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Abstract

As model context lengths continue to increase, the number of demonstrations that
can be provided in-context approaches the size of entire training datasets. We
study the behavior of in-context learning (ICL) at this extreme scale on multiple
datasets and models. We show that, for many datasets with large label spaces,
performance continues to increase with hundreds or thousands of demonstrations.
We contrast this with example retrieval and finetuning: example retrieval shows
excellent performance at low context lengths but has diminished gains with more
demonstrations; finetuning is more data hungry than ICL but can sometimes exceed
long-context ICL performance with additional data. We use this ICL setting as a
testbed to study several properties of both in-context learning and long-context
models. We show that long-context ICL is less sensitive to random input shuffling
than short-context ICL, that grouping of same-label examples can negatively impact
performance, and that the performance boosts we see do not arise from cumulative
gain from encoding many examples together. We conclude that although long-
context ICL can be surprisingly effective, most of this gain comes from attending
back to similar examples rather than task learning.2

1 Introduction

When a few examples are provided in-context, large language models can perform many tasks with
reasonable accuracy. While questions remain about the exact mechanism behind this phenomena
(Min et al., 2022b; von Oswald et al., 2023), this paradigm of in-context learning (ICL) has seen
widespread adoption in both academic and industry applications, thanks to its ease of implementation,
relatively small computational cost, and ability to reuse a single model across tasks.

However, most work in this area has focused on models where the maximum number of demon-
strations is severely limited by context length. As more and more methods are developed to adapt
language models to extreme context lengths (Deepmind (2024); Fu et al. (2024), inter alia), in-context
learning over large quantities of data becomes a potential alternative to finetuning. The properties of
ICL in this regime are not well-understood; additionally, as the cost of inference over many thousands
of tokens can be steep, the efficiency and performance tradeoff between many-shot ICL and finetuning
on the same data is complex.

∗Now at Google DeepMind
2Data and code are available at https://anonymous.4open.science/r/long-context-icl/

https://anonymous.4open.science/r/long-context-icl/
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(a) Using randomly selected examples.
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(b) Using retrieved examples.

Figure 1: The performance increases with more demonstrations far beyond the context window of the
base Llama-2. Results are on Fu et al. (2024)’s long-context finetuned Llama-2-7b model, using a
context of up to 80K tokens.

We conduct a systemic study of long-context in-context learning. Namely, we consider: a) the
performance of prompting the base model naively, b) retrieving examples to use in-context for each
test example, c) comparison to finetuning the base model, and d) using models trained to adapt
to longer contexts. Performance continues to increase past 2000 demonstrations (see Figure 1),
approaching and sometimes exceeding the performance of models finetuned (with LoRA (Hu et al.
2022)) on thousands of examples from the same dataset (§ 2).

We find that, as the number of demonstrations in-context increases to extreme values, the behavior
of ICL shifts (§ B). In-context learning becomes less sensitive to example order, and the benefits of
retrieval over using a random set of demonstrations diminishes — allowing the use of a single set
of demonstrations, encoded once through the model and cached, rather than re-encoding a custom
set of demonstrations for each inference example.We demonstrate that long-context ICL is strongly
impacted by grouping examples of the same label. We also find that the effectiveness of long-context
ICL is not because of the continual refinement of a decision boundary during encoding but because
of the retrieval from more relevant examples (§ D). Our work furthers the understanding of in-context
learning and suggests that long-context ICL is a strong alternative to retrieval and finetuning.

2 Long-context ICL

We consider 5 classification datasets: TREC (Hovy et al., 2001), TREC-fine (Hovy et al., 2001), NLU
(Xingkun Liu & Rieser, 2019), Banking-77 (Casanueva et al., 2020), and Clinic-150 (Larson et al.,
2019). We evaluate across 4 models– 3 versions of Llama 2 finetuned for various amounts of context
and Mistral Instruct. We then take three common settings– naively sampling a fixed subset to use
in-context, retrieving relevant data for each example at inference time, or finetuning on the dataset.
Appendix A contains more details about the experimental settings.

2.1 In-context results

Scaling up ICL to many examples leads to surprisingly strong results Figure 1 and Table 1
show the performance of models in both in-context learning settings. Scaling up in-context learning
from 10 to 1000 demonstrations results in accuracy gains of up to 50.8 points (an average of 36.8
points across the 5 datasets).

Longer context lessens the importance of carefully selecting in-context examples Retrieving
relevant examples for each test set example far outperforms using a randomly selected subset in the
short-context regime. This is true even if the order of retrieved examples is shuffled (rather than
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Dataset Llama2 Llama2-32k Llama2-80k Mistral
Randomly selected

TREC 82.32 / 80.52 93.12 / 93.12 90.04 / 90.04 87.28 / 85.00
TREC-fine 61.40 / 61.40 75.56 / 75.08 77.20 / 77.20 72.68 / 70.48
NLU 76.88 / 76.88 85.04 / 85.00 87.52 / 86.92 86.44 / 86.44
Banking-77 56.36 / 56.36 82.44 / 82.44 88.08 / 87.96 86.76 / 86.68
Clinic-150 60.92 / 60.92 84.40 / 84.40 89.32 / 89.32 90.56 / 90.56

