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Fig. 1: Based on high-fidelity multi-physics simulation, Verti-Bench encapsulates a variety of off-road features, i.e., geometry,
semantics, and obstacles, and vehicles and can be scaled to different sizes. 100 off-road environments and 1000 navigation tasks
with millions of off-road features can objectively and quantitatively evaluate off-road vehicle mobility on extremely rugged,
vertically challenging terrain.

Abstract—Recent advancement in off-road autonomy has
shown promises in deploying autonomous mobile robots in
outdoor off-road environments. Encouraging results have been
reported from both simulated and real-world experiments.
However, unlike evaluating off-road perception tasks on static
datasets, benchmarking off-road mobility still faces significant
challenges due to a variety of factors, including variations in
vehicle platforms and terrain properties. Furthermore, different
vehicle-terrain interactions need to be unfolded during mobility
evaluation, which requires the mobility systems to interact with
the environments instead of comparing against a pre-collected
dataset. In this paper, we present Verti-Bench, a mobility bench-
mark that focuses on extremely rugged, vertically challenging
off-road environments. 100 unique off-road environments and
1000 distinct navigation tasks with millions of off-road terrain
properties, including a variety of geometry and semantics, rigid
and deformable surfaces, and large natural obstacles, provide
standardized and objective evaluation in high-fidelity multi-
physics simulation. Verti-Bench is also scalable to various ve-
hicle platforms with different scales and actuation mechanisms.
We also provide datasets from expert demonstration, random
exploration, failure cases (rolling over and getting stuck), as
well as a gym-like interface for reinforcement learning. We
use Verti-Bench to benchmark ten off-road mobility systems,
present our findings, and identify future off-road mobility re-
search directions. Verti-Bench project website can be found at
https://cs.gmu.edu/~xiao/Research/Verti-Bench.

I. INTRODUCTION

Off-road autonomous mobile robots present unique opportu-
nities in search and rescue, environment monitoring, scientific

exploration, and other application domains. However, off-road
autonomy presents unique challenges to both robot percep-
tion and vehicle mobility that distinguish from structured
on-road environments [1, 2, 3], such as variable geometry,
deformable surfaces, and natural obstacles. Considering recent
advancement, standardized benchmarks for off-road autonomy
are necessary to objectively and quantitatively evaluate and
compare the progress of the off-road robotics community.

Unlike off-road perception, evaluating off-road mobility is
more difficult. A plethora of off-road perception datasets [4, 5,
6, 7, 8, 9, 10, 11] are available to provide static ground truth
labels to evaluate against perception systems’ outputs, since
the robot actions can be recorded and fed into the perception
systems, not generated by them (if actions are necessary at
all). However, mobility systems produce new actions to drive
robots to different states than those collected in the dataset, i.e.,
distribution shift, and thus cannot be evaluated by comparing
against a static dataset. Therefore, vehicle-terrain interactions
need to be unfolded during off-road mobility evaluation, which
creates difficulty in standardization across research groups.

Considering a lack of standard off-road mobility evaluation,
researchers currently develop their own benchmarks to evalu-
ate their mobility systems and re-implement previous systems
to compare against. Such a practice, however, leads to ad-
hoc evaluation in a few aspects: The evaluation platforms,
either a physical or a simulated robot, vary in terms of robot
size, weight, actuation mechanism, and/or levels of off-road

https://cs.gmu.edu/~xiao/Research/Verti-Bench


physics simulation fidelity; The evaluation environments range
from handcrafted off-road simulation features [12, 13, 14, 15,
16, 17], small-scale indoor testbeds [18, 19, 20, 21], enclosed
outdoor tracks [22, 23, 24, 25, 26], and large-scale real-world
testing facilities [6, 27, 5]; Re-implementation of previous
approaches on one’s own robot is not only laborious, but
also subject to misinterpretation of implementation details.
Therefore, a standard off-road mobility benchmark which is
general and scalable to all these aspects is desired for the off-
road mobility research community.

