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Abstract

We initiate the study of a repeated principal-agent
problem over a finite horizon T , where a prin-
cipal sequentially interacts with K ≥ 2 types
of agents arriving in an adversarial order. At
each round, the principal strategically chooses
one of the N arms to incentivize for an arriving
agent of unknown type. The agent then chooses
an arm based on its own utility and the provided
incentive, and the principal receives a correspond-
ing reward. The objective is to minimize regret
against the best incentive in hindsight. Without
prior knowledge of agent behavior, we show that
the problem becomes intractable, leading to linear
regret. We analyze two key settings where sub-
linear regret is achievable. In the first setting, the
principal knows the arm each agent type would
select greedily for any given incentive. Under this
setting, we propose an algorithm that achieves
a regret bound of O(min{

√
KT logN,K

√
T})

and provide a matching lower bound up to a logK
factor. In the second setting, an agent’s response
varies smoothly with the incentive and is gov-
erned by a Lipschitz constant L ≥ 1. Under this
setting, we show that there is an algorithm with a
regret bound of Õ((LN)1/3T 2/3) and establish a
matching lower bound up to logarithmic factors.
Finally, we extend our algorithmic results for both
settings by allowing the principal to incentivize
multiple arms simultaneously in each round.
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1. Introduction
The repeated principal-agent model captures sequential
decision-making scenarios where a principal strategically
incentivizes agents over multiple rounds to act toward a
long-term objective. This framework is central to many
real-world applications, such as online platforms offering
discounts to influence purchasing behavior, insurance com-
panies designing contracts without full knowledge of cus-
tomers’ risk levels, and crowdsourcing platforms structuring
payments to ensure high-quality contributions. In these set-
tings, the principal cannot directly control agents’ actions
but influence them by proposing incentives, often under
asymmetric information. Typically, asymmetric informa-
tion introduces two key challenges, including moral hazard
(Bolton & Dewatripont, 2004; Ho et al., 2014; Kaynar &
Siddiq, 2023) and adverse selection (Scheid et al., 2024b;
Dogan et al., 2023b;a). In moral hazard settings, the agents’
actions cannot be directly observed by the principal, requir-
ing incentive design to encourage agents to take actions
in favor of the principal’s interest. A common example is
crowdsourcing where a task requester (principal) cannot di-
rectly observe the effort level of workers (agents). Adverse
selection, on the other hand, arises when the agents’ types
or preferences are unknown. For example, in insurance,
the insurer (principal) may not know whether a customer
(agent) is high-risk, complicating the contract design.

While repeated principal-agent problems have been exten-
sively studied, prior works heavily focus on the scenarios
where the principal repeatedly contracts with a fixed and
unknown type (Scheid et al., 2024b; Dogan et al., 2023a;b)
or a random type of agent drawn stochastically from a fixed
underlying distribution (Ho et al., 2014; Gayle & Miller,
2015). However, these two assumptions may not hold in
many real-world applications. For example, in online shop-
ping, discount ads displayed on a website are visible to all
users, and the sequence of users who respond may not fol-
low a stochastic pattern. Another example is crowdsourcing,
where the sequence of crowdworkers who respond to a task
could be arbitrary and subject to herding behavior through
online forums (Horton et al., 2011). To capture the uncer-
tainty of agent arrivals, we initiate the study of the repeated
principal-agent problem with adversarial agent arrivals. To
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our knowledge, this is the first study that examines this
challenge in a repeated principal-agent framework.

Apart from agent arrival patterns, the agent response also
plays a critical role in incentive design. Consider online
shopping platforms where customers only make a purchase
when a discount reaches a historical low or falls below their
personal threshold. Similarly, crowdworkers in online labor
markets often accept tasks only if the payout exceeds a
minimum expectation. Such behaviors suggest a decision-
making process governed by strict thresholds. To model this,
we start by considering the greedy response model widely
studied in the literature (Ho et al., 2014; Zhu et al., 2022;
Dogan et al., 2023b; Scheid et al., 2024b; Ben-Porat et al.,
2024), where an agent chooses an action that maximizes
their utility, i.e., preference plus incentive. In this model,
the agent plays an arm only when the incentive on this arm
crosses a predefined level.

Ideally, we seek an approach that adapts to adversarial agent
arrivals without prior knowledge of agent types, that is, how
incentives influence the threshold values driving their deci-
sions. Unfortunately, we will show that this is intractable, in
the sense that no algorithm can compete with the single-best
incentive in hindsight without that prior knowledge. Indeed,
our lower bound exploits the fact that even a tiny change
in incentives can lead to a drastic shift in agent decisions,
and consequently, the principal’s reward. This non-smooth
sensitivity to incentives defies intuition and suggests the
need for an alternative model where agent decisions respond
more gradually to incentives. For instance, when purchas-
ing daily necessities, a small change in discounts should
not drastically alter a customer’s decision but instead grad-
ually influence their likelihood of buying. This distinction
motivates the need for a more flexible response model.

Moreover, the smooth decision model can be viewed as an
extension of the greedy model by allowing agents to incor-
porate smooth noise into their preferences. For example,
if an agent adds i.i.d. Gumbel noise ηt ∼ Gumble(0, 1)N

to their preference vector µjt , the resulting choice model
becomes the Logit discrete choice model which is prevalent
in economics literature (Train, 2009); and if an agent adds
i.i.d. Gaussian noise ηt ∼ N (0, I) to their preference vec-
tor µjt , the resulting choice model becomes Lipschitz (see
Appendix E.2).

1.1. Problem Statement

We study the repeated principal-agent problem, where a
principal incentivizes K types of agents to choose arms
from the set [N ] = {1, . . . , N}. The principal has a known
reward vector v = (v1, . . . , vN ) ∈ [0, 1]N . Each agent
type j ∈ [K] has an associated preference vector µj =
(µj

1, . . . , µ
j
N ) ∈ [0, 1]N .

The interaction unfolds over a finite horizon t = 1, . . . , T ,
where agents arrive in an adversarial order. In each round
t, an agent of type jt ∈ [K] arrives (where jt is un-
observed by principal), and the principal simultaneously
chooses an incentive vector πt = (πt,1, . . . , πt,N ) ∈ D,
where D ⊆ [0, 1]N denotes the principal’s decision space.
The agent then selects an arm a(πt, jt), taking πt and jt
into account. The principal observes only the chosen arm
a(πt, jt) and receives the following utility: U(πt, jt) =
va(πt,jt) − πt,a(πt,jt).

The objective of principal is to minimize the regret:

RT = sup
π∈D

E

[
T∑

t=1

(U(π, jt)− U(πt, jt))

]
.

Incentive structures. We consider two types of incentives:
single-arm incentives and general incentives.

Single-arm incentive: the principal can incentivize at most
one arm, meaning the incentive vector has at most one
nonzero coordinate. The decision space is

D = {x ∈ [0, 1]N : |supp(x)| ≤ 1}.

General incentive: the principal can incentivize multiple
arms, meaning the principal can choose any incentive vector
in [0, 1]N . The decision space is D = [0, 1]N .

Arm Selection Models We analyze two models for agent
decision-making, namely, the greedy choice model and the
smooth choice model.

Greedy choice model: an agent of type jt observes the
incentive vector πt and best responds by deterministically
choosing the arm

b(πt, jt) ∈ arg max
i∈[N ]

{
µjt
i + πt,i

}
.

Ties are broken arbitrarily but consistently across agent
types. We assume that the principal knows the best response
function b(·, ·), meaning the principal can determine b(π, j)
for any π ∈ D and j ∈ [K].

Smooth choice model: the agent of type jt selects an arm
a(πt, jt) probabilistically based on an unknown distribution
that varies smoothly with the incentive vector as follows.

Assumption 1.1. (Smooth decision model) For any two
incentive vectors π, π′ ∈ D and any agent type j, the proba-
bility distribution of arm selection satisfies:

N∑
i=1

∣∣Pr[a(π, j) = i]−Pr[a(π′, j) = i]
∣∣ ≤ L · ||π−π′||∞,

where L ≥ 1 is a Lipschitz constant.
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Table 1: Regret bounds under different agent behaviors and incentive models.

Agent behavior Incentive type Upper bound Lower bound
Unknown, Greedy choice Single-arm N/A Ω(T )

Known, Greedy choice
Single-arm Õ

(
min

{√
KT log(N),K

√
T
})

Ω̃(min{
√

KT log(N),K
√
T})

General O(K
√
T log(KT )) –

Unknown, Smooth
Single-Arm O

(
L1/3N1/3T 2/3

)
Ω
(
L1/3N1/3T 2/3

)
General O

(
LN/(N+2)T (N+1)/(N+2)

)
–

1.2. Contributions

All our results are summarized in Table 1. For the greedy
response agent and single-arm incentive case, we show
that any algorithm without prior knowledge of the agents’
behaviors can be forced to incur linear regret. However,
when the agent behaviors are known as a priori, that is
we know the best response function of each agent but not
which agent arrives at each round, we discretize the con-
tinuous incentive space and propose a reduction-based ap-
proach that turns the problem into an adversarial linear
bandits problem with finite arms. The proposed algorithm
achieves a Õ(min{

√
KT log(KN),K

√
T}) upper bound.

Under this same setting of known types, we provide a
Ω̃
(
min

{
K
√
T ,
√

KT log(N)
})

regret lower bound, im-
plying that our upper bound is tight up to logarithmic factors.

For the case of greedy agent and known agents’ behaviors,
if the principal is allowed to incentive more than one arm
simultaneously (also known as general incentives), we adopt
the previous reduction to adversarial linear bandits, but more
importantly, introduce a novel discretization, which enables
our algorithm to achieve a Õ(K

√
T )1regret bound. The key

idea behind the discretization is identifying a polytope for
the large incentive space such that the extreme point of the
polytope is close to the optimal incentive.

Finally, for the smooth response agent and single-arm in-
centive case, we propose an algorithm which achieves a
Õ(L1/3N1/3T 2/3) regret bound where L ≥ 1 is a known
Lipschitz constant. We further show the tightness of this
upper bound as it matches our Ω(L1/3N1/3T 2/3) lower
bound up to logarithmic factors. We also show that for the
general incentive case, Õ(LN/(N+2)T (N+1)/(N+2)) regret
is achievable.

