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Abstract

Semantic parsing converts natural language
paraphrases into structured logical expressions.
In this paper, we consider two such formal
representations: Propositional Logic (PL) and
First-order Logic (FOL). Due to the insuffi-
ciency of annotated data in this field, we use
dual reinforcement learning (RL) to make full
use of labeled and unlabeled data. We fur-
ther propose a brand new reward mechanism
to avoid the trouble of manually defining the
reward in RL. To utilize the training data ef-
ficiently and make the learning process con-
sistent with humans, we integrate curriculum
learning into our framework. Experimental re-
sults show that the proposed method outper-
forms competitors on different datasets. In ad-
dition to the technical contribution, we con-
struct a Chinese-PL/FOL dataset to make up
for the lack of data in this field. We aim to
release our code as well as the dataset to aid
further research in related tasks.

1 Introduction

Semantic parsing is the task of mapping natu-
ral language paraphrases into logical expressions.
In the past few years, parsing unstructured text
into logical expressions such as lambda calculus
(Dong and Lapata, 2016, 2018; Zhao et al., 2019),
SQL (Chang et al., 2020; Wang et al., 2020) and
SPARQL (Shi et al., 2020; Das et al., 2021) have
been extensively studied.

As two major logical forms of text represen-
tation, Propositional Logic (PL) and First-order
Logic (FOL) have gradually come to the fore in
recent years. Due to its strong logical reasoning
ability and interpretability, PL/FOL plays an in-
creasingly important role in natural language pro-
cessing (NLP) tasks. Ma et al. (2020) improve
the interpretability of RL policies by representing
states and actions using FOL. Kimura et al. (2021)
train a neural network by introducing directly inter-
pretable FOL facts and logical operators to achieve

Chinese-PL/FOL

Natural Language Paraphrase

There is a natural number that is odd and not a multiple of 3.
Symbolic Definition

A(z): xis odd; B(z,y): x is a multiple of y;

x: natural number; a: 3

Logical Expression

Je(A(z) A (—B(z, a)))

English-FOL

Natural Language Paraphrase

The volunteers include executives and professionals.
Logical Expression

exists x1.(volunteer(x1) & exists x2.

(executive(x2) & professional(x2) & include(x1, x2)))

Table 1: Examples of the Chinese-PL/FOL and English-
FOL dataset. Note that symbol definition only appears
in the Chinese-PL/FOL dataset.

fast convergence for the policy in RL. It is worth
noting that all of these tasks have a prerequisite, i.e.,
parsing natural language paraphrases into PL/FOL.
The results of parsing directly affect the perfor-
mance of downstream tasks. Thus, it is crucial to
have a strong semantic parser for PL/FOL.

Some researches have been conducted on the
conversion between natural language and PL/FOL.
One of the most typical methods is to treat the
parsing task as a sequence-to-sequence (Seq2seq)
generation problem (Singh et al., 2020; Levkovskyi
and Li, 2021). However, this approach still has the
following issues: 1) A large amount of labeled data
is required. Although Levkovskyi and Li (2021)
propose to generate data by templates, it leads to
a lack of diversity of the data. 2) The previous
works (Singh et al., 2020; Levkovskyi and Li, 2021)
only consider unidirectional generation, i.e., from
natural language to PL/FOL, and ignore that bidi-
rectional generation can further enhance the per-
formance of the models. 3) The training strategy
of the existing models is simple and ignores the
association between training samples.

To address these issues, we propose an effec-
tive framework for parsing natural language into



PL/FOL named Dual-(m)T5 (in Section 3.1), and
construct a new dataset called Chinese-PL/FOL
(in Section 4) to evaluate the framework. Inspired
by He et al. (2016); Cao et al. (2019), we model
the learning of logical expressions and natural
language generation as a dual task, which fully
exploits labeled and unlabeled data. The prime
task is parsing Natural Language into Logical
Expressions (NL2LE) and the dual task is an in-
verse of the prime task, which aims to gener-
ate Natural Language given Logical Expressions
(LE2NL). Each task requires a generation model,
and both of the models are jointly trained via RL
since the training process is non-differentiable.

