Parsing Natural Language into Propositional and First-Order Logic with Dual Reinforcement Learning

Anonymous ACL submission

Abstract

Semantic parsing converts natural language paraphrases into structured logical expressions. In this paper, we consider two such formal representations: Propositional Logic (PL) and First-order Logic (FOL). Due to the insufficiency of annotated data in this field, we use dual reinforcement learning (RL) to make full use of labeled and unlabeled data. We further propose a brand new reward mechanism to avoid the trouble of manually defining the reward in RL. To utilize the training data efficiently and make the learning process consistent with humans, we integrate curriculum learning into our framework. Experimental results show that the proposed method outperforms competitors on different datasets. In addition to the technical contribution, we construct a Chinese-PL/FOL dataset to make up for the lack of data in this field. We aim to release our code as well as the dataset to aid further research in related tasks.

1 Introduction

004

005

011

015

017

034

040

Semantic parsing is the task of mapping natural language paraphrases into logical expressions. In the past few years, parsing unstructured text into logical expressions such as lambda calculus (Dong and Lapata, 2016, 2018; Zhao et al., 2019), SQL (Chang et al., 2020; Wang et al., 2020) and SPARQL (Shi et al., 2020; Das et al., 2021) have been extensively studied.

As two major logical forms of text representation, Propositional Logic (PL) and First-order Logic (FOL) have gradually come to the fore in recent years. Due to its strong logical reasoning ability and interpretability, PL/FOL plays an increasingly important role in natural language processing (NLP) tasks. Ma et al. (2020) improve the interpretability of RL policies by representing states and actions using FOL. Kimura et al. (2021) train a neural network by introducing directly interpretable FOL facts and logical operators to achieve

Chinese-PL/FOL	
Natural Language Paraphrase	
There is a natural number that is odd and not a multiple of 3	
Symbolic Definition	
A(x): x is odd; $B(x, y)$: x is a multiple of y;	
x: natural number; a: 3	
Logical Expression	
$\exists x (A(x) \land (\neg B(x, a)))$	
English-FOL	
Natural Language Paraphrase	
The volunteers include executives and professionals.	
Logical Expression	
exists x1.(volunteer(x1) & exists x2.	
(executive(x2) & professional(x2) & include(x1, x2)))	

Table 1: Examples of the Chinese-PL/FOL and English-FOL dataset. Note that symbol definition only appears in the Chinese-PL/FOL dataset.

fast convergence for the policy in RL. It is worth noting that all of these tasks have a prerequisite, i.e., parsing natural language paraphrases into PL/FOL. The results of parsing directly affect the performance of downstream tasks. Thus, it is crucial to have a strong semantic parser for PL/FOL. 042

043

044

045

046

051

057

060

061

062

063

064

065

Some researches have been conducted on the conversion between natural language and PL/FOL. One of the most typical methods is to treat the parsing task as a sequence-to-sequence (Seq2seq) generation problem (Singh et al., 2020; Levkovskyi and Li, 2021). However, this approach still has the following issues: 1) A large amount of labeled data is required. Although Levkovskyi and Li (2021) propose to generate data by templates, it leads to a lack of diversity of the data. 2) The previous works (Singh et al., 2020; Levkovskyi and Li, 2021) only consider unidirectional generation, i.e., from natural language to PL/FOL, and ignore that bidirectional generation can further enhance the performance of the models. 3) The training strategy of the existing models is simple and ignores the association between training samples.

To address these issues, we propose an effective framework for parsing natural language into PL/FOL named **Dual-(m)T5** (in Section 3.1), and construct a new dataset called **Chinese-PL/FOL** (in Section 4) to evaluate the framework. Inspired by He et al. (2016); Cao et al. (2019), we model the learning of logical expressions and natural language generation as a dual task, which fully exploits labeled and unlabeled data. The prime task is parsing Natural Language into Logical Expressions (NL2LE) and the dual task is an inverse of the prime task, which aims to generate Natural Language given Logical Expressions (LE2NL). Each task requires a generation model, and both of the models are jointly trained via RL since the training process is non-differentiable.

067

068

069

072

073

077

078

081

085

086

880

090

095

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

We further design a brand new reward mechanism in RL. For logical expression, we propose a validity reward reflecting the structure of PL/FOL, which is an effective signal indicating whether the generated logical expression is well-structured. Different from the previous work (Cao et al., 2019), where only a rule-based validity reward is employed, we further propose a model-based validity reward, which can avoid the trouble of manually defining the validity reward in RL. To reduce information loss in the process of dual reinforcement learning, reconstruction reward is exploited to estimate the similarity between the input of the prime model and the output of the dual model.

Furthermore, due to the difference in the difficulty of training samples, we incorporate curriculum learning (Bengio et al., 2009) into our dual reinforcement learning framework, which makes the training process of models closer to the humans'. Experimental results show that our framework effectively parses natural language into PL/FOL and consistently improves performance compared to competitors.

The main contributions of this paper are summarized as follows:

• We propose an effective learning framework based on curriculum learning and dual reinforcement learning, which enables bidirectional conversion between natural language and PL/FOL. Experimental results show that the proposed method outperforms competitors on different datasets.

