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Abstract

Semantic parsing converts natural language001
paraphrases into structured logical expressions.002
In this paper, we consider two such formal003
representations: Propositional Logic (PL) and004
First-order Logic (FOL). Due to the insuffi-005
ciency of annotated data in this field, we use006
dual reinforcement learning (RL) to make full007
use of labeled and unlabeled data. We fur-008
ther propose a brand new reward mechanism009
to avoid the trouble of manually defining the010
reward in RL. To utilize the training data ef-011
ficiently and make the learning process con-012
sistent with humans, we integrate curriculum013
learning into our framework. Experimental re-014
sults show that the proposed method outper-015
forms competitors on different datasets. In ad-016
dition to the technical contribution, we con-017
struct a Chinese-PL/FOL dataset to make up018
for the lack of data in this field. We aim to019
release our code as well as the dataset to aid020
further research in related tasks.021

1 Introduction022

Semantic parsing is the task of mapping natu-023

ral language paraphrases into logical expressions.024

In the past few years, parsing unstructured text025

into logical expressions such as lambda calculus026

(Dong and Lapata, 2016, 2018; Zhao et al., 2019),027

SQL (Chang et al., 2020; Wang et al., 2020) and028

SPARQL (Shi et al., 2020; Das et al., 2021) have029

been extensively studied.030

As two major logical forms of text represen-031

tation, Propositional Logic (PL) and First-order032

Logic (FOL) have gradually come to the fore in033

recent years. Due to its strong logical reasoning034

ability and interpretability, PL/FOL plays an in-035

creasingly important role in natural language pro-036

cessing (NLP) tasks. Ma et al. (2020) improve037

the interpretability of RL policies by representing038

states and actions using FOL. Kimura et al. (2021)039

train a neural network by introducing directly inter-040

pretable FOL facts and logical operators to achieve041

Chinese-PL/FOL
Natural Language Paraphrase
There is a natural number that is odd and not a multiple of 3.
Symbolic Definition
A(x): x is odd; B(x, y): x is a multiple of y;
x: natural number; a: 3
Logical Expression
∃x(A(x) ∧ (¬B(x, a)))

English-FOL
Natural Language Paraphrase
The volunteers include executives and professionals.
Logical Expression
exists x1.(volunteer(x1) & exists x2.
(executive(x2) & professional(x2) & include(x1, x2)))

Table 1: Examples of the Chinese-PL/FOL and English-
FOL dataset. Note that symbol definition only appears
in the Chinese-PL/FOL dataset.

fast convergence for the policy in RL. It is worth 042

noting that all of these tasks have a prerequisite, i.e., 043

parsing natural language paraphrases into PL/FOL. 044

The results of parsing directly affect the perfor- 045

mance of downstream tasks. Thus, it is crucial to 046

have a strong semantic parser for PL/FOL. 047

Some researches have been conducted on the 048

conversion between natural language and PL/FOL. 049

One of the most typical methods is to treat the 050

parsing task as a sequence-to-sequence (Seq2seq) 051

generation problem (Singh et al., 2020; Levkovskyi 052

and Li, 2021). However, this approach still has the 053

following issues: 1) A large amount of labeled data 054

is required. Although Levkovskyi and Li (2021) 055

propose to generate data by templates, it leads to 056

a lack of diversity of the data. 2) The previous 057

works (Singh et al., 2020; Levkovskyi and Li, 2021) 058

only consider unidirectional generation, i.e., from 059

natural language to PL/FOL, and ignore that bidi- 060

rectional generation can further enhance the per- 061

formance of the models. 3) The training strategy 062

of the existing models is simple and ignores the 063

association between training samples. 064

To address these issues, we propose an effec- 065

tive framework for parsing natural language into 066
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PL/FOL named Dual-(m)T5 (in Section 3.1), and067

