), which is a major issue in noise-
distorted clinical data. To address this, we integrated VGI tech-
niques into the autoencoder framework, resulting in variational
autoencoders (VAEs). A VAE is highly effective in learning
a probabilistic distribution of the dataset in the latent space,
allowing for better control over training data [11].

The RNSSM model consists of three main components, as
shown in Fig. 1. First, there is a multi-layer ANN encoder
that predicts xk from Ik−1, where Ik−1 is the input sequence
including {yk−1, uk−1}. Second, a multi-layer ANN decoder
is used for predicting yk from xk. Finally, a bridge network,
which is also a multi-layer ANN model, is responsible for
modeling the function f that maps xk to xk+1.

In the proposed framework, the focus is on approximat-
ing the true posterior distribution pθ(x|y), where x denotes
latent variables and y is the observed data. Computing the
true posterior pθ(x|y) is analytically intractable, prompting
the introduction of a variational inference that approximates
the posterior using a simpler variational distribution qϕ(x|y),
parameterized by ϕ = (µ, σ). Here, µ and σ denote the mean
and standard deviation of the distribution, respectively. Their
values are typically set to establish the prior distribution as
a standard normal distribution, i.e., µ = 0 and σ = 1. The
training goal for a VAE is to determine model parameters
making the variational distribution qϕ(x|y) closely match
the true posterior distribution pθ(x|y). This is achieved by
minimizing the Kullback-Leibler (KL) divergence between the
two distributions [12].

B. Model Predictive Control Algorithm

We developed an MPC algorithm to control hemodynamic
responses during fluid resuscitation. After identifying a model
in the state-space form, several state feedback control tech-
niques can be utilized to control the output variable. Among
these techniques, MPC stands out for its flexibility and suit-
ability in handling multivariable systems with constraints on
input and output variables [13]. Additionally, MPC allows
for the incorporation of predictive models to anticipate future
states, enabling more precise and adaptive management of pa-
tient hemodynamics in real-time. This capability is particularly
crucial in clinical settings where patient conditions can change
rapidly and unpredictably.

To handle nonlinear systems, we employ the Quasi-Linear
Parameter-Varying (quasi-LPV) structure [14]. This structure
allows us to compute the system matrices directly using the
nominal values of the state variables and inputs at each step of
the prediction horizon. This approach enhances the accuracy of
capturing the system’s dynamic variations, thereby improving
the performance of the MPC. The quasi-LPV model is unique
in that the system matrices (A, B, C) are functions of the
system states and inputs. This feature enables the model to
accurately represent the system’s dynamic variations [15].
Within the context of this framework, (1) can be represented
as follows:

xk+1 = A(xk, uk)[x
′
k, 1]

′ +B(xk, uk)uk

yk = C(xk, uk)[x
′
k, 1]

′ (2)

This representation provides a more accurate and flexible
framework for control design, particularly in the context of
MPC. The MPC controller used in this work begins by taking
the following: prediction horizon np, control horizon nm,
weight metrics Wy for the output, Wu for the input, and W∆u

for the change of input, the output reference signal rt, and
the current state estimate xt. The algorithm first computes
the sequence of predicted states {x̂t+1, ..., x̂t+np

} given the
current guess of the input sequence {ût, ..., ût+np−1}, with
ût+k = ût+nm−1 for all k, ..., nm − 1. Then, it computes the
matrices Ak, Bk, Ck for the nominal values of x̂t+k, ût+k

along the prediction horizon. The matrices Ak and Bk are



generated as outputs from the function f , which is supplied
with a specific input sequence. Additionally, the matrix Ck is
produced as an output from the function g when it is given
xj+1 as an input. The optimization algorithm then solves
the quadratic programming problem to determine the optimal
sequence {y∗t , ..., u∗

t+nm−1}. The problem is formulated as:

min

np−1∑
k=0

||Wy(yt+k+1 − rt+k+1)||22 + ||W∆u∆ut+k||22+

||Wu(ut+k − ur
t+k)||22

s.t. xj+1 = Ak[x
′
j1]

′ +Bkuj

yj+1 = Ck[x′
j+11]

′

∆uj = uj − uj−1, j = t+ k, k = 0, ..., np − 1

Linear constraint on ∆ut+k

∆ut+k = 0, nm ≤ k < np

(3)
After solving the optimization problem, the current input ut

is set to the optimal input u∗
t and the nominal input sequence

is updated as ût+k = u∗
t+k for 1 ≤ k ≤ nm − 1 and ût+k =

u∗
t+nm−1 for nm ≤ k ≤ np− 1. The output of the MPC algo-

rithm is the command input ut, along with the updated nominal
input sequence {ût+1, ..., ût+np

}. In this study, we employed
the Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS-B) algorithm as our optimization technique, which is
available in the scipy library in Python [16].