1.3. Related Work

The principal-agent model has been extensively studied in
both one-shot and repeated settings. In the one-shot setting
(Holmström, 1979; Grossman & Hart, 1992; Carroll, 2015;
Dütting et al., 2019; 2022), the principal only interacts with
agents once, and the typical objective is to identify the best

1We use Ω̃(·),Õ(·) to suppress poly-logarithmic terms in K,T .

(approximately) incentive. In the repeated setting (Misra
et al., 2005; Misra & Nair, 2011; Ho et al., 2014; Kaynar
& Siddiq, 2023; Scheid et al., 2024b; Dogan et al., 2023a;
Ben-Porat et al., 2024; Wu et al., 2024; Liu & Ratliff, 2024),
the principal interacts with agents for multiple rounds, and
the goal could be estimating agents’ model or maximizing
the cumulative profits, which in turn minimize the regret.
Our work falls within this line of research. While principal-
multi-agent problems have been considered in the one-shot
setup (Dütting et al., 2023; Duetting et al., 2025), little is
known about the multi-agent study in the repeated setting.
The known related works (Ho et al., 2014; Gayle & Miller,
2015) consider the repeated principal-multi-agent problems,
but they assume that the arrival of agents follow a fixed
underlying distribution, which is often not the case in many
real-world scenarios.

The repeated principal-agent problem has been studied un-
der different forms of information asymmetry. The moral
hazard setting (Misra et al., 2005; Ho et al., 2014; Kaynar &
Siddiq, 2023) assumes that the agents’ actions are invisible
to the principal, while the adverse selection (Ho et al., 2014;
Gayle & Miller, 2015) considers cases where agents’ pref-
erences are unknown to the principal. Additionally, Scheid
et al. (2024b;a); Dogan et al. (2023a); Liu & Ratliff (2024)
explore settings where the agent’s type is unknown, but they
assume a single agent type in the interaction, avoiding the
challenge of multiple agent types responding differently to
the same incentive—a key issue in our work. Fiez et al.
(2018) study agents with multiple different types that evolve
dynamically (as a function of the offered incentives) accord-
ing to a controlled Markov chain, and focus their attention
on epoch-based algorithms that exploit mixing time prop-
erties of the controlled Markov chain along with a greedy
matching strategy in each epoch.

While our framework shares the principal–agent structure of
Harris et al. (2024) and Balcan et al. (2025), it diverges from
their contextual Stackelberg models in two key respects.
First, in their setting, the principal chooses a mixed strategy
from a probability simplex over a finite action set, whereas
in our setting, the principal chooses an incentive vector from
the hypercube π ∈ [0, 1]N . In addition, their payoffs of the
principal and agent derive from a contextual utility function
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evaluated under the chosen mixed strategy and observed
context. In contrast, in our model each agent of unknown
type j selects arm i ∈ [N ] to maximize µj

i + πi, and the
principal’s payoff is vi−πi. These key differences in action
space and reward structure highlight the distinction between
our principal-agent model and theirs.

Moreover, similar to the works of Bernasconi et al. (2023)
and Balcan et al. (2025), our algorithm proceeds by clev-
erly reducing the problem to an online linear optimization
problem.

2. Lower Bounds for Greedy Choice Model
In this section, we establish the fundamental limits of the
principal-agent problem under the single-arm incentive. We
first show in Section 2.1 that any algorithm lacking advance
knowledge of the agents’ behavior can be forced to incur
linear regret. Then, in Section 2.2, when the agents’ behav-
iors are known, we derive a tight lower bound on regret for
the greedy choice model, up to logarithmic factors.

2.1. Linear Regret for Unknown Agent Behavior

Consider the greedy choice model, but now assume that the
principal does not have access to the best response function
b(·, ·). Under this assumption, we establish a linear regret
bound for any algorithm, as stated below.
Theorem 2.1. Suppose the principal and the agents operate
under a greedy choice model with single-arm incentives,
and the principal does not have access to the best response
function b(·, ·). For any algorithm, there exists an instance
of the principal-agent problem with K = 2 agent types and
N = 3 arms such that RT = Ω(T ).

To provide intuition for Theorem 2.1, consider the following
example:
Example 2.2. The principal’s reward vector is v =
(1, 0.5, 0). The preference vectors of two agents are µ1 =
(0.2, 0, 0.2 + ∆) and µ2 = (0.2, 0.2 + ∆, 0), where ∆ ∈
[0.7, 0.71]. When a tie occurs, agent 1 favors arm 1, while
agent 2 favors arm 2. At each round, agent 1 is selected
with probability 0.4, and agent 2 is selected with probability
0.6.

In Example 2.2, the incentive vector π∗ = (∆, 0, 0) is
uniquely optimal because any deviation from this incen-
tive for arm 1 incurs at least a constant regret. Specifically,
the expected reward of π∗ is 0.6 ·0.5+0.4(1−∆) ≥ 0.416.
In contrast, offering an incentive less than ∆ for arm 1 re-
sults in an expected reward of at most 0.6·0.5+0.4·0 = 0.3,
and offering an incentive greater than ∆ yields an expected
reward of at most 1−∆ ≤ 0.3.

However, the probabilistic selection of agents implies that
we must exactly learn ∆ to achieve sub-linear regret, which

is not always feasible. Consequently, any algorithm incurs
an Ω(T ) regret for some ∆ ∈ [0.7, 0.71]. For the formal
proof, we refer the reader to Appendix B.

2.2. Lower Bounds for Single-arm Incentive

Consider the greedy choice model, where the principal is
restricted to single-arm incentives and has knowledge of
the best response function b(·, ·). The following theorem
establishes a tight lower bound on regret, up to logarithmic
factors.

Theorem 2.3. Suppose the principal and the agents operate
under a greedy choice model with single-arm incentives,
and the principal has access to the best response function
b(·, ·). For any K ≥ 3, N ≥ 3, T ≥ poly(K), and any
algorithm, there exists an instance of the principal-agent
problem such that

RT = Ω
(
min

{√
KT log(N)/ log(K),K

√
T/ log(K)

})
The proof of this theorem is non-trivial, and due to space
constraints, we defer it to Appendix C. Here, we outline the
key ideas behind our proof.

First, consider the case where N ≤ K. We carefully con-
struct the reward vector v and the preference vectors µj

such that there exists a set Π = {π(1), π(2), . . . , π(K−1)}
of incentive vectors with the property that for any π ∈ D,
there exists some π(i) ∈ Π satisfying U(π(i), j) ≥ U(π, j)
for all j ∈ [K]. Consequently, we can assume that any
algorithm selects an incentive exclusively from Π in each
round.

Next, we define a probability distribution p(1,ε) over the
agents, ensuring that in each round, an agent jt is drawn
from this fixed distribution. We construct p(1,ε) such that
the expected utility of choosing the incentive vector π(1)

is r + ε, while for all other incentive vectors, it remains r,
where r ∈ [0, 1/2] is some constant.

Now, suppose the algorithm selects an incentive vector
π(i) ̸= π(1) only a limited number of times. We construct
an alternate problem instance by instead using a probability
distribution p(i,ε), where the agent jt is sampled from p(i,ε)

in each round. This new distribution is chosen so that the
expected utility of π(1) remains r + ε, while that of π(i)

increases to r + 2ε, and all other incentive vectors continue
to yield r.

By appropriately choosing ε and employing careful KL-
divergence-based arguments, we establish that in at least
one of these two problem instances, the algorithm incurs
a regret of Ω(

√
KT ). While these arguments resemble

the standard lower bound analysis for the Multi-Armed
Bandit (MAB) problem, a key challenge in our setting is
that we must fix the reward vector and preference vectors in
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advance, constructing multiple instances solely by varying
the probability distributions over the agents.

For the case when N ≥ K, we aim to establish a combina-
torial bandit-style lower bound, analogous to the MAB-style
lower bound derived for N ≤ K. At a high level, we begin
by defining a bijective mapping f that maps the first N − 1
arms to a subset of {0, 1}K−2. These N−1 arms each yield
a reward of roughly 0.5, while the last arm is a special arm
with a reward of 0.

We then construct preference vectors for each agent such
that there exists a set Π = {π(1), π(2), . . . , π(N−1)} of in-
centive vectors satisfying the following property: for any
π ∈ D, there exists some π(i) ∈ Π such that U(π(i), j) ≥
U(π, j) for all j ∈ [K]. Also for all i ∈ [N−1], (π(i))i > 0
. Consequently, we can assume that any algorithm selects
an incentive exclusively from Π in each round.

Next, we define a class of distributions for sampling agents
such that the utility function exhibits a linear structure over
the vectors in Π. Specifically, we ensure that

Ej∼p[U(π(i), j)] = ⟨f(i), θ(p)⟩,

where θ(p) ∈ [0, 1]K−2 is a reward vector dependent solely
on the preference vectors of the agents and the distribution
p from which the agents are sampled in each round. The
last arm and two special agents who prefer this arm play a
crucial role in ensuring the above equality.

Given this setup, we replicate a combinatorial bandit-style
lower bound by carefully defining the sample space and
computing the corresponding KL-divergences. Ultimately,
we establish a lower bound of

Ω
(
min

{√
KT log(N)/ log(K),K

√
T/ log(K)

})
.

3. Main Results for Greedy Choice Model
In this section, we present our algorithms for the greedy
choice model, assuming access to the agents’ best response
functions. The key idea behind our algorithm design is
to discretize the decision space and reduce the problem to
adversarial linear bandits. We first describe our algorithm
for the single-arm incentive in Section 3.1, followed by the
algorithm for the general incentive in Section 3.2.

3.1. Algorithm for Single-arm Incentive

The proposed algorithm consists of two stages: first,
discretizing the decision space D = {x ∈ [0, 1]N :
|supp(x)| ≤ 1} into a finite set, and second, reducing the
problem to adversarial linear bandits using the discretized
set and the best response functions of each agent.