construct a new dataset called Chinese-PL/FOL068

(in Section 4) to evaluate the framework. Inspired069

by He et al. (2016); Cao et al. (2019), we model070

the learning of logical expressions and natural071

language generation as a dual task, which fully072

exploits labeled and unlabeled data. The prime073

task is parsing Natural Language into Logical074

Expressions (NL2LE) and the dual task is an in-075

verse of the prime task, which aims to gener-076

ate Natural Language given Logical Expressions077

(LE2NL). Each task requires a generation model,078

and both of the models are jointly trained via RL079

since the training process is non-differentiable.080

We further design a brand new reward mecha-081

nism in RL. For logical expression, we propose a082

validity reward reflecting the structure of PL/FOL,083

which is an effective signal indicating whether the084

generated logical expression is well-structured. Dif-085

ferent from the previous work (Cao et al., 2019),086

where only a rule-based validity reward is em-087

ployed, we further propose a model-based validity088

reward, which can avoid the trouble of manually089

defining the validity reward in RL. To reduce in-090

formation loss in the process of dual reinforcement091

learning, reconstruction reward is exploited to esti-092

mate the similarity between the input of the prime093

model and the output of the dual model.094

Furthermore, due to the difference in the diffi-095

culty of training samples, we incorporate curricu-096

lum learning (Bengio et al., 2009) into our dual re-097

inforcement learning framework, which makes the098

training process of models closer to the humans’.099

Experimental results show that our framework ef-100

fectively parses natural language into PL/FOL and101

consistently improves performance compared to102

competitors.103

The main contributions of this paper are summa-104

rized as follows:105

• We propose an effective learning framework106

based on curriculum learning and dual rein-107

forcement learning, which enables bidirec-108

tional conversion between natural language109

and PL/FOL. Experimental results show that110

the proposed method outperforms competitors111

on different datasets.112

• We further propose a novel validity reward113

built upon the structure of PL/FOL, which is114

an effective signal indicating whether the gen-115

erated logical expression is well-structured. A116

new strategy is proposed for training a scoring 117

model that automatically computes the valid- 118

ity reward, which avoids the trouble of manu- 119

ally defining the reward in previous works. 120

• In addition to the technical contribution, we 121

release a new Chinese-PL/FOL dataset that 122

contains 1,263 Chinese-PL pairs and 1,464 123

Chinese-FOL pairs to make up for the lack of 124

data and aid further research in this field. 125

2 Overview 126

In this section, we introduce the preliminary of 127

PL/FOL and then formalize the problem definition. 128

2.1 Preliminary 129

FOL represents entities and actions in natural lan- 130

guage through quantified variables and consists of 131

predicates which take variables as arguments and 132

attach semantics to variables (Blackburn and Bos, 133

2005), while PL is a relatively simple logical ex- 134

pression and does not deal with quantified variables. 135

Formally, a predicate P (v1; v2; ...; vn) in PL/FOL 136

is an n-ary function of variables vi that are com- 137

bined through logical connectives: logical and (∧), 138

logical or (∨), logical not (¬), logical implication 139

(→), logical equivalent (↔). What’s more, there 140

are two types of quantifiers for FOL: universal (∀) 141

which specifies that sub-formula within its scope 142

is true for all instances of the variable and exis- 143

tential (∃) which asserts existence of at least one 144

instance represented by a variable under which the 145

sub-formula holds true. 146

2.2 Problem Definition 147

As shown in Table 1, given a natural language 148

paraphrase s, the goal of this paper is to gener- 149

ate the corresponding logical expression e. Com- 150

pared with the English-FOL dataset, the Chinese- 151

PL/FOL dataset additionally includes the symbolic 152

definition. We believe that the introduction of sym- 153

bolic definition is beneficial because it guarantees 154

the uniqueness of PL/FOL, while the predicates in 155

the English-FOL dataset are not clear. However, 156

the English-FOL dataset still has its place, since 157

the symbolic definition is not always available in 158

real-world scenarios. Therefore, we conduct ex- 159

periments on both of the datasets. To facilitate the 160

following description, we will take the English- 161

FOL dataset as an example. The only difference 162

is that the input of the models should include the 163

symbol definition on the Chinese-PL/FOL dataset. 164
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(m)T5-Decoder

(m)T5-Encoder (m)T5-Decoder

Prime Task

(NL2LE)

Dual Task

(LE2NL)

(m)T5-Encoder

The volunteers include executives and professionals.

exists x1.(volunteer(x1) & exists x2.(executive(x2) &professional (x2) & include(x1,x2)))

𝒔

𝒆

Validity Reward

Reconstruction Reward

Some volunteers are executives and some are professionals.

𝒔′

Figure 1: The architecture of dual reinforcement learning. The prime task and dual task form a closed cycle. The
validity reward is used to estimate the quality of the generated logical expression and consists of both the rule-based
and model-based reward. The reconstruction reward is exploited to estimate the similarity between the input s of
the prime model and the output s′ of the dual model.