• We further propose a novel validity reward built upon the structure of PL/FOL, which is an effective signal indicating whether the generated logical expression is well-structured. A new strategy is proposed for training a scoring model that automatically computes the validity reward, which avoids the trouble of manually defining the reward in previous works. 117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

• In addition to the technical contribution, we release a new Chinese-PL/FOL dataset that contains 1,263 Chinese-PL pairs and 1,464 Chinese-FOL pairs to make up for the lack of data and aid further research in this field.

2 Overview

In this section, we introduce the preliminary of PL/FOL and then formalize the problem definition.

2.1 Preliminary

FOL represents entities and actions in natural language through quantified variables and consists of predicates which take variables as arguments and attach semantics to variables (Blackburn and Bos, 2005), while PL is a relatively simple logical expression and does not deal with quantified variables. Formally, a predicate $P(v_1; v_2; ...; v_n)$ in PL/FOL is an n-ary function of variables v_i that are combined through logical connectives: *logical and* (\land) , logical or (\lor) , logical not (\neg) , logical implication (\rightarrow) , *logical equivalent* (\leftrightarrow) . What's more, there are two types of quantifiers for FOL: *universal* (\forall) which specifies that sub-formula within its scope is true for all instances of the variable and exis*tential* (\exists) which asserts existence of at least one instance represented by a variable under which the sub-formula holds true.

2.2 **Problem Definition**

As shown in Table 1, given a natural language paraphrase s, the goal of this paper is to generate the corresponding logical expression e. Compared with the English-FOL dataset, the Chinese-PL/FOL dataset additionally includes the symbolic definition. We believe that the introduction of symbolic definition is beneficial because it guarantees the uniqueness of PL/FOL, while the predicates in the English-FOL dataset are not clear. However, the English-FOL dataset still has its place, since the symbolic definition is not always available in real-world scenarios. Therefore, we conduct experiments on both of the datasets. To facilitate the following description, we will take the English-FOL dataset as an example. The only difference is that the input of the models should include the symbol definition on the Chinese-PL/FOL dataset.

Figure 1: The architecture of dual reinforcement learning. The prime task and dual task form a closed cycle. The validity reward is used to estimate the quality of the generated logical expression and consists of both the rule-based and model-based reward. The reconstruction reward is exploited to estimate the similarity between the input s of the prime model and the output s' of the dual model.

3 Methology

165

166

167

168

169

170

171

173

174

175

176

177

178

179

181

187

188

190

191

194

195

196

197

In this section, we present the details of the dual reinforcement learning algorithm for conversion between natural language and PL/FOL.

3.1 Framework

As shown in Figure 1, our framework consists of two sub-modules: the prime module NL2LE and the dual module LE2NL. The prime module adopts T5 (Raffel et al., 2019) / mT5 (Xue et al., 2021), a (multilingual) pre-trained text-to-text transformer, to generate the logical expression given a natural language sentence. The dual module uses another (m)T5 model to produce the sentence given a logical expression. These two modules in a closedloop are trained by a reinforcement learning (RL) method based on policy gradient (Sutton et al., 2000). In RL, the state is denoted by the input of the prime module, i.e., natural language sentence s. The action in the prime and dual modules is defined as the logical expression and natural language sentence generation, respectively. The policy is denoted as the parameters of the (m)T5 models in the two modules.

3.2 Prime Module

The prime module (NL2LE) aims to transform natural language into PL/FOL. Given a sentence s, the encoder of (m)T5 is exploited to encode the input into a vector representation and the decoder learns to generate logical expression e depending on the encoding vector.

To ensure whether the generated logical expression is well-formed, we design a validity reward. Different from the previous work (Cao et al., 2019), where only rule-based validity reward is designed, we additionally introduce model-based validity reward by training a scoring model that can automatically score the intermediate logical expression (in Section 3.4.3). 198

199

201

202

203

204

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

223

224

225

Specifically, given a sentence s, the NL2LE model generates k possible logical expressions e_1, e_2, \dots, e_k via nucleus sampling (Holtzman et al., 2020). For each e_i , we can obtain a validity reward $R_e^{val}(e_i)$ composed of rule-based and model-based reward. For the rule-based reward, we estimate the quality of the generated logical expression by checking whether the logical expression is a complete tree without parentheses mismatching. Formally,

$$R_e^{rule_val}(e_i) = \begin{cases} 1 & paired parentheses \\ 0 & otherwise \end{cases}$$
(1)

which returns 1 when e_i has no error as mentioned above, and returns 0 otherwise. For the modelbased reward, a scoring model is trained in advance. Given a logical expression e_i , the scoring model will give a reward $R_e^{model_val}(e_i) \in [0, 1]$. Thus, the final validity reward is computed as:

$$R_e^{val}(e_i) = \alpha R_e^{rule_val}(e_i) + (1 - \alpha) R_e^{model_val}(e_i)$$
(2)

where a hyper-parameter $\alpha \in [0, 1]$ is exploited to balance these two rewards.

