

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PAY LESS ATTENTION TO FUNCTION WORDS FOR FREE ROBUSTNESS OF VISION-LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

To address the trade-off between robustness and performance for robust VLM, we observe that function words could incur vulnerability of VLMs against cross-modal adversarial attacks, and propose Function-word De-Attention (FDA) accordingly to mitigate the impact of function words. Similar to differential amplifiers, our FDA calculates the original and the function-word cross-attention within attention heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Comprehensive experiments include 2 SOTA baselines under 6 different attacks on 2 downstream tasks, 3 datasets, and 3 models. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models on retrieval, and a 90% ASR drop with a 0.3% performance gain on visual grounding. We demonstrate the scalability, generalization, and zero-shot performance of FDA experimentally, as well as in-depth ablation studies and analysis. *Code will be made publicly available.*

1 INTRODUCTION

Building robust vision-language models (VLMs) has gathered profound academic focus because of the necessity of defending VLMs against various adversarial attacks. To this end, many works (Schlarmann et al., 2024; Mao et al., 2022) have been proposed to enhance model robustness, purify perturbations, or detect potential adversaries. Among them, adversarial training (AT) shows superior performance in enhancing the robustness of VLMs. However, AT-based methods incur significant performance drops compared to vanilla models and high computational costs.

Table 1: Qualitative validation for removing different words when testing on clean and adversarial examples on Flickr30k. Adversarial examples use AutoAttack, and Δ_{ASR} is presented using the average results for all ϵ (i.e., 2, 4). **Removing function words can lower ASR without significantly harming clean performance.**

Removed	Clean (R@1) (\uparrow)		Avg ASR Drop
Words	T2IR	I2TR	Δ_{ASR} (\uparrow)
N/A	95.90	85.60	-
NOUN	58.90	32.83	↑ 25.27
ADJ	91.60	78.36	↓ 0.42
VERB	93.80	79.36	↓ 0.38
FUNC	94.30	81.04	↑ 0.54

tern before attacks. We also provide a visual demonstration using Grad-CAM(Selvaraju et al., 2017) from a successful untargeted attack to demonstrate the impact of function words. As shown in Fig.1, removing all function words greatly mitigates the distractions from adversarial perturbations. Lastly, to qualitatively validate the impact of function words in adversarial examples, we record the performance variation after removing nouns, adjectives, verbs, and function words on both clean

To resolve the trade-off mentioned above, we propose to enhance VLM robustness by further refining vision-language alignment (VLA). Rather than perturbing images during finetuning, we break texts into finer grains: *content words*, i.e., nouns/verbs, and *function words*, i.e., am/is/are. Specifically, we hypothesize that function words could incur vulnerability of VLMs against cross-modal adversarial attacks because of their ubiquity and lack of specificity. To verify our hypothesis, we record the white-box similarity between function-/content-words and images during targeted (image) attacks¹, and find that **80.3%** of images show higher similarity scores towards the function words than content words after attacks, while **0%** of the images exhibit this pat-

¹We tested on the 1k testset of Flickr30k retrieval dataset, using PGD attack with $\epsilon = 4/255$.

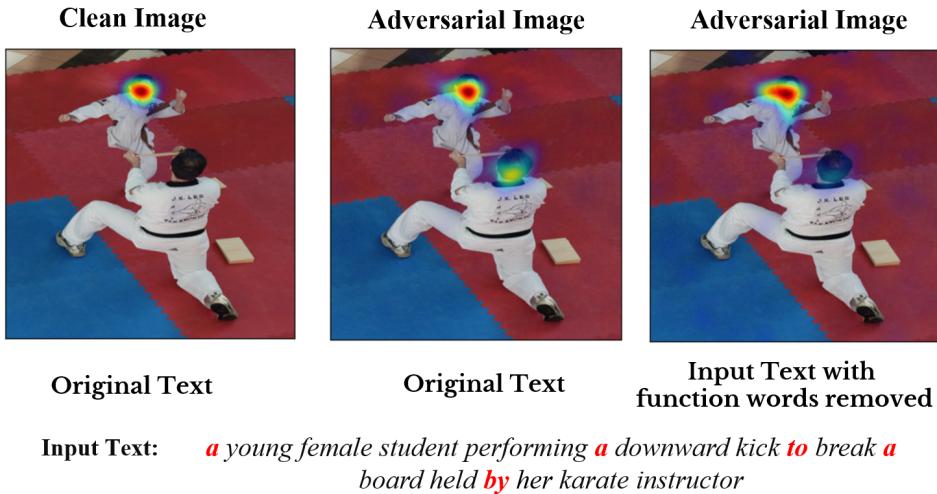


Figure 1: Grad-CAM of attention maps of VLM under white-box untargeted attacks through perturbed images. The texts are given at the bottom of the figure, with function words highlighted. **Left:** The VLM correctly recognizes the female student on the clean image given the token *her*. **Mid:** The VLM is distracted by the adversarial perturbation and partially looks at the male coach. **Right:** The distraction is mitigated by simply applying masks to remove all function words: the VLM successfully ‘looks back at’ the female student.

and adversarial examples for Image-to-Text/Text-to-Image Retrieval (T2IR/I2TR), as presented in Table.1. Results show that function words are the only words that *reduce* ASR without causing a significant performance drop. These results confirm our hypothesis on function words, implying that *proper removal of function words could potentially defend VLMs against such attacks*.

Consequently, inspired by the setting of differential transformers (Ye et al., 2024) and differential amplifiers, we propose Function-word De-Attention (FDA) as the first method to build robust VLMs by refining vision-language alignment. Specifically, our FDA works by deploying a parallel pipeline on multi-attention heads within fusion-encoders, calculating the cross-attention between function words and the input images, i.e., distractions. We further softmax along the dimensions of visual and textual tokens to highlight the most misleading textual/visual tokens. Finally, we subtract the above distractions from the original attention for the output. To validate the effectiveness of FDA, we conduct comprehensive experiments on two SOTA baselines, 3 models, 2 tasks, 3 datasets, and 6 attacks. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models for retrieval, and a 90% ASR drop with *better* clean performance on grounding. Our FDA is also verified to enhance the generalization of VLMs for a zero-shot performance boost.

Overall, our contributions are summarized as follows:

- We identify that function words are distractions for vision-language alignment and subsequently propose Function-word De-Attentioning (FDA) to pay less attention to function words for more aligned vision-language models with free robustness.
- We conduct comprehensive experiments on two SOTA baselines, 3 models, 2 tasks, and 3 datasets, under 6 attacks, and validate the effectiveness of FDA in enhancing robustness while preserving performance.
- We provide in-depth ablation studies to show the insensitivity of our FDA towards hyper-parameters, generalization across backbones, and enhancement on zero-shot performance.

2 RELATED WORK

Adversarial attacks on vision-language models. In light of the advancement in VLMs, adversarial attacks on VLMs have also emerged to fool VLMs into incorrect or misleading outputs. Recent

108 studies on white-box attacks (Croce & Hein, 2020) have exhibited impressive results. Besides,
 109 black-box attacks Zhang et al. (2022); Lu et al. (2023); Yin et al. (2023); He et al. (2023); Tian
 110 et al. (2025) have also demonstrated significant effectiveness against pre-trained VLMs through
 111 transferable cross-modal attacks.

112 **Adversarial Defense on vision-language models** For defenses, adversarial training (AT) (Rice
 113 et al., 2020; Zhang et al., 2019; Tian et al., 2023) has exhibited significant effectiveness in de-
 114 fending models against various adversarial attacks against classification, retrieval, etc. Several AT-
 115 based methods (Schlarmann et al., 2024; Mao et al., 2022) have demonstrated impressive robustness
 116 boost on CLIP models. However, AT is notoriously well-known for downgrading performance sig-
 117 nificantly due to the inclusion of adversarial examples into training. Although Schlarmann et al.
 118 (2024) proposed FARE to use the visual embeddings of vanilla models as supervision to balance the
 119 trade-off between clean performance and robustness, the performance drops remain considerably
 120 noticeable. Besides, the high computational costs also hinder broader applications in practice.

122 3 METHODOLOGY

124 In this section, we first provide a brief preliminary for the original calculation pipeline of cross-
 125 attention and introduce our Function-words De-Attention (FDA).

127 3.1 PRELIMINARY

129 For a given textual/visual encoder \mathcal{T}, \mathcal{V} , input images I and texts T are fed into respective encoders
 130 with corresponding attention masks $\mathcal{M}_T, \mathcal{M}_I$ for the embeddings $\mathcal{F}_T, \mathcal{F}_V \in \mathbb{R}^{d_k}$:

$$131 \quad \mathcal{F}_T = \mathcal{T}(T, \mathcal{M}_T), \quad \mathcal{F}_V = \mathcal{V}(I, \mathcal{M}_I) \quad (1)$$

133 Then, cross-attention scores are calculated by inputting these hidden states into the fusion encoder:

$$135 \quad \text{Att}^{L,H} = \text{softmax} \left(\frac{Q(\mathcal{F}_T)K(\mathcal{F}_V)}{\sqrt{d_k}}, \text{dim} = -1 \right) \cdot V(\mathcal{F}_V) \quad (2)$$

137 where $Q/K/V$ is the query/key/value layers, and L, H is the index of layers and attention heads.

139 3.2 FUNCTION-WORD DE-ATTENTION (FDA)

141 Built upon our previous observation, we hypothesize that function words are potential distractions in
 142 vision-language alignment. To remove such distractions, we propose Function-word De-Attention
 143 (FDA): we add a parallel pipeline upon the existing cross-attention calculation to specifically acquire
 144 the cross-attention between function words and the input images, namely the distraction, and then
 145 subtract them from the original attention. An illustration of our FDA is given in Fig.2. We first
 146 parallelly extract the features of all function words (denoted as T_f) within the input texts by masking
 147 all other tokens, excluding [CLS] and [SEP]:

$$148 \quad \mathcal{F}_{T_f} = \mathcal{T}(T, \mathcal{M}_{T_f}), \forall T_f \in \mathcal{D} \quad (3)$$

150 where M_{T_f} is the function word mask, and \mathcal{D} is the function word dictionary. Here, we use a
 151 dictionary shortlisted from the stopwords list in (Li et al., 2020). Subsequently, we adopt a parallel
 152 pipeline to calculate function words' attention scores:

$$154 \quad S_{T_f}^{L,H} = \frac{Q(\mathcal{F}_{T_f})K(\mathcal{F}_V)^T}{\sqrt{d_k}} \quad (4)$$

157 With the function words attention scores, we then conduct softmax along the dimensions of visual
 158 tokens and textual tokens, respectively. In this way, we highlight the visual tokens with false activa-
 159 tion under token words or the most misleading tokens with the largest visual activation, as follows:

$$161 \quad \tilde{\text{Att}}_t^{L,H} = \text{softmax}(S_{T_f}^{L,H}, \text{dim} = -1)V, \quad \tilde{\text{Att}}_v^{L,H} = \text{softmax}(S_{T_f}^{L,H}, \text{dim} = -2)V \quad (5)$$

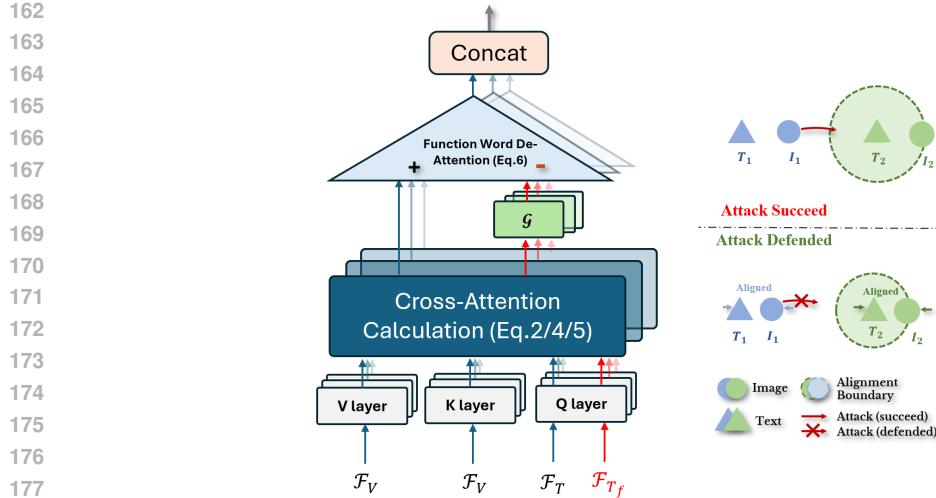


Figure 2: **Left:** An illustration of our Function-word De-Attention (FDA) method. On the existing process of attention calculation, which uses \mathcal{F}_V and \mathcal{F}_T , we add a parallel pipeline to calculate the attentions between function words \mathcal{F}_{T_f} and the images \mathcal{F}_V . Afterwards, the function-attention passes a control gate \mathcal{G} before entering the FDA module (triangle) differentially to subtract distractions as presented in Eq.6. **Right:** We speculate that attacks can easily cross the boundary for misalignments for less aligned models (top), and by removing function-word distractions, models can learn a robust cross-modal embedding (bottom), preventing misalignments.