Retrieval

TREC 90.80 / 85.64 94.84 / 94.64 94.28 / 92.68 90.80 / 90.80
TREC-fine 78.80 / 78.80 83.88 / 81.12 83.92 / 81.36 80.80 / 79.60
NLU 90.00 / 88.40 89.80 / 89.80 89.64 / 89.52 90.40 / 89.20
Banking-77 93.20 / 92.40 94.32 / 94.32 94.00 / 92.96 93.20 / 93.20
Clinic-150 87.60 / 87.60 89.84 / 89.84 93.76 / 93.76 93.20 / 92.40

Table 1: For all datasets, performance of ICL continues to increase with additional demonstrations.
The results are the best accuracy (left) and accuracy at maximum data (right) for each model. Bold
indicates the best performance for that model/dataset pair.

100 101 102 103 104

number of examples in-context
0

20

40

60

80

100

ac
cu

ra
cy

Retrieval ICL
Random ICL
Finetuned

(a) Clinic-150

100 101 102 103 104

number of examples in-context
0

20

40

60

80

100
ac

cu
ra

cy

Retrieval ICL
Random ICL
Finetuned

(b) Trecfine

Figure 2: Comparing retrieval ICL, random selection ICL, and finetuning on two representative
datasets. Finetuning sometimes, but not always, exceeds ICL at high numbers of demonstrations.
Note that, while retrieval ICL uses the listed number of examples in context, it assumes access to
the larger test set to draw examples from (Perez et al., 2021). See Appendix G for results on other
datasets.

.

ordered by relevance).3 However, adding additional examples does continue to slightly improve
performance; this is especially surprising because, after all examples with non-trivial lexical overlap
are retrieved the remaining examples are randomly selected.

While retrieval continues to outperform random selection on most datasets, the importance of the
selection strategy diminishes with additional examples. On Banking-77, the dataset where retrieval
is most beneficial, the performance gain from retrieval drops from 51.5 points at 1-shot ICL to
4.9 points at 1500-shot ICL. In the long context regime, using the more computationally efficient
but less effective strategy of a single randomly selected set of demonstrations is more feasible; the
performance penalty for doing so is never more than 5 points of improvement, and as low as 1.8
points (for 2000-shot ICL on TREC).

3We perform three random shuffles of the retrieved inputs and test for difference in distribution from the
original results; this does not significantly change performance for any dataset (2-sided t-test, p < 0.05).
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Why does long-context ICL help? We analyze this phenomenon in detail in Appendix D, and
find that the performance of long-context ICL is largely unaffected by encoding the input in blocks,
suggesting that the model is not aggregating a decision boundary over long context but instead
attending to relevant examples in-context to make the prediction.

2.2 Comparison with finetuning

While we have demonstrated that in-context learning with hundreds or thousands of examples is
effective, this amount of data is also appropriate for finetuning a model. Finetuning has higher upfront
cost but allows for reduced inference-time cost. We compare in-context learning with the popular
parameter-efficient finetuning (PEFT) strategy LoRA (Hu et al., 2022).

PEFT is more data-hungry than ICL– especially ICL with retrieval When a relatively small
set of examples is available, ICL generally outperforms LoRA finetuning on the same model.4
For most datasets, finetuning performance never exceeds long-context ICL performance even with
additional examples (e.g. Figure 2a). The exceptions are on TREC and TREC-fine, where finetuning
outperforms ICL at the highest numbers of examples (but continues to underperform at low numbers
of examples) (e.g. Figure 2b). Generally, the datasets with larger label spaces show the least strong
finetuning performance, likely because these are more open-ended classification problems and require
more data to train the classifier.

For some datasets, PEFT does win out overall– finetuning with more examples than even the 80k
model can fit in-context does result in higher performance. In datasets where PEFT performance
never exceeds ICL performance, it nevertheless has dramatically reduced inference costs for similar
performance; thus, finetuning on 4096 examples may still be preferable to prompting with 1000 if
efficiency of inference is a major priority. This is because, even if demonstration encodings can be
cached across inference examples, cross-attention to a long context of demonstrations is expensive.

3 Conclusion

We have demonstrated that ICL with large demonstration sets can be surprisingly effective, and shed
light on a few surprising properties in its behavior. Namely, long-context ICL exhibits a reduced
dependence on example selection, relatively stable performance with respect to example order, and
performance often approaching or exceeding parameter-efficient finetuning on the same data, all
properties that make this an appealing option for a variety of tasks. We have also shown that long-
context ICL’s effectiveness is largely due to retrieval from the long context during prediction, rather
than cross-attention within the large demonstration set during encoding.

Our work also highlights that our understanding of ICL remains incomplete. Though much work has
studied the potential mechanisms behind ICL, these works have largely focused on simple tasks with
small (< 10 examples) demonstration sets; as our work demonstrates that ICL’s properties shift in
the long context regime, more work is necessary to validate hypotheses about ICL at larger scales.