3 Methdology165

In this section, we present the details of the dual166

reinforcement learning algorithm for conversion167

between natural language and PL/FOL.168

3.1 Framework169

As shown in Figure 1, our framework consists of170

two sub-modules: the prime module NL2LE and171

the dual module LE2NL. The prime module adopts172

T5 (Raffel et al., 2019) / mT5 (Xue et al., 2021), a173

(multilingual) pre-trained text-to-text transformer,174

to generate the logical expression given a natural175

language sentence. The dual module uses another176

(m)T5 model to produce the sentence given a log-177

ical expression. These two modules in a closed-178

loop are trained by a reinforcement learning (RL)179

method based on policy gradient (Sutton et al.,180

2000). In RL, the state is denoted by the input181

of the prime module, i.e., natural language sen-182

tence s. The action in the prime and dual modules183

is defined as the logical expression and natural lan-184

guage sentence generation, respectively. The policy185

is denoted as the parameters of the (m)T5 models186

in the two modules.187

3.2 Prime Module188

The prime module (NL2LE) aims to transform nat-189

ural language into PL/FOL. Given a sentence s, the190

encoder of (m)T5 is exploited to encode the input191

into a vector representation and the decoder learns192

to generate logical expression e depending on the193

encoding vector.194

To ensure whether the generated logical expres-195

sion is well-formed, we design a validity reward.196

Different from the previous work (Cao et al., 2019),197

where only rule-based validity reward is designed, 198

we additionally introduce model-based validity re- 199

ward by training a scoring model that can automat- 200

ically score the intermediate logical expression (in 201

Section 3.4.3). 202

Specifically, given a sentence s, the NL2LE 203

model generates k possible logical expressions 204

e1, e2, · · · , ek via nucleus sampling (Holtzman 205

et al., 2020). For each ei, we can obtain a valid- 206

ity reward Rval
e (ei) composed of rule-based and 207

model-based reward. For the rule-based reward, we 208

estimate the quality of the generated logical expres- 209

sion by checking whether the logical expression is 210

a complete tree without parentheses mismatching. 211

Formally, 212

Rrule_val
e (ei) =

{
1 paired parentheses

0 otherwise
(1) 213

which returns 1 when ei has no error as mentioned 214

above, and returns 0 otherwise. For the model- 215

based reward, a scoring model is trained in advance. 216

Given a logical expression ei, the scoring model 217

will give a reward Rmodel_val
e (ei) ∈ [0, 1]. Thus, 218

the final validity reward is computed as: 219

Rval
e (ei) = αRrule_val

e (ei)+(1− α)Rmodel_val
e (ei)

(2) 220

where a hyper-parameter α ∈ [0, 1] is exploited to 221

balance these two rewards. 222

After feeding ei into the LE2NL model (in 223

Section 3.3), we get a reconstruction reward 224

Rrec
s (s | ei) which forces the generated sentence 225

as similar to the original sentence s as possible. 226

A hyper-parameter β is exploited to balance these 227
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two rewards in ri,228

ri = βRval
e (ei) + (1− β)Rrec

s (s | ei) (3)229

where β ∈ [0, 1]. Let ΘNL2LE denote all the pa-230

rameters of the NL2LE model. By utilizing policy231

gradient (Sutton et al., 2000), the stochastic gradi-232

ents of ΘNL2LE is computed as:233

∇ΘNL2LE
Ê[r] =

1

k

k∑
i=1

ri∇ΘNL2LE
logP (ei | s; ΘNL2LE)

(4)234

3.3 Dual Module235

The dual module (LE2NL) is an inverse of the236

prime module, which aims to generate natural lan-237

guage sentences given PL/FOL expressions. For-238

mally, the input is the logical expression ei gener-239

ated in the prime task, and the model is expected240

to output the original sentence s. Reconstruction241

reward is used to estimate the similarity between242

the input of the prime model and the output of the243

dual model. Here, we take log-likelihood as a re-244

construction reward. Let ΘLE2NL denote all the245

parameters of the LE2NL model. The reconstruc-246

tion reward can be formulated as:247

Rrec
s (s | ei) = logP (s | ei; ΘLE2NL) (5)248

By utilizing policy gradient, the stochastic gradi-249

ents of ΘLE2NL is computed as:250

∇ΘLE2NL
Ê[r] =

1− β

k

k∑
i=1

∇ΘLE2NL
logP (s | ei; ΘLE2NL)