Afterwards, we subtract both distractions from Att individually and take the minimum value as the final attention scores, with \mathcal{G} being a control gate for automatically adjusting the subtraction.

$$\hat{Att}^{L,H} = \min(Att^{L,H} - \mathcal{G}(\tilde{Att}_t^{L,H}), Att^{L,H} - \mathcal{G}(\tilde{Att}_v^{L,H})) \quad (6)$$

Finally, after complete calculation of FDA, denoted as $FDA(\cdot)$, we concatenate the attention scores from all attention heads for outputs:

$$\hat{Att}^{L,H} = \text{Concat}\left(FDA\left(Q(\mathcal{F}_T, \mathcal{F}_{T_f}), K(\mathcal{F}_V), V(\mathcal{F}_V)\right); \dots\right) \quad (7)$$

FDA can be flexibly implemented on any number of fusion layers/attention heads, as each may specialize differently (Kang et al., 2025). A general intuition is to remove these distractions in the early layers instead of the later ones to avoid possible ‘absorption’ of distractions, but not so exquisitely upfront that it may undermine the contextual integrity of the original inputs. We provide a detailed ablation and analysis in Sec.4.3.

4 EXPERIMENTS

Vision-Language Tasks&Datasets. To thoroughly evaluate the performance and robustness of FDA, we incorporate several downstream tasks, including Text-to-Image/Image-to-Text Retrieval (T2IR/I2TR) and Visual Grounding (VG). For datasets, we use the Flickr30k (Plummer et al., 2015) and MSCOCO (Lin et al., 2014) dataset for retrieval, and RefCOCO+ (Yu et al., 2016) for VG.

Models. For T2IR/I2TR, we test our method on the ALBEF (Li et al., 2021), TCL (Yang et al., 2022), and BLIP (Li et al., 2022), using 14M/14M/124M pretrained images, respectively. All models use the ViT-B/32 (Dosovitskiy et al., 2021) as visual encoders and BERT (Devlin et al., 2019) as textual encoders. Specifically, TCL shares the same backbones as ALBEF but uses a different training strategy (triplet contrastive learning), while BLIP uses a larger pre-trained encoder with an extra decoder. CLIP (Radford et al., 2021) is not included due to the absence of fusion encoders.

Baselines. As for baselines, we adopt the two SOTA methods for robust CLIP, i.e., TeCoA (Mao et al., 2022) and FARE (Schlarmann et al., 2024), on all the models as adversarial fine-tuning baselines. To account for the robustness and accuracy trade-off, we lower the perturbation strength of

each method to ensure similar clean performance as our FDA, such that TeCoA and FARE serve as a reference to compare robustness. Specifically, we use $\epsilon = 1$ for TeCoA and FARE. For Text-to-Image/Image-to-Text Retrieval, we adversarially fine-tune using TeCoA and FARE for 4/1/1 epochs for ALBEF/TCL/BLIP. For Visual Grounding, we adversarially train models with both TeCoA and FARE for only 1 epoch, as both methods incur significant performance drops on ALBEFs.

Attacks. To thoroughly evaluate the robustness of our models, we test all models with three adversarial attacks and use the average of all attacks for robustness evaluations. Specifically, we use Projected Gradient Descent (Madry et al., 2017) and AutoAttack (Croce & Hein, 2020), denoted as PGD and APGD. As for the adaptive attack, we apply function word masks to the input texts for APGD to evade our FDA, denoted Masked APGD (MAPGD). **All attacks are fully white-box**, i.e., the attackers are aware of and can access the extra FDA operations. For each attack, we follow the settings in Mao et al. (2022) and Schlarmann et al. (2024) to attack images with perturbation bounded by $l_\infty = \frac{2}{255}, \frac{4}{255}$. Specifically, for targeted attacks in T2IR/I2TR, we apply a circular shift targeted to ensure non-overlapping unmatched targets. For targeted attacks in VG, we follow the settings of Gao et al. (2024) and do not apply a patched attack.

Metrics. We use the common metric, Attack Success Rate (ASR), to indicate the efficacy of all adversarial attacks. For an ASR on a given model and the baseline model, denoted as ASR_M/ASR_B , respectively, we calculate the relative ASR change in percentage using $\Delta_{ASR} = \frac{ASR_B - ASR_M}{ASR_B} \times 100\%$. Consequently, a positive/larger Δ_{ASR} indicates improved/stronger robustness, while a negative/lower Δ_{ASR} implies decreased/weaker robustness, with 0% (100%) meaning no robustness gain (completely defended). Details are given in the Sec.B of the Appendix.

Implementation Details. Since our FDA parallelly computes distracted attention for subtraction, finetuning models with FDA is identical to downstream finetuning without extra modifications or parameters. Following the settings in Li et al. (2021), we finetune the model by 10 epochs and use the last-epoch model for all tasks/models. For the layer index, we use L^{0-1} and H^{0-5} for all models/tasks/datasets, with corresponding ablation studies on the selection of the layer and attention head indices for all models and tasks in Sec.4.3.

4.1 MAIN RESULTS

In this section, we compare the robustness of FDA and other baselines on T2IR/I2TR and VG tasks.

T2IR/I2TR. Results of T2IR/I2TR on ALBEF, TCL, and BLIP for all methods are given in Table.2. Overall on Flickr, our FDA consistently exhibits the **best robustness with the best clean performance on all models over all other baselines**, yielding a 22.26/14.69%, 14.29/13.55%, and 51.60/56.36% average ASR drop over all 3 attacks on ALBEF/TCL/BLIP for $\epsilon = 2/4$, with a negligible 0.30/0.10%, 0.50/0.22%, and 0.70/46% performance drops in R@1 for T2IR/I2TR on each model, respectively. On MSCOCO, similar patterns exist as our FDA boosts the ASR drop by 9/14% for $\epsilon = 2/4$ with a 0.1% clean performance boost.

i. Attack-wise, on Flickr, our FDA exhibits the best defense against PGD and MAPGD in 22 out of 24 results, leading TeCoA/FARE by 60/65% on the BLIP model, demonstrating the effectiveness of FDA in enhancing robustness against various attacks. For the strongest adaptive attack, MAPGD, our FDA maintains its lead over TeCoA and FARE on ALBEF and BLIP, with an average lead by over 10%. Although our FDA shows more vulnerability against APGD on the TCL model, it retains the best comprehensive robustness of the other two baselines, yielding a 10-20% lead for $\epsilon = 2/4$. It is noticeable that TeCoA/FARE becomes ineffective for all attacks with $\epsilon = 4$, while our FDA retains its effectiveness facing stronger attacks. Similar trends also exist on MSCOCO.

ii. Performance-wise, all baseline methods suffered from a performance drop by an average 4/3/9% on ALBEF/TCL/BLIP. Nevertheless, our FDA only causes minor or little drops of less than 1% for all models, yielding a lead of TeCoA and FARE by approximately 4%, 3%, and 7% on average, demonstrating the feasibility of paying less attention to function words for free robustness.

iii. Scalability-wise, we find that the effectiveness of FDA benefits significantly as the model scales: on ALBEF/TCL, which uses 14M pre-trained images, FDA enhances robustness of each model by roughly 15%; while on BLIP, which uses 124M pre-trained images, FDA achieves an impressive 54% overall increase in Δ_{ASR} . We attribute the drastic enhancement to the capability of the backbone model, which enables the encoders to capture visual clues better.

270
271 Table 2: Attack success rate (ASR) of PGD/APGD/MAPGD (masked APGD) against for *Text-to-Image/Image-to-Text Retrieval* (T2IR/I2TR) on Flickr30k and COCO. Results are presented in
272 percentage (%). \uparrow/\downarrow indicates increased/decreased Δ_{ASR} (higher values preferred). \dagger indicates
273 higher performance than clean models. (Full results are given in Sec.C of the Appendix.) **Our FDA**
274 **consistently shows the best performance and overall robustness on ALL models.**
275

276	Dataset	VLM	l_∞	Defense	Text-to-Image Retrieval				Image-to-Text Retrieval				ASR drop
					Clean (R@1)		ASR (\downarrow)		Clean (R@1)		ASR (\downarrow)		
					PGD	APGD	MAPGD	PGD	APGD	MAPGD	PGD	APGD	MAPGD
277	Flickr	ALBEF	2/255	No Defense	95.90	3.38	14.68	65.88	85.60	0.71	14.98	58.85	-
				TeCoA	91.20	2.56	19.39	73.12	81.44	0.55	17.45	61.30	\downarrow 3.02
				FARE	91.10	2.46	17.29	70.15	81.48	0.55	16.55	65.90	\uparrow 5.36
				FDA	95.60	3.37	12.44	58.66	85.50	0.35	12.55	51.35	\uparrow 22.26
			4/255	No Defense	95.90	8.72	16.09	80.92	85.60	7.20	15.89	77.14	-
				TeCoA	91.20	9.13	19.34	85.48	81.44	4.60	18.45	79.60	\downarrow 2.15
				FARE	91.10	9.27	18.60	86.25	81.48	5.20	18.35	80.60	\downarrow 2.48
		TCL	2/255	No Defense	95.60	7.90	13.70	75.80	85.50	4.90	13.70	71.00	\uparrow 14.69
				TeCoA	92.10	11.08	66.31	59.11	80.40	4.10	70.80	46.85	\uparrow 2.78
				FARE	91.70	11.72	67.47	60.98	78.22	4.60	61.25	47.85	\uparrow 1.09
			4/255	FDA	94.40	8.52	48.38	68.48	83.82	3.30	44.50	57.50	\uparrow 14.29
				No Defense	94.90	37.66	81.11	81.63	84.02	29.72	78.36	73.10	-
				TeCoA	92.10	44.29	80.62	80.08	80.40	35.40	76.60	67.95	\downarrow 4.16
		COCO	2/255	FARE	91.70	46.21	81.03	79.64	78.22	38.05	76.95	67.35	\downarrow 6.42
				FDA	94.40	30.36	58.64	86.24	83.82	24.25	56.50	77.80	\uparrow 13.55
				No Defense	97.20	25.10	63.26	50.19	87.30	11.83	60.08	44.35	-
			4/255	TeCoA	90.30	19.28	59.38	48.67	78.04	8.85	47.80	37.15	\uparrow 15.70
				FARE	89.70	20.24	66.53	54.92	77.72	10.00	58.00	46.65	\uparrow 3.09
				FDA	96.50	7.66	18.96	40.98	86.84	5.50	13.75	35.00	\uparrow 51.60
		ALBEF	2/255	No Defense	97.20	61.18	86.39	71.27	87.30	67.00	86.08	71.60	-
				TeCoA	90.30	62.39	88.85	75.69	78.04	62.35	87.35	72.30	\downarrow 1.09
				FARE	89.70	66.29	92.35	80.49	77.72	67.30	90.50	82.50	\downarrow 7.04
			4/255	FDA	96.50	15.86	28.37	60.64	86.84	14.45	16.30	55.50	\uparrow 56.36
				No Defense	77.60	0.95	11.01	30.47	60.70	0.35	8.86	19.40	-
				TeCoA	68.04	0.72	18.56	34.23	53.07	0.15	13.05	18.89	\uparrow 2.87
		COCO	2/255	FARE	69.28	0.26	22.68	32.71	53.58	0.02	14.59	16.76	\uparrow 0.53
				FDA	77.70 \dagger	0.84	9.65	27.60	60.63	0.28	8.03	18.02	\uparrow 9.28
				No Defense	77.60	4.71	14.48	51.20	60.70	2.41	12.18	36.17	-
			4/255	TeCoA	68.04	1.57	25.69	59.90	53.07	0.36	20.57	40.37	\downarrow 3.25
				FARE	69.28	1.40	32.34	63.45	53.58	0.35	24.35	39.61	\downarrow 16.08
				FDA	77.70 \dagger	3.82	11.87	44.92	60.63	2.05	10.57	32.83	\uparrow 14.43

303
304 Table 3: Attack success rate (ASR) of PGD/APGD/MAPGD (masked APGD) against for **Vi-**
305 **sual Grounding** (VG) on RefCOCO+. Results are presented in percentage (%). \uparrow/\downarrow indicates
306 increased/decreased Δ_{ASR} (higher values preferred). \dagger indicates higher performance than clean
307 models. (Full results are given in Sec.C of the Appendix.) **Our FDA consistently shows the best**
308 **performance and overall robustness on ALL models.**

308	l_∞	Defense	Clean (Acc)			ASR on Test A Split (\downarrow)			ASR on Test B Split (\downarrow)			Avg ASR drop
			Val_d	Test A	Test B	PGD	APGD	MAPGD	PGD	APGD	MAPGD	
309	2/255	No Defense	58.50	65.90	46.30	6.70	11.16	11.16	6.07	7.08	7.42	-
		TeCoA	57.20	64.70	45.00	6.81	7.72	8.01	3.39	6.28	6.10	\uparrow 21.21
		FARE	56.40	64.20	44.70	6.13	10.42	9.96	4.54	6.72	6.21	\uparrow 12.08
		FDA	58.10	66.80 \dagger	46.10	1.36	2.41	1.80	0.00	0.00	0.00	\uparrow 93.16
310	4/255	No Defense	58.50	65.90	46.30	7.89	11.16	11.75	4.39	8.06	8.06	-
		TeCoA	57.20	64.70	45.00	6.57	8.17	8.46	3.56	6.10	6.44	\uparrow 21.63
		FARE	56.40	64.20	44.70	6.74	9.66	10.27	4.03	7.06	6.55	\uparrow 13.28
		FDA	58.10	66.80 \dagger	46.10	1.50	2.10	0.34	0.00	0.00	0.00	\uparrow 91.50

311 **Grounding.** Similar patterns persist for VG as shown in Table.3. Our FDA achieves almost
312 complete defense for all attacks, yielding an over 90% ASR drop while **performing better on clean**
313 **examples** than the vanilla model. Specifically, FDA shows 93.16/91.50% ASR drop for $\epsilon = 2/4$.
314 While TeCoA and FARE show comparative clean performance, they only achieve 21.21/21.63% and
315 12.08/13.28% performance drop, respectively, with an over 1% drop on clean examples. These re-
316 sults confirm the efficacy of our FDA in enhancing robustness for similar/better clean performance.