While prior work has focused on two strategies for performing inference on a new task– either
finetuning on task-specific data or selecting a subset of that data to use in-context– our results
points to a potential third paradigm: adapting the model to fit as much of that data in-context as
possible, caching and reusing the encoding of the long demonstration set. While finetuning with full
datasets is still a powerful option if the data vastly exceeds the context length, our results suggest that
long-context ICL is an effective alternative– trading finetuning-time cost for increased inference-time
compute. As the effectiveness and effiency of using very long model context lengths continues to
increase, we believe long-context ICL will be a powerful tool for many tasks.
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A Additional experimental setup information

A.1 Models used

We compare ICL performance across several long- and short-context models:

1. Llama2 (Touvron et al., 2023) is a decoder-only model trained with a 4096 context length.
We use the non-instruct (non-chat) variant because it is more commonly used as a base model
for long-context finetuning and because we observed very similar performance between the
chat and non-chat variants in our initial experiments.

2. Llama2-32k (TogetherAI, 2023) is a version of Llama-2-7b finetuned by TogetherAI for a
32k context window. We use the non-instruct version.

3. Llama2-80k (Fu et al., 2024) is a version of Llama-2-7b finetuned with 80k context and a
carefully designed long-document data mixture.

4. Mistral-7b-v0.2 (Jiang et al., 2023). To verify that the trends we observe are not specific to
the Llama series, we use the instruct version of Mistral-v0.2 (the non-instruct model is not
publicly available). The trained context length of Mistral-7B-Instruct-v0.2 is 32k tokens.

While all of these models can extrapolate to inputs longer than their trained context length, we restrict
the lengths of inputs to fit within the trained context length; this represents the best case performance
without the additional confound of the extrapolation strategy.

A.2 Compared settings

We consider three common methods for using a large dataset.

Random sampling ICL We use 10 random shuffles of the training dataset, averaging the results
across these shuffles. Across models and across varying numbers of demonstrations in-context, we
draw the first n examples from each shuffle. In this setting, the encoding of demonstrations can be
performed once and cached across all inference examples.

Retrieval ICL A strong alternative for in-context learning is to retrieve a relevant subset of examples
as demonstrations for each test set example. In this setting, we use a BM25 (Robertson & Zaragoza,
2009) retriever with stopwords removed and retrieve the most relevant demonstrations by comparing
the test input text to the full demonstration texts. When doing k-shot prompting, if less than k
examples are retrieved by the retriever,5 we randomly sample additional examples until we reach k.
We compare putting examples in the order they were retrieved and in three random shufflings. Note
this is more computationally expensive than using a random sample as demonstrations, as a new set
of retrieved demonstrations must be encoded for each test set example. However, prior work has
found that, in some scenarios, retrieval of good examples can make the difference from near-zero to
high test accuracy (Levy et al., 2023).

Finetuning We finetune Llama2-7b with a classification head on varying amounts of data from each
dataset with several random seeds, and plot performance at convergence on the same held-out test
data. We initialize the classification head from the parameters of the pretrained language modeling
head by subsampling the values of the first token of each label; this creates a better-than-random
initialization for finetuning. For more details on the finetuning procedure, see Appendix H.

A.3 Constrained decoding

For each dataset, we use constrained decoding to only produce valid labels as output;6 all ICL
results in the paper, across all methods, use this constrained decoding. Note that, without constrained
decoding, these models may produce invalid labels in the few-shot regimes. For finetuning, we use a
classification head so that no invalid outputs may be produced.

5This occurs when there are less than k examples with any (non-stopword) overlap with the test example.
6Following Ratner et al. (2022): at each generation step, we simply multiply the logits of tokens that could

lead to a valid label by a large constant.
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A.4 Evaluation

Following prior work (Zhao et al., 2021; Lu et al., 2022; Han et al., 2022; Ratner et al., 2022), we
subsample 250 examples from the test set of each dataset. We release the subsampled test set and
full prediction outputs for each experiment in the project repository. We evaluate on each dataset
with accuracy and macro-F1, to capture both overall performance and the performance on minority
classes; as the trends for both metrics are very similar, we report accuracy in the paper for readability.
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B Properties of long-context ICL

In this section, we compare the properties of long-context ICL with the known properties of short-
context ICL. We consider using ICL as a testbed for properties of long-context models in Appendix E.
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Figure 3: The impact of (randomly) reordering
examples in-context decreases with additional
demonstrations.
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Figure 4: By contrast, sorting examples by label
has an increasingly negative impact on perfor-
mance in longer context regimes. Results on
Llama2-32k with Clinic-150.

Is it best to use the entire context? Prior work suggested that, for some simple tasks, providing
additional input can reduce performance (Levy et al., 2024). However, we observe monotonically
increasing performance on nearly every dataset; after the performance curve begins to flatten, small
variation occurs, but no significantly lower performance occurs at higher example counts. While
using the full context window is computationally costly, and may not be necessary to achieve high
performance on these datasets, it does not appear to be harmful to performance; and the additional
cost of more input is minimal, as the key-value pairs can be cached and reused across test samples.