(6)251

3.4 Training Details252

In this section, we supplement our training details,253

and answer these questions:254

• How to avoid training collapse in the pro-255

cess of dual reinforcement learning? (Section256

3.4.1)257

• Since the amount of the labeled data is lim-258

ited, how to use the labeled data effectively?259

(Section 3.4.2)260

• What is the scoring model in Section 3.2 and261

how is it trained? (Section 3.4.3)262

3.4.1 Supervisor Guidance & Reward 263

Baseline 264

In practice, we find that if the models are trained 265

with only the rewards from dual reinforcement 266

learning, the training process will easily collapse. 267

To keep the training process stable and prevent 268

the models from crashing, we fine-tune both of 269

the models with the labeled data before dual rein- 270

forcement learning starts. What’s more, after each 271

update according to Eq.(4) and Eq.(6), the models 272

are trained with the labeled data again, i.e., both 273

of the models are trained with dual reinforcement 274

learning and supervised learning alternately. 275

Besides supervisor guidance, to cope with high 276

variance in reward signals, we generate k inter- 277

mediate outputs as mentioned in Section 3.2 and 278

re-define reward signals via a reward baseline to 279

stabilize the training process. We investigate differ- 280

ent reward baseline choices, and it performs best 281

when we use the average of rewards within samples 282

per input. Thus, the final validity reward Rval
e and 283

reconstruction reward Rrec
s are as follows: 284

Rval
e (ei) = Rval

e (ei)−
1

k

k∑
i=1

Rval
e (ei) (7) 285

Rrec
s (s | ei) = Rrec

s (s | ei)−
1

k

k∑
i=1

Rrec
s (s | ei)

(8)

286

3.4.2 Curriculum Learning 287

Intuitively, there is a difference in the difficulty 288

of training samples. To utilize the training data 289

effectively and make the learning process consis- 290

tent with humans, we integrate curriculum learning 291

(Bengio et al., 2009) into the training process. The 292

curriculum is arranged by sorting each sample into 293

training sets according to a specific ranking stan- 294

dard. Here, we consider the length of logic expres- 295

sions as an indicator of the learning order, i.e., the 296

longer the logical expression, the more difficult it is. 297

We first sort the training samples according to the 298

length of the logical expressions. At each training 299

step t, a batch of training samples is obtained from 300

the top f(t) portions of the entire sorted training 301

samples. Following Platanios et al. (2019), f(t) is 302

defined as: 303

f(t) = min

1,

√
t
(
1− c20

)
T

+ c20

 (9) 304
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where c0 represents the models start training us-305

ing the c0% easiest training samples, and T rep-306

resents the duration of curriculum learning. Note307

that curriculum learning is only used in the process308

of supervised learning, and does not appear in the309

process of dual reinforcement learning.310

3.4.3 Training of the Scoring Model311

Inspired by Shen et al. (2021), we design a Gener-312

ation & Classification method to train the scoring313

model as follows:314

Before the training of the scoring model starts, a315

NL2LE model should be fine-tuned first. The pro-316

cess of fine-tuning can refer to Supervisor Guid-317

ance. After that, given a natural language sen-318

tence s, the fine-tuned NL2LE model generates k319

possible logical expressions e1, e2, · · · , ek via nu-320

cleus sampling. Since the NL2LE model has been321

fine-tuned, the generated logical expressions will322

be similar or equal to the ground truth e. We de-323

note {⟨s, ei⟩} as P , where the logical expression324

ei equals to ground truth, and the others as N .325

For each ⟨s, ei⟩ pair, we get the last326

layer hidden states of the NL2LE model’s327

encoder hencoderi1 , · · · , hencoderin , and decoder328

hdecoderi1 , · · · , hdecoderim . Then, the scoring model329

is defined as follows:330

h
encoder
i =

1

n

n∑
j=1

hencoderij (10)331

h
decoder
i =

1

m

m∑
j=1

hdecoderij (11)332

ui = h
encoder
i W1 + b1 (12)333

vi = h
decoder
i W2 + b2 (13)334

Rmodel_val
e (ei) = P (ei | s) (14)335

= sigmoid ([ui; vi; |ui − vi|]W3 + b3) (15)336

where W1|2|3 and b1|2|3 are trainable parameters337

and [·; ·] is the concatenation operation. The train-338

ing loss L of the scoring model is cross-entropy339

loss between the model’s output P (ei | s) and la-340

bels,341

L =− 1

|P ∪ N |

∑
ei∈P

logP (ei | s)