324
 325 Table 4: Robustness evaluations on ALBEF using FDA as a plug-and-play tool with TeCoA and
 326 FARE against targeted and untargeted attacks for Text-to-Image/Image-to-Text Retrieval. Results
 327 are averaged over T2IR and I2TR. Full results are provided in Sec.D of the Appendix. **FDA consistently**
 328 **boosts clean performance and/or robustness against all attacks.**

329 VLM	Defense	Clean (R@1)		Average ASR ^{2/255 (↓)}			Average ASR ^{4/255 (↓)}			Avg ASR drop
		T2IR	I2TR	PGD	APGD	MAPGD	PGD	APGD	MAPGD	
330 ALBEF	No Defense	95.90	85.60	72.67	68.13	63.19	94.71	83.81	81.75	-
	TeCoA	92.30	81.40	75.84	64.09	61.65	97.49	81.41	82.69	↑ 0.47
	TeCoA + FDA	92.50	81.86	75.52	63.22	60.44	97.57	80.84	82.01	↑ 1.31
	FARE	91.20	80.76	69.87	48.18	44.00	96.43	75.79	75.79	↑ 13.09
	FARE + FDA	91.40	80.80	70.70	47.95	44.54	96.42	74.84	73.57	↑ 13.46
335 BLIP	No Defense	97.20	87.30	78.17	77.08	67.65	99.80	94.01	89.82	-
	TeCoA	81.50	68.00	48.01	41.23	38.16	95.37	75.41	72.39	↑ 28.23
	TeCoA + FDA	80.40	67.78	43.80	38.20	35.63	94.26	72.20	69.67	↑ 32.18
	FARE	89.70	77.72	47.51	53.62	51.45	90.37	78.71	77.01	↑ 22.36
	FARE + FDA	89.80	77.72	45.07	49.54	46.97	89.96	76.11	74.15	↑ 25.91

340
 341 Table 5: Robustness evaluations of FDA as a plug-and-play tool with TeCoA and FARE against
 342 targeted and untargeted attacks for Visual Grounding. Results are averaged over Test-A and Test-B.
 343 Full results are provided in Sec.D of the Appendix. **FDA consistently boosts clean performance**
 344 **and robustness against all attacks.**

345 Defense	Clean (Acc)			Average ASR ^{2/255 (↓)}			Average ASR ^{4/255 (↓)}			Avg ASR drop
	Val.d	Test A	Test B	PGD	APGD	MAPGD	PGD	APGD	MAPGD	
No Defense	58.50	65.90	46.30	27.46	20.06	19.82	32.33	23.48	23.31	-
TeCoA	57.20	64.70	45.00	9.67	12.68	12.80	9.64	16.22	16.43	↑ 39.68
TeCoA + FDA	57.00	64.90	45.30	10.37	12.85	12.01	9.84	15.22	15.67	↑ 40.30
FARE	56.40	64.20	44.70	10.56	14.45	14.49	10.79	16.70	16.97	↑ 34.69
FARE + FDA	56.10	63.70	44.70	11.25	13.02	13.05	10.46	15.20	15.50	↑ 39.35

352 353 4.2 UNTARGETED ATTACKS

355
 356 Apart from targeted attacks, we further evaluate the robustness against untargeted attacks. Thus,
 357 we retrained all models using TeCoA/FARE and their combination with our FDA to validate the
 358 effectiveness of FDA in defending against untargeted attacks.

359 For T2IR/I2TR, as presented in Table.4. Overall, we find FDA consistently boosts the robustness
 360 of TeCoA and FARE for all untargeted attacks on all models. Specifically, the scalability of FDA
 361 also applies after combining with TeCoA/FARE: both methods benefit more from FDA on the larger
 362 backbone of BLIP, yielding a 4/3% robustness boost. Furthermore, we notice that FDA also boosts
 363 the clean performance of both methods on ALBEF considerably, besides the improvement in ro-
 364 bustness. For VG, we observe identical patterns: implementing FDA yields a solid robustness gain.
 365 For example, FARE experiences a significant robustness enhancement regarding untargeted attacks
 366 by 5%. In sum, our FDA compatibility works with both TeCoA and FARE to further **boost their**
 367 **robustness against untargeted attacks.**

368 369 4.3 ABLATION STUDY

370 We now provide comprehensive studies on untargeted attacks, hyperparameters of FDA: encoder,
 371 dictionary, layer/head, and zero-shot performance. (See full results in Sec.E of the Appendix.)

373 374 4.3.1 DE-ATTENTION v.s. MASKING

375 We start by providing comparisons of our FDA and fine-tuning models by directly masking function
 376 words. We further include content words and nouns for thorough evaluation. Results are presented
 377 in Table.6. Note: *We only test on PGD and APGD since MAPGD is not applicable for nouns and*
content words.

378
 379
 380
 381
 382
 383
 384
Table 6: Comparison bewteen fine-tuning AL-
 385 **BEF by directly removing content words (CONT),**
 386 **nouns (NOUN), function words (FUNC) and**
 387 **FDA. The dataset is Flickr30k retrieval, and**
 388 **Δ_{ASR} is presented using the average results for**
 389 **PGD and APGD among all. **De-Attention shows****
 390 ****signifcian advantages over directly masking****
 391 ****function words and all other words.****

Maksd	Clean (R@1) (\uparrow)		Avg ASR Drop
Words	T2IR	I2TR	Δ_{ASR} (\uparrow)
N/A	95.90	85.60	-
CONT	21.50	11.10	-
NOUN	68.60	44.62	-
FUNC	94.00	80.86	\uparrow 1.56
FDA	95.60	85.50	\uparrow 23.07

392
 393
 394 We further compare our FDA and other variants, i.e., Adjective DA (ADA) and Determiner DA
 395 (DDA). Specifically, we choose determiners (DET) and adjectives because DET indicates using a
 396 small subset (i.e., a/an/the) of function words, while ADJ adopts a completely different set of words.
 397 Results are presented in Table.7.

398
 399 **Table 7: Comparison between fine-tuning AL-**
 400 **BEF with FDA, Determiner DA (DDA), and Ad-**
 401 **jective DA (ADA). Δ_{ASR} is presented using**
 402 **the average results for PGD and APGD among**
 403 **all. **De-Attention shows significant advantages****
 404 ****over directly masking function words and all****
 405 ****other words.****

Maksd	Clean (R@1) (\uparrow)		Avg ASR Drop
Words	T2IR	I2TR	Δ_{ASR} (\uparrow)
N/A	95.90	85.60	-
DDA	95.60	85.42	\uparrow 9.28
ADA	95.50	85.38	\uparrow 15.10
FDA	95.60	85.50	\uparrow 23.07

413
 414
 415 three implementations: FDA on text encoders, fusion encoders, and both, denoted as \mathcal{T} , \mathcal{H} , and
 416 $\mathcal{T} \& \mathcal{H}$. As presented in the top rows of Table.8, we find that \mathcal{T} performs the worst among all,
 417 indicating that an early subtraction is insufficient for removing such subtraction. Although $\mathcal{T} \& \mathcal{H}$
 418 provides a significant robustness boost, it costs an evident 2% performance drop on performance,
 419 implying that subtraction on both encoders is too strong and potentially causes contextual distortion.
 420 \mathcal{H} performs the best as it helps models concentrate while preserving the contextual meaning.

421 For the dictionary, we use the off-the-shelf stopwords dictionary in (Li et al., 2020), containing 208
 422 words/symbols, denoted as Full Dict. Furthermore, we use a shortlisted dictionary, by only using the
 423 most commonly used function words, containing 93 crucial function words, denoted as Shortlisted
 424 Dict. Both dictionary settings are trained with FDA L^{all} to maximize their impacts on training. As
 425 presented in the lower row of Table.8, there are no significant performance gaps between the two
 426 settings, with Full Dict performing slightly worse regarding both clean and adversarial examples. We
 427 attribute the minor degradation to the length of the stopwords dictionary, which could unnecessarily
 428 skim words and distort the context. We provide the shortlisted dictionary in Sec.F of the Appendix.

429 **Attention Head &Layer.** We then investigate the index of the layers L and attention heads H
 430 for retrieval and grounding, as presented in Table.9 and Table.10. Specifically, we train a series
 431 models using FDA but using different L and H : for layers, we use all, 0-1, and 0 layers, denoted
 as L^{all} , L^{0-1} , L^0 ; for attention heads, we use all heads, 1st half (0-5) and the second half (6-11),

First of all, masking content words and nouns yields the largest performance drop, making it unviable for robustness evaluation. This aligns with the intuition that these words carry extensive semantic information crucial for VLM tasks. Furthermore, masking function words leads to evident performance drop ($\sim 3\%$) and brings negligible robustness ($\sim 1\%$). Nonetheless, FDA achieves the best clean performance and robustness, showing the superiority of attention subtraction over direct masking in enhancing robustness without causing performance drops.

4.3.2 FUNCTION DE-ATTENTION V.S. VARIANTS

Overall, we find that **FDA leads the clean and adversarial performance among other variants**, i.e., DDA and ADA. Specifically, DDA, as a subset of FDA, shows almost identical clean performance, with a significant drop in robustness, indicating insufficient de-attentioning. ADA also shows subpar performance compared with FDA.

4.3.3 HYPERPARAMETERS

The implementation of FDA, especially the macro-hyperparameters influencing where to implement, would largely impact the subsequent performance of models. We first provide relative ablation studies to help understand the mechanics and design of our FDA.

Encoders&Dictionary. We start by comparing three implementations: FDA on text encoders, fusion encoders, and both, denoted as \mathcal{T} , \mathcal{H} , and $\mathcal{T} \& \mathcal{H}$. As presented in the top rows of Table.8, we find that \mathcal{T} performs the worst among all, indicating that an early subtraction is insufficient for removing such subtraction. Although $\mathcal{T} \& \mathcal{H}$ provides a significant robustness boost, it costs an evident 2% performance drop on performance, implying that subtraction on both encoders is too strong and potentially causes contextual distortion. \mathcal{H} performs the best as it helps models concentrate while preserving the contextual meaning.

For the dictionary, we use the off-the-shelf stopwords dictionary in (Li et al., 2020), containing 208 words/symbols, denoted as Full Dict. Furthermore, we use a shortlisted dictionary, by only using the most commonly used function words, containing 93 crucial function words, denoted as Shortlisted Dict. Both dictionary settings are trained with FDA L^{all} to maximize their impacts on training. As presented in the lower row of Table.8, there are no significant performance gaps between the two settings, with Full Dict performing slightly worse regarding both clean and adversarial examples. We attribute the minor degradation to the length of the stopwords dictionary, which could unnecessarily skim words and distort the context. We provide the shortlisted dictionary in Sec.F of the Appendix.

Attention Head &Layer. We then investigate the index of the layers L and attention heads H for retrieval and grounding, as presented in Table.9 and Table.10. Specifically, we train a series models using FDA but using different L and H : for layers, we use all, 0-1, and 0 layers, denoted as L^{all} , L^{0-1} , L^0 ; for attention heads, we use all heads, 1st half (0-5) and the second half (6-11),

432
433 Table 8: Ablation studies on the encoders and dictionary of FDA. We use T2IR/I2TR for evaluation.
434

Defense	Clean (R@1)			Average ASR 2/255 (↓)			Average ASR 4/255 (↓)			$\Delta_{ASR} \uparrow$
	T2IR	I2TR	Avg	PGD	APGD	MAPGD	PGD	APGD	MAPGD	
w/o FDA	95.90	85.60	90.75	2.04	14.83	62.37	7.96	15.99	79.03	-
\mathcal{T}	95.10	85.28	90.19	2.10	21.86	8.15	10.66	24.70	17.30	↓ 2.54
$\mathcal{T} \& \mathcal{H}$	93.80	85.00	89.40	2.01	17.61	15.82	9.06	21.91	20.99	↑ 15.61
\mathcal{H}	95.60	85.50	90.55	1.86	12.50	55.00	6.40	13.70	73.12	↑ 18.48
Full Dict	95.10	84.46	89.78	2.03	13.54	56.60	6.46	14.47	74.65	↑ 4.22
Shortlisted Dict	95.40	85.40	90.40	1.71	13.60	56.78	6.92	14.15	75.07	↑ 6.45

441
442
443 Table 9: Ablation studies on the layer/head index L/H of FDA on Text-to-Image/Image-to-Text
444 Retrieval on ALBEF, TCL and BLIP. Results are averaged over T2IR/I2TR. **Shallower layers/heads**
445 **(smaller L/H) consistently outperform over others on retrieval tasks.**