Sensitivity to example order Prior work has shown that many models exhibit strong sensitivity
to example order in-context (Lu et al., 2022). We examine this by measuring the percentage of
predictions that change when the input is reordered, averaged over 3 re-shufflings. Figure 3 shows
that, while there is some sensitivity to example order at all context lengths, this effect weakens
substantially with additional context. Across all datasets, the percent of labels flipped by reshuffling
in 1000-shot ICL is less than half the percentage flipped by reshuffling in 10-shot ICL.

Label sorting We also consider an adversarial case for example ordering: we sort the examples
so that examples with the same label appear together. At small numbers of examples, this has very
little impact; if the average number of examples per class is low, label sorting is similar to a random
sort. However, as the number of examples grows, label sorting begins to have a dramatic impact on
performance. Figure 4 shows the performance of Llama2-32k on Clinic-150 with and without label
sorting. As the number of examples in-context increases, the penalty for input sorting increases as
well; at 1169-shot ICL, label sorting decreases accuracy by 25.7 percentage points. This suggests
that contextualization of examples with different labels is important to performance, and that this
contextualization only occurs effectively over relatively short distances in the context window.
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Dataset Llama2 Llama2-32k Llama2-80k Mistral
TREC 20 (140) 100 (1129) 75 (2000) 50 (1129)
TREC-fine 75 (131) 250 (1056) 500 (2000) 500 (1091)
NLU 100 (162) 500 (1309) 500 (2000) 250 (1309)
Banking-77 - (100) 500 (838) 750 (1750) 500 (860)
Clinic-150 - (145) 750 (1169) 1000 (2000) 750 (1212)

Table 2: We measure the saturation point as the point at which the model reaches 95% of its maximum
accuracy on the dataset; “-” in a column indicates that the maximum performance is achieved by using
the full context window. The number in parenthesis represents the maximum number of examples
that fit in the context window. As the label space of the dataset increases (from top to bottom row), so
does the number of examples that can be used before saturation.

C Saturation

One metric we are interested in is the point where the model performance saturates, which we
define informally as the point where adding more examples is unlikely to meaningfully improve
performance. More formally, we define the saturation point as the smallest number of examples
tested such that performance reaches 95% of the model’s maximum performance.

Saturation points vary by dataset. We define saturation as the first point at which performance
reaches 95% of the model’s maximum performance on that dataset. Table 2 shows the number of
examples at saturation and the maximum number of examples that fit in the context window for
each model. For datasets with larger label spaces, saturation generally occurs later; Banking-77 and
Clinic-150 do not saturate within the context window of Llama2 (4096 tokens, which represents
between 100-162 in-context examples for these datasets). In the longer-context regime, saturation
points generally occur slightly later on Llama2-80k, but in both models occur before the model’s
maximum context length.

This suggests two things. First, given a fixed model, it is often not necessary to use the full context
length to extract high performance from that model. Second, current models do not make use of the
full potential of ICL; models often saturate in performance before the maximum number of examples,
despite longer-context versions revealing that further performance improvements are possible.

The number of classes has some impact on saturation point– but is not fully explanatory. Our
results show datasets with more classes benefit from more demonstrations in-context, on average,
before saturation. This is to be expected, as the expected number of demonstrations necessary before
seeing the correct label increases with the number of total label classes. To test if this is an intrinsic
property of these datasets, or truly linked only to the number of label classes, we construct subsets of
two high-label-space datasets, Banking-77 and Clinic-150, by randomly selecting half of the labels to
exclude from the dataset. These subsets remain in the same domain, but with a smaller label space; if
saturation is tied to the number of examples, then this should move the saturation point. Note that
this is distinct from combining labels (e.g. TREC vs TREC-FINE), as combining finegrained labels
into general labels makes the classification task simpler. It’s still possible that the subset chosen is a
simpler task (e.g. by removing one of a pair of frequently confused labels); to moderate the effect of
this change, we average results over 3 randomly chosen subsets.

Table 3 compares the saturation point of the full- and half-label-space runs. For the datasets with
the most number of labels, halving the number of labels also reduces the amount of examples that
are useful before saturation, albeit not by half. However, the trend is less clear for the tasks with
fewer labels; in some cases, reducing the label space actually increases the number of demonstrations
before saturation. While the size of the label space clearly has some impact on the saturation point,
more investigation is necessary to identify other factors impacting this behavior.
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Dataset Llama2 Llama2-32k Llama2-80k Mistral
TREC 14.29 / 24.69 8.86 / 1.77 3.75 / 1.71 4.43 / 6.0
TREC-fine 57.25 / 80.71 23.67 / 27.9 25.0 / 32.38 45.83 / 33.33
NLU 61.73 / 80.71 38.2 / 17.21 25.0 / 26.67 19.1 / 36.67
Banking-77 100.0 / 88.0 59.67 / 37.91 42.86 / 28.57 58.14 / 35.56
Clinic-150 100.0 / 64.04 64.16 / 35.14 50.0 / 22.86 61.88 / 56.67

Table 3: We compare the saturation point between the full-label-space (left) and half-label-space
(right) for each model+dataset pair. Here we represent the label space as a percentage of the full
context window.