We further design a brand new reward mecha-
nism in RL. For logical expression, we propose a
validity reward reflecting the structure of PL/FOL,
which is an effective signal indicating whether the
generated logical expression is well-structured. Dif-
ferent from the previous work (Cao et al., 2019),
where only a rule-based validity reward is em-
ployed, we further propose a model-based validity
reward, which can avoid the trouble of manually
defining the validity reward in RL. To reduce in-
formation loss in the process of dual reinforcement
learning, reconstruction reward is exploited to esti-
mate the similarity between the input of the prime
model and the output of the dual model.

Furthermore, due to the difference in the diffi-
culty of training samples, we incorporate curricu-
lum learning (Bengio et al., 2009) into our dual re-
inforcement learning framework, which makes the
training process of models closer to the humans’.
Experimental results show that our framework ef-
fectively parses natural language into PL/FOL and
consistently improves performance compared to
competitors.

The main contributions of this paper are summa-
rized as follows:

* We propose an effective learning framework
based on curriculum learning and dual rein-
forcement learning, which enables bidirec-
tional conversion between natural language
and PL/FOL. Experimental results show that
the proposed method outperforms competitors
on different datasets.

* We further propose a novel validity reward
built upon the structure of PL/FOL, which is
an effective signal indicating whether the gen-
erated logical expression is well-structured. A

new strategy is proposed for training a scoring
model that automatically computes the valid-
ity reward, which avoids the trouble of manu-
ally defining the reward in previous works.

* In addition to the technical contribution, we
release a new Chinese-PL/FOL dataset that
contains 1,263 Chinese-PL pairs and 1,464
Chinese-FOL pairs to make up for the lack of
data and aid further research in this field.

2  Overview

In this section, we introduce the preliminary of
PL/FOL and then formalize the problem definition.

2.1 Preliminary

FOL represents entities and actions in natural lan-
guage through quantified variables and consists of
predicates which take variables as arguments and
attach semantics to variables (Blackburn and Bos,
2005), while PL is a relatively simple logical ex-
pression and does not deal with quantified variables.
Formally, a predicate P(v1;ve;...;vy,) in PL/FOL
is an n-ary function of variables v; that are com-
bined through logical connectives: logical and (M),
logical or (V), logical not (), logical implication
(=), logical equivalent (++). What’s more, there
are two types of quantifiers for FOL: universal (V)
which specifies that sub-formula within its scope
is true for all instances of the variable and exis-
tential (3) which asserts existence of at least one
instance represented by a variable under which the
sub-formula holds true.

2.2 Problem Definition

As shown in Table 1, given a natural language
paraphrase s, the goal of this paper is to gener-
ate the corresponding logical expression e. Com-
pared with the English-FOL dataset, the Chinese-
PL/FOL dataset additionally includes the symbolic
definition. We believe that the introduction of sym-
bolic definition is beneficial because it guarantees
the uniqueness of PL/FOL, while the predicates in
the English-FOL dataset are not clear. However,
the English-FOL dataset still has its place, since
the symbolic definition is not always available in
real-world scenarios. Therefore, we conduct ex-
periments on both of the datasets. To facilitate the
following description, we will take the English-
FOL dataset as an example. The only difference
is that the input of the models should include the
symbol definition on the Chinese-PL/FOL dataset.
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Figure 1: The architecture of dual reinforcement learning. The prime task and dual task form a closed cycle. The
validity reward is used to estimate the quality of the generated logical expression and consists of both the rule-based
and model-based reward. The reconstruction reward is exploited to estimate the similarity between the input s of

the prime model and the output s’ of the dual model.

3 Methdology

In this section, we present the details of the dual
reinforcement learning algorithm for conversion
between natural language and PL/FOL.

3.1 Framework

As shown in Figure 1, our framework consists of
two sub-modules: the prime module NL2LE and
the dual module LE2NL. The prime module adopts
T5 (Raffel et al., 2019) / mT5 (Xue et al., 2021), a
(multilingual) pre-trained text-to-text transformer,
to generate the logical expression given a natural
language sentence. The dual module uses another
(m)T5 model to produce the sentence given a log-
ical expression. These two modules in a closed-
loop are trained by a reinforcement learning (RL)
method based on policy gradient (Sutton et al.,
2000). In RL, the state is denoted by the input
of the prime module, i.e., natural language sen-
tence s. The action in the prime and dual modules
is defined as the logical expression and natural lan-
guage sentence generation, respectively. The policy
is denoted as the parameters of the (m)T5 models
in the two modules.