VLM	Defense	Clean (R@1)			Average ASR 2/255 (↓)			Average ASR 4/255 (↓)			$\Delta_{ASR} \uparrow$
		T2IR	I2TR	Avg	PGD	APGD	MAPGD	PGD	APGD	MAPGD	
	w/o FDA	95.90	85.60	90.75	2.04	14.83	62.37	7.96	15.99	79.03	-
ALBEF	L^{all}, H^{all}	95.50	85.54	90.52	2.06	14.82	60.98	7.82	16.15	80.70	↑ 1.56
	L^{all}, H^{6-11}	95.00	84.96	89.98	2.31	17.76	65.95	7.91	19.46	83.70	↓ 8.70
	L^{all}, H^{0-5}	95.40	85.40	90.40	1.71	13.60	56.78	6.92	14.15	75.07	↑ 6.45
	L^0, H^{0-5}	95.60	85.50	90.55	1.86	12.50	55.00	6.40	13.70	73.12	↑ 18.48
	L^{0-1}, H^{0-5}	95.40	85.32	90.36	1.81	12.30	54.87	6.17	13.45	72.71	↑ 16.91
	w/o FDA	94.90	84.02	89.64	7.20	68.07	62.37	33.69	79.74	79.03	-
TCL	L^{all}, H^{0-5}	94.10	83.98	89.04	6.17	54.34	65.59	29.24	66.24	84.47	↑ 8.52
	L^0, H^{0-5}	94.40	83.82	89.11	6.06	46.44	62.99	27.31	57.57	82.02	↑ 13.92
	L^{0-1}, H^{0-5}	94.20	83.96	89.08	6.42	48.64	64.82	28.22	61.30	83.44	↑ 11.14
	w/o FDA	97.20	87.30	92.25	18.46	61.67	47.27	64.09	86.23	71.44	-
BLIP	L^{all}, H^{0-5}	96.50	86.94	91.72	16.60	22.74	43.06	61.09	31.38	65.19	↑ 26.46
	L^0, H^{0-5}	96.80	86.86	91.83	6.43	17.41	39.79	15.85	23.51	59.32	↑ 52.51
	L^{0-1}, H^{0-5}	96.70	86.84	91.77	6.58	16.36	37.99	15.15	22.34	58.07	↑ 53.98

460
461 Table 10: Ablation studies on the layer/head index L/H of FDA on Visual Grounding Retrieval on
462 ALBEF, TCL, and BLIP. Results are averaged over Test A/B splits.

Defense	Clean (Acc)			Average ASR 2/255 (↓)			Average ASR 4/255 (↓)			$\Delta_{ASR} \uparrow$	
	Val_d	Test A	Test B	Avg	PGD	APGD	MAPGD	PGD	APGD	MAPGD	
w/o FDA	58.50	65.90	46.30	56.90	6.38	9.12	9.29	6.14	9.61	9.90	-
L^{all}, H^{0-5}	57.90	65.80	46.40	56.70	1.02	2.06	2.27	0.77	2.38	2.22	↑ 81.83
L^0, H^{0-5}	58.00	65.90	46.40	56.77	1.72	3.09	2.93	1.85	2.60	2.76	↑ 71.43
L^{0-1}, H^{0-5}	58.10	66.80	46.10	57.00	0.59	0.87	0.73	0.92	0.72	0.88	↑ 92.33

470 denoted as $H^{all}, H^{0-5}, H^{6-11}$. For T2IR/I2TR, as shown in Table.9, we find that the shallow im-
471 plementations of FDA, i.e., $L^0/L^{0-1}, H^{0-5}$ consistently yield the best performance on robustness
472 on **all models**. Specifically, L^0, H^{0-5} constantly achieves the best clean performance, leading other
473 counterparts by 0.1-0.2%.

474 We further test the leading 3 settings on retrieval tasks, i.e., $L^{all}/L^0/L^{0-1}, H^{0-5}$ on VG. As shown
475 in 10, we find the shallow L^{0-1}, H^{0-5} settings still top w.r.t. both adversarial and clean examples,
476 leading other settings by 10-20%/0.3-0.4%, respectively.

477 Overall, while FDA behaves slightly differently in various settings/tasks, its effectiveness remains
478 solid and insensitive to the head/layer parameters, especially on neighbouring layers/heads.
479

4.3.4 ZERO-SHOT PERFORMANCE

482 Finally, we adopt the three settings of FDA without finetuning to evaluate the zero-shot performance
483 on different tasks (T2IR/I2TR/VG) on ALBEF and BLIP (H^{0-5} is omitted and unchanged for all
484 FDA). Results are presented in Table.11. We find that L^{all} performs the best for all tasks and all
485 models. This not only suggests that L^{all} serves as the most generalizable setting for multiple VL
tasks and models, but also implies the feasibility of FDA for performance boost on zero-shot tasks.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
4.4 ANALYSIS

Table 11: Zero-shot performance by applying FDA as a plug-and-play tool on T2IR/I2TR on ALBEF/BLIP and VG on ALBEF. T2IR/I2TR uses R@1/5/10, while VG uses accuracies.

Tasks	Models	Method	Avg Performance	
Retrieval	ALBEF	w/o FDA	92.01	-
		L^0	92.02	↑ 0.01
		L^{0-1}	92.41	↑ 0.40
		L^{all}	92.17	↑ 0.16
	BLIP	w/o FDA	92.24	-
		L^0	92.19	↓ 0.05
		L^{0-1}	92.22	↓ 0.02
		L^{all}	92.71	↑ 0.47
VG	ALBEF	w/o FDA	53.12	-
		L^0	52.72	↓ 0.40
		L^{0-1}	52.68	↓ 0.44
		L^{all}	53.34	↑ 0.22

aligned with each other. To numerically compare the alignment of FDA and the vanilla model, we record the top 200 average white-box text-image similarity scores. As shown in the right figure of Fig.3, applying FDA generates higher average text-image similarity scores, as well as lower variations.

4.5 LIMITAITON

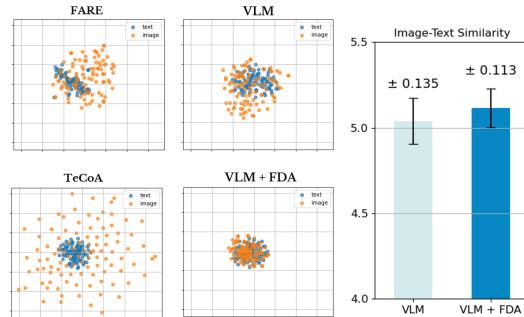


Figure 3: *Left:* T-SNE of the vision-language embedding of vanilla VLM, FDA, FARE, and TeCoA. **Our FDA is the most aligned model.** *Right:* Comparison of text-image similarity for vanilla VLM versus VLM + FDA. **Our FDA yields better alignment with larger similarities and smaller variances.**

heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Specifically, we tested the FDA on 2 downstream tasks, 3 datasets, and 3 models, and evaluated all methods under 6 attacks. By comparing with existing SOTA defenses, our FDA shows superiority of FDA in boosting robustness and clean performance. We also provide an in-depth analysis of FDA and validate its boost on zero-shot performance.

We notice that the results of APGD and MAPGD somewhat worsen after adversarial finetuning, e.g., TeCoA and FARE on ALBEF, FARE on BLIP in Table.2, etc. As previously illustrated in Fig.2, defending against targeted attacks requires a more aligned vision-language embedding. Consequently, we hypothesize that such abnormality potentially originates from the disruption in vision-language alignment brought by adversarial noise for enhanced robustness.

To validate our speculation, we visualize the vision-language distribution of ALBEF together with TeCoA, FARE, and FDA, as shown in the left graph Fig.3. From the left graph, we find that both FARE and TeCoA (left column) yield a severely disrupted embedding, where images and texts sparsely scatter away from each other. On the other hand, our FDA (lower right) has the most aligned cross-modal embedding, as all images and texts remain tightly

Besides subtraction, FDA could be potentially improved through a modular or algorithmic approach for more refined removal. Furthermore, we did not implement FDA to fine-tune a larger VLM or verify the effectiveness of FDA using LoRa due to the hardware limitation. Finally, our FDA is designed for backbones with a fusion encoder and thus not directly implementable for CLIP and other similar backbones. However, we believe implementation on CLIP-like models would be a valuable exploration for future work.

5 CONCLUSION

In this paper, we propose Function-word De-Attention (FDA) calculates the original and the function-word cross-attention within attention

540
541
ETHICS STATEMENT

542 We acknowledge that all authors of our papers are required to read the Code of Ethics, adhere to it,
 543 and explicitly acknowledge this during the submission process. Contribute to society and to human
 544 well-being. All authors: i) uphold high standards of scientific excellence; ii) avoid harm; iii) be
 545 honest, trustworthy, and transparent; iv) be fair and take action to avoid discrimination; v) respect
 546 the work required to produce new ideas and artefacts; vi) respect privacy; vii) honour confidentiality.
 547

548
549
REPRODUCIBILITY STATEMENT

550 The detailed information about the implementation of FDA is provided in Section 4. The data used
 551 in this paper is open-source, and the details/full results are stated in the Appendix. The code and the
 552 checkpoint will be publicly available along with sufficient instructions to faithfully reproduce the
 553 main experimental results/visualization, and detailed instructions to transfer to other backbones.
 554

555
556
REFERENCES

557 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
 558 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–
 559 2216. PMLR, 2020.

560 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 561 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.
 562

563 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 564 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 565 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 566 scale, 2021. URL <https://arxiv.org/abs/2010.11929>.
 567

568 Kuofeng Gao, Yang Bai, Jiawang Bai, Yong Yang, and Shu-Tao Xia. Adversarial robustness for
 569 visual grounding of multimodal large language models. *arXiv preprint arXiv:2405.09981*, 2024.

570 Bangyan He, Xiaojun Jia, Siyuan Liang, Tianrui Lou, Yang Liu, and Xiaochun Cao. Sa-attack: Im-
 571 proving adversarial transferability of vision-language pre-training models via self-augmentation,
 572 2023. URL <https://arxiv.org/abs/2312.04913>.
 573

574 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. Your large vision-language model
 575 only needs a few attention heads for visual grounding. In *Proceedings of the Computer Vision
 and Pattern Recognition Conference*, pp. 9339–9350, 2025.
 576

577 Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq Joty, Caiming Xiong, and
 578 Steven Hoi. Align before fuse: Vision and language representation learning with momentum
 579 distillation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in
 580 Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=OJLaKwiXSbx>.
 581

582 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 583 training for unified vision-language understanding and generation. In *International conference on
 584 machine learning*, pp. 12888–12900. PMLR, 2022.

585 Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. Bert-attack: Adversarial
 586 attack against bert using bert. *arXiv preprint arXiv:2004.09984*, 2020.
 587

588 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 589 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 590 conference on computer vision*, pp. 740–755. Springer, 2014.

591 Dong Lu, Zhiqiang Wang, Teng Wang, Weili Guan, Hongchang Gao, and Feng Zheng. Set-level
 592 guidance attack: Boosting adversarial transferability of vision-language pre-training models. In
 593 *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 102–
 111, October 2023.

594 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 595 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 596 2017.

597 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-shot
 598 adversarial robustness for large-scale models. *arXiv preprint arXiv:2212.07016*, 2022.

600 Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and
 601 Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
 602 image-to-sentence models. In *Proceedings of the IEEE International Conference on Computer
 603 Vision (ICCV)*, December 2015.

604 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 605 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 606 models from natural language supervision. In *International conference on machine learning*, pp.
 607 8748–8763. PMLR, 2021.

608 Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
 609 *International conference on machine learning*, pp. 8093–8104. PMLR, 2020.

611 Christian Schlarbmann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: Un-
 612 supervised adversarial fine-tuning of vision embeddings for robust large vision-language models.
 613 *arXiv preprint arXiv:2402.12336*, 2024.

614 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 615 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 616 ization. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, Oct
 617 2017.

618 Qiwei Tian, Chenhao Lin, Zhengyu Zhao, Qian Li, and Chao Shen. Collapse-aware triplet decou-
 619 pling for adversarially robust image retrieval. *arXiv preprint arXiv:2312.07364*, 2023.

621 Qiwei Tian, Chenhao Lin, Zhengyu Zhao, Qian Li, Shuai Liu, and Chao Shen. Adversarial video
 622 promotion against text-to-video retrieval, 2025. URL <https://arxiv.org/abs/2508.06964>.

624 Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
 625 Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning. In
 626 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15671–
 627 15680, 2022.

629 Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential
 630 transformer. *arXiv preprint arXiv:2410.05258*, 2024.

631 Ziyi Yin, Muchao Ye, Tianrong Zhang, Tianyu Du, Jinguo Zhu, Han Liu, Jinghui
 632 Chen, Ting Wang, and Fenglong Ma. Vlattack: Multimodal adversarial attacks on
 633 vision-language tasks via pre-trained models. In A. Oh, T. Naumann, A. Globerson,
 634 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Pro-
 635 cessing Systems*, volume 36, pp. 52936–52956. Curran Associates, Inc., 2023. URL
 636 https://proceedings.neurips.cc/paper_files/paper/2023/file/a5e3cf29c269b041cccd644b6beaf5c42-Paper-Conference.pdf.

638 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
 639 in referring expressions. In *European conference on computer vision*, pp. 69–85. Springer, 2016.

641 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 642 Theoretically principled trade-off between robustness and accuracy. In *International conference
 643 on machine learning*, pp. 7472–7482. PMLR, 2019.

644 Jiaming Zhang, Qi Yi, and Jitao Sang. Towards adversarial attack on vision-language pre-training
 645 models. In *Proceedings of the 30th ACM International Conference on Multimedia, MM '22*,
 646 pp. 5005–5013, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
 647 9781450392037. doi: 10.1145/3503161.3547801. URL <https://doi.org/10.1145/3503161.3547801>.