(a) Causal attention (b) Blockwise attention

Figure 5: Normal versus block-causal attention. When performing blockwise attention, we allow full
attention for the example we are predicting a label for (here: the last 2 tokens).

.

D Why does long-context ICL help?

To study the underlying mechanism behind the improved performance of the model at longer context
lengths, we consider a modified attention pattern where demonstrations can only attend to a small
block of nearby demonstrations. The test example we are predicting a label for can always attend to
all demonstrations. Figure 5 compares this block-attention to the usual causal attention.

If improved performance is due predominately to the development of a more fine-grained task
understanding from embedding many examples together (e.g. continually refining a decision boundary,
in the way finetuning the model would do), then encoding many examples in small blocks would
be far worse than encoding them all together. If the improvements come largely from seeing more
relevant examples to attend to, then the performance should not be strongly reliant on how many
other examples each demonstration is contextualized with. Note that this is distinct from methods
that overload the same positions with multiple embeddings in order to process longer contexts (e.g.
Ratner et al. (2022)); here, we are not modifying any positional information, only restricting attention
between demonstrations to a local context block.

Rather than breaking the context window into fixed-length chunks, we fix a number of examples
per-block. If the block size is equal to the number of examples in-context, this is equivalent to
normal attention; if the block size is 1, each example can attend only to itself. Figure 6 shows results
on Banking-77 and Clinic-150, with a comparison to both full attention over all examples and full
attention over a single block of examples.

When attending in very small blocks (e.g. for banking, < 5 examples), performance is worse
than attending to a small set of fixed examples. We hypothesize that this is due to inadequate
contextualization of each example leading to less informative embeddings. However, performance
quickly climbs; 95% of the performance of full attention is recovered by a block of 50 examples in
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the case of Banking-77 or 75 examples for Clinic-150 (more generally: this occurs between 20- and
75-example block sizes in all datasets). In some dataset/model pairs, performance of block attention
even slightly exceeds performance of full attention.

To determine how much of the benefit of encoding multiple examples together is due to task
learning, we consider the case of ICL with examples sorted by label. In the block attention
case, this ensures that most blocks have examples with only one label represented. While
sorting examples by label is harmful to performance in the block attention case as well, it
is not more harmful to the blocked attention model than it is to the full attention model.
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Figure 7: Even when the examples in-context are
sorted, block attention can recover similar perfor-
mance to full attention on the same ordering.

This suggests that much of the performance of
the model is not due to learning decision bound-
aries in each block and aggregating them, as
most blocks in the label-sorted case do not see
more than one or two labels. This supports the
theory that the primary performance improve-
ment from long-context modeling is due to re-
trieving from more relevant examples in-context,
rather than learning a better task boundary; this
is supported as well by the retrieval results in
Table 1, where retrieval performance at short
contexts is close to (though never exceeding)
very-long-context ICL performance.
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Figure 6: Comparing block attention to full attention over the same set of examples with Llama2-32k.
Block attention approaches full attention with relatively small block size. The blue dots represent
block attention with blocks of that size; the red ‘x’s represent full attention over that number of
examples. The black line represents the performance of full attention over all examples.
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Figure 8: Short-context behavior of long-context models. Each model’s performance is compared to
the performance of the base model it was finetuned from, on the same amount of data. Red represents
significantly worse performance; blue represents significantly better performance (p < 0.05).

.

Number of examples 1 5 10 25 50 100 200 250

Llama2 100.0 93.0 96.5 97.0 98.6 97.95 - -
Llama2-32k 80.0 95.0 97.0 96.6 98.4 98.5 98.5 98.9
Llama2-80k 90.0 94.0 95.0 98.2 98.5 98.3 98.0 97.9

Table 4: Copying behavior given the test examples in the context window. Results are averaged over
Banking-77 and Clinic-150; bold indicates the best performance for that model.

E Using ICL as a testbed
for long-context model properties

In this section, we use in-context learning as a
testbed to examine several properties of long-
context models.

How do long-context models perform in
the short-context regime? Llama2-32k and
Llama2-80k are finetuned variants of Llama2-
7b, adapted for longer contexts. We evaluate how these models perform relative to the base model
in short-context tasks (e.g. ICL using less than 4096 tokens of demonstrations) by testing whether
the difference in performance is statistically significant (2-sided t-test, p < 0.05). Performance is
generally similar, with some areas of slight improvement from the base model; Figure 8 shows full
results. We observe degradation in performance in some settings for Llama2-32k, highlighting the
importance of testing for behavior regression when finetuning for additional capabilities.

Input utilization We analyze the performance of all methods on a naturalistic needle-in-the-
haystack Ivgi et al. (2023); Liu et al. (2024) style test. If the model is effectively using the context,
then it should be able to exactly recover the label for any example it has seen in-context. Note that,
while a model trained on some set of data is not uniformly capable of exact copying from that training
data (Biderman et al., 2023), in nearly all of our finetuning runs, the model fits the training data with
100% accuracy.