3.2 Prime Module

The prime module (NL2LE) aims to transform nat-
ural language into PL/FOL. Given a sentence s, the
encoder of (m)T5 is exploited to encode the input
into a vector representation and the decoder learns
to generate logical expression e depending on the
encoding vector.

To ensure whether the generated logical expres-
sion is well-formed, we design a validity reward.
Different from the previous work (Cao et al., 2019),

where only rule-based validity reward is designed,
we additionally introduce model-based validity re-
ward by training a scoring model that can automat-
ically score the intermediate logical expression (in
Section 3.4.3).

Specifically, given a sentence s, the NL2LE
model generates k possible logical expressions
e1, e, - ,e; via nucleus sampling (Holtzman
et al., 2020). For each ¢;, we can obtain a valid-
ity reward RY™ (e;) composed of rule-based and
model-based reward. For the rule-based reward, we
estimate the quality of the generated logical expres-
sion by checking whether the logical expression is
a complete tree without parentheses mismatching.

Formally,
1
0

which returns 1 when e; has no error as mentioned
above, and returns O otherwise. For the model-
based reward, a scoring model is trained in advance.
Given a logical expression e;, the scoring model
will give a reward R™dl-vel(¢;) € [0,1]. Thus,
the final validity reward is computed as:

paired parentheses

le_val
RTU . (el)
¢ otherwise

Rze)al(ei) _ aRzule_val(ei)+(l _ O[) ngdel_val(ei)

2
where a hyper-parameter « € [0, 1] is exploited to
balance these two rewards.

After feeding e; into the LE2NL model (in
Section 3.3), we get a reconstruction reward
R¢ (s | e;) which forces the generated sentence
as similar to the original sentence s as possible.
A hyper-parameter 3 is exploited to balance these



two rewards in 7;,
ri = BRI (e;) + (1= B)RI (s | &)  (3)

where § € [0,1]. Let © yr2rr denote all the pa-
rameters of the NL2LE model. By utilizing policy
gradient (Sutton et al., 2000), the stochastic gradi-
ents of O nrorE is computed as:

k
A 1
v@NLZLEE[T] = L Z riv@NLzLE log P (ei | 53 @NL2LE)
i=1

“4)

3.3 Dual Module

The dual module (LE2NL) is an inverse of the
prime module, which aims to generate natural lan-
guage sentences given PL/FOL expressions. For-
mally, the input is the logical expression e; gener-
ated in the prime task, and the model is expected
to output the original sentence s. Reconstruction
reward is used to estimate the similarity between
the input of the prime model and the output of the
dual model. Here, we take log-likelihood as a re-
construction reward. Let O gon denote all the
parameters of the LE2NL model. The reconstruc-
tion reward can be formulated as:

R (s|e;) =1logP(s|e;OrLpant)  (5)

By utilizing policy gradient, the stochastic gradi-
ents of O pony, is computed as:

k
N 1-58
VGLEZI\"LE[T] - k Z Ve, log P (5 | €15 @LEZNL)
=1
(6)

3.4 Training Details

In this section, we supplement our training details,
and answer these questions:

* How to avoid training collapse in the pro-
cess of dual reinforcement learning? (Section
34.1)

* Since the amount of the labeled data is lim-
ited, how to use the labeled data effectively?
(Section 3.4.2)

* What is the scoring model in Section 3.2 and
how is it trained? (Section 3.4.3)