Tie Breaking. For simplicity of presentation, we assume
that in the case of a tie, an agent always prefers the in-
centivized arm, and each preference vector has a unique

maximum. Our approach can be suitably modified to avoid
relying on this assumption. For further details, we refer the
reader to Appendix D.

Discretization. To construct a finite single-arm incen-
tive set, we begin with an empty set Π. Observe that
maxk∈[N ] µ

j
k − µj

i represents the minimum incentive re-
quired to entice agent j to choose arm i. For each arm
i ∈ [N ] and agent j ∈ [K], we define an incentive vector
πi,j ∈ D such that for all s ∈ [N ]:

(πi,j)s =

{
maxk∈[N ] µ

j
k − µj

i , if s = i,

0, otherwise.

For all i ∈ [N ] and j ∈ [K], we add the incentive vector
πi,j to Π, resulting in |Π| = O(NK). The set Π has the key
property that for any π ∈ D, there exists a vector πi,j ∈ Π
such that U(πi,j , ĵ) ≥ U(π, ĵ) for all ĵ ∈ [K].

When N = Ω(2K) is exponentially large, we can further
refine the discretized set to make it independent of N . In-
tuitively, when N is large, some incentive vectors elicit the
same response in terms of the selection of their incentivized
arms. In such cases, we retain only the most rewarding
incentive vector rather than including all equivalent ones in
the reduced set.

To formalize this, we define a mapping h : Π → {0, 1}K
such that for any π ∈ Π \ {0} and j ∈ [K], where 0 is the
zero-incentive vector (0, 0, . . . , 0), we have:

(h(π))j =

{
1, if b(π, j) = a(π),

0, otherwise,

where a(π) := argmaxi∈[N ] πi denotes the index of the
largest coordinate of π. Observe that if b(π, j) ̸= a(π) then
b(π, j) = b(0, j).

Using this mapping, we construct a reduced set Π̂ as fol-
lows. We initialize Π̂ as an empty set. For each vector
s ∈ {0, 1}K , define

Πs := {π ∈ Π \ {0} : h(π) = s}.

If |Πs| = 1, we add the unique π ∈ Πs to Π̂. If |Πs| > 1,
we have U(π, j) = sj · (va(π) − πa(π)) + (1− sj) · vb(0,j)
for all π ∈ Πs. Thus, we add only one of the maximizers,
π̂ = argmaxπ∈Πs va(π) − πa(π), to Π̂. We also include
the zero-incentive vector 0 in Π̂. Since |{0, 1}K | = 2K

and we select at most one vector per Πs, we obtain |Π̂| ≤
min{2KN, 2K}+ 1.

Since Π̂ is obtained by removing only suboptimal incentive
vectors from Π, it retains the key property that for any π ∈
D, there exists πi,j ∈ Π̂ satisfying U(πi,j , ĵ) ≥ U(π, j) for
all ĵ ∈ [K]. Given this fact, it suffices to focus only on Π̂
for regret minimization.
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A natural approach is to treat each incentive π ∈ Π̂ as an
arm, thereby reducing the problem to an adversarial multi-
armed bandit setting. However, this reduction results in a
regret bound of O(

√
min{KN, 2K}T ) if one, for example,

applies the Tsallis-INF algorithm (Zimmert & Seldin, 2021).

Given the lower bound established in Section 2.2, this raises
the question: can we adopt a different approach to improve
the upper bound?

Reduction to Adversarial Linear Bandits. We now im-
prove the upper bound by proposing a simple yet effective
reduction to the adversarial linear bandits problem. This
approach ensures that our upper bound matches the lower
bound up to logarithmic factors in K.

We begin by constructing an arm set Z ⊆ RK . For each
incentive π ∈ Π̂, we define the corresponding vector zπ ∈
RK as

(zπ)j = U(π, j), ∀j ∈ [K].

We then add zπ to Z . Next, we define the reward vector
yt ∈ RK . If agent jt arrives in round t, we set

(yt)j =

{
1, if j = jt,

0, otherwise.

With these definitions, for any π ∈ Π̂, we observe that
U(π, jt) = ⟨zπ, yt⟩. Thus, our pseudo-regret RT is equal
to the adversarial linear bandit pseudo-regret:

RT = max
z∈Z

E

[
T∑

t=1

⟨z, yt⟩ −
T∑

t=1

⟨zt, yt⟩

]
.

For an adversarial linear bandit problem over a decision set
X ⊂ Rd with horizon T and rewards bounded in [−1, 1], let
RAlg(T,X ) denote the pseudo-regret of an algorithm Alg.
If Alg is the EXP3 algorithm for linear bandits (Lattimore
& Szepesvári, 2020), it satisfies

RAlg(T,X ) ≤ O(
√

dT log(|X |)).

Since our reduction is an instance of the adversarial linear
bandit problem, we obtain the following result:

Theorem 3.1. Suppose the principal and the agents operate
under a greedy choice model with single-arm incentives,
and the principal has access to the best response function
b(·, ·). Then, there exists an algorithm for this principal-
agent problem whose pseudo-regret is upper bounded by

RT ≤ Õ
(
min

{√
KT log(N),K

√
T
})

.

3.2. Algorithm for General Incentive

The proposed algorithm consists of two stages: first, dis-
cretizing the decision space D = [0, 1]N into a finite set,

and second, reducing the problem to adversarial linear ban-
dits using the discretized set and the best response functions
of each agent.

Tie Breaking. To simplify the presentation, let us assume
that agents resolve ties in a hierarchical manner. Specifically,
each agent j has a bijective mapping fj : [N ] → [N ], and
in the event of a tie among a set of arms I ⊆ [N ], agent j
selects the arm argmaxi∈I fj(i). Other tie-breaking rules
can be handled in a similar fashion.

Discretization. For the general incentive case, the princi-
pal’s decision space is given by D = [0, 1]N . The algorithm
for this case builds upon the reduction framework employed
by the single-arm incentive algorithm but introduces a dif-
ferent discretization approach.

Let σ ∈ [N ]K be a K-dimensional tuple. Define Pσ :=

{π ∈ [0, 1]N : b(π, j) = σj ∀j ∈ [K]}, and let P̂σ denote
the closure of Pσ . If P̂σ is non-empty, then it forms a convex
polytope defined by the following set of linear inequalities:

0 ≤ πi ≤ 1 ∀i ∈ [N ],

µj
σj

+ πσj
≥ µj

i + πi ∀i ∈ [N ] \ {σj}, j ∈ [K].

If Pσ is non-empty, it is an open convex polytope, as some
of the inequalities above become strict.

Now, let Σ := {σ ∈ [N ]K : Pσ ̸= ∅}. We define two
incentive vectors π and π̂ to be ε-close if ∥π − π̂∥∞ ≤ ε.
For σ ∈ Σ, we construct a set of incentive vectors Πσ

as follows: for each extreme point of P̂σ, we select an ε-
close vector in Pσ and include it in Πσ . We now claim that
|Πσ| ≤ poly(N,K)N .

First note that any extreme point of P̂σ is an intersection of
N -linearly independent half-spaces defining this polytope.
Now observe that the number of half spaces used to define
this polytope is at most poly(N,K). Hence, the number of
extreme points is upper bounded by (poly(N,K))N . Since
each point in Πσ is associated with exactly one extreme
point of P̂σ , we have |Πσ| ≤ (poly(N,K))N .

Let Π :=
⋃

σ∈Σ

Πσ . We claim that for any sequence of agents

j1, j2, . . . , jT , the following inequality holds:

max
π∈Π

T∑
t=1

U(π, jt) ≥ sup
π∈[0,1]N

T∑
t=1

U(π, jt)− 2εT.

Consider an incentive vector π⋆ ∈ [0, 1]N such that

T∑
t=1

U(π⋆, jt) ≥ sup
π∈[0,1]N

T∑
t=1

U(π, jt)− εT.

Let π⋆ ∈ Pσ , where σ corresponds to the behavior induced
by π⋆. Since the maximum of a linear function over a closed
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polytope is attained at one of its extreme points, there exists
an extreme point π̂ of P̂σ such that

T∑
t=1

vσjt
− π̂σjt

≥
T∑

t=1

vσjt
− π⋆

σjt
=

T∑
t=1

U(π⋆, jt).

Let π̃ be the vector in Πσ that is ε-close to π̂. Now, we have
the following:

T∑
t=1

U(π̃, jt) =

T∑
t=1

vσjt
− π̃σjt

=

T∑
t=1

(vσjt
− π̂σjt

)−
T∑

t=1

(π̃σjt
− π̂σjt

)

≥
T∑

t=1

(vσjt
− π̂σjt

)−
T∑

t=1

|π̃σjt
− π̂σjt

|

≥
T∑

t=1

(vσjt
− π̂σjt

)− εT

(as ||π̂ − π̃||∞ ≤ ε)

≥ sup
π∈[0,1]N

T∑
t=1

U(π, jt)− 2εT

If we set ε = 1
T , then it suffices to focus on the set of

incentive vectors Π for our regret minimization problem.

Reduction to Adversarial Linear Bandits. We now show
a reduction of this problem to an adversarial linear bandit
problem. First, we construct a set Z ⊂ RK as follows: for
each π ∈ Π, we add zπ to Z , where (zπ)j = U(π, j) for
all j ∈ [K]. Next, we define the reward vector yt ∈ RK .
If agent jt arrives in round t, we set (yt)j = 1 if j = jt
and (yt)j = 0 otherwise. Observe that for any π ∈ Π,
U(π, jt) = ⟨zπ, yt⟩. Hence, our pseudo-regret RT is equal
to the adversarial linear bandit pseudo-regret: :

RT = max
z∈Z

E

[
T∑

t=1

⟨z, yt⟩ −
T∑

t=1

⟨zt, yt⟩

]
.

Using the EXP3 algorithm for linear bandits, we obtain
a regret upper bound of poly(K,N) ·

√
T for our regret

minimization problem. However, this upper bound can be
further improved as follows. Let R = {ej}j∈[K] be the set
of all possible reward vectors. Define Z0 as the smallest
subset of Z such that

max
z∈Z

min
z′∈Z0

max
y∈R

|⟨z − z′, y⟩| ≤ 1

T
.