648
649

APPENDIX

650
651

A ADAPTIVE METHODS FOR WORD SELECTION

652

We further refine the adaptive mechanism based on text-image similarity (using per-token dot product of text and image features): instead of choosing fixed number of tokens, we adopt 3 implementations for adaptively selecting down-weighted tokens: i) setting threshold of $\mu - \delta$; ii) setting threshold of $\mu - 2\delta$, with μ, δ being the mean and std of the text-image similarity. We further choose the lowest N tokens, with N being the number of function words in the texts. We denote them as SIM- δ , SIM- 2δ , and SIM-N, respectively. Furthermore, we **record the % of selected words that are in our shortlisted function words dictionary**. Results are shown below.

653

In summary, we find that **the gained robustness of VLMs increased as the proportion of function words increased**. While we cannot design an adaptive mechanism that perfectly aligns with using the function words dictionary, we find that while the vulnerability of VLMs does not necessarily come from low-similarity (or low semantic) words, **there is an evident correlation between the percentage of function words and the gained robustness**.

654

655

B DETAILS FOR ATTACKS AND EVALUATION METRICS

656

657

We first introduce the attacks and evaluation metrics for each VL task, including the scenarios where a targeted attack is considered successful and the corresponding metrics.

658

Text-to-Image/Image-to-Text Retrieval. For T2IR, a successful targeted attack is only when the manipulated images emerge in the Top 1/5 position given the targeted text queries; for I2TR, a successful attack is only when the targeted texts emerge in the Top 1/5 position given the manipulated images as the query. Consequently, the ASR of T2IR/I2TR would be the hit rate at the top 1/5, i.e., the probability of appearance in the top 1/5 position, denoted as ASR@1/5. In the main paper, we use the average of ASR@1/5 as the overall ASR. Untargeted attacks follow the identical setting of existing works, i.e., lowering the R@1/5 of the victim models.

659

Visual Grounding. For visual grounding, we choose to obfuscate the model by fooling it into recognizing other objects as the target, or, if there is only one object in the image, locating the position of the object incorrectly (top-left corner). A successful attack is when the IOU of the targeted bounding box and the model bounding box is larger than 0.5, i.e., the model locates the object within the targeted bounding box. As for untargeted attacks, we follow existing settings to lower the accuracy of the victim model and calculate the drops as ASR.

660

661

C FULL RESULTS FOR TARGETED ATTACKS

662

In this section, we provide full results for all targeted attacks on all models and tasks. Specifically, for T2IR and I2TR, results on ALBEF is given in Table.13 and Table.14, results on TCL is given in Table.15 and Table.16, and results on BLIP is given in Table.17 and Table.18, respectively. Targeted attacks for visual grounding on ALBEF are given in Table.19.

663

664

D FULL RESULTS FOR UNTARGETED ATTACKS

665

666

In this section, we provide full results for all untargeted attacks on all models and tasks. Specifically, for T2IR and I2TR, results on ALBEF is given in Table.20 and Table.21, and results on BLIP is given in Table.22 and Table.23, respectively. Untargeted attacks for visual grounding on ALBEF are given in Table.24.

667

668

E FULL RESULTS FOR ABLATION STUDIES

669

700

In this section, we provide full results for all ablation studies. T2IR and I2TR results are given in Table.25 and Table.26. Zero-shot performance is given in Table.27.

702
 703 Table 12: Comparison between FDA and adaptive selection, i.e., using image-text similarity to
 704 choose less informative tokens. $\text{SIM}-\delta/2\delta$ indicates using $\mu - \delta$ and $\mu - 2\delta$ as the de-attention
 705 threshold, with μ, δ being the mean and std of the text-image similarity. $\text{SIM}-N$ refers to choosing
 706 the lowest N tokens, with N being the number of function words in the text. **% of words** means the
 707 percentage of function words in the selected ones. **Results confirm the correlation between the**
 708 **proportion of function words and the gained robustness.**

Defense	% of Words in Dictionary	Clean R@1 (↑)		ASR Drop Δ_{ASR} (↑)		
		T2IR	I2TR	$l_\infty = 2/255$	$l_\infty = 4/255$	Avg
SIM-N	95.90	85.50	25.95	2.44	12.81	↑ 7.62
SIM-2δ	95.60	85.32	74.53	9.38	13.86	↑ 8.39
SIM-δ	95.30	85.38	79.49	12.85	11.54	↑ 12.41
FDA	95.90	85.50	100.00	27.61	18.53	↑ 23.07

717
 718 Table 13: ASR of white-box *targeted* attacks against **Text-to-Image Retrieval** on Flickr30k and
 719 COCO. The model is **ALBEF**. Changes over unattacked values are presented in parentheses. All
 720 results are in percentage (%). ASR@1/5 indicates the attack success rate of the adversarial image
 721 showing up in the top-1/5 position of the targeted text queries.

Dataset	l_∞	Defense	Clean ↑	PGD		APGD		MAPGD	
				ASR@1 ↓	ASR@5 ↓	ASR@1 ↓	ASR@5 ↓	ASR@1 ↓	ASR@5 ↓
Flickr	2/255	No Defense	95.90	0.30 (+0.20)	7.50 (+6.50)	14.60 (+14.50)	15.70 (+14.70)	50.10 (+50.00)	81.90 (+80.90)
		TeCoA	91.20	0.20 (+0.20)	5.30 (+4.90)	18.70 (+18.70)	20.40 (+20.00)	59.90 (+59.90)	86.40 (+86.00)
		FARE	91.10	0.10 (+0.10)	5.10 (+4.80)	17.20 (+17.20)	17.80 (+17.30)	58.10 (+57.90)	80.50 (+80.00)
		FDA- L^0	95.60	0.10 (+0.10)	7.30 (+6.60)	12.10 (+12.10)	13.40 (+12.70)	43.60 (+43.60)	73.90 (+73.20)
		FDA- L^{0-1}	95.40	0.20 (+0.20)	6.90 (+6.10)	12.00 (+12.00)	12.80 (+12.00)	43.30 (+43.30)	73.60 (+72.80)
		FDA- L^{all}	95.40	0.40 (+0.40)	5.90 (+5.20)	12.80 (+12.80)	14.20 (+13.50)	43.50 (+43.50)	77.30 (+76.60)
	4/255	No Defense	95.90	4.30 (+4.20)	14.10 (+13.10)	16.50 (+16.40)	16.60 (+15.60)	75.00 (+74.90)	87.00 (+86.00)
		TeCoA	91.20	3.90 (+3.90)	14.70 (+14.30)	19.40 (+19.40)	19.60 (+19.20)	81.00 (+81.00)	90.00 (+89.60)
		FARE	91.10	4.00 (+4.00)	14.80 (+14.50)	18.80 (+18.80)	18.80 (+18.30)	79.70 (+79.70)	85.90 (+85.40)
		FDA- L^0	95.60	2.90 (+2.90)	13.50 (+12.80)	13.90 (+13.90)	14.10 (+13.40)	69.00 (+69.00)	82.40 (+81.70)
		FDA- L^{0-1}	95.40	3.00 (+3.00)	12.40 (+11.60)	13.90 (+13.90)	14.00 (+13.20)	68.10 (+68.10)	81.30 (+80.50)
COCO	2/255	FDA- L^{all}	95.40	3.00 (+3.00)	13.50 (+12.80)	14.60 (+14.60)	14.80 (+14.10)	68.90 (+68.90)	84.10 (+83.40)
		No Defense	77.60	0.22 (+0.18)	1.80 (+1.72)	10.18 (+10.14)	11.94 (+11.86)	20.14 (+20.14)	40.88 (+0.80)
		TeCoA	68.04	0.10 (+0.08)	0.66 (+0.56)	16.42 (+16.40)	17.40 (+17.34)	24.52 (+24.50)	44.02 (+43.92)
	4/255	FARE	69.28	0.08 (+0.06)	0.55 (+0.45)	19.64 (+19.62)	25.82 (+25.72)	21.76 (+21.74)	43.74 (+43.64)
		FDA- L^{0-1}	77.70	0.26 (+0.22)	1.58 (+1.46)	9.00 (+ 8.98)	10.40 (+10.30)	18.28 (+18.26)	37.00 (+36.90)
		No Defense	77.60	2.10 (+2.06)	7.44 (+7.36)	14.26 (+14.22)	14.80 (+14.72)	43.74 (+43.70)	58.72 (+58.64)
	4/255	TeCoA	68.04	0.52 (+0.50)	2.74 (+2.64)	25.00 (+24.98)	26.46 (+26.36)	53.56 (+53.54)	66.28 (+66.18)
		FARE	69.28	0.40 (+0.38)	2.52 (+2.42)	30.94 (+30.92)	33.82 (+33.72)	54.46 (+54.44)	72.48 (+72.38)
		FDA- L^{0-1}	77.70	1.74 (+1.70)	6.06 (+5.94)	11.76 (+11.74)	12.08 (+11.98)	37.92 (+37.90)	51.98 (+51.88)

F DETAILS FOR FUNCTION WORD DICTIONARY

743 We provide the function word dictionary we used as follows: “*am, is, are, was, were, be, been,*
 744 *being, have, has, had, do, does, did, will, would, shall, should, may, might, must, can, could, ought,*
 745 *dare, need, used, to, a, an, the, and, but, if, or, because, as, until, while, of, at, by, for, with, about,*
 746 *against, between, into, through, during, before, after, above, below, to, from, in, out, on, off, over,*
 747 *under, again, further, then, once, here, there, when, where, why, how, all, any, both, each, few, more,*
 748 *most, other, some, such, no, nor, not, only, own, same, so, than, too, very*”.

G VISUALIZATION OF ATTENTION SCORES

752 Finally, we provide an illustration of original attention, FDA with one subtraction, and FDA, as
 753 shown in Fig.4.

756
757
758
759
760761 Table 14: ASR of white-box *targeted* attacks against **Image-to-Text Retrieval** on Flickr30k and
762 COCO. The model is **ALBEF**. Changes over unattacked values are presented in parentheses. All
763 results are in percentage (%). ASR@1/5 indicates the attack success rate of the targeted text queries
764 showing up in the top-1/5 position of the adversarial image.

Dataset	l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
				ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
Flickr	2/255	No Defense	85.60	0.30 (+0.30)	1.10 (+1.10)	14.40 (+14.40)	15.40 (+15.40)	53.50 (+53.50)	63.50 (+63.50)
		TeCoA	81.44	0.10 (+0.08)	1.00 (+1.00)	16.42 (+16.40)	17.40 (+17.34)	56.90 (+56.90)	65.70 (+65.70)
		FARE	81.48	0.10 (+0.10)	1.00 (+1.00)	19.64 (+19.62)	25.82 (+25.72)	56.30 (+56.30)	65.90 (+65.90)
		FDA- L^0	85.50	0.10 (+0.10)	0.60 (+0.60)	12.30 (+12.30)	12.80 (+12.80)	46.50 (+46.50)	56.20 (+56.20)
		FDA- L^{0-1}	85.32	0.10 (+0.10)	0.80 (+0.80)	12.10 (+12.10)	12.50 (+12.50)	46.90 (+46.90)	55.90 (+55.90)
		FDA- L^{all}	85.40	0.20 (+0.20)	1.00 (+1.00)	13.50 (+13.50)	13.70 (+13.70)	48.50 (+48.50)	58.00 (+58.00)
	4/255	No Defense	85.60	4.50 (+4.50)	9.80 (+9.80)	15.70 (+15.70)	15.90 (+15.90)	74.40 (+74.40)	79.00 (+79.00)
		TeCoA	81.44	2.80 (+2.80)	6.40 (+6.40)	18.30 (+18.30)	18.60 (+18.60)	78.10 (+78.10)	81.10 (+81.10)
		FARE	81.48	3.40 (+3.40)	7.00 (+7.00)	18.30 (+18.30)	18.40 (+18.40)	77.00 (+77.00)	80.60 (+80.60)
		FDA- L^0	85.50	3.30 (+3.30)	6.50 (+6.50)	13.70 (+13.70)	13.70 (+13.70)	68.80 (+68.80)	72.40 (+72.40)
		FDA- L^{0-1}	85.32	3.10 (+3.10)	6.90 (+6.90)	13.40 (+13.40)	13.50 (+13.50)	69.30 (+69.30)	72.30 (+72.30)
COCO	2/255	FDA- L^{all}	85.40	4.00 (+4.00)	7.80 (+7.80)	14.10 (+14.10)	14.20 (+14.20)	72.20 (+72.20)	75.20 (+75.20)
		No Defense	60.70	0.22 (+0.22)	0.50 (+0.48)	7.68 (+7.68)	10.04 (+10.02)	14.64 (+14.64)	24.16 (+21.14)
		TeCoA	53.07	0.02 (+0.02)	0.12 (+0.12)	10.82 (+10.82)	13.58 (+13.54)	14.32 (+14.32)	33.74 (+33.74)
		FARE	53.58	0.00 (+0.00)	0.06 (+0.04)	11.80 (+11.80)	17.40 (+17.38)	21.62 (+21.62)	20.92 (+20.90)
		FDA- L^{0-1}	60.63	0.16 (+0.10)	0.42 (+0.40)	7.14 (+7.14)	12.34 (+12.32)	16.72 (+16.72)	26.66 (+26.64)
	4/255	No Defense	60.70	1.46 (+1.46)	3.38 (+3.36)	11.11 (+11.10)	13.26 (+13.24)	50.10 (+50.00)	81.90 (+80.90)
		TeCoA	53.07	0.16 (+0.16)	0.56 (+0.56)	18.58 (+18.58)	25.56 (+25.56)	38.42 (+38.42)	52.00 (+51.96)
		FARE	53.58	0.22 (+0.22)	0.50 (+0.48)	21.84 (+21.84)	26.88 (+26.86)	31.94 (+31.94)	47.30 (+47.28)
		FDA- L^{0-1}	60.63	1.20 (+1.20)	2.92 (+2.90)	9.88 (+9.88)	11.28 (+11.26)	27.74 (+27.74)	37.94 (+37.92)