3.4.1 Supervisor Guidance & Reward
Baseline

In practice, we find that if the models are trained
with only the rewards from dual reinforcement
learning, the training process will easily collapse.
To keep the training process stable and prevent
the models from crashing, we fine-tune both of
the models with the labeled data before dual rein-
forcement learning starts. What’s more, after each
update according to Eq.(4) and Eq.(6), the models
are trained with the labeled data again, i.e., both
of the models are trained with dual reinforcement
learning and supervised learning alternately.
Besides supervisor guidance, to cope with high
variance in reward signals, we generate k inter-
mediate outputs as mentioned in Section 3.2 and
re-define reward signals via a reward baseline to
stabilize the training process. We investigate differ-
ent reward baseline choices, and it performs best
when we use the average of rewards within samples
per input. Thus, the final validity reward R** and
reconstruction reward R7° are as follows:

k
R (e;) = RY™ (e;) — % Y RS (D

i=1
1 k
(s | e) = Ri“(s | &) — 2 D RI“(s | &)
=1
(®)

3.4.2 Curriculum Learning

Intuitively, there is a difference in the difficulty
of training samples. To utilize the training data
effectively and make the learning process consis-
tent with humans, we integrate curriculum learning
(Bengio et al., 2009) into the training process. The
curriculum is arranged by sorting each sample into
training sets according to a specific ranking stan-
dard. Here, we consider the length of logic expres-
sions as an indicator of the learning order, i.e., the
longer the logical expression, the more difficult it is.
We first sort the training samples according to the
length of the logical expressions. At each training
step t, a batch of training samples is obtained from
the top f(t) portions of the entire sorted training
samples. Following Platanios et al. (2019), f(¢) is
defined as:

_ 2
t(l CO)—|—62 ©)

f(t) =min | 1, T 5



where ¢ represents the models start training us-
ing the co% easiest training samples, and T rep-
resents the duration of curriculum learning. Note
that curriculum learning is only used in the process
of supervised learning, and does not appear in the
process of dual reinforcement learning.

3.4.3 Training of the Scoring Model

Inspired by Shen et al. (2021), we design a Gener-
ation & Classification method to train the scoring
model as follows:

Before the training of the scoring model starts, a
NL2LE model should be fine-tuned first. The pro-
cess of fine-tuning can refer to Supervisor Guid-
ance. After that, given a natural language sen-
tence s, the fine-tuned NL2LE model generates k
possible logical expressions ey, ez, - - - , g via nu-
cleus sampling. Since the NL2LE model has been
fine-tuned, the generated logical expressions will
be similar or equal to the ground truth e. We de-
note {(s, e;)} as P, where the logical expression
e; equals to ground truth, and the others as .

For each (s,e;) pair, we get the last
layer hidden states of the NL2LE model’s
encoder hf{w"d”, cee hfgwder and decoder
hdecoder ... pdecoder - Then, the scoring model
is defined as follows:

—encod 1 —

h:nco er _ ﬁ Z hf}deeT (10)

7j=1

m
E;iecoder _ i Z h;jj@a)dﬂ' (11)

m
w = E:ncoderwl + bl (12)
v; = E?eCOdWWQ i b2 (13)
Rmedelval(gy — P(e; | s) (14)

= sigmoid ([u;; vi; |u; — v;|] W3 + bg) (15)
where Wyjgj3 and by g3 are trainable parameters
and [-; -] is the concatenation operation. The train-
ing loss L of the scoring model is cross-entropy
loss between the model’s output P (e; | s) and la-
bels,

1

L=——
[P UN]|

> log P (e; | 9)
e; €P
(16)

+ Z (1 —logP(e;|9))

€; eN

Note that the weight of the NL2LE model is fixed,
and only the scoring model is updated during the
backpropagation.

The details of the dual reinforcement learning
are provided in Algorithm 1, and the training pro-
cess of the scoring model is provided in Algorithm
2.

4 Dataset Collection

To make up for the lack of data in this field and to
verify the effectiveness of our proposed framework,
we construct a dataset containing natural language
and PL/FOL pairs. One way to do so is to define
templates first, and then obtain samples by filling
slots (Levkovskyi and Li, 2021). However, the re-
sulting dataset is limited by the lack of diversity
of templates. Instead, in this work, we use crowd-
sourcing to avoid this problem.