After feeding e_i into the LE2NL model (in Section 3.3), we get a reconstruction reward $R_s^{rec}(s \mid e_i)$ which forces the generated sentence as similar to the original sentence s as possible. A hyper-parameter β is exploited to balance these

3

263

264

265

273274275276

277

278

279

280

281

283

271

272

200

287

290

291

292

293

294

295

296

297

298

300

301

302

303

two rewards in r_i ,

$$r_i = \beta R_e^{val} \left(e_i \right) + (1 - \beta) R_s^{rec} \left(s \mid e_i \right)$$
 (3)

where $\beta \in [0, 1]$. Let Θ_{NL2LE} denote all the parameters of the NL2LE model. By utilizing policy gradient (Sutton et al., 2000), the stochastic gradients of Θ_{NL2LE} is computed as:

$$\nabla_{\Theta_{NL2LE}} \hat{E}[r] = \frac{1}{k} \sum_{i=1}^{k} r_i \nabla_{\Theta_{NL2LE}} \log P\left(e_i \mid s; \Theta_{NL2LE}\right)$$
(4)

3.3 Dual Module

The dual module (LE2NL) is an inverse of the prime module, which aims to generate natural language sentences given PL/FOL expressions. Formally, the input is the logical expression e_i generated in the prime task, and the model is expected to output the original sentence s. Reconstruction reward is used to estimate the similarity between the input of the prime model and the output of the dual model. Here, we take log-likelihood as a reconstruction reward. Let Θ_{LE2NL} denote all the parameters of the LE2NL model. The reconstruction reward can be formulated as:

$$R_s^{rec}\left(s \mid e_i\right) = \log P\left(s \mid e_i; \Theta_{LE2NL}\right) \tag{5}$$

By utilizing policy gradient, the stochastic gradients of Θ_{LE2NL} is computed as:

$$\nabla_{\Theta_{LE2NL}} \hat{E}[r] = \frac{1-\beta}{k} \sum_{i=1}^{k} \nabla_{\Theta_{LE2NL}} \log P\left(s \mid e_i; \Theta_{LE2NL}\right)$$
(6)

3.4 Training Details

In this section, we supplement our training details, and answer these questions:

- How to avoid training collapse in the process of dual reinforcement learning? (Section 3.4.1)
- Since the amount of the labeled data is limited, how to use the labeled data effectively? (Section 3.4.2)
- What is the scoring model in Section 3.2 and how is it trained? (Section 3.4.3)

3.4.1 Supervisor Guidance & Reward Baseline

In practice, we find that if the models are trained with only the rewards from dual reinforcement learning, the training process will easily collapse. To keep the training process stable and prevent the models from crashing, we fine-tune both of the models with the labeled data before dual reinforcement learning starts. What's more, after each update according to Eq.(4) and Eq.(6), the models are trained with the labeled data again, i.e., both of the models are trained with dual reinforcement learning and supervised learning alternately.

Besides supervisor guidance, to cope with high variance in reward signals, we generate k intermediate outputs as mentioned in Section 3.2 and re-define reward signals via a reward baseline to stabilize the training process. We investigate different reward baseline choices, and it performs best when we use the average of rewards within samples per input. Thus, the final validity reward R_e^{val} and reconstruction reward R_s^{rec} are as follows:

$$R_e^{val}(e_i) = R_e^{val}(e_i) - \frac{1}{k} \sum_{i=1}^k R_e^{val}(e_i)$$
(7)

$$R_{s}^{rec}(s \mid e_{i}) = R_{s}^{rec}(s \mid e_{i}) - \frac{1}{k} \sum_{i=1}^{k} R_{s}^{rec}(s \mid e_{i})$$
(8)

3.4.2 Curriculum Learning

Intuitively, there is a difference in the difficulty of training samples. To utilize the training data effectively and make the learning process consistent with humans, we integrate curriculum learning (Bengio et al., 2009) into the training process. The curriculum is arranged by sorting each sample into training sets according to a specific ranking standard. Here, we consider the length of logic expressions as an indicator of the learning order, i.e., the longer the logical expression, the more difficult it is. We first sort the training samples according to the length of the logical expressions. At each training step t, a batch of training samples is obtained from the top f(t) portions of the entire sorted training samples. Following Platanios et al. (2019), f(t) is defined as:

$$f(t) = \min\left(1, \sqrt{\frac{t\left(1 - c_0^2\right)}{T} + c_0^2}\right)$$
(9)

236

237

240

241

243

244

245

247

248

249

250

251

257

260

262

where c_0 represents the models start training using the $c_0\%$ easiest training samples, and T represents the duration of curriculum learning. Note that curriculum learning is only used in the process of supervised learning, and does not appear in the process of dual reinforcement learning.

3.4.3 Training of the Scoring Model

311

312

313

314

315

316

317

318

320

321

322

326

328

330

332

342

Inspired by Shen et al. (2021), we design a **Gener**ation & Classification method to train the scoring model as follows:

Before the training of the scoring model starts, a NL2LE model should be fine-tuned first. The process of fine-tuning can refer to **Supervisor Guidance**. After that, given a natural language sentence s, the fine-tuned NL2LE model generates k possible logical expressions e_1, e_2, \dots, e_k via nucleus sampling. Since the NL2LE model has been fine-tuned, the generated logical expressions will be similar or equal to the ground truth e. We denote $\{\langle s, e_i \rangle\}$ as \mathcal{P} , where the logical expression e_i equals to ground truth, and the others as \mathcal{N} .