By the above inequality, it suffices to focus on Z0 for
our regret minimization problem. It can be shown that
|Z0| ≤ (6KT )K (see Chapter 27 of Lattimore & Szepesvári

(2020)). Using the EXP3 algorithm for linear bandits on
the reduced arm set Z0, we achieve a regret upper bound of
O
(
K
√
T log(KT )

)
. This leads to the following theorem:

Theorem 3.2. Suppose the principal and agents operate
under a greedy choice model with general incentives, and
the principal has access to the best response function b(·, ·).
Then, there exists an algorithm for this principal-agent prob-
lem whose pseudo-regret is upper bounded by

RT ≤ O
(
K
√
T log(KT )

)
.

4. Main Results for Smooth Choice Model
In this section, we present an algorithm for the setting where
agent types and their preference model are unknown but
assumed to be a smooth function of the incentive vector.

4.1. Algorithm for Single-Arm Incentives

The proposed algorithm comprises two stages. First, it dis-
cretizes the decision space D = {x ∈ [0, 1]N : |supp(x)| ≤
1} into a finite set. Second, it runs the adversarial multi-
armed bandit algorithm, Tsallis-INF, on the discretized set.

Discretization. Fix ε > 0. To construct a finite single-arm
incentive set, we begin with an empty set Π. For all i ∈ [N ]
and j ∈ [1/ε+ 1], we define an incentive vector πi,j ∈ D
such that for all s ∈ [N ]:

(πi,j)s =

{
(j − 1) · ε, if s = i,

0, otherwise.

Algorithm and its Regret guarantee. We run Tsallis-INF
by treating each vector in Π as an arm. Let π∗ ∈ D be the
optimal fixed incentive in hindsight against a sequence of
agents j1, j2, . . . , jT . Consider a vector π̂ ∈ Π such that
|π̂î − π∗

î
| ≤ ε for some index î ∈ [N ]. For any agent j, we

have the following:

E[U(π∗, j)]− E[U(π̂, j)]

=

N∑
i=1

(Pr[a(π∗, j) = i]− Pr[a(π̂, j) = i]) · vi

+ Pr[a(π̂, j) = i] · π̂î − Pr[a(π∗, j) = i] · π∗
î

≤
N∑
i=1

(Pr[a(π∗, j) = i]− Pr[a(π̂, j) = i]) · vi

+ (Pr[a(π̂, j) = i]− Pr[a(π∗, j) = i]) · π∗
î
+ ε

≤ 2 · ε · L+ ε (Assumption 1.1 and 0 ≤ vi, π
∗
î
≤ 1)

The regret of our approach is upper bounded as:

RT ≤
T∑

i=1

E[U(π̂, jt)− U(πt, jt)]

7
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+

T∑
i=1

E[U(π∗, jt)− U(π̂, jt)]

≤ O(
√
Nϵ−1T + T · (2L+ 1) · ϵ).

Setting ε = N1/3(2L + 1)−2/3T−1/3, would make the
regret bounded by O((2L+ 1)1/3N1/3T 2/3).

Remark: It can be easily shown that without knowing L,
any fixed discretization’s regret will scales linearly in L.

4.2. Lower Bound for Single-Arm Incentives

In the following theorem, we show the our regret upper
bound is optimal.
Theorem 4.1. For all N,T , and L ≥ 3, if Assumption 1.1
holds for all agents, then we have

inf
A∈Alg

sup
j∈J

E[RA,j
T ] = Ω

(
L1/3N1/3T 2/3

)
,

where J is the set of agent types, and RA,j
T is the regret

when only agents of type j are selected.

Here we provide high level ideas behind the proof. We refer
the reader to Appendix E for the detailed proof. To prove
the above theorem, we construct an instance where only a
small interval of size ϵ for a specific arm yields a reward ∆
higher than any other incentive-arm pair. This results in a
regret of min(∆T,∆−2ϵ−1N), which, with appropriately
chosen parameters, establishes the desired bound.

However, proving this bound presents two additional tech-
nical challenges, as Assumption 1.1 must hold. Specifi-
cally, the reward within the optimal interval should increase
smoothly by ∆ and then return to the base reward. Addi-
tionally, ∆ must be bounded by O(Lϵ−1). We define the set
of adversarial types as J := {(i, j) | i ∈ [N ], j ∈ 1

2⌊ϵ
−1⌋}.

Then, for all l ≤ N − 1, we have:

Pr[a(π, (i, j)) = l] =


1

16N(1−πi)
+B(πi − jϵ)

if l = i, πi ∈ [jϵ, (j + 1)ϵ]
1

16N(1−πi)
if πl ≤ 1

2
1

8N if πl >
1
2

(1)

Pr[a(π, (i, j)) = N ] = 1−
N−1∑
l=1

Pr[a(π, (i, j)) = l] (2)

Where bonus term B : [0, ϵ] → R is a L−1
4 -Lipschitz func-

tion with B(0) = B(ϵ) = 0. This leads to the optimal in-

centive π∗, where π∗
l =

{
jϵ+ argmaxx B(x) if l = i

0 if l ̸= i
,

and only giving incentive in a small region containing π∗

will give information for optimal solution, and its not possi-
ble to distinguish the best region for all agent types without
having Ω(T 2/3) regret.

4.3. Instance-dependent Algorithm for Single-Arm
Incentives

Depending on the problem instance, uniformly covering the
entire action space—while optimal in the worst case—can
be inefficient. The goal is to cover near-optimal regions
more densely than others. To achieve this, we leverage
zooming algorithms, which are widely used in the Lipschitz
bandits literature. These algorithms begin with a uniform
discretization and adaptively refine the discretization in re-
gions that are more likely to be optimal. Specifically, if
the uncertainty about an optimal point being in a given re-
gion falls below a certain threshold (the zooming rule), that
region is discretized more densely.

We use ADVERSARIALZOOMING from (Podimata &
Slivkins, 2021) with the action set D and the metric
d(π, π′) = L∥π − π′∥∞. If Assumption 1.1 holds, then
the reward function U(·, jt) is (2L + 1)-Lipschitz, ensur-
ing that these inputs are valid for the algorithm. To adapt
to the adversarial setting, the algorithm employs EXP3.P
to sample points from active regions and zooms into a re-
gion when its confidence interval becomes smaller than a
threshold, determined by its diameter, L, and t. The key
instant-dependent parameter is the adversarial zooming di-
mension, for a parameter γ > 0 is defined as:

inf
z≥0

{Cover(Aε,B(∥.∥∞, ε)) ≤ γε−z ∀ε},

where Aε is the set of all incentives that achieve Õ(ε)-
optimal reward for the principal in hindsight, and B(∥∥, ε)
are (noncentered) norm balls of diameter ε. Then, using
(Podimata & Slivkins, 2021)[Theorem 3.1] for our setting,
we would have the following regret bound.

Corollary 4.2. Suppose the principal and agents operate
under a smooth choice model (Assumption 1.1), where the
choice model has the Adversarial zooming dimension of
z. Then, there exists an algorithm for this principal-agent
problem whose pseudo-regret is upper bounded by

RT ≤ O(T (z+1)/(z+2))((2L+ 1)N)z/(z+2) log5 T.

For single-incentive setting, the zooming dimension is
bounded by 1, since the entire action space can be covered
with O(Nϵ−1) hypercubes, as shown in the fixed discretiza-
tion algorithm. However, for some smooth choice models,
the regret bound is improved. For instance, if the reward
function induced by an agent’s choice model is strictly con-
cave, then z = 1

2 , leading to an expected regret of T 3/5 (see
(Podimata & Slivkins, 2021), Section 6).

4.4. Algorithm with General Incentives

For the general incentive case, recall that D = [0, 1]N . We
partition D into ε−N equally sized hypercubes and define

8



Learning to Incentivize in Repeated Principal-Agent Problems with Adversarial Agent Arrivals

Π as the set of center points of these hypercubes. Similar
to the single-arm incentive case, we run Tsallis-INF by
treating each point in Π as an arm. Setting ε = (2L +
1)−2/(N+2)T−1/(N+2), we incur the following regret:

RT ≤
T∑

i=1

E[U(π̂, jt)− U(πt, jt)]

+

T∑
i=1

E[U(π∗, jt)− U(π̂, jt)]

≤ O(
√
ε−NT + T · (2L+ 1) · ε)

≤ O
(
(2L+ 1)N/(N+2)T (N+1)/(N+2)

)
Similar to the single-incentive setting, using ADVER-
SARIALZOOMING will result in a regret of Õ((2L +
1)z/(z+2)T (z+1)/(z+2)), where the zooming dimension z
is upper bounded by N , as ϵ−N hypercubes cover all of
decision space.

5. Conclusion
In this paper, we initiate the study of the repeated principal-
agent problem with adversarial agent arrivals. For the greedy
response agent and single-arm incentive case, we establish
a negative result, proving that any algorithm without prior
knowledge of agents’ behaviors can be forced to incur linear
regret. However, when the agents’ behaviors are known, we
design an algorithm based on a novel reduction to adver-
sarial linear bandits, achieving a regret bound that nearly
matches the lower bound up to a logarithmic factor. More-
over, when the principal is allowed to offer general incen-
tives, we propose an algorithm that integrates our reduction
technique with a novel discretization approach, leading to
a sublinear regret bound. Finally, for the smooth-response
agent setting, we develop an algorithm whose regret bound
aligns with our lower bound up to logarithmic factors.

Our work opens several interesting directions for future
research. A natural extension, inspired by (Scheid et al.,
2024b), is to consider a setting where the principal observes
only noisy rewards, adding an extra layer of uncertainty and
requiring reward distribution learning. Another direction is
to incorporate purchase quantity into the model, as in (Chen
et al., 2024). While our current framework assumes agents
purchase a single item per round, real-world scenarios often
involve varying purchase quantities.
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A. Technical Lemmas
Lemma A.1 (KL-divergence of Bernoulli (Maiti et al. (2023))). Consider ε > 0, ε < c0 ≤ 1

2 such that ε
c0

≤ 1
2 . Let P and

Q be bernoulli distributions with means c0 − ε and c0 + ε. Then we have the following:

KL(P,Q) ≤ 16ε2

c0
and KL(Q,P ) ≤ 16ε2

c0

Lemma A.2 (Chain Rule (Maiti et al. (2025))). Let f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) be two joint PMFs for a tuple
of random variables (Xi)i∈[n]. Let the sample space be Ω = {0, 1}n. Then we have the following:

KL(f, g) =
∑
ω∈Ω

f(ω)

(
KL(f(X1), g(X1)) +

n∑
i=2

KL(f(Xi|X−i = ω−i), g(Xi|X−i = ω−i))

)

where X−i = (X1, . . . , Xi−1), ω−i = (ω1, . . . , ωi−1).