Since the task requires professional knowledge
about PL/FOL, the crowdsourcing team consists
of 8 Chinese graduate students who have a deep
understanding of PL/FOL. If the crowd workers are
required to construct data without any reference,
this will introduce inevitable troubles and label-
ing errors since PL/FOL is not intuitive to humans.
Aiming to reduce nontrivial human labor and en-
sure the quality of the dataset, our crowdsourcing
process consists of the following steps:

1. We first obtain PL/FOL exercise sets and
exam papers that require students to convert
natural language into PL/FOL from Baidu
Wenku!, one of the largest online platforms
for sharing documents in China.

2. The crowd workers are asked to organize these
exercises in a uniform format. Each sample
consists of three parts: natural language sen-
tence s, symbolic definition d, and logical
expression e, as shown in Table 1.

3. After that, we de-duplicate and annotate the
data so that each sample is annotated by two
other crowd workers. Note that PL/FOL is not
visible at this stage, and the crowd workers
are asked to provide the PL/FOL according to
natural language sentences and symbolic defi-
nitions. We keep the sample only when both
of the crowd workers have the same answer
as the initial one.

"https://wenku.baidu.com/


https://wenku.baidu.com/

PL FOL | TOTAL
Training 871 1,037 1,908
Validation 128 145 273
Test 264 282 546
Total 1263 1464 2727

Table 2: Statistics of the Chinese-PL/FOL Dataset

In this way, we obtain a total of 2,727 samples
consisting of 1,263 PL and 1,464 FOL with the cor-
responding natural language paraphrases and sym-
bolic definitions. To establish human performance,
we ask an additional 3 undergraduate and 2 gradu-
ate students who have acquired basic knowledge of
PL/FOL to provide logical expressions given nat-
ural language sentences and symbolic definitions
from the entire test set. We follow Levkovskyi and
Li (2021) and take Exact Match (EM) as an evalua-
tion measure. The detailed statistics of the dataset
are shown in Table 2.

5 Experiments

In this section, we evaluate our framework on the
English-FOL (Levkovskyi and Li, 2021) and our
Chinese-PL/FOL datasets.

5.1 Dataset

English-FOL It is generated by pre-defined
templates and contains natural language para-
phrases paired with FOL. We follow the train-
ing/validation/test splits as Levkovskyi and Li
(2021).

Chinese-PL/FOL The details of our dataset have
been introduced in Section 4. Since symbol defini-
tion only appears in this dataset, we concatenate it
with the original input, i.e. natural language para-
phrase in the prime module and logical expression
in the dual module. Due to the small amount of
training data, PL. and FOL are trained together.
Unlabeled Data Since neither the English-FOL nor
our Chinese-PL/FOL dataset provides unlabeled
data, to test our framework in a semi-supervised
setting, we design two schemes: In scheme A,
we keep a part of the training set as fully labeled
data and leave the rest as unlabeled data where
only natural language paraphrases should be used.
In scheme B, off-the-shelf paraphrase generation
models are leveraged, which can generate synony-
mous sentences from existing natural language
paraphrases in the datasets. According to our obser-
vation, since the paraphrase generation models are

trained on paraphrase generation datasets that are
different from the datasets we use, the generated
synonymous sentence is not particularly similar to
the original one, and the logical expressions corre-
sponding to the two sentences are different in most
cases. Thus, it is reasonable to treat the generated
sentences as unlabeled data. Refer to Appendix.A
for the details of the paraphrase generation models
and hyperparameter settings.

5.2 Overall Results

We compare our method with competitors on differ-
ent datasets in Table 3. TS5 is used on the English-
FOL dataset and mTS5 is used on the Chinese-
PL/FOL dataset. B.Unlabel represents unlabeled
data obtained by scheme B in Section 5.1.