We examine this behavior by selecting the same set of examples to use in-context and in evaluation;
all models should then be able to achieve 100% accuracy. Table 4 shows the results; while all models
achieve very high accuracy on the copied data, no model is able to uniformly copy correctly from the
input. Surprisingly, performance improves slightly with additional demonstrations for most models,
possibly due to additional specification of the task.
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F Related work

Augmenting decoder-only models with long context Many methods for extending the context
of language models have been introduced in the last few years. One series of work has focused on
positional embedding extrapolation strategies (Peng et al., 2023; Rozière et al., 2024; Chen et al.,
2023; Liu et al., 2023; Zhu et al., 2024; Xiao et al., 2024; Han et al., 2024). When extrapolating
past pretraining length, models also generally benefit from additional finetuning on long-context data
(Xiong et al., 2023). Other methods include adding retrieval-based attention (Bertsch et al., 2023;
Tworkowski et al., 2023; Yen et al., 2024) or hierarchical merging of information (Song et al., 2024;
YU et al., 2023). The two long-context Llama variants we consider in this work are both examples of
finetuning for length extrapolation.

Separately, methods for longer context for ICL have also been proposed. Parallel context windows
(Ratner et al., 2022) and structured prompting (Hao et al., 2022) propose methods of re-using the
same positional embeddings multiple times to encode more demonstrations; this is quite effective for
small numbers of overlaps, albeit with diminishing returns as the number of overlapping windows
increases. Li et al. (2023c) propose a new efficient attention mechanism for longer context and
motivate its use using long-context ICL on a model tuned with many-shot instruction finetuning. Cho
et al. (2023) propose a hybrid of ICL and linear prompting which improves beyond few-shot ICL
performance.

Several works have also critiqued the efficacy of long context models. Liu et al. (2024) demonstrate
that some long-context models fail to effectively use the middle of the context window; the models
we use were released after this work and have generally high scores for middle-of-context retrieval.
Li et al. (2023a) suggest that some long-context models are only effective at utilizing inputs that are
shorter than their context window’s intended supported length; we do not observe this effect strongly,
though we do see saturating performance slightly before the maximum number of examples in-context
for some models. Li et al. (2023b) show that many models fail at tasks that require reasoning over
long dependency lengths; this is unlikely to be an issue in our setting.

Properties of in-context learning Milios et al. (2023) study ICL for many-class classification
with models up to 4k context length and find that, when retrieving demonstrations, smaller (7b)
models show early performance saturation on many tasks. This is consistent with our findings for
Llama2-7b with retrieval; however, the same model continues to learn from demonstrations in the
random selection case, and the same size model finetuned for longer context does not show the same
performance dropoff and continues to see improvements from additional context. Our results suggest
that this failure to use longer context effectively is not an inherent property of 7b models, but instead a
type of shallow heuristic used by this model when the demonstrations are of sufficiently high quality.

Xu et al. (2023) study the impacts of ground-truth label, input distribution, and explanations on ICL
performance; Bölücü et al. (2023) study the impact of example selection in a specific domain. Lin &
Lee (2024) argue that ICL occurs in two modes: learning tasks and retrieving tasks, and that retrieval
of similar-but-not-quite-correct tasks can explain “early ascent” behaviors where ICL performance
peaks once in a fewshot regime and then performance improves again with a much higher number
of examples. Similarly, Pan et al. (2023) argue for a distinction between task recognition and task
learning, and suggest that task learning continues to benefit from additional examples at scale. von
Oswald et al. (2023) suggest in-context learning can be viewed as gradient descent, although Deutch
et al. (2024) argue against this interpretation. Hendel et al. (2023) view ICL as compressing the
demonstrations into a “task vector” that maps from inputs to outputs; the surprising effectiveness of
block encoding initially appears contrary to this theory, though it is possible that multiple similar task
vectors are learned from the separate blocks and then ensembled via attention for the final prediction.

Concurrently to our work, Agarwal et al. (2024) study many-shot prompting of Gemini 1.5 and show
improvements from the fewshot setting across both classification and generation tasks. Our work
differs in its evaluation of multiple open-source models, our comparison to finetuning the same base
model, and our use of ICL as a testbed for analysis of long context behaviors.

Tasks where long context does not help Concurrently to our work, Li et al. (2024) identify a set
of tasks where long context is not uniformly helpful. However, we observe that the tasks that show
this trend either have near-0 performance at short demonstration lengths or also display an inverse
performance trend on the short context scale (e.g. for TacRED (Zhang et al., 2017), we observe that
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performance decreases from 1 to 10 total demonstrations). While these are important failure modes of
language models, we restrict our analysis to tasks without these confounding issues. In Banking-77,
the one dataset that our works share, both papers observe similar trends of improved performance
with additional context.