+
∑
ei∈N

(1− logP (ei | s))

 (16)342

Note that the weight of the NL2LE model is fixed, 343

and only the scoring model is updated during the 344

backpropagation. 345

The details of the dual reinforcement learning 346

are provided in Algorithm 1, and the training pro- 347

cess of the scoring model is provided in Algorithm 348

2. 349

4 Dataset Collection 350

To make up for the lack of data in this field and to 351

verify the effectiveness of our proposed framework, 352

we construct a dataset containing natural language 353

and PL/FOL pairs. One way to do so is to define 354

templates first, and then obtain samples by filling 355

slots (Levkovskyi and Li, 2021). However, the re- 356

sulting dataset is limited by the lack of diversity 357

of templates. Instead, in this work, we use crowd- 358

sourcing to avoid this problem. 359

Since the task requires professional knowledge 360

about PL/FOL, the crowdsourcing team consists 361

of 8 Chinese graduate students who have a deep 362

understanding of PL/FOL. If the crowd workers are 363

required to construct data without any reference, 364

this will introduce inevitable troubles and label- 365

ing errors since PL/FOL is not intuitive to humans. 366

Aiming to reduce nontrivial human labor and en- 367

sure the quality of the dataset, our crowdsourcing 368

process consists of the following steps: 369

1. We first obtain PL/FOL exercise sets and 370

exam papers that require students to convert 371

natural language into PL/FOL from Baidu 372

Wenku1, one of the largest online platforms 373

for sharing documents in China. 374

2. The crowd workers are asked to organize these 375

exercises in a uniform format. Each sample 376

consists of three parts: natural language sen- 377

tence s, symbolic definition d, and logical 378

expression e, as shown in Table 1. 379

3. After that, we de-duplicate and annotate the 380

data so that each sample is annotated by two 381

other crowd workers. Note that PL/FOL is not 382

visible at this stage, and the crowd workers 383

are asked to provide the PL/FOL according to 384

natural language sentences and symbolic defi- 385

nitions. We keep the sample only when both 386

of the crowd workers have the same answer 387

as the initial one. 388

1https://wenku.baidu.com/
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PL FOL TOTAL
Training 871 1,037 1,908
Validation 128 145 273
Test 264 282 546
Total 1263 1464 2727