From the results, we conclude that: 1) Our
models outperform the competitors on both of the
datasets, which shows the effectiveness and robust-
ness of our models. The performance of the models
is not affected by the different languages, which
shows the versatility of our models. 2) Even with-
out additional unlabeled data, our models outper-
form the competitors only with supervised learning,
e.g., Dual-T5-base gets much better performance
than T5-base on the English-FOL dataset. (Ac-
tually, Dual-T5-base even has better performance
than T5-large). 3) By introducing the unlabeled
data, the performance of the models is further im-
proved. The improvement on the Chinese-PL/FOL
dataset is more obvious than that on the English-
FOL dataset. We believe that this is because the
amount of the labeled data in the English-FOL
dataset is enough for the training of the models,
and it is difficult for the models to use the un-
labeled data for further improvement, while the
models can make full use of the unlabeled data to
compensate for the lack of the labeled data on the
Chinese-PL/FOL dataset. To confirm the perfor-
mance of the models in a semi-supervised setting,
we conduct further experiments in section 5.4.

5.3 Effectiveness on Small Data

To investigate the effectiveness of our method on
small data, we set different labeled ratios for the
training of the models. Note that unlabeled data is
not used in this setting, and we only vary the ratio
of the labeled data kept on the English-FOL dataset
from 20% to 100%.

In Table 4, we can find that our models have bet-
ter performance over all labeled ratios. Specifically,
Dual-T5-base still has a better performance than



. Chinese-PL/FOL
Method English-FOL P FOL | TOTAL
Human Performance - 87.94 | 79.92 | 84.07
text2log (Levkovskyi and Li, 2021) 89.54 - - -
T5-small (Raffel et al., 2019) / mT5-small (Xue et al., 2021) 89.95 64.02 | 58.87 | 61.35
T5-base (Raffel et al., 2019) / mT5-base (Xue et al., 2021) 91.30 70.08 | 61.35 | 65.57
T5-large (Raffel et al., 2019) 92.59 - - -
Dual-(m)T5-small (Ours) 90.98 64.39 | 61.70 | 63.00
Dual-(m)T5-base (Ours) 92.63 70.83 | 62.77 | 66.67
Dual-(m)T5-small + B.Unlabel (Ours) 91.03 70.83 | 63.48 | 67.03
Dual-(m)T5-base + B.Unlabel (Ours) 92.82 75.00 | 68.44 | 71.61

Table 3: EM on the test set of the English-FOL and Chinese-PL/FOL datasets. TS5 is used on the English-FOL
dataset and mTS5 is used on the Chinese-PL/FOL dataset. B.Unlabel represents the unlabeled data obtained by

scheme B in Section 5.1.

Labeled Ratio

Method

20% 40% 60% 80% 100%
text2log (Levkovskyi and Li, 2021) 47.19 77.06 85.31 88.53 89.54
T5-small (Raffel et al., 2019) 77.02 84.57 86.56 89.87 89.95
T5-base (Raffel et al., 2019) 84.58 88.05 89.34 90.81 91.30
T5-large (Raffel et al., 2019) 85.87 88.79 89.56 9197 92.59
Dual-T5-small (Ours) 7826 85.60 88.51 9094 90.98
Dual-T5-base (Ours) 86.97 89.82 90.64 92.23 92.63

Table 4: EM on the test set of the English-FOL dataset. It varies the ratio of the labeled data.

T5-large over all labeled ratios, which indicates
that even without using additional unlabeled data,
our model is capable of steadily outperforming
larger scale models. The performance of text2log
(Levkovskyi and Li, 2021) decreases rapidly with
the reduction of the labeled data, which proves
that the robustness of the model in previous works
needs to be enhanced.

5.4 Experiments on Semi-supervised Setting

To investigate whether the unlabeled data benefits
our framework and how much unlabeled data may
lead to the best result, we perform the following
experiment. We fix the ratio of the labeled data as
20% and change the ratio of the unlabeled data to
the rest of the data on the English-FOL dataset, i.e.,
scheme A mentioned in Section 5.1. The results
are shown in Table 5.