In this work, we present Verti-Bench (Fig. 1), a general
and scalable off-road mobility benchmark that focuses on
extremely rugged, vertically challenging terrain with a variety
of unstructured off-road features. The main goal of Verti-
Bench is to directly compare the performances of different off-
road mobility systems. Based on a high-fidelity multi-physics
dynamics simulator, Chrono [28], Verti-Bench encapsulates
variations in four orthogonal dimensions: Using the Sliced
Wasserstein Autoencoder (SWAE) [29] and real-world off-road
terrain data, off-road geometry is represented as a diverse set of
2.5D elevation maps; Ten terrain semantics classes, including
seven rigid and three deformable, are designed with different
distributions of physics parameters, e.g., friction coefficient,
cohesive effect, and soil stiffness; Different types of natural
obstacles, e.g., boulders and vegetations, are randomly dis-
tributed based on different densities; A set of off-road vehicles
with different scales (from 1/10th to full scale) and actuation
mechanisms (4-, 6-, and 8-wheeled and 2-tracked chassis,
single- and double-wishbone, multilink, toebar leaf-spring,
and special tensioning suspensions, as well as pitman-arm,
rack-and-pinion, toebar, bellcrank/rotary arm, and differential
steering) are provided, with the possibility of adding cus-
tomized vehicles. Using Verti-Bench, we also provide datasets
from expert demonstration, random exploration, failure cases
(rolling over and getting stuck), as well as a gym-like interface
for Reinforcement Learning (RL). We use Verti-Bench to
benchmark ten off-road mobility systems, present our findings,
and identify future off-road mobility research directions. To
summarize, our contributions are:

• A general off-road mobility benchmark on vertically
challenging terrain with 100 off-road environments and
1000 navigation tasks scalable to various vehicle types;

• Millions of off-road terrain features including geometry,
semantics (rigid and deformable), and obstacles;

• Various datasets and a RL interface to facilitate data-
driven off-road mobility;

• Findings and future research directions based on bench-
mark results of various off-road mobility systems.

II. RELATED WORK

In this section, we review the field of off-road autonomy
and current evaluation practices to motivate Verti-Bench.

A. Off-Road Autonomy

Starting from the DARPA LAGR program [1], roboticists
have started developing autonomous systems to operate in

off-road enviornments. Compared to indoor or on-road op-
erations, off-road environments pose significant challenges
during the entire sense-plan-act loop: Robot state estimation
systems, such as visual inertial odometry [30] and simultane-
ous localization and mapping [31], are easily affected by the
unstructured visual features from the off-road environments
as well as noisy inertial signals caused by the extensive
vehicle vibrations; Perception is more than a geometric prob-
lem, i.e., free vs. obstacle spaces, as in indoor or on-road
settings, and requires the consideration of semantics, e.g.,
gravel vs. grass. Both terrain geometry and semantics need
to be represented [32, 33, 34, 35] for downstream planning
and control tasks; Off-road planners and controllers need to
reason beyond collision avoidance and consider factors such
as vehicle stability [36, 37], wheel slippage [38, 39, 40], and
terrain traversability [41, 42, 43, 44], oftentimes in SE(3)
instead of SE(2) [19] due to the uneven off-road terrain
surfaces [45, 19]. The recent increase in interest in off-road
autonomy [46] necessitates standard benchmarks to objectively
and quantitatively evaluate research progress from the entire
community, which is the motivation behind Verti-Bench.

B. Evaluating Off-Road Perception

Off-road perception research still dominates the majority
of the body of off-road autonomy work [46]. Fortunately,
evaluating off-road perception can be mostly carried out on
pre-collected, static datasets in a vehicle-agnostic fashion. For
both evaluation and training of perception systems in a data-
driven manner, a variety of off-road perception datasets are
available for research in semantics segmentation [4, 5, 8],
freespace detection [7], place recognition [9], traversability
estimation [10], and map reconstruction [11]. Given a new off-
road perception system taking the recorded sensor data and
robot actions as inputs, its outputs can be simply compared
against the ground truth labels provided by those datasets.
A performance metric, e.g., segmentation accuracy, detection
rate, recognition count, traversability correctness, and recon-
struction precision, can then be computed to quantify how well
the new perception system compares against others. Unfortu-
nately, off-road mobility evaluation cannot be conducted on
such pre-collected, static datasets. Notice that while off-road
dynamics datasets [6] can be used to learn off-road navigation
models, they cannot be used to evaluate off-road mobility.

C. Evaluating Off-Road Mobility

To the best of our knowledge, no standard off-road mobility
benchmarks currently exist in the literature. Unlike off-road
perception evaluation, mobility evaluation requires the vehicle-
terrain interactions to be unfolded, since a different action will
lead the robot into a different state absent from the dataset.
Such a distribution shift necessitates mobility evaluation to be
based on the unfolded, not pre-collected, vehicle trajectories.