Comparing in-context learning and finetuning Min et al. (2022a) show that models trained on
fewshot learning can generalize to perform fewshot learning on new tasks; in some cases, this can
outperform finetuning directly on the new task. Mosbach et al. (2023) compare finetuning to ICL
more directly; they find that finetuning generally outperforms ICL with the same number of examples
both in-domain and out-of-domain, when comparing 16-example ICL to finetuning on the same
16 examples. Their setting differs from ours in their choice of model (OPT), the amount of data
considered (16 for ICL, 16 or 128 for finetuning), and the use of full finetuning rather than PEFT.
Liu et al. (2022) find that PEFT generally outperforms ICL in their setting, where they finetune an
encoder-decoder model with a language modeling objective using their T-few method and 20-70
samples. Asai et al. (2023) compare finetuning and ICL for mT5 on cross-lingual transfer and find that
ICL outperforms finetuning in some, but not all, of the tasks studied. To the best of our knowledge,
no prior work has considered the relative performance of finetuning and ICL in the many-shot regime,
where there are hundreds or thousands of examples in-context.
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G Full ICL results across datasets

For space, we show 1-2 representative datasets for each point of analysis in the paper. In this appendix,
we present results across all datasets for completeness.
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G.1 Random selection ICL across all models
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Figure 9: Performance of random-selection ICL across all models for each dataset. Performance
continues to increase with additional examples in-context.

20



G.2 Retrieval ICL across all models
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Figure 10: Performance of retrieval-based ICL across all models for each dataset. Short-context
performance here is higher than for random-selection, but performance continues to improve with
more examples until a saturation point, where performance flattens out.
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G.3 Comparing retrieval, random selection, and finetuning
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Figure 11: Performance of retrieval-based ICL, random-selection ICL, and finetuning across 5
datasets. At small example counts, ICL outperforms finetuning; when several thousand examples are
used, finetuning outperforms ICL in some datasets.
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H Finetuning

To perform parameter efficient finetuning (PEFT), we used the peft (Mangrulkar et al., 2022) package
(version 0.9.0). We finetune the model for 30 epochs, evaluating it every epoch on the test set,
and ultimately choosing the checkpoint with the highest test accuracy. We note that using the test
set to perform model selection presents an unfair advantage to PEFT (compared to ICL) and may
not be truly indicative of the generalization error. However, doing so provides the advantage of
being both comparable to ICL in terms of the data used, as well as giving an upper bound on the
true generalization accuracy of the finetuned model, further emphasizing any observed efficacy gap
between it and ICL.

Initialization of the classification head While in our default setting we initialize the classification
head from the pretrained LM head, subsampled at the representation of the first token in each label,
we investigate the efficacy of this approach by contrasting with a randomly initialized classification
head. Figure 12 shows that while in the few-shot regime, this approach has significant advantage, as
the training set grows in size the difference shrinks to become negligible. In no case was random
initialization better than this approach.

Hyperparameter tuning To remain comparable in terms of compute efficient finetuning, we did
not perform extensive hyper-parameter tuning per task, and instead experimented with a good global
setting on a single dataset (Banking-77). Specifically, we experimented with different learning rates,
different LoRA ranks (r) and α (Hu et al., 2022) and also tried applying RSlora (Kalajdzievski, 2023)
which sets the scaling factor to α√

r
as some evidence suggest it can outperform the original method.

Figure 13 summarizes the results, depicting average test accuracy against training examples with
different settings.

Ultimately, we found that using HuggingFace’s (Wolf et al., 2020) default parameters of r = 8,
α = 32, LoRA dropout of 0.1 and a learning rate of 1e− 3 to work best. In all cases, we used batch
sizes of 32 and weight decay of 0.01.

It is possible that methods specialized for finetuning in small-data regimes, such as T-few Liu et al.
(2022), might close the gap between ICL and PEFT in the small-data regimes. We did not consider
T-few in our analysis because of its additional pretraining stage, which imposes substantial additional
cost, and because T-few was developed with a focus on encoder-decoder models and we consider
only decoder-only models in our setting.
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Figure 12: Comparing initialization methods of the classification head when finetuning a PEFT llama-
2-7b model. Averaged (best) test accuracy over 5 random seeds. Initialization with lm subsamples
the pretrained language-modeling head at the first token of the target label, while random samples
random weights.
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Figure 13: Comparing hyperparameters when finetuning a PEFT llama-2-7b model on Banking-77.
Averaged (best) test accuracy over 3 random seeds. (a) Comparing our fixed LoRA configurations to
the best alternative configuration (at each scale) we tried. (b) Comparing different learning rates.
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Dataset Domain # Labels
Avg

demo
length

Training
set size Example labels

TREC questions 6 22.7 5,452 location,
entity

TREC-fine questions 50 23.7 5,452 abbreviation expansion,
location city

NLU conversational 68 20.7 19,286 takeaway query,
iot hue light up

Banking-77 financial 77 27.4 10,003 top up failed,
lost or stolen card

Clinic-150 multiple 151 22.3 15,250 rollover 401k,
meal suggestion

Table 5: The datasets we consider in this work span diverse label spaces and domains. The average
demonstration length is the average combined length of input, output, and formatting tokens per
demonstration provided in the context window.

I Prompt formatting and examples from datasets

Table 5 contains summary statistics for each dataset. We also provide additional description and
examples for each dataset.

As a demonstration of the datasets, we provide an example of 3-shot prompting for each dataset with
the prompt formatting we used (and with examples drawn from the training set of each dataset).