B. Ω(T ) Lower Bound for unknown behavior of the agents
Let us consider the setting where the principal doesn’t know the behavior of the agents. In this case, we show that the
principal necessarily incurs a regret of Ω(T ) under the single arm incentive. Let us choose ∆ ∈ [0.7, 0.71] uniformly at
random. Let there be two agent types. Let uj be the reward vector associated with each agent j ∈ {1, 2}. We define
u1
1 = 0.2, u1

2 = 0 and u1
3 = 0.2 + ∆. We also define u2

1 = 0.2, u2
2 = 0.2 + ∆ and u2

3 = 0. For an incentive of ∆ to arm 1,
agent 1 breaks the tie in favor of arm 1 and agent 2 breaks the tie in favor of arm 2. The reward vector v for the principal
is defined as v1 = 1, v2 = 0.5 and v3 = 0. In each round t, we choose agent 1 with probability 0.4 and agent 2 with
probability 0.6. Let this problem instance be denoted as I∆. It can be shown that the optimal incentive is to provide an
incentive of ∆ to the first arm. Anything more or less will lead to a constant expected regret in each round. This rules out
the possibility of discretizing the incentive space. With more refined analysis one can indeed show a linear regret.

We now formally show that any algorithm incurs a regret of Ω(T ). Consider a problem instance I∆ where ∆ ∈ [0.7, 0.71].
Observe that the expected reward for providing an incentive of ∆ to the first arm is 0.6 · 0.5 + 0.4 · (1−∆) ≥ 0.416. Next,
observe that the expected reward for providing an incentive less than ∆ to the first arm is at most 0.6 · 0.5 + 0.4 · 0 = 0.3.
This includes providing incentive to other two arms. Finally, observe that the expected reward for providing an incentive
more than ∆ to the first arm is at most 1−∆ ≤ 0.3. Hence, providing an incentive of ∆ to the first arm is the best fixed
incentive.

Next let us fix a deterministic algorithm Alg. Let I =
⋃

∆∈[0.7,0.71] I∆. We aim to show that EI∼Unif(I)[R(I, T )] = Ω(T )

where R(I, T ) is the expected regret of Alg on the instance I . W.l.o.g let us assume that in each round t, Alg chooses
an incentive vector πt such that (πt)1 ∈ [0.7, 0.71]. Note that choosing any other type of incentive vector would lead to a
constant expected regret in that round.

Now let us analyze the behavior of Alg. Fix a sequence of agents j1, j2, . . . , jT . The behavior of Alg can be abstractly
stated as follows. In each round t, it chooses an incentive vector πt such that (πt)1 ∈ [0.7, 0.71]. An arm it gets chosen by
agent jt. This can be considered as assigning the arm it to the vector πt. Then based on the agent numbers j1, . . . , jt (not
their preference vectors) and arms i1, . . . , it, Alg chooses πt+1. We say assignment of an arm it to an incentive vector πt is
consistent if one of the following holds:

• If it = 1, then for all s < t such that πs ≤ πt we have is = 1.

• If it = 2, then jt = 2 and for all s < t such that πs ≥ πt we have is > 1.

• If it = 2, then jt = 3 and for all s < t such that πs ≥ πt we have is > 1.

Now consider all possible ways to consistently label the incentive vectors in all rounds. There are only finite number of
possibilities for a fixed sequence of agents. Moreover, the number of possible sequence of agents is also finite. Hence, only
a finite number of incentives in the range [0.7, 0.71] is provided by Alg to the arm 1. Let this set of incentives be S.

Now consider an instance I∆ such that ∆ ∈ [0.7, 0.71]\S . Let D be a distribution supported on {1, 2} such that probability of
choosing 1 is 0.4 and the probability of choosing 2 is 0.6. Now given a filtration Ft−1, πt gets fixed. Due to the definition of S ,
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we (πt)1 ̸= ∆. Therefore, we have Ejt∼D[U(πt, jt)|Ft−1] ≤ 0.3. Hence, we have E[U(πt, jt)] = E[E[U(πt, jt)|Ft−1]] ≤
0.3. Hence we have

∑T
t=1 E[U(πt, jt)] ≤ 0.3T . On the other hand, for the optimal incentive vector π∗, we have∑T

t=1 E[U(π∗, jt)] ≥ 0.416T . Hence, we have R(I∆, T ). As S is finite, we have EI∼Unif(I)[R(I, T )] = Ω(T ). Due to
Yao’s lemma, one can show that any randomized algorithm incurs a worst case expected regret of Ω(T ).

C. Lower bound for Greedy model with Single-arm incentive
In this section, we present the proof of Theorem 2.3. We begin by establishing a lower bound of

√
KT for all N ≥ 3

in Appendix C.1. Next, in Appendix C.2, we derive a lower bound of
√
KT log(N)/ log(K) for all N ∈ {K,K +

1, . . . , 2(K−2)/48}. This result further implies a lower bound of Ω(K
√
T/ log(K)) for all N ≥ 2(K−2)/48. By combining

these cases, we obtain a general lower bound of Ω(min{
√
KT log(N)/ log(K),K

√
T/ log(K)}) for all N,K ≥ 3,

thereby proving the theorem.

C.1. Ω
(√

KT
)

Minimax Lower Bound

For policy A and instance I , we define the pseudo-regret

RA,I
T = sup

π∈[0,1]N
EA,I

[
T∑

t=1

(U(π, jt)− U(πt, jt))

]
.

In the following, we give a lower bound for the problem with the single-arm incentive.

Theorem C.1 (minimax lower bound). ∀K ≥ 3, N ≥ 3, T > max{4(K − 2)3, 10(K − 2)}, policy A, ∃I , RA,I
T =

Ω(
√
KT ).

Proof. To prove the minimax regret lower bound for adversarial selection of agent type, it suffices to prove a lower bound
for the stochastic selection of agent type.

Consider any fixed N,K, T ∈ N such that K ≥ 3, N ≥ 3, and T > max{4(K − 2)3, 10(K − 2)}. Fix ϵ =
√

K−2
10T . As

we assume T > 10(K − 2), we have ϵ < 1/10. To avoid clutter, we define

∀i ∈ {2, . . . ,K − 1} : βi =
1

3
(

5
6 − i−2

3(K−2)

) − 1

3
.

One can easily see that βi ∈ [ 1
15 ,

1
3 ) for all i ∈ {2, . . . ,K − 1}.

We set v ∈ [0, 1]N as v1 = 2
3 + ϵ

3 , v2 = 1, and vj = 0 for all j ≥ 3. Each agent type i ∈ [K] has a reward vector
µi ∈ [0, 1]N . We set µ1 = ( 13 , 0, . . . , 0) and for the K-th type agent, we set µK

3 = 1, and µK
j = 0 for all j ∈ [N ] \ {3}. For

every agent i ∈ {2, . . . ,K − 1}, we set µi
2 = 1

3 , µi
3 = 1− βi, and µi

j = 0 for all j ∈ [N ] \ {2, 3}. Suppose that the agent
consistently breaks the tie by choosing the arm with the smallest index, and at each round the agent type is independently
sampled from a distribution, unknown to the principal.

The following gives an intuitive setting.

v =

(
2

3
+

ϵ

3
, 1, 0, 0, . . . , 0

)
µ1 =

(
1

3
, 0, 0, 0, . . . , 0

)
µ2 =

(
0,

1

3
, 1− β2, 0, . . . , 0

)
µ3 =

(
0,

1

3
, 1− β3, 0, . . . , 0

)
...

12



Learning to Incentivize in Repeated Principal-Agent Problems with Adversarial Agent Arrivals

µK−1 =

(
0,

1

3
, 1− βK−1, 0, . . . , 0

)
µK = (0, 0, 1, 0, . . . , 0) .

We consider a class of instances, denoted by I with fixed v, {µi}i∈[K] and the breaking rule given above, but allow all
possible probability distributions over the agent type with p1 = 1

2 , i.e., the probability of selecting the first type of agent is
equal to 1

2 . Let Π = {πi}K−1
i=1 where π1 = (0, . . . , 0) and for each i ∈ {2, . . . ,K − 1}, πi = (0, 2

3 − βi, 0, . . . , 0), i.e., the
second coordinate takes the value of 2

3 − βi, which is the minimum cost to incentivize i-th type of agent to play arm 2, and
all others are zero. Then, we consider a policy set A, which maps from history to Π, i.e., at each round, the principal only
offers an incentive among Π. We only need to lower bound infA∈A supI∈I RA,I

T since

inf
A

sup
I

RA,I
T ≥ inf

A
sup
I∈I

RA,I
T = inf

A∈A
sup
I∈I

RA,I
T ,

where the equality holds because for all I ∈ I and all A /∈ A, if policy A offers a single-value incentive π /∈ Π at a certain
round, then one can always alternatively propose an incentive πi = (πi,1, . . . , πi,K) ∈ Π (for some i ∈ [K − 1]) incurs an
instantaneous regret no worse than π.

To prove the above claim, it suffices to consider two types single-arm incentive which has positive value on either arm
1 or arm 2. For any single-arm incentive π /∈ Π which has positive value on arm 1, if the value is strictly smaller than
1− βK−1, then it functions the same as (0, . . . , 0), in the sense that their expected utilities are the same. For any other value
larger than or equal to 1− βK−1, incentivizing any agent i ∈ [K] to play arm 1 gives utility at most 2+ϵ

3 − (1− βK−1),

which is negative. Notice that 2+ϵ
3 − (1− βK−1) < 0 can be verified by using ϵ =

√
K−2
10T and T > 4(K − 2)3. However,

p1 = 1
2 implies that incentive (0, . . . , 0) yields the expected utility 1

3 + ϵ
6 . On the other hand, for any single-arm incentive

π /∈ Π which has positive value on arm 2, if the value is strictly smaller than 2
3 − βK−1, then it again functions the same as

(0, . . . , 0). If the value is larger than or equal to 2
3 − βK−1, then there must exist i ∈ [K − 1] such that the expected utility

of πi is no worse than that of π.