To unfold vehicle-terrain interactions for objective off-road
mobility evaluation, the vehicle platforms and terrain prop-
erties are required to be standardized, which, unfortunately,
vary significantly across different research groups: Robots of



different sizes, weights, actuation mechanisms (e.g., wheeled,
tracked, steered, and differential-driven) are used to compare
new mobility systems with existing ones. The latter is usually
customized to fit for a different robot, potentially causing mis-
interpretation of implementation details; Different simulators,
e.g., Gazebo [12], IsaacGym [13], Unreal [14], and Unity [17],
are leveraged to train and evaluate off-road mobility systems.
To improve simulation speed, most of those simulators do
not focus on physics fidelity, which is crucial for off-road
mobility on extremely rugged and deformable surfaces; In
the real world, small-scale indoor testbeds have been set up
with foam, rocks, plywood, and pipes to emulate vertically
challenging terrain in the wild [18, 19, 20, 21]; Enclosed
outdoor off-road tracks have been constructed to evaluate
aggressive autonomous driving [22, 23, 24, 25, 26]; A few
research groups have access to large-scale off-road testing
facilities with full-size vehicles [6, 27, 5].

With such diverse setups, an objective evaluation and com-
parison across different off-road mobility systems become
infeasible. Verti-Bench, based on a high-fidelity multi-physics
dynamics simulator, is hence motivated to fill such a gap of
missing standard off-road mobility benchmarks. Notice that
Verti-Bench is not meant to replace existing evaluation setups,
but to complement them with a new standardized option to
facilitate fair comparison across off-road mobility systems.

III. VERTI-BENCH

We present Verti-Bench’s core high-fidelity multi-physics
dynamics engine, diverse set of off-road features, including
wide-ranging geometry, physics-grounded semantics, and nat-
ural obstacles, scalability to a variety of vehicle platforms,
and standardized metrics to quantify off-road mobility per-
formance. We also discuss various datasets we collect using
Verti-Bench to complement real-world off-road mobility data
to develop data-driven systems.

A. Simulation

Verti-Bench is based on Project Chrono [28], a high-fidelity
multi-physics dynamics engine with a platform-independent
open-source design implemented in C++ with a Python ver-
sion, PyChrono. Compared to other commonly used robotics
simulators (e.g., Gazebo, Unreal, Unity, PyBullet, MuJoCo,
and IsaacGym with well-known physics limitations especially
for differential-drive mobile robots [47]), Chrono is especially
suitable to simulate complex off-road vehicle-terrain interac-
tions involving suspension, tire, track, and terrain deformation,
varying terrain contact friction, vehicle weight distribution and
momentum, motor, powertrain, transmission, and wheel torque
characteristics, aggressive vehicle poses with all six Degrees of
Freedom (DoFs), etc. In Chrono, vehicle systems and terrain
properties are made of rigid and flexible/compliant parts with
constraints, motors and contacts, along with three-dimensional
shapes for collision detection.

One point worth noting is that Verti-Bench’s choice of
Chrono as its core simulator is primarily due to its high-
fidelity multi-physics dynamics, a vital aspect for off-road

mobility evaluation. However, Chrono is not the best simulator
for photorealism, one focus of off-road perception simulation,
which is out of scope of Verti-Bench. For the perception
components, Verti-Bench has standard interfaces to provide
ground truth elevation and semantics maps and obstacle oc-
cupancy grids. Another point is that Chrono is not yet GPU-
accelerated. Combined with the high computation required for
high physics fidelity, Chrono can only provide slightly faster-
than-real-time simulation, depending on the complexity of the
simulated environments (e.g., areas of deformable terrain and
number, size, and number of mesh vertices of obstacles).
Therefore, despite its intended efficient usage in off-road
mobility evaluation, learning off-road mobility is expected to
take a significant amount of training time with Verti-Bench
(e.g., using our provided gym-like RL interface).

In Chrono, each of the 100 Verti-Bench full-scale environ-
ments is constructed as a 129m×129m world, with a resolution
of 1m per pixel. Each environment can be down-scaled to cater
vehicles of different sizes, e.g., 1/6th or 1/10th scale. Each
pixel contains geometry, semantics, and obstacle information
(details below). For each of the 100 environments, ten pairs of
start and goal locations separated by 120 m are distributed in
a circular manner, leading to a total of 1000 navigation tasks.