We can find that the performance of the models
doesn’t improve constantly when the amount of un-
labeled data is increased, which is consistent with
the previous work (Cao et al., 2019). We conclude
that the performance of the model should be deter-

Method Unlabeled Ratio FOL
Dual-T5-small 0% 78.26
+ A.Unlabel 25% 79.29(+1.03)
+ A.Unlabel 50% 79.18(+0.92)
+ A.Unlabel 75% 78.45(+0.19)
+ A.Unlabel 100% 77.85(-0.41)
Dual-T5-base 0% 86.97
+ A.Unlabel 25% 88.95(+1.98)
+ A.Unlabel 50% 89.18(+2.21)
+ A.Unlabel 75% 89.34(+2.37)
+ A.Unlabel 100% 88.98(+2.01)

Table 5: EM on the test set of the English-FOL dataset.
It fixes the ratio of the labeled data as 20% and varies
the ratio of the unlabeled data to the rest data. A.Unlabel
represents the unlabeled data obtained by scheme A in
Section 5.1.

mined by two factors: 1) the relative proportion of
labeled and unlabeled data, 2) the number of pa-
rameters in the model. A proper ratio of unlabeled
data is crucial, and a model with more parameters
tends to perform better with more unlabeled data.



On the contrary, when a model with few parameters
is trained with a large amount of unlabeled data by
dual reinforcement learning, it may converge to a
wrong equilibrium state to adapt to the unlabeled
data and forget what has been learned from the
labeled data, which leads to poor performance.

5.5 Ablation Analysis

To enhance the performance of our framework, we
introduce dual reinforcement learning and curricu-
lum learning. To evaluate the effectiveness of each
of them, we perform an ablation analysis on the
Chinese-PL/FOL dataset. The results are shown in
Table 6.

Method PL FOL | TOTAL

Dual-mT5-small  64.39 61.70 | 63.00
w/o curriculum  64.02 60.64 | 62.27
w/o dual 63.64 59.57 | 61.54

Dual-mT5-base 70.83 62.77 | 66.67
w/o curriculum 70.45 62.06 | 66.12
w/o dual 70.08 61.70 | 65.75

Table 6: EM of Dual-mT5 ablations on the test set of
the Chinese-PL/FOL dataset.

From the results, we conclude that: 1) Both dual
reinforcement learning and curriculum learning are
helpful for the task since the effect of the mod-
els becomes worse in the absence of any learn-
ing method. 2) Dual reinforcement learning has
a greater impact on model performance than cur-
riculum learning when labeled data is limited. 3)
Curriculum learning has a greater impact on FOL
than PL. This is intuitive because FOL expressions
are more complex than PL expressions, and cur-
riculum learning helps the models gradually adapt
to difficult samples.

6 Related Works

Parsing Natural Language into PL/FOL Logic
expressions are commonly written in standard-
ized mathematical notation, and learning this no-
tation typically requires many years of experience.
Barker-Plummer et al. (2009) study why students
find translating natural language sentences into
FOL hard and systematically categorize the prob-
lems encountered by students. Bansal (2015) pro-
poses a rule-based framework that leverages the
Part-of-speech structure of natural language sen-
tences. Limited to the manually defined rules and
a small amount of experimental data, the system

can only work under a specific setting. With the
development of deep learning, neural approaches
alleviate the need for manually defining lexicons.
Singh et al. (2020) examine the capability of neural
models on parsing FOL from natural language sen-
tences. They propose to disentangle the representa-
tions of different token categories while generating
FOL and use category prediction as an auxiliary
task. Unfortunately, they do not release the dataset
they construct. Levkovskyi and Li (2021) release
a dataset containing English-FOL sentence pairs
and set up a baseline encoder-decoder model, but
the dataset is not challenging for it is generated
by templates, and the vanilla model can get a high
score.

Dual Learning Dual learning is first proposed to
improve neural machine translation (NMT) (He
et al., 2016). The author makes full use of mono-
lingual corpus to improve the effectiveness of the
model through dual learning. Xia et al. (2017)
introduce a probabilistic duality term to serve as
a data-dependent regularizer to better guide the
dual supervised learning. Since then, the idea of
dual learning has been applied in various tasks,
such as Question Answering/Generation (Tang
et al., 2017), Open-domain Information Extrac-
tion/Narration (Sun et al., 2018), Semantic Parsing
with lambda calculus (Cao et al., 2019, 2020), and
Emotion-Controllable Response Generation (Shen
and Feng, 2020). We are the first to introduce the
curriculum and dual reinforcement learning in con-
version between natural language and PL/FOL to
the best of our knowledge.