Now, we construct two instances I, I ′ ∈ I.

Construction of Instance I . For instance I , the agent type is sampled from a distribution p = (p1, . . . , pK) where

pi =


1
2 if i = 1,

1
3(K−2) if i ∈ {2, . . . ,K − 1},
1
6 if i = K.

We treat each incentive in Π as an arm, and |Π| = K − 1 . Let r(πi) be the expected utility of arm (incentive) πi. For
shorthand, we write ri := r(πi). For instance I , the expected utility vector of arms is denoted by (r1, . . . , rK−1). Each
arm follows a Bernoulli-type distribution. Arm 1 corresponds to the incentive (0, 0, . . . , 0) and takes value 2

3 + ϵ
3 with

probability p1 = 1
2 , and takes 0 with equal probability, which implies that its expected utility is

r1 = v1p1 =
1

2

(
2

3
+

ϵ

3

)
=

1

3
+

ϵ

6
.

Similarly, arm (incentive) π2 takes the utility of 2
5 with probability 1 − pK = 5

6 and takes 0 with remaining probability,
because it takes the value of 2

5 as long as the agent K does not show up at that certain round, and thus the expected utility is
r2 = 1

3 . Moreover, one can verify that for each arm πi with i ∈ {3, . . . ,K − 1}, the utility takes value of 1− πi,2 = 1
3 + βi

with probability 1− pK −
∑

z∈{2,...,i−1} pz , and takes 0 with remaining probability. Thus the expected utility is

ri =

1− pK −
∑

z∈{2,...,i−1}

pz

 (1− πi,2) =

(
5

6
− i− 2

3(K − 2)

)(
1

3
+ βi

)
=

1

3
.

Thus, arm π1 is uniquely optimal, and the arm gaps for all others are the same, denoted by

∆ :=
ϵ

6
.

13
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Construction of Instance I ′. Then, we fix an arbitrary policy A ∈ A and construct another instance I ′ by modifying p in
instance I to p′. Let z = argminj∈{2,...,K−1} EA,I1 [Tj ] where Tj is the number of plays of arm j across T rounds. Then,
we set the probability distribution p′ = (p′1, . . . , p

′
K) by considering two cases of z. For shorthand, let

lz,ϵ = ϵ

(
5

6
− z − 2

3(K − 2)

)
∈
( ϵ
2
,
5ϵ

6

]
.

Case 1: z ≥ 3. In this case, we set

p′i =



1
2 i = 1,

1
3(K−2) i ∈ {2, . . . ,K − 1} − {z − 1, z},

1
3(K−2) − lz,ϵ i = z − 1,

1
3(K−2) + lz,ϵ i = z,
1
6 i = K.

Case 2: z = 2. In this case, we set

p′i =


1
2 i = 1,

1
3(K−2) i ∈ {3, . . . ,K − 1},

1
3(K−2) + lz,ϵ i = 2,
1
6 − lz,ϵ i = K.

Notice that one can make a sanity check for all z

1

3(K − 2)
− lz,ϵ ≥

1

3(K − 2)
− 5ϵ

6
=

1

3(K − 2)
− 5

6

√
K − 2

10T
> 0,

where the last inequality holds due to the assumption T > (K − 2)3. Moreover, 1
6 − lz,ϵ ≥ 1−5ϵ

6 > 0 as ϵ < 1/10.
Therefore, p′ is a valid distribution for both cases.

In Case 1 with z ≥ 3, the expected utility of arm z in instance I2 is

r′z =

1− pK −
∑

j∈{2,...,i−1}

pj + lz,ϵ

(1

3
+ βi

)
= rz + 2∆.

Similarly, in Case 2 with z = 2, we also have r′z = rz + 2∆. Thus, the expected utility vector in instance I2 is

(r1, . . . , rz + 2∆, . . . , rK−1) .

In this case, arm z becomes the unique optimal arm. For instances I1, I2, the utility distribution of each arm i ∈ [K−1]−{z}
remains unchanged, but only the one of arm z slightly changes.

Proof of Lower Bound. Let (D1, . . . , DK−1) and (D′
1, . . . , D

′
K−1) be the utility distributions over arm Π in instances

I, I ′, respectively. For shorthand, if z = 2, let qz = 5
6 , and if z ∈ {3, . . . ,K − 1}, let qz = 5

6 −
∑

j∈{2,...,i−1} pj . We
use KL(P,Q) to denote the KL divergence between two distributions P,Q. We define an event E :=

{
T1 ≤ T

2

}
and its

complement as Ec. Then, by a standard lower-bound argument used in MAB, we have

RA,I
T +RA,I′

T ≥ T∆

2
(PA,I(E) + PA,I′(Ec))

≥ T∆

2

(
1−max

E
|PA,I(E)− PA,I′(Ec)|

)
≥ T∆

2

(
1−

√
1

2
KL (PA,I ||PA,I′)

)
,

14
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where the second inequality uses PA,I(E) + PA,I′(Ec) = PA,I(E) + 1 − PA,I′(E) ≥ 1 − |PA,I(E) − PA,I′(E)| ≥
1−maxE |PA,I(E)− PA,I′(E)|, and the third inequality follow from Pinsker’s inequality.

The definition of z implies that EA,I [Tz] ≤ T/(K − 2). By the divergence decomposition lemma, we have

KL (PA,I ||PA,I′) = EA,I [Tz]KL(Dz||D′
z) ≤

180T∆2

K − 2
.

Therefore, we have

RA,I
T +RA,I′

T ≥ T∆

2

(
1−∆

√
90T

K − 2

)
.

Recall that ∆ = ϵ/6. Finally, as ϵ =
√

K−2
10T , we have ∆ = ϵ

6 =
√

K−2
360T , which implies that 1−∆

√
90T
K−2 ≥ 1

2 . Thus,

RA,I
T +RA,I′

T = Ω(
√
KT ),

which suffices to give the lower bound.

Bounding KL(Dz||D′
z). In instances I, I ′, arm z take the same positive value with probability qz and qz + lz,ϵ respectively,

and zero with remaining probabilities. We bound

KL(Dz||D′
z) = qz log

(
qz

qz + lz,ϵ

)
+ (1− qz) log

(
1− qz

1− qz − lz,ϵ

)
.

By using the fact that log(1 + x) ≥ x− x2/2 for any x ≥ 0, we have

qz log

(
qz

qz + lz,ϵ

)
= −qz log

(
1 +

lz,ϵ
qz

)
≤ −qz

(
lz,ϵ
qz

−
l2z,ϵ
2q2z

)
= lz,ϵ −

l2z,ϵ
2qz

.

The second term is bounded by

(1− qz) log

(
1− qz

1− qz − lz,ϵ

)
= −(1− qz) log

(
1− lz,ϵ

1− qz

)
≤ (1− qz)

(
lz,ϵ

1− qz
+

1

2

(
lz,ϵ

1− qz

)2

+
2

3

(
lz,ϵ

1− qz

)3
)

= lz,ϵ +
l2z,ϵ

2(1− qz)
+

2

3

l3z,ϵ
(1− qz)2

,

where the second inequality uses series expansion and the fact that lz,ϵ
1−qz

≤ 5ϵ < 1/2 as qz ≤ 5
6 and ϵ < 1/10.

Combining both and using ∆ = ϵ/6, we have

KL(Dz||D′
z) ≤

l2z,ϵ
2(1− qz)

−
l2z,ϵ
2qz

+
2

3

l3z,ϵ
(1− qz)2

≤ 5ϵ2 = 180∆2.

Thus, the proof completes.

C.2. Ω
(√

KT log(N)/ log(K)
)

worst case lower bound

In this section, we construct an instance with K agents and N arms and establish a worst-case lower bound of

Ω
(√

KT logN
logK

)
for all N ∈ {K,K + 1, . . . , 2(K−2)/48}. This also implies a worst-case lower bound of Ω

(
K
√

T
logK

)
for all N ≥ 2(K−2)/48.
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Let K0 := K − 2, and define M := log(N−1)
log(K−2) . Let N0 :=

(
K0

M

)M
+ 1. Note that log(N0 − 1) = M log(K0/M) <

M log(K0) = log(N − 1), which implies N0 < N .

For simplicity, we assume that both M and K0

M are integers. We also assume K ≥ 1000. Fix an ε > 0 to be specified later
in the proof.

Let di = (i− 1) · K0

M for all j ∈ [M ]. Let X := {x ∈ {0, 1}K0 : ∀i ∈ [M ]
∑K0/M

j=1 xdi+j = 1}. Now consider a bijective
mapping f : X 7→ [N0 − 1]. First we define the reward vector v for the principal. We have vi := 0.5 + 1

T for each
i ∈ [N0 − 1] and vi := 0 for all i ∈ {N0, N0 + 1, . . . , N}.

Next we define the preference vector µj for an agent j ∈ [K0]. For each x ∈ X , we define µj
f(x) := 1− 1

T if xj = 1 and

µj
f(x) = 0 otherwise. We define µj

N0
:= 1 and µj

i := 0 for all i ∈ [N ] \ [N0]. Next we define the preference vector µK−1

for the agent K − 1. We have µK−1
i := 1

T if i = N0 and µK
i := 0 otherwise. Finally we define the preference vector µK

for the agent K. We have µK
i := 1 if i = N0 and µK

i := 0 otherwise. In case of tie, an agent prefers an arm in [N0 − 1]
over the arm N0. Let Π = {πx}x∈X be a set of incentive vectors.