B. Geometry

Real-world off-road terrain is characterized by various
geometry in terms of elevation changes, e.g., slopes, hills,
ditches, gullies, ravines, and other form of undulations. Some
of such terrain can be traversed by certain types of off-road
vehicles, while others cannot. Autonomous off-road mobility
systems need to decide which of them can be attempted with
what vehicle maneuvers. For example, a steep slope with low
friction cannot be traversed at low speeds, but large vehicle
momentum by high speeds at the bottom can help the vehicle
ascend the top; Approaching a deep ditch quickly may get the
vehicle stuck due to extensive suspension depression at the
bottom, but slowly negotiating through is possible to mitigate
suspension travel in order to maximize clearance.

Therefore, the geometry of Verti-Bench environments is
represented as 2.5D elevation maps created by SWAE [29]
and real-world elevation data. To be specific, we physically
construct vertically challenging terrain with boulders and rocks
and use a Microsoft Azure Kinect RGB-D camera to create
elevation maps of different real-world terrain surfaces [48].
We then use SWAE [29], a scalable generative model that
captures the rich and often nonlinear distribution of high-
dimensional data, as a feature extractor to reduce the dimen-
sion of the real-world elevation maps while preserving the
original elevation information in a latent space, from which
samples can be drawn to generate new elevation maps that
resemble real-world vertically challenging terrain. To further
introduce diversity and quantification of Verti-Bench geometry,
we scale the output of the trained SWAE to 30%, 60%, and
100% and denote them as low, medium, and high elevation
level (Fig. 2 top). Each Verti-Bench environment is generated
with 1/3 probability of each elevation level. Fig. 2 bottom



shows the histogram of elevation values of all three levels
of terrain geometry. High elevation environments also have
the largest variance (most rugged terrain), while low elevation
environments are smoother.

Fig. 2: Top: Low, Medium, and High Elevation Maps; Bottom:
Elevation Histograms across Three Elevation Levels.

C. Semantics

In addition to geometry, off-road terrain also presents
challenges in terms of semantics and its associated physical
vehicle-terrain contact features, such as friction, slip, and
deformability. For example, an autonomous off-road mobility
system should be aware that when driving through an icy
or sandy laterally inclined slope with low friction or high
deformability, sideway sliding downhill or wheel sinkage due
to imbalanced load and then rollover is possible, respectively.

Therefore, we also add ten different semantics classes to the
terrain elevation. We design seven rigid and three deformable
semantics classes with different textures and distributions of
physics parameters (Fig. 3). To be specific, the seven rigid
semantics classes, i.e., grass, wood, gravel, dirt, clay, rock, and
concrete, associate with a normal distribution of friction coef-
ficient. When a pixel is sampled to be a certain terrain type,
its friction coefficient is sampled from the corresponding dis-
tribution. We fix the restitution coefficient to 0.01 for all rigid
semantics classes. For the three deformable terrain classes,
i.e., snow, mud, and sand, we adopt the deformable Soil
Contact Model (SCM) based on the Bekker-Wong model [49]
to simulate terrain deformation after wheel interaction: SCM
presents the underlying terrain by a 2D grid and assumes each
cell can only be displaced vertically and does not maintain
any history other than the current vertical displacement. We
hard-code three sets of physics parameters, including cohesive
effect, soil stiffness, and hardening effect, for three different
deformability levels, i.e., soft, medium, and hard. Verti-Bench
also provides terrain with granular materials. But due to the
slow simulation speed when simulating thousands of particles,
it is only reserved for special evaluation circumstances where
granular materials must be simulated and simulation speed is
not of concern. All statistics of the ten terrain semantics classes
can be found in Fig. 3.

Fig. 3: Seven Rigid (percentage, mean and variance of friction
coefficient, and texture) and Three Deformable (percentage,
deformability, and texture) Terrain Semantics.

To create various terrain semantics while maintaining sim-
ulation efficiency, each 129×129 Verti-Bench environment is
first partitioned into a 16×16 grid, with each grid cell as a 9×9
patch (one overlapping pixel between every pair of patches to
assure connectivity). To emulate real-world continuous terrain
patches with same semantics and similar physical properties,
we employ a cluster-based approach, where cluster centers are
sampled from the environment. Each patch is then associated
with its nearest cluster center using Euclidean distance. For all
patches associated with a cluster center, the same semantics
class is sampled and corresponding texture assigned, with
each patch’s physical property sampled from a predetermined
distribution (Fig. 3). This approach creates natural physical
variations within every region of the same semantics class
while maintaining semantics diversity across regions.