For each $\langle s, e_i \rangle$ pair, we get the last layer hidden states of the NL2LE model's encoder $h_{i1}^{encoder}, \dots, h_{in}^{encoder}$, and decoder $h_{i1}^{decoder}, \dots, h_{im}^{decoder}$. Then, the scoring model is defined as follows:

$$\overline{h}_{i}^{encoder} = \frac{1}{n} \sum_{j=1}^{n} h_{ij}^{encoder}$$
(10)

$$\overline{h}_{i}^{decoder} = \frac{1}{m} \sum_{i=1}^{m} h_{ij}^{decoder}$$
(11)

$$u_i = \overline{h}_i^{encoder} W_1 + b_1 \tag{12}$$

$$v_i = \overline{h}_i^{decoder} W_2 + b_2 \tag{13}$$

$$R_e^{model_val}(e_i) = P(e_i \mid s) \tag{14}$$

$$= sigmoid([u_i; v_i; |u_i - v_i|] W_3 + b_3) (15)$$

where $W_{1|2|3}$ and $b_{1|2|3}$ are trainable parameters and $[\cdot; \cdot]$ is the concatenation operation. The training loss L of the scoring model is cross-entropy loss between the model's output $P(e_i | s)$ and labels,

$$L = -\frac{1}{|\mathcal{P} \cup \mathcal{N}|} \left(\sum_{e_i \in \mathcal{P}} \log P(e_i \mid s) + \sum_{e_i \in \mathcal{N}} (1 - \log P(e_i \mid s)) \right)$$
(16)

Note that the weight of the NL2LE model is fixed, and only the scoring model is updated during the backpropagation.

The details of the dual reinforcement learning are provided in Algorithm 1, and the training process of the scoring model is provided in Algorithm 2.

4 Dataset Collection

To make up for the lack of data in this field and to verify the effectiveness of our proposed framework, we construct a dataset containing natural language and PL/FOL pairs. One way to do so is to define templates first, and then obtain samples by filling slots (Levkovskyi and Li, 2021). However, the resulting dataset is limited by the lack of diversity of templates. Instead, in this work, we use crowdsourcing to avoid this problem.

Since the task requires professional knowledge about PL/FOL, the crowdsourcing team consists of 8 Chinese graduate students who have a deep understanding of PL/FOL. If the crowd workers are required to construct data without any reference, this will introduce inevitable troubles and labeling errors since PL/FOL is not intuitive to humans. Aiming to reduce nontrivial human labor and ensure the quality of the dataset, our crowdsourcing process consists of the following steps:

- We first obtain PL/FOL exercise sets and exam papers that require students to convert natural language into PL/FOL from Baidu Wenku¹, one of the largest online platforms for sharing documents in China.
- 2. The crowd workers are asked to organize these exercises in a uniform format. Each sample consists of three parts: natural language sentence *s*, symbolic definition *d*, and logical expression *e*, as shown in Table 1.
- 3. After that, we de-duplicate and annotate the data so that each sample is annotated by two other crowd workers. Note that PL/FOL is not visible at this stage, and the crowd workers are asked to provide the PL/FOL according to natural language sentences and symbolic definitions. We keep the sample only when both of the crowd workers have the same answer as the initial one.

¹https://wenku.baidu.com/

	PL	FOL	TOTAL
Training	871	1,037	1,908
Validation	128	145	273
Test	264	282	546
Total	1263	1464	2727

Table 2: Statistics of the Chinese-PL/FOL Dataset

In this way, we obtain a total of 2,727 samples consisting of 1,263 PL and 1,464 FOL with the corresponding natural language paraphrases and symbolic definitions. To establish human performance, we ask an additional 3 undergraduate and 2 graduate students who have acquired basic knowledge of PL/FOL to provide logical expressions given natural language sentences and symbolic definitions from the entire test set. We follow Levkovskyi and Li (2021) and take Exact Match (EM) as an evaluation measure. The detailed statistics of the dataset are shown in Table 2.

5 Experiments

390

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

In this section, we evaluate our framework on the English-FOL (Levkovskyi and Li, 2021) and our Chinese-PL/FOL datasets.

5.1 Dataset

English-FOL It is generated by pre-defined templates and contains natural language paraphrases paired with FOL. We follow the training/validation/test splits as Levkovskyi and Li (2021).

Chinese-PL/FOL The details of our dataset have been introduced in Section 4. Since symbol definition only appears in this dataset, we concatenate it with the original input, i.e. natural language paraphrase in the prime module and logical expression in the dual module. Due to the small amount of training data, PL and FOL are trained together.

Unlabeled Data Since neither the English-FOL nor 418 our Chinese-PL/FOL dataset provides unlabeled 419 data, to test our framework in a semi-supervised 420 setting, we design two schemes: In scheme A, 421 we keep a part of the training set as fully labeled 422 data and leave the rest as unlabeled data where 423 only natural language paraphrases should be used. 494 In scheme **B**, off-the-shelf paraphrase generation 425 models are leveraged, which can generate synony-426 mous sentences from existing natural language 427 paraphrases in the datasets. According to our obser-428 vation, since the paraphrase generation models are 429

trained on paraphrase generation datasets that are different from the datasets we use, the generated synonymous sentence is not particularly similar to the original one, and the logical expressions corresponding to the two sentences are different in most cases. Thus, it is reasonable to treat the generated sentences as unlabeled data. Refer to Appendix.A for the details of the paraphrase generation models and hyperparameter settings. 430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

5.2 Overall Results

We compare our method with competitors on different datasets in Table 3. T5 is used on the English-FOL dataset and mT5 is used on the Chinese-PL/FOL dataset. *B.Unlabel* represents unlabeled data obtained by scheme **B** in Section 5.1.