Table 2: Statistics of the Chinese-PL/FOL Dataset

In this way, we obtain a total of 2,727 samples389

consisting of 1,263 PL and 1,464 FOL with the cor-390

responding natural language paraphrases and sym-391

bolic definitions. To establish human performance,392

we ask an additional 3 undergraduate and 2 gradu-393

ate students who have acquired basic knowledge of394

PL/FOL to provide logical expressions given nat-395

ural language sentences and symbolic definitions396

from the entire test set. We follow Levkovskyi and397

Li (2021) and take Exact Match (EM) as an evalua-398

tion measure. The detailed statistics of the dataset399

are shown in Table 2.400

5 Experiments401

In this section, we evaluate our framework on the402

English-FOL (Levkovskyi and Li, 2021) and our403

Chinese-PL/FOL datasets.404

5.1 Dataset405

English-FOL It is generated by pre-defined406

templates and contains natural language para-407

phrases paired with FOL. We follow the train-408

ing/validation/test splits as Levkovskyi and Li409

(2021).410

Chinese-PL/FOL The details of our dataset have411

been introduced in Section 4. Since symbol defini-412

tion only appears in this dataset, we concatenate it413

with the original input, i.e. natural language para-414

phrase in the prime module and logical expression415

in the dual module. Due to the small amount of416

training data, PL and FOL are trained together.417

Unlabeled Data Since neither the English-FOL nor418

our Chinese-PL/FOL dataset provides unlabeled419

data, to test our framework in a semi-supervised420

setting, we design two schemes: In scheme A,421

we keep a part of the training set as fully labeled422

data and leave the rest as unlabeled data where423

only natural language paraphrases should be used.424

In scheme B, off-the-shelf paraphrase generation425

models are leveraged, which can generate synony-426

mous sentences from existing natural language427

paraphrases in the datasets. According to our obser-428

vation, since the paraphrase generation models are429

trained on paraphrase generation datasets that are 430

different from the datasets we use, the generated 431

synonymous sentence is not particularly similar to 432

the original one, and the logical expressions corre- 433

sponding to the two sentences are different in most 434

cases. Thus, it is reasonable to treat the generated 435

sentences as unlabeled data. Refer to Appendix.A 436

for the details of the paraphrase generation models 437

and hyperparameter settings. 438

5.2 Overall Results 439

We compare our method with competitors on differ- 440

ent datasets in Table 3. T5 is used on the English- 441

FOL dataset and mT5 is used on the Chinese- 442

PL/FOL dataset. B.Unlabel represents unlabeled 443

data obtained by scheme B in Section 5.1. 444

From the results, we conclude that: 1) Our 445

models outperform the competitors on both of the 446

datasets, which shows the effectiveness and robust- 447

ness of our models. The performance of the models 448

is not affected by the different languages, which 449

shows the versatility of our models. 2) Even with- 450

out additional unlabeled data, our models outper- 451

form the competitors only with supervised learning, 452

e.g., Dual-T5-base gets much better performance 453

than T5-base on the English-FOL dataset. (Ac- 454

tually, Dual-T5-base even has better performance 455

than T5-large). 3) By introducing the unlabeled 456

data, the performance of the models is further im- 457

proved. The improvement on the Chinese-PL/FOL 458

dataset is more obvious than that on the English- 459

FOL dataset. We believe that this is because the 460

amount of the labeled data in the English-FOL 461

dataset is enough for the training of the models, 462

and it is difficult for the models to use the un- 463

labeled data for further improvement, while the 464

models can make full use of the unlabeled data to 465

compensate for the lack of the labeled data on the 466

Chinese-PL/FOL dataset. To confirm the perfor- 467

mance of the models in a semi-supervised setting, 468

we conduct further experiments in section 5.4. 469

5.3 Effectiveness on Small Data 470

To investigate the effectiveness of our method on 471

small data, we set different labeled ratios for the 472

training of the models. Note that unlabeled data is 473

not used in this setting, and we only vary the ratio 474

of the labeled data kept on the English-FOL dataset 475

from 20% to 100%. 476

In Table 4, we can find that our models have bet- 477

ter performance over all labeled ratios. Specifically, 478

Dual-T5-base still has a better performance than 479
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Method English-FOL
Chinese-PL/FOL

PL FOL TOTAL
Human Performance - 87.94 79.92 84.07
text2log (Levkovskyi and Li, 2021) 89.54 - - -
T5-small (Raffel et al., 2019) / mT5-small (Xue et al., 2021) 89.95 64.02 58.87 61.35
T5-base (Raffel et al., 2019) / mT5-base (Xue et al., 2021) 91.30 70.08 61.35 65.57
T5-large (Raffel et al., 2019) 92.59 - - -
Dual-(m)T5-small (Ours) 90.98 64.39 61.70 63.00
Dual-(m)T5-base (Ours) 92.63 70.83 62.77 66.67
Dual-(m)T5-small + B.Unlabel (Ours) 91.03 70.83 63.48 67.03
Dual-(m)T5-base + B.Unlabel (Ours) 92.82 75.00 68.44 71.61

Table 3: EM on the test set of the English-FOL and Chinese-PL/FOL datasets. T5 is used on the English-FOL
dataset and mT5 is used on the Chinese-PL/FOL dataset. B.Unlabel represents the unlabeled data obtained by
scheme B in Section 5.1.

Method
Labeled Ratio

20% 40% 60% 80% 100%

text2log (Levkovskyi and Li, 2021) 47.19 77.06 85.31 88.53 89.54
T5-small (Raffel et al., 2019) 77.02 84.57 86.56 89.87 89.95
T5-base (Raffel et al., 2019) 84.58 88.05 89.34 90.81 91.30
T5-large (Raffel et al., 2019) 85.87 88.79 89.56 91.97 92.59

Dual-T5-small (Ours) 78.26 85.60 88.51 90.94 90.98
Dual-T5-base (Ours) 86.97 89.82 90.64 92.23 92.63

Table 4: EM on the test set of the English-FOL dataset. It varies the ratio of the labeled data.