7 Conclusion

In this paper, we introduce Dual-(m)T35, an effec-
tive framework based on curriculum and dual re-
inforcement learning, which enables bidirectional
conversion between natural language and PL/FOL.
We also propose a brand new reward mechanism
to avoid manually defining the reward in RL. Ex-
perimental results show that the proposed method
outperforms competitors on the datasets. In addi-
tion to the technical contribution, a new Chinese-
PL/FOL dataset is constructed to make up for the
lack of data in this field. In the future, we will
further supplement our dataset since the size of the
current dataset is not large. We will also exploit
more lightweight models to accelerate the training
process of dual reinforcement learning.
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A Implemention Details

We use Pytorch? library for implementing an auto-
differentiable graph of our computations. We lever-
age the HuggingFace’s implementation of (m)T5>.
For supervisor guidance, (m)T5-small/base are
trained with an AdamW optimizer (Loshchilov and
Hutter, 2018) initialized with a learning rate of
le-3/1e-4 with a decay rate of le-3/1le-2 respec-
tively. For dual reinforcement learning, models
are trained with an AdamW optimizer initialized
with a learning rate of le-5 with a decay rate of
le-3 for (m)T5-small/base. The batch size is set
to 8 for supervisor guidance and 2 for dual rein-
forcement learning, and the max input and output
sentence length are set to 128. Training runs until
the performance on validation set does not improve.

We use PEGASUS (Zhang et al., 2020) fine-
tuned for paraphrasing* for english paraphrasing,
and RoFormer-Sim (Su, 2021) 3 for chinese para-
phrasing. For each natural language paraphrase
in the datasets, we generate one synonymous sen-
tence as unlabeled data. (Generating top-k syn-
onymous sentences for each natural language para-
phrase, where £ > 1, may lead to poor perfor-
mance because the unlabeled data is too similar to
each other).

Our models run on a computer with Intel(R)
Xeon(R) Gold 6230R CPU, 2 GeForce RTX 3090,
64GB of RAM, and Ubuntu 20.04.

https://pytorch.org

*https://huggingface.co/models

*https://huggingface.co/tuner007/
pegasus_paraphrase

Shttps://github.com/zhuiyiTechnology/
roformer-sim
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B Algorithm

Algorithm 1 Dual Reinforcement Learning

Input: Supervised dataset £ = {(s, e)}; Unsuper-
vised dataset Y = {s’}; number of nucleus sam-
pling k; hyper parameters « and (3; curriculum
training batches T’
Output: NL2LE model
1: Fine-tune NL2LE model with (s, e) from £
and curriculum learning based on Eq.(9)

2: Fine-tune LE2NL model with (e, s) from £

3: repeat

4:  Get mini-batch {s} from LU U

5. foralls € {s} do

6: NL2LE model generates k logical expres-

sions {e;} for s via nuclelus sampling

7: foralle; € {e;} do

8: Obtain validity reward for e; w.r.t.
Eq. (2)

9: Obtain reconstruction reward for e;
w.r.t. Eq. (5)

10: Compute total reward for e; w.r.t.
Eq.(3)

11: end for

12:  end for

13:  Compute gradient of O yrorp W.r.t. Eq.(4)

14:  Compute gradient of O gony W.r.t. Eq.(6)

15:  Update © nror g and O gonp, with gradient

16:  Get mini-batch {(s, e)} from £

17:  Fine-tune NL2LE model with {(s, e) }

18:  Fine-tune LE2NL model with {(e, s)}

19: until NL2LE model converges
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Algorithm 2 Training Scoring Model

Input: Supervised dataset £ = {(s, e)}; number
of nucleus sampling k; Fine-tuned NL2LE model
Output: scoring model
1. P+ {},N — {}
2: for all (s,e) € L do
3:  Given s, fine-tuned NL2LE model gener-
ates k logical expressions {e;} via nucleus
sampling
forall e; € {¢;} do
if e; equals e then
P+ PU{(s,ei)}
else
N +— N U {<8, €z>}
end if
10:  end for
11: end for
12: repeat
13:  Update scoring model w.r.t. Eq.(16)
14: until scoring model converges

D A A
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