782
783
784
785
786
787
788
789
790791 Table 15: ASR of white-box *targeted* attacks against **Text-to-Image Retrieval** on Flickr30k. The
792 model is **TCL**. Changes over unattacked values are presented in parentheses. All results are in
793 percentage (%). ASR@1/5 indicates the attack success rate of the adversarial image showing up in
794 the top-1/5 position of the targeted text queries.

l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD		
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	
Flickr	2/255	No Defense	94.90	2.10 (+2.10)	18.80 (+18.40)	66.00 (+66.00)	75.20 (+74.80)	50.90 (+50.90)	82.50 (+82.10)
		TeCoA	92.10	3.10 (+3.10)	19.30 (+19.00)	61.00 (+61.00)	71.70 (+71.40)	44.20 (+44.20)	74.10 (+73.80)
		FARE	91.70	3.20 (+3.20)	20.40 (+20.20)	63.10 (+63.10)	71.90 (+71.70)	46.80 (+46.80)	75.20 (+75.00)
		FDA- L^0	94.40	1.90 (+1.90)	15.40 (+15.10)	44.90 (+44.90)	52.00 (+51.70)	52.40 (+52.40)	84.60 (+84.30)
		FDA- L^{0-1}	94.20	2.40 (+2.40)	17.00 (+16.60)	46.30 (+46.30)	55.80 (+55.00)	54.40 (+54.40)	86.70 (+85.90)
	4/255	FDA- L^{all}	94.10	2.30 (+2.30)	16.80 (+16.40)	50.80 (+50.80)	60.90 (+60.50)	54.90 (+54.90)	87.10 (+86.70)
		No Defense	94.90	21.50 (+21.50)	54.00 (+53.60)	80.30 (+80.30)	82.00 (+81.60)	75.20 (+75.20)	88.10 (+87.70)
		TeCoA	92.10	27.80 (+27.80)	60.90 (+60.60)	79.70 (+79.70)	81.60 (+81.30)	74.10 (+74.10)	86.10 (+85.80)
		FARE	91.70	30.20 (+30.20)	62.30 (+62.10)	80.30 (+80.30)	81.80 (+81.60)	73.20 (+73.20)	86.10 (+85.90)
		FDA- L^0	94.40	17.90 (+17.90)	43.00 (+42.70)	56.80 (+56.80)	60.60 (+60.30)	80.20 (+80.20)	92.30 (+92.00)
COCO	2/255	FDA- L^{0-1}	94.20	18.80 (+18.80)	44.90 (+44.50)	60.20 (+60.20)	64.50 (+63.70)	80.40 (+80.40)	92.90 (+92.10)
		FDA- L^{all}	94.10	19.00 (+19.00)	44.90 (+44.50)	66.10 (+66.10)	69.10 (+68.70)	79.80 (+79.80)	94.50 (+94.10)

807
808
809

810
811 Table 16: ASR of white-box *targeted* attacks against **Image-to-Text Retrieval** on Flickr30k. The
812 model is **TCL**. Changes over unattacked values are presented in parentheses. All results are in
813 percentage (%). ASR@1/5 indicates the attack success rate of the targeted text queries showing up
814 in the top-1/5 position of the adversarial image.

l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
2/255	No Defense	84.02	2.50 (+2.50)	5.70 (+5.70)	64.10 (+64.10)	66.80 (+66.80)	50.70 (+50.70)	58.90 (+58.90)
	TeCoA	80.40	2.10 (+2.10)	6.10 (+6.10)	69.60 (+69.60)	72.00 (+72.00)	65.50 (+65.50)	70.40 (+70.40)
	FARE	78.22	3.10 (+3.10)	6.10 (+6.10)	59.70 (+59.70)	62.80 (+62.80)	65.20 (+65.20)	69.50 (+69.50)
	FDA- L^0	83.82	1.90 (+1.90)	5.30 (+5.30)	43.40 (+43.40)	45.60 (+45.60)	52.90 (+52.90)	62.10 (+62.10)
	FDA- L^{0-1}	83.96	1.80 (+1.80)	4.80 (+4.80)	45.30 (+45.30)	47.50 (+47.50)	53.90 (+53.90)	64.40 (+64.40)
	FDA- L^{all}	83.98	1.30 (+1.30)	4.60 (+4.60)	51.50 (+51.50)	54.30 (+54.30)	56.00 (+56.00)	64.40 (+64.40)
	No Defense	84.02	24.60 (+24.60)	34.70 (+34.70)	78.80 (+77.80)	78.60 (+78.60)	70.40 (+70.40)	75.50 (+75.50)
	TeCoA	80.40	29.60 (+29.60)	34.70 (+34.70)	76.00 (+76.00)	77.20 (+77.20)	65.50 (+65.50)	70.40 (+70.40)
	FARE	78.22	33.30 (+33.30)	39.50 (+39.50)	76.20 (+76.20)	77.70 (+77.70)	65.20 (+65.20)	69.50 (+69.50)
4/255	FDA- L^0	83.82	20.00 (+20.00)	28.50 (+28.50)	56.10 (+56.10)	56.90 (+56.90)	75.50 (+75.50)	80.10 (+80.10)
	FDA- L^{0-1}	83.96	20.10 (+20.10)	29.30 (+29.30)	60.00 (+60.00)	60.80 (+60.80)	77.80 (+77.80)	82.70 (+82.70)
	FDA- L^{all}	83.98	22.20 (+22.20)	31.10 (+31.10)	64.40 (+64.40)	65.50 (+65.50)	79.50 (+79.50)	84.10 (+84.10)

827
828 Table 17: ASR of white-box *targeted* attacks against **Text-to-Image Retrieval** on Flickr30k. The
829 model is **BLIP**. Changes over unattacked values are presented in parentheses. All results are in
830 percentage (%). ASR@1/5 indicates the attack success rate of the adversarial image showing up in
831 the top-1/5 position of the targeted text queries.

l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
2/255	No Defense	97.20	2.50 (+2.50)	46.10 (+46.10)	80.50 (+81.10)	75.20 (+74.80)	57.90 (+57.90)	84.70 (+84.30)
	TeCoA	81.50	4.30 (+4.30)	16.20 (+16.20)	19.30 (+19.30)	45.70 (+45.60)	14.80 (+14.80)	39.20 (+39.10)
	FARE	79.40	1.00 (+1.00)	10.30 (+10.10)	12.90 (+12.90)	46.20 (+46.20)	9.70 (+ 9.70)	38.00 (+37.90)
	FDA- L^0	96.80	3.10 (+3.10)	12.00 (+11.90)	13.60 (+13.60)	26.30 (+26.20)	24.20 (+24.20)	61.70 (+61.60)
	FDA- L^{0-1}	96.50	3.00 (+3.00)	12.40 (+12.30)	12.30 (+12.30)	25.60 (+25.70)	22.10 (+22.10)	59.90 (+59.80)
	FDA- L^{all}	96.50	3.20 (+3.20)	42.00 (+41.80)	16.00 (+16.00)	39.60 (+39.40)	24.50 (+24.50)	66.30 (+66.30)
	No Defense	97.20	31.80 (+31.80)	90.60 (+90.20)	79.80 (+79.80)	93.00 (+92.60)	57.90 (+57.90)	84.70 (+84.30)
	TeCoA	81.50	46.20 (+46.20)	73.00 (+72.90)	60.40 (+60.40)	83.10 (+83.00)	49.50 (+49.50)	74.80 (+74.80)
	FARE	79.40	23.90 (+23.90)	61.50 (+61.30)	42.30 (+42.30)	82.70 (+82.60)	33.90 (+33.90)	74.70 (+74.70)
4/255	FDA- L^0	96.80	13.60 (+13.60)	19.80 (+19.70)	16.40 (+16.40)	43.60 (+43.50)	44.70 (+44.70)	78.50 (+78.40)
	FDA- L^{0-1}	96.50	13.20 (+13.20)	18.60 (+18.50)	15.10 (+15.10)	41.60 (+41.70)	43.40 (+43.40)	77.90 (+77.80)
	FDA- L^{all}	96.50	31.60 (+31.60)	86.80 (+86.60)	21.40 (+21.40)	62.00 (+61.80)	50.00 (+50.00)	81.90 (+81.70)

844
845 Table 18: ASR of white-box *targeted* attacks against **Image-to-Text Retrieval** on Flickr30k. The
846 model is **BLIP**. Changes over unattacked values are presented in parentheses. All results are in
847 percentage (%). ASR@1/5 indicates the attack success rate of the targeted text queries showing up
848 in the top-1/5 position of the adversarial image.

l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
2/255	No Defense	87.30	7.00 (+7.00)	16.60 (+16.60)	54.90 (+54.90)	65.00 (+65.00)	37.60 (+37.60)	50.90 (+50.90)
	TeCoA	68.00	2.40 (+2.40)	5.90 (+ 5.90)	13.90 (+13.90)	25.10 (+25.10)	9.30 (+ 9.30)	19.80 (+19.80)
	TeCoA + FDA- L^{0-1}	67.78	2.20 (+2.20)	6.20 (+ 6.20)	12.90 (+12.90)	25.40 (+25.40)	8.90 (+ 8.90)	19.60 (+19.60)
	FARE	65.64	0.40 (+0.40)	1.90 (+ 1.90)	11.30 (+11.30)	19.60 (+19.60)	8.00 (+ 8.00)	15.10 (+15.10)
	FARE + FDA- L^{0-1}	66.22	0.40 (+0.40)	2.10 (+ 2.10)	9.40 (+ 9.40)	17.50 (+17.50)	6.00 (+ 6.00)	13.60 (+13.60)
	FDA- L^0	86.86	4.40 (+4.40)	5.30 (+ 5.30)	14.10 (+14.10)	15.70 (+15.70)	31.70 (+31.70)	41.60 (+41.60)
	FDA- L^{0-1}	86.86	4.60 (+4.60)	4.80 (+ 4.80)	13.10 (+13.10)	14.40 (+14.40)	30.60 (+30.60)	39.40 (+39.40)
	FDA- L^{all}	86.94	6.70 (+3.20)	14.60 (+14.60)	16.90 (+16.90)	18.60 (+18.60)	35.00 (+35.00)	46.50 (+46.50)
	No Defense	84.02	58.80 (+58.80)	74.90 (+74.90)	83.70 (+83.70)	88.10 (+88.10)	67.00 (+67.00)	75.90 (+75.90)
4/255	TeCoA	68.00	46.60 (+46.60)	58.10 (+58.10)	58.90 (+58.90)	69.00 (+69.00)	47.10 (+47.10)	60.10 (+60.10)
	TeCoA + FDA- L^{0-1}	67.78	44.50 (+44.50)	59.10 (+59.10)	59.10 (+59.10)	70.30 (+70.30)	47.40 (+47.40)	61.10 (+61.10)
	FARE	65.64	23.90 (+23.90)	37.30 (+37.30)	45.70 (+45.70)	60.90 (+60.90)	34.00 (+34.00)	50.90 (+50.90)
	FARE + FDA- L^{0-1}	66.22	24.70 (+24.70)	37.10 (+37.10)	43.90 (+43.90)	58.60 (+58.60)	31.90 (+31.90)	48.20 (+48.20)
	FDA- L^0	86.86	14.80 (+14.80)	15.30 (+15.30)	16.80 (+16.80)	17.30 (+17.30)	53.40 (+53.40)	60.70 (+60.70)
	FDA- L^{0-1}	86.86	14.20 (+14.20)	14.70 (+14.70)	16.20 (+16.20)	16.40 (+16.40)	52.00 (+52.00)	59.00 (+59.00)
	FDA- L^{all}	86.94	55.20 (+52.20)	70.80 (+70.80)	21.80 (+21.80)	22.10 (+22.10)	60.20 (+60.20)	68.70 (+68.70)

864
865
866
867
868
869Table 19: Attack success rate (ASR) of *targeted* PGD/APGD/MAPGD (masked APGD) against for **Visual Grounding** (VG) on RefCOCO+. All results are presented in percentage (%). Changes over unattacked values are presented in parentheses.