From the results, we conclude that: 1) Our models outperform the competitors on both of the datasets, which shows the effectiveness and robustness of our models. The performance of the models is not affected by the different languages, which shows the versatility of our models. 2) Even without additional unlabeled data, our models outperform the competitors only with supervised learning, e.g., Dual-T5-base gets much better performance than T5-base on the English-FOL dataset. (Actually, Dual-T5-base even has better performance than T5-large). 3) By introducing the unlabeled data, the performance of the models is further improved. The improvement on the Chinese-PL/FOL dataset is more obvious than that on the English-FOL dataset. We believe that this is because the amount of the labeled data in the English-FOL dataset is enough for the training of the models, and it is difficult for the models to use the unlabeled data for further improvement, while the models can make full use of the unlabeled data to compensate for the lack of the labeled data on the Chinese-PL/FOL dataset. To confirm the performance of the models in a semi-supervised setting, we conduct further experiments in section 5.4.

5.3 Effectiveness on Small Data

To investigate the effectiveness of our method on small data, we set different labeled ratios for the training of the models. Note that unlabeled data is not used in this setting, and we only vary the ratio of the labeled data kept on the English-FOL dataset from 20% to 100%.

In Table 4, we can find that our models have better performance over all labeled ratios. Specifically, Dual-T5-**base** still has a better performance than

Method	English_EOI	Chinese-PL/FOL		
		PL	FOL	TOTAL
Human Performance	-	87.94	79.92	84.07
text2log (Levkovskyi and Li, 2021)	89.54	-	-	-
T5-small (Raffel et al., 2019) / mT5-small (Xue et al., 2021)	89.95	64.02	58.87	61.35
T5-base (Raffel et al., 2019) / mT5-base (Xue et al., 2021)	91.30	70.08	61.35	65.57
T5-large (Raffel et al., 2019)	92.59	-	-	-
Dual-(m)T5-small (Ours)	90.98	64.39	61.70	63.00
Dual-(m)T5-base (Ours)	92.63	70.83	62.77	66.67
Dual-(m)T5-small + <i>B.Unlabel</i> (Ours)	91.03	70.83	63.48	67.03
Dual-(m)T5-base + <i>B.Unlabel</i> (Ours)	92.82	75.00	68.44	71.61

Table 3: EM on the test set of the English-FOL and Chinese-PL/FOL datasets. T5 is used on the English-FOL dataset and mT5 is used on the Chinese-PL/FOL dataset. *B.Unlabel* represents the unlabeled data obtained by scheme B in Section 5.1.

Method	Labeled Ratio				
	20%	40%	60%	80%	100%
text2log (Levkovskyi and Li, 2021)	47.19	77.06	85.31	88.53	89.54
T5-small (Raffel et al., 2019)	77.02	84.57	86.56	89.87	89.95
T5-base (Raffel et al., 2019)	84.58	88.05	89.34	90.81	91.30
T5-large (Raffel et al., 2019)	85.87	88.79	89.56	91.97	92.59
Dual-T5-small (Ours) Dual-T5-base (Ours)	78.26 86.97	85.60 89.82	88.51 90.64	90.94 92.23	90.98 92.63

Table 4: EM on the test set of the English-FOL dataset. It varies the ratio of the labeled data.

T5-large over all labeled ratios, which indicates 480 that even without using additional unlabeled data, 481 our model is capable of steadily outperforming 482 larger scale models. The performance of text2log 483 (Levkovskyi and Li, 2021) decreases rapidly with 484 the reduction of the labeled data, which proves 485 that the robustness of the model in previous works 486 needs to be enhanced. 487

5.4 Experiments on Semi-supervised Setting

488

489

490

491

492

493

494

495

496

497

498

499

500

501

To investigate whether the unlabeled data benefits our framework and how much unlabeled data may lead to the best result, we perform the following experiment. We fix the ratio of the labeled data as 20% and change the ratio of the unlabeled data to the rest of the data on the English-FOL dataset, i.e., scheme **A** mentioned in Section 5.1. The results are shown in Table 5.