D. Obstacles

Undulating geometry and varying semantics require off-road
mobility systems to understand fine-grained vehicle-terrain in-
teractions when driving on them. Off-road obstacles, like large
boulders or trees, exist in real-world off-road environments,
which are simply beyond vehicles’ mechanical capabilities and
hence need to be avoided. We also include natural obstacles in
Verti-Bench to pose challenges to obstacle avoidance systems.
For example, a large boulder triple the size of the vehicle is
completely non-traversable, while a steep hill as part of the
terrain may or may not be ascended with the right maneuver.
We add natural obstacles as instances of the former. To further
promote variation, we randomly sample the locations and types
(different sizes of boulders or trees) of 10, 20, and 40 obstacles
to place on each 129×129 Verti-Bench environment, denoted
as sparse, medium, and dense for obstacle distribution. We
resample a new obstacle if the old one is within 10 m of
another obstacle, a start, or a goal. Assuming a holonomic
point-mass vehicle, we also provide pre-planned global paths
leading from start to goal locations and avoiding obstacles.
Fig. 4 shows three examples of sparse, medium, and dense
obstacle distributions and their corresponding global paths.



Fig. 4: Top: Sparse, Medium, and Dense Obstacles (black) and
Global Paths (red) between Start and Goal (green). Bottom:
Corresponding simulation scenario in Verti-Bench (elevation
and semantics are removed for obstacle clarity).

E. Vehicles

We also provide a set of vehicle platforms in Verti-Bench,
with the possibility of adding new customized ones in the
future, so that different off-road mobility systems can be
evaluated on standardized vehicles. Compared to simplified
vehicles in existing simulators, the Verti-Bench vehicles are
more sophisticated and articulated, including engine/motor,
drivetrain, transmission, suspension, steering mechanism, and
wheel torque, whose responses to complex terrain interac-
tions are simulated. To be specific, Verti-Bench provides nine
types of off-road vehicles, which are sourced from Project
Chrono [28], open-source real and simulated research plat-
forms [50], and custom-created vehicles using 3D scanning
and modeling (with a Creality CR-Scan Raptor 3D scanner)
of real-world scaled vehicles (Fig. 5). Those vehicles vary
in terms of scale (1/10th, 1/6th, and full scale), chassis
(4-, 6-, and 8-wheeled and 2-tracked), suspension (single-
and double-wishbone, multilink, toebar leaf-spring, and spe-
cial tensioning), steering (pitman-arm, rack-and-pinion, toebar,
bellcrank/rotary arm, and differential), and tires (rigid and
handling, excluding FEA-based models due to significantly
reduced simulation speed). All vehicles, regardless of their
sources, are implemented as native C++ classes in Chrono’s
C++ framework. The C++ implementations are then compiled
and exposed to Python through SWIG-generated bindings.

F. Metrics

Verti-Bench automatically computes a set of standard met-
rics to quantify off-road mobility performance, while addi-
tional metrics can be customized as needed: A successful
completion is defined as the robot reaching within 10 meters
of the goal in less than 60 seconds. A successful trial may
include contacts with obstacles. Success Rate captures the
percentage of successful trials over total number of attempts;
Traversal Time indicates how long it takes to finish a suc-
cessful traversal; Roll and Pitch describes the stability of the
vehicle during traversal, whose raw and absolute values can
be used to derive mean, variance, and maximum; Vehicle
actions, such as throttle and steering, can be used as metrics to
quantify energy consumption, planning confidence, and path

smoothness, along with other metrics. Verti-Bench provides
infrastructure to save raw vehicle-terrain interaction data as
well as to compute performance metrics.

G. Datasets

Using Verti-Bench, we also collect a few datasets to fa-
cilitate future data-driven off-road mobility research. Current
datasets are collected on the High Mobility Multipurpose
Wheeled Vehicle (HMMWV, Fig. 1 right), while future data
collection can expand to different vehicles.

1) Expert Demonstration: A team of four human operators
collect 4 hours of expert demonstration of successfully driving
the off-road vehicle in different Verti-Bench environments. We
filter out all failure cases, e.g., vehicle rollover and getting-
stuck, to maintain high demonstration quality.

2) Random Exploration: To facilitate off-road kinodynam-
ics learning [6], we collect a random exploration dataset on
different off-road terrain by driving the off-road vehicle with
sinusoidal steering and 2 m/s speed commands for ten hours.
Each data collection trial terminates if the vehicle rolls over,
gets stuck, or reaches the environment boundaries.