l_∞	Defense	Clean Performance		Test A Split (\downarrow)			Test B Split (\downarrow)			
		Val.d	Test A	Test B	PGD	APGD	MAPGD	PGD	APGD	MAPGD
2/255	No Defense	58.50	65.90	46.30	16.40 (+6.00)	20.40 (+10.00)	20.40 (+10.00)	25.73 (+4.80)	26.53 (+5.60)	27.30 (+6.37)
	TeCoA	57.20	64.70	45.00	17.87 (+6.00)	18.67 (+ 6.80)	18.93 (+ 7.06)	24.00 (+2.67)	26.27 (+4.94)	26.13 (+4.80)
	FARE	56.40	64.20	44.70	18.93 (+5.33)	22.13 (+ 9.06)	22.00 (+ 8.93)	24.27 (+3.60)	26.00 (+5.33)	25.87 (+5.20)
	FDA- L^0	58.00	65.90	46.40	12.53 (+1.73)	14.40 (+ 3.60)	14.40 (+ 3.60)	20.80 (+1.20)	21.33 (+1.73)	21.07 (+1.47)
	FDA- L^{0-1}	58.10	66.80	46.10	12.67 (+1.20)	13.60 (+ 2.13)	13.06 (+ 1.59)	20.26 (-0.14)	19.87 (-0.53)	20.13 (-0.27)
	FDA- L^{all}	57.90	65.80	46.40	12.27 (+2.14)	12.93 (+ 2.80)	13.30 (+ 3.17)	20.53 (-0.27)	21.60 (+0.80)	21.60 (+0.80)
4/255	No Defense	58.50	65.90	46.30	17.47 (+7.07)	20.40 (+10.00)	20.40 (+10.00)	24.40 (+3.47)	26.53 (+5.60)	27.30 (+6.37)
	TeCoA	57.20	64.70	45.00	18.00 (+6.13)	19.07 (+ 7.20)	19.33 (+ 7.46)	24.13 (+2.80)	26.13 (+4.80)	26.13 (+4.80)
	FARE	56.40	64.20	44.70	18.93 (+5.86)	21.47 (+ 8.40)	22.00 (+ 8.93)	24.27 (+3.60)	26.27 (+5.60)	25.87 (+5.20)
	FDA- L^0	58.00	65.90	46.40	13.07 (+2.27)	14.40 (+ 3.60)	14.40 (+ 3.60)	20.53 (+0.93)	20.53 (+0.93)	20.80 (+1.20)
	FDA- L^{0-1}	58.10	66.80	46.10	12.80 (+1.33)	13.33 (+ 1.86)	13.33 (+ 1.86)	20.67 (+0.27)	19.87 (-0.53)	20.13 (-0.27)
	FDA- L^{all}	57.90	65.80	46.40	12.27 (+2.14)	13.20 (+ 3.07)	13.47 (+ 2.67)	20.13 (-0.67)	21.87 (+1.07)	21.73 (+0.93)

880
881
882
883
884
885Table 20: ASR of white-box *untargeted* attacks against **Text-to-Image Retrieval** on Flickr30k. The model is **ALBEF**. After-attack R@k values are presented in parentheses. All results are in percentage (%). ASR@1/5 indicates the drop of R@1/5 after attacks.

l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
2/255	No Defense	95.90	78.54 (21.46)	57.39 (42.61)	74.70 (25.30)	55.89 (44.11)	70.93 (29.07)	48.17 (51.83)
	TeCoA	91.20	81.22 (18.78)	60.20 (39.80)	76.02 (23.98)	58.13 (41.87)	67.95 (32.05)	46.01 (53.99)
	TeCoA + FDA- L^{0-1}	91.60	80.73 (19.27)	58.72 (41.28)	68.87 (31.13)	50.20 (49.80)	67.75 (32.25)	44.12 (55.88)
	FARE	91.10	74.39 (25.61)	51.52 (48.48)	54.35 (45.65)	70.95 (29.05)	49.29 (50.71)	23.79 (76.21)
	FARE + FDA- L^{0-1}	90.60	76.73 (23.27)	53.46 (46.54)	52.95 (47.05)	69.31 (30.69)	49.19 (50.81)	26.32 (73.68)
	No Defense	95.90	96.15 (3.85)	92.00 (8.00)	88.11 (11.89)	76.73 (23.27)	87.80 (12.20)	72.97 (27.03)
4/255	TeCoA	91.20	98.98 (1.02)	95.33 (4.67)	85.44 (14.56)	73.91 (26.09)	87.36 (12.64)	71.49 (28.51)
	TeCoA + FDA- L^{0-1}	91.60	98.68 (1.32)	94.73 (5.27)	85.09 (14.91)	72.41 (27.59)	87.02 (12.98)	69.47 (30.53)
	FARE	91.10	98.08 (1.92)	93.93 (6.07)	80.57 (19.43)	63.56 (36.44)	80.57 (19.43)	63.56 (36.44)
	FARE + FDA- L^{0-1}	90.60	98.17 (1.83)	93.90 (6.10)	79.67 (20.33)	62.60 (37.40)	80.18 (19.82)	58.33 (41.67)

898
899
900
901
902
903Table 21: ASR of white-box *untargeted* attacks against **Image-to-Text Retrieval** on Flickr30k. The model is **ALBEF**. After-attack R@k values are presented in parentheses. All results are in percentage (%). ASR@1/5 indicates the drop of R@1/5 after attacks.

l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
2/255	No Defense	85.60	84.85 (15.15)	69.91 (30.09)	77.34 (22.66)	64.58 (35.42)	76.02 (23.98)	57.65 (42.35)
	TeCoA	81.44	87.68 (12.32)	74.26 (25.74)	74.70 (25.30)	61.62 (38.38)	74.49 (25.51)	58.16 (41.84)
	TeCoA + FDA- L^{0-1}	81.80	88.59 (11.41)	74.02 (25.98)	73.91 (26.09)	59.89 (40.11)	73.26 (26.74)	56.63 (43.37)
	FARE	81.48	84.09 (15.91)	69.48 (30.52)	64.18 (35.82)	74.06 (25.94)	61.80 (38.20)	41.13 (58.87)
	FARE + FDA- L^{0-1}	80.14	83.61 (16.39)	68.98 (31.02)	63.70 (36.30)	73.27 (26.73)	61.39 (38.61)	61.25 (58.75)
	No Defense	85.60	97.08 (2.92)	93.61 (6.39)	89.11 (10.89)	81.30 (18.70)	88.34 (11.66)	77.89 (22.11)
4/255	TeCoA	81.44	99.13 (0.87)	96.51 (3.49)	86.92 (13.08)	79.35 (20.65)	90.81 (9.19)	81.08 (18.92)
	TeCoA + FDA- L^{0-1}	81.80	99.72 (0.76)	97.61 (2.39)	86.96 (13.04)	78.91 (21.09)	85.82 (14.18)	80.33 (19.67)
	FARE	81.48	98.27 (1.73)	95.45 (4.55)	84.96 (15.04)	74.06 (25.94)	84.96 (15.04)	74.06 (25.94)
	FARE + FDA- L^{0-1}	80.14	98.35 (1.65)	95.27 (4.73)	83.83 (16.17)	73.27 (26.73)	84.93 (15.07)	70.85 (29.15)

913
914
915
916
917

918
919
920921 Table 22: ASR of white-box *untargeted* attacks against **Text-to-Image Retrieval** on Flickr30k. The
922 model is **BLIP**. After-attack R@k values are presented in parentheses. All results are in percentage
923 (%). ASR@1/5 indicates the drop of R@1/5 after attacks.

l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
	No Defense	97.20	82.45(17.55)	61.79 (38.21)	80.94 (19.06)	67.40 (32.60)	72.22 (27.78)	52.96 (47.04)
2/255	TeCoA	81.50	55.33 (44.70)	32.79 (67.21)	47.73 (52.77)	29.22 (70.78)	44.16 (55.84)	26.40 (73.60)
	TeCoA + FDA- L^{0-1}	80.40	51.30 (48.70)	28.74 (71.26)	44.25 (55.75)	28.09 (71.91)	40.56 (59.44)	24.08 (75.92)
4/255	FARE	79.40	54.19 (45.81)	28.29 (71.71)	60.72 (+39.28)	36.13 (63.87)	58.65 (41.35)	34.93 (65.07)
	FARE + FDA- L^{0-1}	79.30	51.41 (48.59)	29.18 (70.82)	56.62 (+43.38)	33.08 (66.92)	54.01 (45.99)	30.59 (69.41)
	No Defense	97.20	99.90 (0.10)	99.60 (0.40)	95.69 (4.31)	90.57 (9.43)	93.18 (6.82)	83.75 (16.25)
2/255	TeCoA	81.50	96.97 (3.03)	93.94 (6.06)	80.95 (19.05)	68.40 (31.60)	80.98 (19.02)	66.38 (33.62)
	TeCoA + FDA- L^{0-1}	80.40	96.64 (3.36)	92.73 (7.27)	79.07 (20.93)	65.08 (31.92)	77.99 (22.01)	63.81 (36.19)
4/255	FARE	79.40	94.23 (5.77)	84.87 (15.13)	85.09 (14.91)	66.27 (33.73)	83.46 (16.54)	63.76 (36.42)
	FARE + FDA- L^{0-1}	79.30	94.14 (5.86)	82.86 (17.14)	82.43 (17.57)	63.12 (36.88)	80.04 (19.96)	60.95 (39.05)

934
935
936
937
938
939940 Table 23: ASR of white-box *untargeted* attacks against **Image-to-Text Retrieval** on Flickr30k. The
941 model is **BLIP**. After-attack R@k values are presented in parentheses. All results are in percentage
942 (%). ASR@1/5 indicates the drop of R@1/5 after attacks.

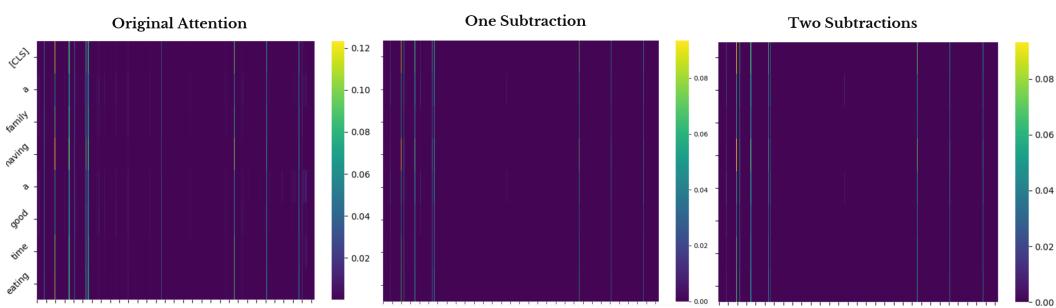
l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
	No Defense	87.30	89.68 (10.32)	78.74 (21.26)	85.45 (14.55)	74.51 (25.49)	80.19 (19.81)	65.22 (34.78)
2/255	TeCoA	68.00	62.58 (37.42)	41.35 (58.65)	53.87 (46.13)	34.11 (65.89)	50.67 (49.33)	31.41 (68.59)
	TeCoA + FDA- L^{0-1}	67.78	58.08 (41.92)	37.06 (62.94)	50.37 (49.63)	30.10 (69.90)	49.50 (50.50)	28.36 (71.64)
4/255	FARE	65.64	63.35 (36.65)	44.21 (55.79)	68.64 (31.36)	48.99 (51.01)	66.25 (33.75)	45.97 (54.03)
	FARE + FDA- L^{0-1}	66.22	59.73 (40.27)	39.97 (60.03)	64.06 (35.94)	44.39 (55.61)	61.54 (38.46)	41.74 (58.26)
	No Defense	84.02	99.90 (0.10)	99.79 (0.21)	96.70 (3.30)	93.09 (6.91)	94.01 (5.99)	88.34 (11.66)
2/255	TeCoA	68.00	97.42 (2.58)	93.13 (6.87)	82.94 (17.06)	69.33 (30.67)	80.98 (19.02)	66.38 (33.62)
	TeCoA + FDA- L^{0-1}	67.78	96.64 (3.36)	91.04 (8.96)	80.22 (19.78)	64.43 (35.57)	77.99 (22.01)	63.81 (36.19)
4/255	FARE	65.64	94.21 (5.79)	88.16 (11.84)	87.41 (12.59)	76.07 (23.93)	86.52 (13.48)	74.31 (25.69)
	FARE + FDA- L^{0-1}	66.22	94.45 (5.55)	88.40 (11.60)	86.00 (14.00)	72.89 (27.11)	84.24 (15.76)	71.37 (28.63)

953
954
955
956
957958 Table 24: Attack success rate (ASR) of *untargeted* PGD/APGD/MAPGD (masked APGD) against
959 for **Visual Grounding** (VG) on RefCOCO+. After-attack accuracies are presented in parentheses.
960 All results are in percentage (%). ASR indicates an accuracy drop after attacks.

l_∞	Defense	Clean Performance			Test A Split (\downarrow)			Test B Split (\downarrow)		
		Val.d	Test A	Test B	PGD	APGD	MAPGD	PGD	APGD	MAPGD
	No Defense	58.50	65.90	46.30	17.40 (48.50)	15.90 (50.00)	15.30 (50.60)	13.20 (33.10)	7.40 (38.90)	7.60 (38.70)
2/255	TeCoA	57.20	64.70	45.00	8.20 (56.50)	9.80 (54.90)	9.80 (54.90)	3.00 (42.00)	4.60 (40.40)	4.70 (40.30)
	TeCoA + FDA- L^{all}	57.10	64.90	45.30	8.30 (56.60)	9.80 (55.10)	9.70 (55.20)	3.60 (41.70)	4.80 (40.50)	5.00 (40.30)
4/255	FARE	56.40	64.20	44.70	9.40 (54.80)	11.80 (52.40)	12.00 (52.20)	2.90 (41.80)	4.70 (40.00)	4.60 (40.10)
	FARE + FDA- L^{all}	56.10	63.70	44.70	9.50 (54.50)	10.90 (53.10)	10.80 (53.20)	3.40 (41.00)	4.00 (40.40)	4.10 (40.30)
	No Defense	58.50	65.90	46.30	21.40 (44.50)	18.70 (47.20)	18.20 (47.70)	14.90 (31.40)	8.60 (37.70)	8.80 (37.50)
2/255	TeCoA	57.20	64.70	45.00	8.30 (56.40)	12.50 (52.20)	12.20 (52.50)	2.90 (42.10)	5.90 (39.10)	6.30 (38.70)
	TeCoA + FDA- L^{all}	57.10	64.90	45.30	7.90 (57.00)	11.30 (53.60)	11.60 (53.30)	3.40 (41.90)	5.90 (39.40)	6.10 (39.20)
4/255	FARE	56.40	64.20	44.70	9.40 (54.80)	11.80 (52.40)	13.60 (50.60)	3.10 (41.60)	5.60 (39.10)	5.70 (39.00)
	FARE + FDA- L^{all}	56.10	63.70	44.70	9.50 (54.50)	10.90 (53.10)	12.20 (51.80)	2.70 (41.70)	5.10 (39.30)	5.30 (39.10)