We can find that the performance of the models doesn't improve constantly when the amount of unlabeled data is increased, which is consistent with the previous work (Cao et al., 2019). We conclude that the performance of the model should be deter-

Method	Unlabeled Ratio	FOL	
Dual-T5-small	0%	78.26	
+ A. Unlabel	25%	79.29 (+1.03)	
+ A. Unlabel	50%	79.18(+0.92)	
+ A. Unlabel	75%	78.45(+0.19)	
+ A. Unlabel	100%	77.85(-0.41)	
Dual-T5-base	0%	86.97	
+ A. Unlabel	25%	88.95(+1.98)	
+ A.Unlabel	50%	89.18(+2.21)	
+ A.Unlabel	75%	89.34 (+2.37)	
+ A. Unlabel	100%	88.98(+2.01)	

Table 5: EM on the test set of the English-FOL dataset. It fixes the ratio of the labeled data as 20% and varies the ratio of the unlabeled data to the rest data. *A.Unlabel* represents the unlabeled data obtained by scheme A in Section 5.1.

mined by two factors: 1) the relative proportion of labeled and unlabeled data, 2) the number of parameters in the model. A proper ratio of unlabeled data is crucial, and a model with more parameters tends to perform better with more unlabeled data.

506

507On the contrary, when a model with few parameters508is trained with a large amount of unlabeled data by509dual reinforcement learning, it may converge to a510wrong equilibrium state to adapt to the unlabeled511data and forget what has been learned from the512labeled data, which leads to poor performance.

5.5 Ablation Analysis

513

514

515

516

517

518

519

520

521

523

524

525

526

527

530

531

532

534

535

536

537

538

540

541

542

To enhance the performance of our framework, we introduce dual reinforcement learning and curriculum learning. To evaluate the effectiveness of each of them, we perform an ablation analysis on the Chinese-PL/FOL dataset. The results are shown in Table 6.

Method	PL	FOL	TOTAL
Dual-mT5-small	64.39	61.70	63.00
w/o curriculum	64.02	60.64	62.27
w/o dual	63.64	59.57	61.54
Dual-mT5-base	70.83	62.77	66.67
w/o curriculum	70.45	62.06	66.12
w/o dual	70.08	61.70	65.75

Table 6: EM of Dual-mT5 ablations on the test set of the Chinese-PL/FOL dataset.

From the results, we conclude that: 1) Both dual reinforcement learning and curriculum learning are helpful for the task since the effect of the models becomes worse in the absence of any learning method. 2) Dual reinforcement learning has a greater impact on model performance than curriculum learning when labeled data is limited. 3) Curriculum learning has a greater impact on FOL than PL. This is intuitive because FOL expressions are more complex than PL expressions, and curriculum learning helps the models gradually adapt to difficult samples.

6 Related Works

Parsing Natural Language into PL/FOL Logic expressions are commonly written in standardized mathematical notation, and learning this notation typically requires many years of experience. Barker-Plummer et al. (2009) study why students find translating natural language sentences into FOL hard and systematically categorize the problems encountered by students. Bansal (2015) proposes a rule-based framework that leverages the Part-of-speech structure of natural language sentences. Limited to the manually defined rules and a small amount of experimental data, the system can only work under a specific setting. With the development of deep learning, neural approaches alleviate the need for manually defining lexicons. Singh et al. (2020) examine the capability of neural models on parsing FOL from natural language sentences. They propose to disentangle the representations of different token categories while generating FOL and use category prediction as an auxiliary task. Unfortunately, they do not release the dataset they construct. Levkovskyi and Li (2021) release a dataset containing English-FOL sentence pairs and set up a baseline encoder-decoder model, but the dataset is not challenging for it is generated by templates, and the vanilla model can get a high score.

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

Dual Learning Dual learning is first proposed to improve neural machine translation (NMT) (He et al., 2016). The author makes full use of monolingual corpus to improve the effectiveness of the model through dual learning. Xia et al. (2017) introduce a probabilistic duality term to serve as a data-dependent regularizer to better guide the dual supervised learning. Since then, the idea of dual learning has been applied in various tasks, such as Question Answering/Generation (Tang et al., 2017), Open-domain Information Extraction/Narration (Sun et al., 2018), Semantic Parsing with lambda calculus (Cao et al., 2019, 2020), and Emotion-Controllable Response Generation (Shen and Feng, 2020). We are the first to introduce the curriculum and dual reinforcement learning in conversion between natural language and PL/FOL to the best of our knowledge.

7 Conclusion

In this paper, we introduce Dual-(m)T5, an effective framework based on curriculum and dual reinforcement learning, which enables bidirectional conversion between natural language and PL/FOL. We also propose a brand new reward mechanism to avoid manually defining the reward in RL. Experimental results show that the proposed method outperforms competitors on the datasets. In addition to the technical contribution, a new Chinese-PL/FOL dataset is constructed to make up for the lack of data in this field. In the future, we will further supplement our dataset since the size of the current dataset is not large. We will also exploit more lightweight models to accelerate the training process of dual reinforcement learning.

References

Naman Bansal. 2015. Translating Natural Language

Dave Barker-Plummer, Richard Cox, and Robert Dale.

Group on Educational Data Mining.

pages 41-48. ACM.

guistics.

Press

tional Linguistics.

Propositions to First Order Logic. Ph.D. thesis, IN-

DIAN INSTITUTE OF TECHNOLOGY KANPUR.

2009. Dimensions of difficulty in translating natural

language into first order logic. International Working

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In

Proceedings of the 26th Annual International Con-

ference on Machine Learning, ICML 2009, Montreal,

Quebec, Canada, June 14-18, 2009, volume 382 of

ACM International Conference Proceeding Series,

Patrick Blackburn and Johannes Bos. 2005. Represen-

Study of Language and Information Amsterdam.