3) Failure Cases: To enable future data-driven off-road
mobility by preventing vehicle failures, we also curate a
dataset of failure cases by providing the last ten seconds of
trajectory before the vehicle rolls over or gets stuck. We divide
all failure cases into two categories: (1) Rollover: the robot has
a > 30° roll angle at the end of a failed trial; (2) Stuck: the
robot does not move more than 1 m during the last 10 seconds
of a failed trial (with ≤ 30° roll). The failure cases can be used
to learn high-cost regions to be avoided in data-driven mobility
systems.

4) RL Interface: Although not being a main purpose of
Verti-Bench, we also provide a gym-like RL interface so that
vehicles can learn off-road mobility through trial-and-error
experiences in Verti-Bench. Vehicle states and actions, as well
as reward functions, can be customized by our interface, which
communicates with existing RL algorithm implementations.
Verti-Bench provides interfaces of different inputs to the
mobility systems, such as elevation and semantic maps, robot
states, and raw sensor data. Users can choose appropriate
inputs based on their evaluation needs.

IV. EVALUATION AND DISCUSSIONS

We evaluate ten off-road mobility systems using Verti-
Bench, ranging from purely classical, end-to-end learning, and
hybrid systems. We present and discuss our evaluation results
and point out future research directions.

A. Off-Road Mobility Systems for Evaluation

The three classical off-road mobility systems include
• PID: A controller that takes a local goal 10 m away from

the robot on the global path and minimizes the error angle
between the desired and vehicle heading by regulating the
steering and maintaining a 3 m/s speed;

• Elevation Heuristics (EH): A controller that splits the
elevation map in front of the current robot pose to five



Fig. 5: Verti-Bench Vehicles with Different Scale (1/10th, 1/6th, and full scale), Chassis (4-, 6-, and 8-wheeled and 2-tracked),
Steering (pitman-arm, rack-and-pinion, toebar, bellcrank/rotary arm, and differential), and Tires (rigid and handling).

regions and drives toward the region with the most similar
mean to the current terrain patch and lowest variance;

• MPPI: An MPPI-based [51] planner that uses a 2D bicy-
cle model for trajectory rollout and obstacle avoidance.

The three systems based on end-to-end learning include
• RL: A RL policy learned from trial and error [15];
• MCL: A RL policy learned from a manually designed

curriculum [15];
• ACL: A RL policy learned using Automatic Curriculum

Learning [52].
The four hybrid (classical and learning) systems include
• WMVCT: A planner based on a decomposed 6-DoF

kinodynamic model (bicycle model for x, y, and yaw,
elevation map for z, and neural network prediction for
roll and pitch) [53];

• MPPI-6: An MPPI-based planner with a learned full 6-
DoF kinodynamic model for trajectory rollout [45];

• TAL: An MPPI-based planner with a 6-DoF kinodynamic
model that learns to attend to specific terrain patches [54];

• TNT: An MPPI-based planner that samples based on
traversability and then unfolds 6-DoF kinodynamics [55].

We reach out to the authors of the original papers for their
implementations of their mobility systems. Considering Verti-
Bench’s focus on off-road mobility evaluation, we make min-
imal modifications to their implementations to interface with
Verti-Bench so that their mobility systems are no longer depen-
dent on any perception system. For example, visual odometry
inputs are replaced with ground truth vehicle states from Verti-
Bench; Real-world elevation mapping systems are skipped by
directly providing their systems with ground truth Verti-Bench
elevation maps; All learning systems and components in the
evaluation are not trained in Verti-Bench.

B. Evaluation Results and Discussions

The evaluation results are shown in Fig. 6, including per-
centage of Succuss Rate and mean and variance of Traversal
Time, Roll, and Pitch with respect to three types of elevation
level, terrain semantics, and obstacle density for all systems
and tasks. We also present an analysis of failure cases shown
in Table I. All 1000 Verti-Bench navigation tasks have been
used to evaluate each mobility system (no task has been used
for training). A complete evaluation of each system requires
approximately 10 hours. All task configurations have been
documented in YAML files, which can be used by external

TABLE I: Failure Case Analysis of 1000 tasks with Ten
Mobility Systems

PID EH MPPI RL MCL ACL WMVCT MPPI-6 TAL TNT

Rollover (%) 14.7 16.3 17.9 14.3 16.9 15.4 18.9 18.0 17.0 17.5
Stuck (%) 36.5 39.4 40.9 75.7 41.3 48.0 39.6 35.0 24.6 25.1

Success (%) 48.8 44.3 41.2 10.0 41.8 36.6 41.5 47.0 58.4 57.4

research teams to replicate and expand these evaluations. Ad-
ditionally, we provide our terrain generation pipeline, allowing
researchers to extend or customize environmental parameters
according to their specific research objectives and experiment
requirements.