To ensure the safety of our approach, we defined specific
ranges for the infusion rates and the desired MAP target
within the control design. These constraints were incorporated
into the optimization process, ensuring that the control ac-
tions remain within safe and clinically relevant parameters.
This reduces the risk of adverse effects and enhances the
clinical applicability of our method. Providing a flexible and
robust approach for controlling multivariable systems under
constraints on process variables, the detailed MPC algorithm
is particularly effective for managing nonlinear systems.

III. RESULTS

The proposed automated fluid management system is a
VAE-based MPC that encompasses the RNSSM model and
the MPC controller. The RNSSM model, using fluid and
hemorrhage rates as inputs and MAP response as the output,
constructs robust nonlinear state-space models that are highly
conducive to closed-loop control design. Incorporating the
RNSSM model, the MPC controller determines the optimal
fluid infusion dosages in different hemorrhage scenarios.

The dataset used for developing the RNSSM models was
sourced from an animal study approved by the Institutional
Animal Care and Use Committee at the University of Texas
Medical Branch [17]. In this study, different sheep underwent
high and medium hemorrhage procedures accompanied by
fluid infusion. The study involved sheep subjected to varying
degrees of hemorrhage and fluid infusion. The MAP was
recorded every five minutes throughout the 180-minute study
duration. Initial hemorrhage rates were set at 25 ml/kg for

the first 15 minutes, representing a severe hemorrhage event.
Hemorrhage was then halted, except for two instances at 50
and 70 minutes into the study, where a rate of 5 ml/kg was
applied to each subject for five minutes. These instances rep-
resented potential medium hemorrhage events during patient
transportation. Therefore, a total of 35 ml/kg of blood was
hemorrhaged from each subject during the aforementioned
three time periods. Fluid resuscitation commenced 30 minutes
into the study using lactated Ringer’s solution, a type of
crystalloid fluid, and continued until the study’s conclusion.

The RNSSM model was fine-tuned and tested on three
subjects from the animal study. The training dataset for the
RNSSM consisted of 1,800 samples, with an early-stopping
strategy employed using 10% of the training dataset to verify
the stopping criterion.

The RNSSM model was designed to replicate the MAP
in response to infusion and hemorrhage. Therefore, we used
infusion and hemorrhage as inputs to the model, and MAP
as both the input and target for the model. During the testing
process, we used the same infusion and hemorrhage schedule
as input to the bridge network, i.e., estimated function f in
RNSSM. We then estimated MAP using the estimated states
from f and the system inputs, i.e., infusion and hemorrhage.

The MAP responses from the RNSSM model, along with
the actual MAP measured from the animal study, are demon-
strated in Fig. 2 for the three sample subjects.

Following the design of the RNSSM model, the MPC
controller was subsequently developed for each subject. The
cost function parameters, Wy , W∆u, and Wu, were set to
1, 0.05, and 0.001, respectively. The control and prediction
horizons were set to be 5 and 10, respectively. The desired
MAP value was set to 80 mmHg for each subject. The MPC
controller was designed to minimize the cost function of (2)
by taking into account the problem constraints as shown in
(2).

For the comparison study, we designed a proportional-
integral-derivative (PID) controller for the same subjects. The
proportional (P) component provides an immediate response to
any changes in the error between the actual and desired MAP;
the integral (I) component focuses on the MAP steady-state
error, enhancing the controller’s ability to reach and maintain
the desired set point over time; the derivative (D) component
anticipates future MAP error by evaluating the rate of the error,
which aids in reducing overshoot and enhancing the system’s
stability. The PID was designed to reach the same desired
MAP as the MPC controller. The PID gains were carefully
tuned to achieve the best performance for each subject. The
MAP responses and fluid infusion dosages from the MPC and
PID for each subject are shown in Figs.3 and 4, respectively.