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai

Yu. 2019. Semantic parsing with dual learning. In

Proceedings of the 57th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 51-64,

Florence, Italy. Association for Computational Lin-

Ruisheng Cao, Su Zhu, Chenyu Yang, Chen Liu, Rao

Ma, Yanbin Zhao, Lu Chen, and Kai Yu. 2020. Un-

supervised dual paraphrasing for two-stage semantic

parsing. In Proceedings of the 58th Annual Meet-

ing of the Association for Computational Linguistics,

pages 6806-6817, Online. Association for Computa-

Shuaichen Chang, Pengfei Liu, Yun Tang, Jing Huang,

Xiaodong He, and Bowen Zhou. 2020. Zero-shot

text-to-sql learning with auxiliary task. In The Thirty-

Fourth AAAI Conference on Artificial Intelligence,

AAAI 2020, The Thirty-Second Innovative Applica-

tions of Artificial Intelligence Conference, IAAI 2020,

The Tenth AAAI Symposium on Educational Advances

in Artificial Intelligence, EAAI 2020, New York, NY,

USA, February 7-12, 2020, pages 7488-7495. AAAI

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya

Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,

Lazaros Polymenakos, and Andrew McCallum.

2021. Case-based reasoning for natural language

Li Dong and Mirella Lapata. 2016. Language to logical

form with neural attention. In Proceedings of the

54th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages

33-43, Berlin, Germany. Association for Computa-

queries over knowledge bases.

arXiv:2104.08762.

tional Linguistics.

tation and inference for natural language: A first

course in computational semantics. Center for the

- 596 597 598 599 600 601 602 603 604 605
- 607 608 609 610 611
- 612 613
- 614 615 616
- 617 618
- 619 620
- 621 622
- 6
- 628 629

630 631 632

- 633 634 635
- 6
- 637 638
- 6
- 640 641
- G

643

- 644 645
- 646 647

6

- 648
- Li Dong and Mirella Lapata. 2018. Coarse-to-fine decoding for neural semantic parsing. In *Proceedings*

of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 731–742, Melbourne, Australia. Association for Computational Linguistics. 650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

705

706

- Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learning for machine translation. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 820–828.
- Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The curious case of neural text degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
- Daiki Kimura, Masaki Ono, Subhajit Chaudhury, Ryosuke Kohita, Akifumi Wachi, Don Joven Agravante, Michiaki Tatsubori, Asim Munawar, and Alexander Gray. 2021. Neuro-symbolic reinforcement learning with first-order logic. In *Proceedings* of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3505–3511.
- Oleksii Levkovskyi and Wei Li. 2021. Generating predicate logic expressions from natural language. In *SoutheastCon 2021*, pages 1–8. IEEE.
- Ilya Loshchilov and Frank Hutter. 2018. Fixing weight decay regularization in adam.
- Zhihao Ma, Yuzheng Zhuang, Paul Weng, Dong Li, Kun Shao, Wulong Liu, Hankz Hankui Zhuo, and HAO Jianye. 2020. Interpretable reinforcement learning with neural symbolic logic.
- Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and Tom Mitchell. 2019. Competence-based curriculum learning for neural machine translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1162–1172, Minneapolis, Minnesota. Association for Computational Linguistics.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. *arXiv preprint arXiv:1910.10683*.
- Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin Jiang, Ming Zhang, and Qun Liu. 2021. Generate & rank: A multi-task framework for math word problems. In *Findings of the Association for Computational Linguistics: EMNLP 2021*, pages 2269–2279.
- Lei Shen and Yang Feng. 2020. CDL: Curriculum dual learning for emotion-controllable response generation. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 556–566, Online. Association for Computational Linguistics.

arXiv preprint

793

794

762

Jiaxin Shi, Shulin Cao, Liangming Pan, Yutong Xiang, Lei Hou, Juanzi Li, Hanwang Zhang, and Bin He. 2020. Kqa pro: A large diagnostic dataset for complex question answering over knowledge base. *arXiv e-prints*, pages arXiv–2007.

707

710

711

712

713

714

716

717

718

719 720

721

722

723

725

726

727

728

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744 745

746

747

748

749 750

751

752

754

755

756

757

759

760

761

- Hrituraj Singh, Milan Aggrawal, and Balaji Krishnamurthy. 2020. Exploring neural models for parsing natural language into first-order logic. *arXiv preprint arXiv:2002.06544*.
- Jianlin Su. 2021. Roformer-sim: Integrating retrieval and generation into roformer. Technical report.
- Mingming Sun, Xu Li, and Ping Li. 2018. Logician and orator: Learning from the duality between language and knowledge in open domain. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 2119–2130, Brussels, Belgium. Association for Computational Linguistics.
 - Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. 2000. Policy gradient methods for reinforcement learning with function approximation. In *Advances in neural information processing systems*, pages 1057–1063.
- Duyu Tang, Nan Duan, Tao Qin, Zhao Yan, and Ming Zhou. 2017. Question answering and question generation as dual tasks. *arXiv preprint arXiv:1706.02027*.
- Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. 2020. RAT-SQL: Relation-aware schema encoding and linking for textto-SQL parsers. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7567–7578, Online. Association for Computational Linguistics.
- Yingce Xia, Tao Qin, Wei Chen, Jiang Bian, Nenghai Yu, and Tie-Yan Liu. 2017. Dual supervised learning. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 3789–3798. PMLR.
- Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A massively multilingual pre-trained text-to-text transformer. In *Proceedings* of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 483–498, Online. Association for Computational Linguistics.
- Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. 2020. Pegasus: Pre-training with extracted gap-sentences for abstractive summarization. In *International Conference on Machine Learning*, pages 11328–11339. PMLR.
- Zijian Zhao, Su Zhu, and Kai Yu. 2019. A hierarchical decoding model for spoken language understanding