For all x ∈ X , we have πx
i = 1

T if i = f(x) and πx
i = 0 otherwise. Now observe that for any incentive vector π ∈ [0, 1]N ,

there always exists a vector πx ∈ Π such that the regret incurred by πx is at most the regret incurred by π. Hence, we
assume that any algorithm chooses one of the incentive vectors from Π. Let us fix one such algorithm, say Alg and assume
that Alg is deterministic. Now we show that algorithm Alg incurs a regret of Ω(

√
KT log(N)/ log(K)). One can easily

extend the result to randomized algorithms using Yao’s lemma.

Let X̃ := {x ∈ {0, 1}K0 : ∀i ∈ [M ]
∑K0/M

j=1 xdi+j ≤ 1}. We define a mapping p : X̃ × [K] 7→ [0, 1] as follows. First, we
define p(x,K) = 1

4 for any x ∈ X̃ . Next, we define p(x,K) = 1
4 − ε

M · ||x||1 for any x ∈ X̃ . Next for any x ∈ X̃ and
j ∈ [K0], we have p(x, j) = 1

2K0
+ xj · ε

M .

We now describe an input instance Ix, where x ∈ X̃ . In the instance Ix, in each round an agent j arrives with probability
p(x, j). If x, then observe that the expected reward of playing an incentive vector πz under the instance Ix is r(x, z) :=
1
4 · 1

2 +
∑K0

j=1 p(x, j) · 1{zj = 1} · 1
2 = 1

8 + M
4K0

+ ε
2M ·

∑K0

j=1 1{zj = 1, xj = 1}, where z ∈ X . If x ∈ X , then observe
that πx is the optimal incentive vector for the instance Ix and the expected reward is µ∗ := 1

8 +
M
4K0

+ ε
2 . Let I =

⋃
x∈X Ix

be the set of input instances that we analyze our regret on.

At each round t, suppose Alg selects πzt ∈ Π. For the instance Ix with x ∈ X , the cumulative regret after T rounds,
Rx(T ), is defined as:

Rx(T ) = T · µ∗ − EIx [

T∑
t=1

r(x, zt)] =
εT

2
− ε

2M

T∑
t=1

K0∑
j=1

PIx [(zt)j = 1, xj = 1],

where PIx is probability law under the instance Ix

Recall that di = (i − 1) · K0

M for all i ∈ [M ]. For any instance Ix with x ∈ X , the regret can be written as Rx(T ) =∑M
i=1 Rx,i(T ), where

Rx,i(T ) =
εT

2M
− ε

2M

T∑
t=1

K0/M∑
j=1

PIx [(zt)di+j = 1, xdi+j = 1].

Fix an index i ∈ [M ]. Let X (i) = {x ∈ {0, 1}K0 : ∀j ∈ [M ] \ {i}
∑M

s=1 xdj+s = 1,
∑M

s=1 xdi+s = 0}. For any vector
x ∈ X (i), let x(j) denote a vector in X such that x(j)

di+j = 1 and x
(j)
s = x for all s ∈ [K0] \ {di + j}. We claim that for any

x ∈ X (i), there exists a set Sx ⊆
[
K0

M

]
of size at least K0

3M such that for each j ∈ Sx, we have Rx(j),i(T ) ≥ c ·
√

K0

M · T ,
where c is an absolute constant.

Before proving the claim, we first show that if it holds for any index i ∈ [M ], then we have EIx∼Unif(I)[Rx(T )] ≥
c′ ·

√
MK0T = c′ ·

√
(K − 2) · T · log(N−1)

log(K−2) where c′ is an absolute constant. As Rx(T ) =
∑M

i=1 Rx,i(T ), it suffices to
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show that EIx∼Unif(I)[Rx,i(T )] ≥ c′ ·
√

K0

M · T for all i ∈ [M ]. Fix an index i ∈ [M ]. Now we have the following:

EIx′∼Unif(I)[Rx′,i(T )] =
1

(K0/M)M

∑
x∈X (i)

K0/M∑
j=1

Rx(j),i(T )

≥ 1

(K0/M)M

∑
x∈X (i)

∑
j∈Sx

Rx(j),i(T )

≥ c

(K0/M)M

∑
x∈X (i)

∑
j∈Sx

√
K0

M
· T

≥ c

(K0/M)M

∑
x∈X (i)

K0

3M
·
√

K0

M
· T

=
c

(K0/M)M
· (K0/M)M−1 · K0

3M
·
√

K0

M
· T

=
c

3
·
√

K0

M
· T

We now prove the claim for a fixed index i ∈ [M ] and a fixed vector x ∈ X (i), using the chain rule from Lemma A.2 in our
analysis.

For an instance Ix(j) , let fj(a1, . . . , aT ) denote the joint PMF over the sequence of binary decisions by the agent in each
round under the probability distribution PI

x(j)
. The sample space is Ω = {0, 1}T , where 0 indicates that the agent selects

arm N0, and 1 indicates that the agent selects the arm incentivized by Alg. This is a valid sample space, as the agent chooses
either the arm incentivized by Alg or arm N0 in each round. Similarly, for the alternate instance Ix, let f0(a1, . . . , aT )
denote the joint PMF of the binary decisions under the distribution PIx .

First, observe that the instances Ix(j) and Ix differ only at agent di+j. For each ω ∈ Ω, let πz1,ω , πz2,ω , . . . , πzT,ω denote the
sequence of incentive vectors chosen by Alg on ω. Conditioning on the outcomes X1 = ω1, X2 = ω2, . . . , Xt−1 = ωt−1,
we have Xt ∼ Ber(µ̃j) under instance Ix(j) , and Xt ∼ Ber(µ̃0) under instance Ix, where µ̃j − µ̃0 = ε

M · (zt,ω)di+j . Define
Tj =

∑T
t=1(zt)di+j as a random variable, and for each ω ∈ Ω, let Tj,ω =

∑T
t=1(zt,ω)di+j , which is a fixed value. Now we

have the following:

KL(f0, fj) =
∑
ω∈Ω

f0(ω)

(
KL(f0(X1), fj(X1)) +

T∑
t=2

KL(f0(Xt|X−t = ω−t), fj(Xt|X−t = ω−t))

)

≤ c0ε
2

M2

∑
ω∈Ω

f0(ω)

T∑
t=1

(zt,ω)di+j (due to Lemma A.1)

=
c0ε

2

M2

∑
ω∈Ω

f0(ω)Tj,ω

=
c0ε

2

M2
· EIx [Tj ]

where c0 is some absolute constant.

Observe that
∑K0/M

j=1 EIx [Tj ] = T . Therefore, there exists a subset Sx ⊆
[
K0

M

]
of size at least K0

3M such that for each

j ∈ Sx, we have EIx [Tj ] ≤ 3MT
K0

. Fix ε =
√

MK0

25c0T
. Then for each j ∈ Sx, we have KL(f0, fj) ≤ 3c0ε

2T
MK0

= 3
25 .

Fix an index j ∈ Sx, and let Aj denote the event that Tj ≤ 12MT
K0

. By Markov’s inequality, we have PIx(Aj) ≥ 3
4 . Then,

by Pinsker’s inequality, we obtain the following:

PI
x(j)

(Aj) ≥ PIx(Aj)−
√

KL(f0, fj)
2
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≥ 3

4
−
√

3

50

>
1

2

Using the inequality above, we have EI
x(j)

[Tj ] ≤ T · PI
x(j)

(Ac
j) +

12MT
K0

≤ 3T
4 , since K0/M ≥ 48. Now we have the

following:

Rx(j),i(T ) =
εT

2M
− ε

2M

T∑
t=1

K0/M∑
s=1

PI
x(j)

[(zt)di+s = 1, x
(j)
di+s = 1]

=
εT

2M
− ε

2M
EI

x(j)
[

T∑
t=1

zt[di + j]]

=
εT

2M
− ε

2M
EI

x(j)
[Tj ]

≥ εT

2M
− 3εT

8M

=
1

40
·
√

K0T

c0M

Remark: All the calculations and probability expressions in this section are valid for T ≥ poly(K).

D. Linear Bandit based approach for Principal-agent problem with single arm incentive.
We make a natural assumption on any agent’s tie braking rule. If there is a tie among a set of arms I ⊆ [N ] and an arm
i⋆ ∈ I gets chosen by an agent j, then for a tie among a set of arms I ′ ⊆ I such that i⋆ ∈ I ′ the agent j again chooses the
arm i⋆. Towards the end of the section we show a way to circumvent this assumption. For simplicity of presentation, we
also assume that each preference vector has at least two coordinates with different values.

First, we discretize the space of incentive vectors D = {x ∈ [0, 1]N : |supp(x)| ≤ 1} as follows. We initialize an empty
set Π. For each arm i ∈ [N ] and agent j ∈ [K], let πi,j be an incentive vector defined by πi,j

s = 0 for s ̸= i and
πi,j
i = maxk∈[N ] µ

j
k − µj

i . We then add πi,j to Π. For all i ∈ [N ], we define πi,K+1 := (0, 0, . . . , 0), noting that this
incentive vector is already included in Π.

Now, we define ∆ := mini∈[N ] min
j1,j2∈[K]:π

i,j1
i ̸=π

i,j2
i

|πi,j1
i − πi,j2

i | and set εT := min
{

∆
2 ,

1
2T

}
. For each i ∈ [N ] and

j ∈ [K + 1], let π̃i,j be an incentive vector defined by π̃i,j
s = 0 for s ̸= i and π̃i,j

i = πi,j
i + εT . We then add π̃i,j to the set

Π. We now claim that the following holds for any sequence of agents j1, j2, . . . , jT :

max
π∈Π

T∑
t=1

U(π, jt) ≥

(
sup
π∈D

T∑
t=1

U(π, jt)

)
− 1. (3)

Consider π̂ ∈ D such that
∑T

t=1 U(π̂, jt) ≥
(
supπ∈D

∑T
t=1 U(π, jt)

)
− εT . Let î = argmaxi∈[N ] π̂i. If there exists an

index j ∈ [K+1] such that π̂î = πî,j

î
, then the inequality (3) clearly holds. Otherwise, let ĵ = argmax

j∈[K+1]:πî,j

î
<π̂î

πî,j

î
.