TABLE I
PERFORMANCE METRICS OF THE RNSSM MODEL FOR EACH SUBJECT

MAE (%) MDAPE (%) RMSE (%)
Subject 1 9.15 4.56 12.13
Subject 2 6.29 4.25 9.08
Subject 3 11.20 7.58 12.11
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Fig. 2. Mean arterial pressure (MAP) responses predicted by the RNSSM model along with the real MAP measurements

TABLE II
PERFORMANCE METRICS OF THE MPC AND PID CONTROLLERS FOR

EACH SUBJECT

MAE (%) MDAPE (%) RMSE (%)
MPC PID MPC PID MPC PID

Subject 1 7.03 19.64 1.53 15.50 11.46 22.21
Subject 2 3.68 8.56 0.58 6.68 7.97 11.25
Subject 3 4.25 14.81 2.19 12.53 7.54 15.87

IV. DISCUSSION

The close alignment between the MAP predicted by the
RNSSM model and the measured MAP, as shown in Fig. 2,
confirms the model’s ability to accurately trace real-time series
data trend and effectively capture the MAP variations induced
by hemorrhage. This highlights the model’s robustness in the
face of external perturbations. The error between the model’s
predictions and the actual measurements may be attributed
to inherent uncertainties and variability in the physiological
system. However, the overall trend of hemodynamic response
is well captured by the RNSSM, demonstrating its predictive
capabilities. To quantitatively assess the model’s precision,
three performance metrics, including root mean square error
(RMSE), mean absolute error (MAE), and median absolute
percentage error (MDAPE), were selected. The results, enu-
merated in Table II, indicate the RNSSM model’s capability to
robustly and accurately encapsulate MAP responses through-
out hemorrhage resuscitation.

Comparing the performance of MPC and PID controllers,
as shown in Figs. 3 and 4, reveals that while both controllers
showed promising results in controlling the MAP response,
the MPC performed superiorly. For all three subject, the MPC
controller achieved a MAP response closer to the target level
of 80 mmHg, underscoring its higher accuracy. Moreover,
the MPC controller maintained more stable MAP values and
infusion rates over time compared to the PID controller.

The RMSE, MAE, and MDAPE for both PID and MPC con-
trollers are shown in Table III. The results clearly demonstrate
that the MPC controller outperforms the PID in terms of these
performance metrics. This can be attributed to the optimization
method and predictive capability of the MPC, features that
are absent in PID, allowing the MPC to anticipate future
MAP values and adjust dosages accordingly. Therefore, the

MPC controller provides more accurate and reliable control of
hemodynamic responses during hemorrhagic events, compared
to the PID controller.

The results of our model and controller imply that a VAE-
based MPC is a powerful tool for understanding and predicting
hemodynamic responses in hypovolemic scenarios, showing
great promise for further extension and future applications in
healthcare automation. However, there are limitations that need
to be considered. The study was conducted on a small sample
size of three subjects, which may not fully capture the variabil-
ity in the larger population. Additionally, the performance of
the MPC, liked other model-based controllers, heavily relies
on the accuracy of the model used. If the model does not
properly represent the system, the performance of the MPC
would be degraded. Furthermore, this work only used MAP
response as the hemodynamic endpoint. Including variables
such as heart rate or blood volume can potentially enhance
hemodynamic predictions.

In response to these challenges, our immediate future work
focuses on validating the VAE-based MPC with a larger
hemorrhage resuscitation dataset, which could enhance the
generalizability of our approach. Additionally, We plan to
incorporate other hemodynamic variables into our models
and controllers to better capture physiological variability and
enhance the accuracy of hemodynamic predictions. The choice
of MPC is particularly advantageous due to its ability to handle
multiple-input/multiple-output systems, making it a promising
tool for future advancements. Furthermore, we will test our
algorithm in the fluid resuscitation hardware-in-the-loop test
bed that we developed and used in our previous work [2].
This test bed provides a more realistic testing environment to
further assess the safety and efficacy of our proposed algorithm
before clinical application.

V. CONCLUSION

We presented a pioneering approach to automated fluid
management using an RNSSM model and an MPC controller.
The RNSSM framework successfully models hemodynamic
responses during hemorrhage resuscitation, while the MPC
controller leverages its predictive capabilities for precise con-
trol of fluid dosages. The proposed method captures complex,
nonlinear relationships within physiological systems, allowing
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Fig. 3. Mean arterial pressure (MAP) responses from the MPC and PID controllers
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Fig. 4. Fluid infusion dosages recommended by the MPC and PID controllers

for more precise and anticipatory control of fluid delivery.
The VAE-based MPC is data-efficient, requiring less data to
build an effective model compared to model-free methods,
while offering greater stability and robustness than low-order
lumped-parameter models. Simulations results demonstrated
the potential of this approach in improving the safety and
efficacy of fluid resuscitation in critical care. Future work
will focus on fine-tuning the model parameters, incorporating
further hemodynamic variables, and assessing the VAE-based
MPC on a larger clinical dataset.
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