from unaligned data. In *IEEE International Confer*ence on Acoustics, Speech and Signal Processing, *ICASSP 2019, Brighton, United Kingdom, May 12-17, 2019*, pages 7305–7309. IEEE.

A Implemention Details

We use Pytorch² library for implementing an autodifferentiable graph of our computations. We leverage the HuggingFace's implementation of (m)T5³. For **supervisor guidance**, (m)T5-small/base are trained with an AdamW optimizer (Loshchilov and Hutter, 2018) initialized with a learning rate of 1e-3/1e-4 with a decay rate of 1e-3/1e-2 respectively. For **dual reinforcement learning**, models are trained with an AdamW optimizer initialized with a learning rate of 1e-5 with a decay rate of 1e-3 for (m)T5-small/base. The batch size is set to 8 for **supervisor guidance** and 2 for **dual reinforcement learning**, and the max input and output sentence length are set to 128. Training runs until the performance on validation set does not improve.

We use PEGASUS (Zhang et al., 2020) finetuned for paraphrasing⁴ for english paraphrasing, and RoFormer-Sim (Su, 2021) ⁵ for chinese paraphrasing. For each natural language paraphrase in the datasets, we generate one synonymous sentence as unlabeled data. (Generating top-k synonymous sentences for each natural language paraphrase, where $k \ge 1$, may lead to poor performance because the unlabeled data is too similar to each other).

Our models run on a computer with Intel(R) Xeon(R) Gold 6230R CPU, 2 GeForce RTX 3090, 64GB of RAM, and Ubuntu 20.04.

²https://pytorch.org

³https://huggingface.co/models

⁴https://huggingface.co/tuner007/

pegasus_paraphrase

⁵https://github.com/ZhuiyiTechnology/ roformer-sim

B Algorithm

Algorithm 1 Dual Reinforcement Learning

Input: Supervised dataset $\mathcal{L} = \{\langle s, e \rangle\}$; Unsupervised dataset $\mathcal{U} = \{s'\}$; number of nucleus sampling k; hyper parameters α and β ; curriculum training batches T

Output: NL2LE model

- 1: Fine-tune NL2LE model with $\langle s, e \rangle$ from \mathcal{L} and curriculum learning based on Eq.(9)
- 2: Fine-tune LE2NL model with $\langle e, s \rangle$ from \mathcal{L}

3: repeat

- 4: Get mini-batch $\{s\}$ from $\mathcal{L} \cup \mathcal{U}$
- 5: for all $s \in \{s\}$ do
- 6: NL2LE model generates k logical expressions $\{e_i\}$ for s via nuclelus sampling
- 7: for all $e_i \in \{e_i\}$ do
- 8: Obtain validity reward for e_i w.r.t. Eq. (2)
- 9: Obtain reconstruction reward for e_i w.r.t. Eq. (5)
- 10: Compute total reward for e_i w.r.t. Eq.(3)
- 11: **end for**
- 12: **end for**
- 13: Compute gradient of Θ_{NL2LE} w.r.t. Eq.(4)
- 14: Compute gradient of Θ_{LE2NL} w.r.t. Eq.(6)
- 15: Update Θ_{NL2LE} and Θ_{LE2NL} with gradient
- 16: Get mini-batch $\{\langle s, e \rangle\}$ from \mathcal{L}
- 17: Fine-tune NL2LE model with $\{\langle s, e \rangle\}$
- 18: Fine-tune LE2NL model with $\{\langle e, s \rangle\}$
- 19: until NL2LE model converges

Algorithm 2 Training Scoring Model

Input: Supervised dataset $\mathcal{L} = \{\langle s, e \rangle\}$; number of nucleus sampling k; Fine-tuned NL2LE model **Output**: scoring model

- 1: $\mathcal{P} \leftarrow \{\}, \mathcal{N} \leftarrow \{\}$
- 2: for all $\langle s, e \rangle \in \mathcal{L}$ do
- 3: Given s, fine-tuned NL2LE model generates k logical expressions $\{e_i\}$ via nucleus sampling

4: for all $e_i \in \{e_i\}$ do

5: **if** e_i equals e **then**

6:
$$\mathcal{P} \leftarrow \mathcal{P} \cup \{\langle s, e_i \rangle\}$$

7: **else**

8:
$$\mathcal{N} \leftarrow \mathcal{N} \cup \{\langle s, e_i \rangle\}$$

- 9: end if
- 10: **end for**
- 11: end for
- 12: repeat
- 13: Update scoring model w.r.t. Eq.(16)
- 14: **until** scoring model converges