970
971

975
 976 **Table 25:** ASR of ablation studies against **Text-to-Image Retrieval** on Flickr30k. The model is
 977 **ALBEF**. Changes over unattacked values are presented in parentheses. All results are in percentage
 978 (%) . ASR@1/5 indicates the attack success rate of the adversarial image showing up in the top-1/5
 position of the targeted text queries.


l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
981	No Defense	95.90	0.30 (+0.20)	7.50 (+6.50)	14.60 (+14.50)	15.70 (+14.70)	50.10 (+50.00)	81.90 (+80.90)
982	FDA - \mathcal{T}	95.10	0.40 (+0.40)	6.40 (+6.20)	20.70 (+20.70)	23.70 (+23.50)	4.80 (+ 4.80)	28.30 (+28.10)
983	FDA - $\mathcal{T} \& \mathcal{H}$	93.80	0.50 (+0.50)	6.90 (+6.60)	16.80 (+20.90)	19.30 (+19.30)	13.60 (+13.60)	21.80 (+21.80)
984	FDA - \mathcal{H}	95.60	0.10 (+0.10)	7.30 (+6.60)	12.10 (+12.10)	13.40 (+12.70)	43.60 (+43.60)	73.90 (+73.20)
2/255	L^{all}, H^{all}	95.50	0.10 (+0.10)	7.30 (+6.80)	14.40 (+14.40)	15.90 (+15.40)	46.50 (+46.50)	84.90 (+84.40)
	L^{all}, H^{6-11}	95.00	0.20 (+0.20)	8.00 (+7.70)	16.70 (+16.70)	19.50 (+19.20)	48.90 (+48.90)	85.60 (+85.30)
	L^{all}, H^{0-5}	95.40	0.40 (+0.40)	5.90 (+5.20)	12.80 (+12.80)	14.20 (+13.50)	43.50 (+43.50)	77.30 (+76.60)
	L^0, H^{0-5}	95.60	0.10 (+0.10)	7.30 (+6.60)	12.10 (+12.10)	13.40 (+12.70)	43.60 (+43.60)	73.90 (+73.20)
	L^{0-1}, H^{0-5}	95.40	0.20 (+0.20)	6.90 (+6.10)	12.00 (+12.00)	12.80 (+12.00)	43.30 (+43.30)	73.60 (+72.80)
988	Full Dict	95.40	0.40 (+0.40)	5.90 (+5.20)	12.80 (+12.80)	14.20 (+13.50)	43.60 (+43.60)	77.50 (+77.00)
989	Shortlisted Dict	95.10	0.30 (+0.30)	6.60 (+6.10)	12.80 (+12.80)	14.20 (+13.50)	43.50 (+43.50)	77.30 (+76.60)
990	No Defense	95.90	4.30 (+4.20)	14.10 (+13.10)	16.50 (+16.40)	16.60 (+15.60)	75.00 (+74.90)	87.00 (+86.00)
991	FDA - \mathcal{T}	95.10	5.10 (+0.20)	20.00 (+19.80)	24.80 (+24.80)	25.50 (+25.30)	12.10 (+12.10)	40.00 (+39.80)
992	FDA - $\mathcal{T} \& \mathcal{H}$	93.80	4.70 (+4.70)	16.70 (+16.40)	20.90 (+20.90)	22.20 (+21.90)	19.90 (+19.90)	23.50 (+23.20)
993	FDA - \mathcal{H}	95.60	2.90 (+2.90)	13.50 (+12.80)	13.90 (+13.90)	14.10 (+13.40)	69.00 (+69.00)	82.40 (+81.70)
4/255	L^{all}, H^{all}	95.50	3.90 (+3.90)	14.70 (+14.70)	16.30 (+16.30)	16.70 (+16.20)	76.70 (+76.70)	92.10 (+91.60)
	L^{all}, H^{6-11}	95.00	3.30 (+3.30)	15.70 (+15.40)	19.60 (+19.60)	20.10 (+19.80)	77.70 (+77.70)	91.70 (+91.40)
	L^{all}, H^{0-5}	95.40	3.00 (+3.00)	13.50 (+12.80)	14.60 (+14.60)	14.80 (+14.10)	68.90 (+68.90)	84.10 (+83.40)
	L^0, H^{0-5}	95.60	2.90 (+2.90)	13.50 (+12.80)	13.90 (+13.90)	14.10 (+13.40)	69.00 (+69.00)	82.40 (+81.70)
	L^{0-1}, H^{0-5}	95.40	3.00 (+3.00)	12.40 (+11.60)	13.90 (+13.90)	14.00 (+13.20)	68.10 (+68.10)	81.30 (+80.50)
996	Full Dict	95.40	3.00 (+3.00)	13.50 (+12.80)	14.90 (+14.90)	15.20 (+14.70)	69.60 (+69.60)	83.90 (+83.40)
997	Shortlisted Dict	95.10	3.70 (+3.70)	11.60 (+11.10)	12.80 (+12.80)	14.20 (+13.50)	43.50 (+43.50)	77.30 (+76.60)

998
 999
 1000
 1001
 1002
 1003 **Table 26:** ASR of ablation studies against **Image-to-Text Retrieval** on Flickr30k. The model is
 1004 **ALBEF**. Changes over unattacked values are presented in parentheses. All results are in percentage
 1005 (%) . ASR@1/5 indicates the attack success rate of the adversarial image showing up in the top-1/5
 1006 position of the targeted text queries.

l_∞	Defense	Clean \uparrow	PGD		APGD		MAPGD	
			ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow	ASR@1 \downarrow	ASR@5 \downarrow
1009	No Defense	85.60	0.30 (+0.30)	1.10 (+1.10)	14.40 (+14.50)	15.40 (+15.40)	53.50 (+53.50)	63.50 (+63.50)
1010	FDA - \mathcal{T}	85.28	0.30 (+0.30)	1.50 (+1.50)	20.90 (+20.90)	22.30 (+22.30)	5.90 (+ 5.90)	10.40 (+10.40)
1011	FDA - $\mathcal{T} \& \mathcal{H}$	93.80	0.10 (+0.10)	1.10 (+1.10)	16.80 (+20.90)	17.80 (+17.80)	13.00 (+13.00)	15.10 (+15.10)
1012	FDA - \mathcal{H}	85.50	0.10 (+0.10)	0.60 (+0.60)	12.30 (+12.30)	12.80 (+12.80)	46.50 (+46.50)	56.20 (+56.20)
2/255	L^{all}, H^{all}	85.54	0.30 (+0.30)	1.00 (+1.00)	14.40 (+14.40)	15.00 (+15.00)	51.70 (+51.70)	60.90 (+60.90)
	L^{all}, H^{6-11}	84.96	0.30 (+0.30)	1.10 (+1.10)	17.30 (+17.30)	17.80 (+17.80)	55.60 (+48.90)	72.30 (+72.30)
	L^{all}, H^{0-5}	85.40	0.20 (+0.20)	1.00 (+1.00)	13.50 (+13.50)	13.70 (+13.70)	48.50 (+48.50)	58.00 (+58.00)
	L^0, H^{0-5}	85.50	0.10 (+0.10)	0.60 (+0.60)	12.30 (+12.30)	12.80 (+12.80)	46.50 (+46.50)	56.20 (+56.20)
	L^{0-1}, H^{0-5}	85.32	0.10 (+0.10)	0.80 (+0.80)	12.10 (+12.10)	12.50 (+12.50)	46.90 (+46.90)	55.90 (+55.90)
1016	L^{all}, H^{0-5} - Full Dict	84.46	0.40 (+0.40)	5.90 (+5.20)	13.50 (+13.70)	13.70 (+13.70)	48.00 (+48.00)	57.40 (+57.40)
1017	L^{all}, H^{0-5} - Shortlisted Dict	85.40	0.20 (+0.20)	1.00 (+1.00)	13.50 (+13.50)	13.70 (+13.70)	48.50 (+48.50)	58.00 (+58.00)
4/255	No Defense	85.60	4.50 (+4.50)	9.80 (+9.80)	15.70 (+15.70)	15.90 (+15.90)	74.40 (+74.40)	79.00 (+79.00)
	FDA - \mathcal{T}	95.10	6.40 (+6.40)	11.30 (+11.30)	24.50 (+24.50)	24.90 (+24.90)	15.50 (+15.50)	19.10 (+19.10)
	FDA - $\mathcal{T} \& \mathcal{H}$	93.80	5.10 (+5.10)	10.00 (+10.00)	20.80 (+20.80)	21.10 (+21.20)	19.80 (+19.80)	21.00 (+21.00)
	FDA - \mathcal{H}	85.50	3.30 (+3.30)	6.50 (+ 6.50)	13.70 (+13.70)	13.70 (+13.70)	68.80 (+68.80)	72.40 (+72.40)
1020	L^{all}, H^{all}	85.54	5.20 (+5.20)	7.90 (+7.90)	15.90 (+15.90)	16.10 (+16.10)	78.90 (+78.90)	82.50 (+82.50)
1021	L^{all}, H^{6-11}	84.96	4.10 (+4.10)	8.80 (+8.80)	19.10 (+19.10)	19.30 (+19.30)	82.00 (+82.00)	85.40 (+85.40)
1022	L^{all}, H^{0-5}	85.40	4.00 (+4.00)	7.80 (+7.80)	14.10 (+14.10)	14.20 (+14.20)	72.20 (+72.20)	75.20 (+75.20)
1023	L^0, H^{0-5}	85.50	3.30 (+3.30)	6.50 (+6.50)	13.70 (+13.70)	13.70 (+13.70)	68.80 (+68.80)	72.40 (+72.40)
1024	L^{0-1}, H^{0-5}	85.32	3.10 (+3.10)	6.90 (+6.90)	13.40 (+13.40)	13.50 (+13.50)	69.30 (+69.30)	72.30 (+72.30)
	L^{all}, H^{0-5} - Full Dict	84.46	3.60 (+3.60)	7.40 (+7.40)	14.10 (+14.10)	14.10 (+14.10)	70.80 (+70.80)	74.40 (+74.40)
1025	L^{all}, H^{0-5} - Shortlisted Dict	85.40	4.00 (+4.00)	7.80 (+7.80)	14.10 (+14.10)	14.20 (+14.20)	72.20 (+72.20)	75.20 (+75.20)

1026
1027
1028
1029
1030
1031
1032 Table 27: Zero-shot performance by applying FDA as a plug-and-play tool on T2IR, I2TR on
1033 ALBEF/BLIP and VG on ALBEF.

1034 Tasks	1035 Models	1036 Method	1037 Zero-shot Performance(↑)							1038 Average
1039 T2IR/I2TR	1040 ALBEF	w/o FDA	88.50	98.50	99.20	75.88	93.34	88.50	92.01	-
		L^{all}	89.10	98.60	99.40	75.56	93.70	96.66	92.17	↑ 0.16
		L^0	89.00	98.50	99.30	75.38	93.20	96.72	92.02	↑ 0.01
	1041 T2IR/I2TR	L^{0-1}	89.60	98.80	99.40	76.16	93.70	96.80	92.41	↑ 0.40
		w/o FDA	87.20	98.00	99.10	78.20	94.08	96.88	92.24	-
	1042 BLIP	L^{all}	88.70	98.40	99.30	78.80	94.20	96.88	92.71	↑ 0.47
		L^0	87.00	98.00	99.10	78.14	94.10	96.82	92.19	↓ 0.05
		L^{0-1}	87.10	98.00	99.10	78.12	94.16	96.82	92.22	↓ 0.02
	1043 VG	w/o FDA	54.50			61.77			43.10	53.12 -
		ALBEF	L^{all}	54.73			62.17			53.34 ↑ 0.22
			L^0	54.10			61.71			52.72 ↓ 0.40
			L^{0-1}	54.14			61.47			52.68 ↓ 0.44

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068 Figure 4: A heatmap of attention probabilities given the same image and text inputs. **Left:** Original
1069 attention probabilities are relatively ‘noisy’ and have several visible stripes with very low probabili-
1070 ties, implying the existence of some less relevant visual tokens that are activated, with negligible
1071 contributions. **Mid:** Attention probabilities with one FDA subtraction show much less aforemen-
1072 tioned ‘stripes’, with much cleaner and more focused attentions. However, some distractions still
1073 exist and remain visible. **Right:** Attention probabilities with two subtractions show the cleanest
1074 attention maps and have the most negligible distractions, with only strong activations on the most
1075 relevant visual tokens, i.e., with higher probabilities.

1076
1077
1078
1079