T5-large over all labeled ratios, which indicates480

that even without using additional unlabeled data,481

our model is capable of steadily outperforming482

larger scale models. The performance of text2log483

(Levkovskyi and Li, 2021) decreases rapidly with484

the reduction of the labeled data, which proves485

that the robustness of the model in previous works486

needs to be enhanced.487

5.4 Experiments on Semi-supervised Setting488

To investigate whether the unlabeled data benefits489

our framework and how much unlabeled data may490

lead to the best result, we perform the following491

experiment. We fix the ratio of the labeled data as492

20% and change the ratio of the unlabeled data to493

the rest of the data on the English-FOL dataset, i.e.,494

scheme A mentioned in Section 5.1. The results495

are shown in Table 5.496

We can find that the performance of the models497

doesn’t improve constantly when the amount of un-498

labeled data is increased, which is consistent with499

the previous work (Cao et al., 2019). We conclude500

that the performance of the model should be deter-501

Method Unlabeled Ratio FOL
Dual-T5-small 0% 78.26

+ A.Unlabel 25% 79.29(+1.03)
+ A.Unlabel 50% 79.18(+0.92)
+ A.Unlabel 75% 78.45(+0.19)
+ A.Unlabel 100% 77.85(-0.41)

Dual-T5-base 0% 86.97
+ A.Unlabel 25% 88.95(+1.98)
+ A.Unlabel 50% 89.18(+2.21)
+ A.Unlabel 75% 89.34(+2.37)
+ A.Unlabel 100% 88.98(+2.01)

Table 5: EM on the test set of the English-FOL dataset.
It fixes the ratio of the labeled data as 20% and varies
the ratio of the unlabeled data to the rest data. A.Unlabel
represents the unlabeled data obtained by scheme A in
Section 5.1.

mined by two factors: 1) the relative proportion of 502

labeled and unlabeled data, 2) the number of pa- 503

rameters in the model. A proper ratio of unlabeled 504

data is crucial, and a model with more parameters 505

tends to perform better with more unlabeled data. 506
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On the contrary, when a model with few parameters507

is trained with a large amount of unlabeled data by508

dual reinforcement learning, it may converge to a509

wrong equilibrium state to adapt to the unlabeled510

data and forget what has been learned from the511

labeled data, which leads to poor performance.512

5.5 Ablation Analysis513

To enhance the performance of our framework, we514

introduce dual reinforcement learning and curricu-515

lum learning. To evaluate the effectiveness of each516

of them, we perform an ablation analysis on the517

Chinese-PL/FOL dataset. The results are shown in518

Table 6.519

Method PL FOL TOTAL
Dual-mT5-small 64.39 61.70 63.00

w/o curriculum 64.02 60.64 62.27
w/o dual 63.64 59.57 61.54

Dual-mT5-base 70.83 62.77 66.67
w/o curriculum 70.45 62.06 66.12
w/o dual 70.08 61.70 65.75

Table 6: EM of Dual-mT5 ablations on the test set of
the Chinese-PL/FOL dataset.