In general, navigation performance significantly declines
with increasing elevation levels, deformable surfaces, and ob-
stacle densities, including reduced Success Rate and increased
Traversal Time, Roll, and Pitch. In addition to mean, the
variance of Roll and Pitch also drastically increases, indicating
much less stable vehicle chassis when traversing high eleva-
tion, deformable, and obstacle-dense environments. Among the
three categories, end-to-end learned mobility systems achieve
the worst performance, while hybrid systems outperform the
other two in general. While ACL is expected to outperform
MCL, the results suggest otherwise. Such results indicate that
end-to-end learning methods, trained from other sources, still
have much room for improvement in terms of generalization in
Verti-Bench. Considering failure cases, the systems fail more
frequently due to getting stuck than rolling over. While the
failure rates due to rollover are relatively consistent across all
systems, failure rates due to getting stuck differ significantly,
with RL getting stuck 75.7% of time, compared to TAL and
TNT with the lowest getting-stuck rates (24.6% and 25.1%
respectively).

In terms of elevation, for hybrid systems, TAL and TNT are
the two top performing planners among all systems overall,
achieving the highest Success Rate in all cases and lowest
Roll and Pitch angle in most cases. WMVCT and MPPI-6
achieve good Success Rate in high elevation environments,
but with large Roll and Pitch. Classical planners perform in
between their end-to-end and hybrid counterparts. PID, due
to its simplicity and robustness, performs very well in low
elevation environments, with EH catching up on Success Rate
when facing higher elevation. MPPI does not perform well in
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Fig. 6: Success Rate, Traversal Time, Roll, and Pitch with respect to Elevation Level (top), Terrain Semantics (middle), and
Obstacle Density (bottom) of Ten Off-Road Mobility Systems on 1000 Navigation Tasks.



most cases and only outperforms PID in terms of Success Rate
in high elevation environments. Notice that Traversal Time is
only averaged over successful trials and thus only indicates
how fast a mobility system is given navigation success.

For terrain semantics, all systems perform best on rigid
terrain, with TAL and TNT achieving highest Success Rates
above 60%. Performance drops significantly on deformable
surfaces, with even the highest only achieving around 40%
Success Rates while end-to-end systems struggle below 10%.
Mixed terrain results fall between rigid and deformable ter-
rain. Deformable surfaces also show increased roll and pitch
variance across all systems, indicating less stable navigation
and highlighting the challenge of modeling vehicle dynamics
on unpredictable surfaces.

As obstacle density increases, Success Rate declines and
Traversal Time increases across all systems, with the perfor-
mance gap between hybrid and other systems widening in
dense environments. Obstacle density does not directly affect
vehicle stability, showing similar Roll and Pitch mean and
variance.

Our evaluation results indicate the potential of hybrid
mobility systems to tackle vertically challenging terrain by
combining the best of both worlds of classical and learning
approaches. The overall success of TAL and TNT indicates
the importance of an accurate 6-DoF kinodynamic model
enabled by sophisticated learning techniques in conjunction
with a sampling-based motion planner. MPPI-6, with a 6-
DoF kinodynamic model based on a simplistic neural net-
work, underperforms TAL and TNT, while the inaccuracies
introduced by WMVCT’s efficient 6-DoF decomposition lead
to the worst mobility performance among hybrid systems.
The degraded performance of all hybrid systems when fac-
ing high elevation, deformable surfaces, and dense obstacles
motivates further research, potentially to both increase the
kinodynamic modeling accuracy and improve the sampling-
based motion planner. On the other hand, it is surprising to
see the superior performance of the simple PID planner in low
elevation environments compared to the more sophisticated
EH, whose advantage only starts to slightly emerge in high
elevation environments. This observation reveals a tradeoff
between system complexity and performance when facing
simple environments. One potential future research direction
is to develop off-road mobility systems composed of multiple
planners with different complexities and specialties to fit
different environments [56]. Lastly, research of end-to-end
learning approaches, despite their recent success in relatively
benign indoor or on-road enviornments, still needs to focus on
robustly generalizing to out-of-distribution scenarios, which
are very common to encounter in off-road environments.