Observe that b(π̂, jt) = b(π̃î,ĵ , jt) for all t ∈ [T ]. If π̃î,ĵ

î
≤ π̂î, then

∑T
t=1 U(π̃î,ĵ , jt) ≥

∑T
t=1 U(π̂, jt) ≥(

supπ∈D
∑T

t=1 U(π, jt)
)
− εT . If π̃î,ĵ

î
> π̂î, then U(π̃î,ĵ , jt) ≥ U(π̂, jt) − εT as πî,ĵ

î
< π̂î < π̃î,ĵ

î
= πî,ĵ

î
+ εT .

Hence,
∑T

t=1 U(π̃î,ĵ , jt) ≥
∑T

t=1 U(π̂, jt) − T · εT ≥
(
supπ∈D

∑T
t=1 U(π, jt)

)
− 1. Thus, the inequality (3) holds in

this case as well.

The rest of the proof is identical to the main body. Nevertheless, we include it for completeness. Let 0 denote the incentive
vector (0, 0, . . . , 0). Let us define a mapping h : Π → {0, 1}K . Consider π ∈ Π \ {0}. Let a(π) := argmaxi∈[N ] πi.
For any j ∈ [K], we have (h(π))j = 1 if b(π, j) = a(π) otherwise we have (h(π))j = 0. We now construct a new
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set Π̂ as follows. Consider a vector s ∈ {0, 1}K . Let Πs := {π ∈ Π \ {0} : h(π) = s}. If |Πs| = 1, then add
the incentive vector in Πs to Π̂. If |Πs| > 1, let π̂ = argmaxπ∈Πs

va(π) − πa(π). Observe that for any j ∈ [K], if
sj = 1 then U(π̂, j) = va(π̂) − π̂a(π̂) = maxπ∈Πs

va(π) − πa(π) = maxπ∈Πs
U(π, j). On the other hand if sj = 0, then

b(π̂, j) = b(π, j) and π̂b(π̂,j) = π̂b(π,j) = 0 for any π ∈ Πs. Therefore we have U(π̂, j) = U(π, j) for any π ∈ Πs. We
now add π̂ to Π̂. We also add 0 to Π̂. We have |Π̂| ≤ min{2KN +N, 2K} + 1. Now observe that for any sequence of
agents j1, j2, . . . , jT we have:

max
π∈Π̂

T∑
t=1

U(π, jt) ≥

(
sup
π∈D

T∑
t=1

U(π, jt)

)
− 1 (4)

Hence, it suffices to focus on the set of incentive vectors Π̂ for our regret minimization problem. Now we show a reduction
of this problem to an adversarial linear bandit problem. First we construct a set Ẑ ⊂ RK as follows. For each π ∈ Π̂, we
add zπ to Ẑ where (zπ)j = U(π, j) for all j ∈ [K]. Next we define the reward vector yt ∈ RK . If agent jt has arrived in
round t, we set (yt)j = 1 if j = jt and zero otherwise. Now observe that for any π ∈ Π̂, U(π, jt) = ⟨zπ, yt⟩. Hence, our
pseudo-regret RT is equal to the adversarial linear bandit pseudo-regret:

RT = max
z∈Ẑ

E

[
T∑

t=1

⟨z, yt⟩ −
T∑

t=1

⟨zt, yt⟩

]
.

By using EXP3 for linear bandits, we get a regret upper bound of O
(
min

{√
KT log(KN),K

√
T
})

for our regret
minimization problem.

Now let us consider the case when the natural assumption does not hold. In that case, we instead on the set of incentive
vectors Π for our regret minimization problem. Now we show a reduction of this problem to an adversarial linear bandit
problem. First, we construct a set Z ⊂ RK as follows: for each π ∈ Π, we add zπ to Z , where (zπ)j = U(π, j) for all
j ∈ [K]. Next, we define the reward vector yt ∈ RK . If agent jt arrives in round t, we set (yt)j = 1 if j = jt and (yt)j = 0
otherwise. Observe that for any π ∈ Π, U(π, jt) = ⟨zπ, yt⟩. Hence, our pseudo-regret RT is equal to the adversarial linear
bandit pseudo-regret:

RT = max
z∈Z

[
T∑

t=1

⟨z, yt⟩ −
T∑

t=1

⟨zt, yt⟩

]
.

Using the EXP3 algorithm for linear bandits, we obtain a regret upper bound of O
√
KT log(N) for our regret minimization

problem as |Z| = O(KN). However, this upper bound can be further improved as follows. Let R = {ej}j∈[K] be the set
of all possible reward vectors. Define Z0 as the smallest subset of Z such that

max
z∈Z

min
z′∈Z0

max
y∈R

|⟨z − z′, y⟩| ≤ 1

T
.

By the above inequality, it suffices to focus on Z0 for our regret minimization problem. It can be shown that |Z0| ≤
min{2KN +N + 1, (6KT )K}. Using the EXP3 algorithm for linear bandits on the reduced arm set Z0, we achieve a
regret upper bound of O

(√
KT log(N),min{K

√
T log(KT )}

)
.

E. Smooth Demand with Unknown Agent Types
E.1. Proof of Theorem 4.1

Proof. We consider the instance were the principal reward of first N − 1 products is equal to 1, and the last product is 0.
We partition [0, 1

2 ] incentive for each arm by ⌊ϵ⌋ equal parts, and we propose a class of agent types {Ai,j}i∈[N−1],j∈[K],
were given incentive π, the agent’s selection probabilities is defined by Eq. 1-2. The bonus function is defined as
B(x) := L−1

4 min(x, ϵ− x). Consequently, the expected principal reward when agent type Ai,j arrives and incentive π is
offered with nonzero element to arm i would be

E[r(π)] =
N−1∑
l=1

(1− πl) Pr[a(π, (i, j))] =


N−1
16N + (1− πi)B(πi − jϵ) if πi ∈ [jϵ, (j + 1)ϵ]
N−1
16N if π ∈ [0, 1

2 ]
N

≤ N−1
16N otherwise.
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Lemma E.1. For all agent types (i, j), Assumption 1.1 holds.

For all π, π′ where ∥π − π′∥∞ = ∆, let l(π) and l(π′) be the indices were incentive is nonzero respectively (if π = 0, then
l(π) = N + 1)

N∑
l=1

∣∣Pr[a(π, (i, j))) = l]− Pr[a(π′, (i, j)) = l]
∣∣ = ∣∣Pr[a(π, (i, j))) = l(π)]− Pr[a(π′, (i, j)) = l(π)]

∣∣
+
∣∣Pr[a(π, (i, j))) = l(π′)]− Pr[a(π′, (i, j)) = l(π′)]

∣∣
+
∣∣Pr[a(π, (i, j))) = N ]− Pr[a(π′, (i, j)) = N ]

∣∣
= Pr[a(π, (i, j))) = l(π)]− 1

16N

+ Pr[a(π′, (i, j))) = l(π′)]− 1

16N

+
∣∣Pr[a(π, (i, j))) = l(π)]− Pr[a(π′, (i, j)) = l(π′)]

∣∣
≤ 4max

x≤ 1
2

∣∣ d
dx

1

16N(1− x)

∣∣∆+ 4B(min(ϵ,∆))

(Mean value theorem)

≤ ∆+ (L− 1)∆ = L∆

Therefore, if an algorithm can’t play the good interval incentive of each agent type consistently, the expected regret would
be 1

8 (L − 1)ϵT , setting ϵ = (L − 1)−2/3N1/3T−1/3, the regret would be 1
8 (L − 1)1/3N1/3T 2/3. For i ∈ [N ], j ∈ ⌈ϵ⌉,

let Di,j = {π ∈ [0, 1]N |πi ∈
[
jϵ, (j + 1)ϵ

)
, πi′ = 0 ∀i′ ̸= i}, then π∗

i,j ∈ Di,j , for all (i, j) ∈ J . So for any
algorithm Alg on the problem instance (i, j) ∈ J , we reduce it to an algorithm Alg’ in stochastic MAB setting instance with
A = {(i′, j′)|i′ ∈ [N ], j′ ∈ ⌈ϵ−1⌉} as the arm set. If algorithm Alg offers incentive π ∈ Di′,j′ to agent, and receives reward
r(π); then Alg’ selects arm (i′, j′) and receives reward maxπ∈D(i′,j′) E[r(π)] + ηt, where ηt ∼ N (0, 1). So the expected
regret of algorithm Alg is lower-bounded by the expected regret of Alg’. For instance (i, j) ∈ J , the expected reward of the
reduced MAB problem is bounded by

r′(i,j)(i
′, j′) =

{
≥ N−1

16N + (L−1)ϵ
16 if (i′, j′) = (i, j)

≤ N−1
16N otherwise.

Using instance-dependent lower bound for MAB with Gaussian noise ((Lattimore & Szepesvári, 2020), Section 16.2), we
have

inf
Alg

sup
j∈J

RT ≥ inf
Alg’

sup
j∈J

R′
T = Ω(

∑
∆−1

(i,j)) = Ω((L− 1)1/3N1/3T 1/3)

E.2. Equivalence to greedy model with Gaussian noise

Lemma E.2. If for an agent of type j arriving at time t, their preference vector is µj + ηt, where µj is the expected
preference vector if agents of type j, and ηt ∼ N (0, I) is independent noise of the agent, then for Greedy choice model
Assumption 1.1 holds.

Proof.

Pr[a(πt, jt) = i∗] = Pr[i∗ ∈ arg max
i∈[N ]

{
µjt
i + πt,i + ηti

}
]

= Pr[ηti∗ + ci∗ ≥ max
i ̸=i∗∈[N ]

ηti + ci] (define ci := µjt
i + πt, i)
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=

∫
Pr[ηti∗ + ci∗ = y] Pr[ max

i ̸=i∗∈[N ]
ηti + ci ≤ y]dy

=

∫
ϕ(y − ci∗)

( N∏
i̸=i∗

Φ(y − ci)
)
dy

where ϕ and Φ are PDF and CDF of standard normal distribution respectively. Since Pr[a(πt, jt) = i∗] is everywhere
differentiable, and ∇π Pr[a(πt, jt) = i∗] is bounded over π ∈ [0, 1]N , using mean-value theorem, it’s also Lipschitz.
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