From the results, we conclude that: 1) Both dual520

reinforcement learning and curriculum learning are521

helpful for the task since the effect of the mod-522

els becomes worse in the absence of any learn-523

ing method. 2) Dual reinforcement learning has524

a greater impact on model performance than cur-525

riculum learning when labeled data is limited. 3)526

Curriculum learning has a greater impact on FOL527

than PL. This is intuitive because FOL expressions528

are more complex than PL expressions, and cur-529

riculum learning helps the models gradually adapt530

to difficult samples.531

6 Related Works532

Parsing Natural Language into PL/FOL Logic533

expressions are commonly written in standard-534

ized mathematical notation, and learning this no-535

tation typically requires many years of experience.536

Barker-Plummer et al. (2009) study why students537

find translating natural language sentences into538

FOL hard and systematically categorize the prob-539

lems encountered by students. Bansal (2015) pro-540

poses a rule-based framework that leverages the541

Part-of-speech structure of natural language sen-542

tences. Limited to the manually defined rules and543

a small amount of experimental data, the system544

can only work under a specific setting. With the 545

development of deep learning, neural approaches 546

alleviate the need for manually defining lexicons. 547

Singh et al. (2020) examine the capability of neural 548

models on parsing FOL from natural language sen- 549

tences. They propose to disentangle the representa- 550

tions of different token categories while generating 551

FOL and use category prediction as an auxiliary 552

task. Unfortunately, they do not release the dataset 553

they construct. Levkovskyi and Li (2021) release 554

a dataset containing English-FOL sentence pairs 555

and set up a baseline encoder-decoder model, but 556

the dataset is not challenging for it is generated 557

by templates, and the vanilla model can get a high 558

score. 559

Dual Learning Dual learning is first proposed to 560

improve neural machine translation (NMT) (He 561

et al., 2016). The author makes full use of mono- 562

lingual corpus to improve the effectiveness of the 563

model through dual learning. Xia et al. (2017) 564

introduce a probabilistic duality term to serve as 565

a data-dependent regularizer to better guide the 566

dual supervised learning. Since then, the idea of 567

dual learning has been applied in various tasks, 568

such as Question Answering/Generation (Tang 569

et al., 2017), Open-domain Information Extrac- 570

tion/Narration (Sun et al., 2018), Semantic Parsing 571

with lambda calculus (Cao et al., 2019, 2020), and 572

Emotion-Controllable Response Generation (Shen 573

and Feng, 2020). We are the first to introduce the 574

curriculum and dual reinforcement learning in con- 575

version between natural language and PL/FOL to 576

the best of our knowledge. 577

7 Conclusion 578

In this paper, we introduce Dual-(m)T5, an effec- 579

tive framework based on curriculum and dual re- 580

inforcement learning, which enables bidirectional 581

conversion between natural language and PL/FOL. 582

We also propose a brand new reward mechanism 583

to avoid manually defining the reward in RL. Ex- 584

perimental results show that the proposed method 585

outperforms competitors on the datasets. In addi- 586

tion to the technical contribution, a new Chinese- 587

PL/FOL dataset is constructed to make up for the 588

lack of data in this field. In the future, we will 589

further supplement our dataset since the size of the 590

current dataset is not large. We will also exploit 591

more lightweight models to accelerate the training 592

process of dual reinforcement learning. 593
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For supervisor guidance, (m)T5-small/base are 770

trained with an AdamW optimizer (Loshchilov and 771

Hutter, 2018) initialized with a learning rate of 772

1e-3/1e-4 with a decay rate of 1e-3/1e-2 respec- 773

tively. For dual reinforcement learning, models 774

are trained with an AdamW optimizer initialized 775

with a learning rate of 1e-5 with a decay rate of 776

1e-3 for (m)T5-small/base. The batch size is set 777

to 8 for supervisor guidance and 2 for dual rein- 778

forcement learning, and the max input and output 779
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mance because the unlabeled data is too similar to 790

each other). 791

Our models run on a computer with Intel(R) 792

Xeon(R) Gold 6230R CPU, 2 GeForce RTX 3090, 793
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pegasus_paraphrase
5https://github.com/ZhuiyiTechnology/

roformer-sim
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B Algorithm795

Algorithm 1 Dual Reinforcement Learning
Input: Supervised dataset L = {⟨s, e⟩}; Unsuper-
vised dataset U = {s′}; number of nucleus sam-
pling k; hyper parameters α and β; curriculum
training batches T
Output: NL2LE model

1: Fine-tune NL2LE model with ⟨s, e⟩ from L
and curriculum learning based on Eq.(9)

2: Fine-tune LE2NL model with ⟨e, s⟩ from L
3: repeat
4: Get mini-batch {s} from L ∪ U
5: for all s ∈ {s} do
6: NL2LE model generates k logical expres-

sions {ei} for s via nuclelus sampling
7: for all ei ∈ {ei} do
8: Obtain validity reward for ei w.r.t.

Eq. (2)
9: Obtain reconstruction reward for ei

w.r.t. Eq. (5)
10: Compute total reward for ei w.r.t.

Eq.(3)
11: end for
12: end for
13: Compute gradient of ΘNL2LE w.r.t. Eq.(4)
14: Compute gradient of ΘLE2NL w.r.t. Eq.(6)
15: Update ΘNL2LE and ΘLE2NL with gradient
16: Get mini-batch {⟨s, e⟩} from L
17: Fine-tune NL2LE model with {⟨s, e⟩}
18: Fine-tune LE2NL model with {⟨e, s⟩}
19: until NL2LE model converges

Algorithm 2 Training Scoring Model
Input: Supervised dataset L = {⟨s, e⟩}; number
of nucleus sampling k; Fine-tuned NL2LE model
Output: scoring model

1: P ← {},N ← {}
2: for all ⟨s, e⟩ ∈ L do
3: Given s, fine-tuned NL2LE model gener-

ates k logical expressions {ei} via nucleus
sampling

4: for all ei ∈ {ei} do
5: if ei equals e then
6: P ← P ∪ {⟨s, ei⟩}
7: else
8: N ← N ∪ {⟨s, ei⟩}
9: end if

10: end for
11: end for
12: repeat
13: Update scoring model w.r.t. Eq.(16)
14: until scoring model converges
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