V. REAL-WORLD VALIDATION

To validate the Verti-Bench evaluation results, we deploy
one representative mobility system from each of the three
classes, i.e., PID for classical, ACL for end-to-end, and TNT
for hybrid, on a physical 1/10th scale open-source Verti-4-
Wheeler robot [19] on an off-road mobility testbed constructed

Fig. 7: Physical Off-Road Testbed Similar to Verti-Bench.

TABLE II: Physical Validation of PID, ACL, and TNT:
Success Rate, Traversal Time, Roll, and Pitch.

Low Elevation PID ACL TNT

Success Rate ↑ 5/5 3/5 5/5
Traversal Time ↓ 6.64s±1.09s 7.03s±0.47s 8.90s±0.76s

Roll ↓ 6.45°±5.20° 6.20°±4.13° 6.02°±4.92°
Pitch ↓ 5.45°±3.37° 6.34°±3.32° 4.74°±3.23°

High Elevation PID ACL TNT

Success Rate ↑ 3/5 2/5 5/5
Traversal Time ↓ 11.00s±1.00s 16.00s±0.72s 17.50s±1.95s

Roll ↓ 10.14°±8.96° 13.30°±12.72° 7.12°±6.65°
Pitch ↓ 7.61°±5.46° 9.78°±6.76° 9.26°±8.41°

by rocks, foam, grass, and wood, presenting different geom-
etry, semantics, and obstacle features (Fig. 7). The testbed
is constructed in two different configurations to include low
and high elevation in order to validate the cross-elevation
evaluation results from Verti-Bench.

Table II shows the physical validation results of the three
mobility systems on both low and high elevation testbeds. In
general, the trend of the physical experiment results matches
with that of Verti-Bench evaluation results: On the low eleva-
tion testbed, both PID and TNT are able to finish all five trials,
while ACL still suffers from poor generalization. PID is still
the fastest due to a lack of consideration of elevation. The roll
and pitch angles are small and stable for all systems due to
the lower and smoother terrain elevation; On the high elevation
testbed, the difference between TNT and PID starts to emerge.
TNT succeeds all five trials, while PID fails two. TNT and PID
also exhibit smaller roll and pitch angle respectively. PID is
still the fastest. ACL, similar to all previous cases, fails three
trials and experiences the largest roll and pitch angles. Notice
that due to the difficulty in conducting physical experiments,
we only limit to physically evaluating three systems and five
trials each, totaling 30 trials. This contrast against our 10000
trials (ten systems, 1000 trials each) in Verti-Bench, which can
achieve much better statistical significance, further suggests
the utility of Verti-Bench to evaluate off-road mobility.



VI. LIMITATIONS

Despite being a general and scalable benchmark, Verti-
Bench still has a few limitations. Due to the high requirement
to compute high-fidelity physics and a lack of GPU acceler-
ation, Verti-Bench can only achieve near-real-time simulation
speed, with real time factor ranging between 0.4 and 1.5
(faster and slower than real time respectively) depending on
simulation complexity. Integrating with GPU accelerators to
increase benchmarking efficiency is an important next step.
Verti-Bench aims to evaluate off-road mobility and assumes
ground truth perception is available to the mobility system.
However, such an assumption does not hold in the real world.
Future work will add realistic perception noises and test
the robustness of mobility systems when facing imperfect
vehicle state estimation, elevation and semantics mapping, and
obstacle detection. Another direction of expanding the current
Verti-Bench is to create more complex real-world counterparts
than the current small-scale physical testbed so that the sim-to-
real gap can be more extensively studied to further validate the
efficacy and improve the fidelity of Verti-Bench evaluation.

VII. CONCLUSIONS

We present Verti-Bench, a general and scalable off-road
mobility benchmark for vertically challenging terrain. Based
on Chrono, a high-fidelity multi-physics dynamics engine,
Verti-Bench includes 100 off-road enviornments and 1000
navigation tasks with millions of off-road terrain features
covering geometry, semantics, and obstacles. Verti-Bench can
also scale to off-road vehicles of different sizes, weights,
chassis, suspensions, and steering mechanisms. Standardized
metrics and datasets are provided to quantify off-road mobility
performance and facilitate data-driven mobility. Ten off-road
mobility systems are evaluated in Verti-Bench, whose results
are further validated on a physical testbed. We also point out
future research directions to improve off-road mobility.
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