Prompt formatting and instruction phrasing can have significant impact on performance (Sclar et al.,
2023); we keep the formatting consistent with prior work (Ratner et al., 2022), with prefixes for the
input and output for each exemplar. Because we use predominately non-instruction-tuned models, we
do not add an additional instruction or system prompt.

I.1 TREC

TREC (Hovy et al., 2001; Li & Roth, 2002) is a question classification dataset with two granularities
of labels. We refer to the 6-label coarse classification as TREC.

Figure 14: The label distribution of TREC. One label is much less frequent than the rest.

25



Question: How does light travel through the void of space if there is no medium for it to ‘
wave ’ or ‘ pulse ’ .
Type: description
==
Question: What cathedral was Thomas Becket murdered in ?
Type: location
==
Question: The lawyer who represented Randy Craft , what was his name ?
Type: human
==
Question: What are the rites accompanying the circumcision of a newly born-child in Judaism
called ?
Type:

Figure 15: Example 3-shot prompt for TREC.

I.2 TREC-fine

We refer to TREC’s 50-label finegrained classification as TREC-fine.

Figure 16: The label distribution of TREC-fine.

Question: How does light travel through the void of space if there is no medium for it to ‘
wave ’ or ‘ pulse ’ .
Type: description manner
==
Question: What cathedral was Thomas Becket murdered in ?
Type: location other
==
Question: The lawyer who represented Randy Craft , what was his name ?
Type: human individual
==
Question: What are the rites accompanying the circumcision of a newly born-child in Judaism
called ?
Type:

Figure 17: Example 3-shot prompt for TREC-fine.

I.3 NLU

NLU (Xingkun Liu & Rieser, 2019) is a 68-way intent classification dataset in the conversational
domain. The original paper evaluates on 64 of the intents; we use all 68. The data is licensed under
CC BY 4.0.
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Figure 18: The label distribution of NLU.

utterance: oh it is nice one, olly.
intent: general praise
==
utterance: nope wrong.
intent: general negate
==
utterance: what events near hear are happening this week
intent: recommendation events
==
utterance: play fishing podcasts that are favorited
intent:

Figure 19: Example 3-shot prompt for NLU.

I.4 Banking-77

Figure 20: The label distribution of Banking-77.

Banking-77 (Casanueva et al., 2020) is a 77-way intent classification task in the financial domain.
Although the accuracy of some labels in BANKING77 has been criticized (Ying & Thomas, 2022),
we report results here on the original dataset for consistency with prior work. The data is licensed
under CC BY 4.0.
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query: How long will my payment be pending?
intent: pending card payment
==
query: My physical card is not working
intent: card not working
==
query: i cant seem to activate card
intent: activate my card
==
query: I didn’t set up a direct debit payment on my account.
intent:

Figure 21: Example 3-shot prompt for Banking-77.

I.5 Clinic-150

Figure 22: The label distribution of Clinic-150. It is balanced except for the “out of scope” label,
which has additional data points in the split we use.

Clinic-150 (Larson et al., 2019) is a 151-way, multi-domain intent classification task; examples are
either labeled with an intent from one of 10 domains or with the catch-all “out-of-scope“ label. We
use the “plus“ train split from the original paper, which adds additional “out-of-scope” examples to
the dataset. The data is licensed under CC BY 3.0.

utterance: how much is my comcast bill
intent: bill balance
==
utterance: tell me about yourself
intent: what is your name
==
utterance: how to build up my credit score
intent: improve credit score
==
utterance: are you employed by me
intent:

Figure 23: Example 3-shot prompt for Clinic-150.
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J Additional details

J.1 Computational cost

For our finetuning experiments, we used approximately 25 GPU-days of compute on 80GB A100
GPUs. The computational cost of the in-context learning experiments was approximately 50 GPU-
days, primarily using 48GB A6000 GPUs. All experiments were run on local clusters (i.e. not using
cloud providers).

J.2 Broader impacts

Any work that studies general capabilities of language models can be used for both positive and
negative applications downstream. In-context learning work is perhaps particularly vulnerable to
this dual use, in part because it is a relatively accessible method, requiring far less compute than
finetuning or pretraining models.

Independent of our work, Anil et al. (2024) observed that many-shot prompting can be used to
jailbreak some models. We do not study or suggest the use of long-context ICL for jailbreaking in
our work, but this is a potentially harmful use case of this paradigm. Outside of this risk, we do not
foresee any additional harms introduced by long-context ICL methods.

We hope that our work opens up additional possibilities for people who are compute-constrained to
customize models to their use cases or tasks. We also aim to carefully explore the boundary between
where finetuning and long-context ICL is appropriate, to enable practitioners to make informed
choices on when to apply each method.

J.3 Limitations

Our work focuses on open-source models (and predominately on the Llama-2 family); more work is
necessary to establish whether this trend holds across model families, although we are encouraged
by the strong results Agarwal et al. (2024) observed for many-shot prompting on Gemini 1.5.
Additionally, we do not consider full finetuning or other non-LoRA PEFT methodologies; it is
possible that some of these methodologies may outperform in-context learning. Finally, we focus on
classification tasks, and care should be taken before attempting to generalize to generation tasks.
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