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ABSTRACT

Approximating solutions to time-dependent Partial Differential Equations (PDEs)
is one of the most important problems in computational science. Neural PDE
solvers have shown promise recently because they are mesh-free and easy to imple-
ment. However, backpropagation-based training often leads to poor approximation
accuracy and long training time. In particular, capturing high-frequency temporal
dynamics and solving over long time spans pose significant challenges. To address
these, we present an approach to training neural PDE solvers without backprop-
agation by integrating two key ideas: separation of space and time variables and
random sampling of weights and biases of the hidden layers. We reformulate the
PDE as an Ordinary Differential Equation (ODE) using a neural network ansatz,
construct neural basis functions only in the spatial domain, and solve the ODE
leveraging classical ODE solvers from scientific computing. We demonstrate that
our backpropagation-free algorithm outperforms the iterative, gradient-based op-
timization of physics-informed neural networks with respect to training time and
accuracy, often by 1 to 5 orders of magnitude using different complicated PDEs
characterized by high-frequency temporal dynamics, long time span, complex
spatial domain, non-linearities, shocks, and high dimensionality.

1 INTRODUCTION

Approximating solutions of partial differential equations (PDEs) is vital in computational science and
engineering. Traditional mesh-based numerical methods like finite differences, finite volumes, finite
elements, or mesh-free methods based on global basis functions like spectral methods have been
developed for decades. These methods often approximate PDE solutions with high accuracy and are
grounded in theory. However, mesh-based methods are often difficult to implement on complicated
domains due to the meshing difficulties and can be prohibitively expensive for high-dimensional
problems owing to the curse of dimensionality. Traditional spectral methods often struggle with
complicated domains and locally sharp gradients in the PDE solution (Boyd, 2001).

Deep neural networks have recently shown significant promise for approximating solutions of PDEs
because of the mesh-free construction of basis functions, high expressivity of neural networks (Rudi
& Rosasco, 2021), their ability to represent functions in high dimensions (E, 2020; Wu & Long, 2022),
powerful software for automatic differentiation (e.g., Pytorch (Paszke et al., 2017), TensorFlow (Abadi
et al., 2015), and specialized software like DeepXDE (Lu et al., 2021b)). Earlier work on solving
PDEs using neural networks (Dissanayake & Phan-Thien, 1994; Lagaris et al., 1998) was recently
popularized in the form of Physics-informed neural networks (PINNs) and neural operators by Raissi
et al. (2019); Lu et al. (2021a); Li et al. (2020); Raonic et al. (2024); Han et al. (2018), and Sirignano
& Spiliopoulos (2018). However, numerous challenges are becoming apparent. Next, we outline some
of the key drawbacks of existing neural PDE solvers based on gradient-based iterative optimization
that motivate our work: training difficulties, capturing high-frequency temporal dynamics, as well as
long training time and low accuracy.

Training difficulties: Neural PDE solvers that rely on backpropagation-through-time require com-
puting gradients of the loss function with respect to the network parameters along trajectories (Um
et al., 2020). This usually leads to challenges posed by exploding and vanishing gradients during
the iterative, gradient-based training procedure Pascanu et al. (2013); Schmidt et al. (2019). Physics-
informed neural networks and their variants are not iterative in the same way, but require minimizing
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a loss function involving the PDE residual, boundary conditions, and initial conditions. Rathore et al.
(2024) demonstrate that the PDE residual loss primarily causes ill-conditioning of the PINN loss. It
has been shown that even in simple settings, the PINN loss is very challenging to minimize using
backpropagation (Krishnapriyan et al., 2021; Wang et al., 2021; 2022). Though various approaches
such as balancing different loss terms (Yao et al., 2023), regularization (Lu et al., 2021c; Yu et al.,
2022), and different optimizers (Müller & Zeinhofer, 2023; Liu et al., 2024) were introduced to
alleviate some of the problems, it is still quite difficult to optimize PINNs with backpropagation.

Capturing high-frequency temporal dynamics and solving PDEs over a long time span: The
temporal structure of initial value PDEs is local, as each subsequent step depends solely on the values
of the preceding spatial slice — a property that typical physics-informed-machine-learning-based
approaches, which treat time similar to an extra spatial dimension, fail to consider. We show that
by using neural basis functions only in space and classical ODE solvers in time, one can capture
high-frequency temporal dynamics and solve PDEs over long time spans.

Long training time and low accuracy: Approximation errors tend to be significant because of
the gradient-based iterative optimization of network parameters and the challenges associated with
handling time as an additional spatial dimension. This often leads to longer training times and
much lower accuracy than classical mesh-based methods, especially for problems involving complex
temporal dynamics or long time spans.

Figure 1: Solving a time-dependent PDE with a neural network ansatz: We sample hidden layer
parameters w, b and fix the neural spatial basis functions (left) ϕi = σ(wix + bi). The PDE to
be solved is reformulated as an ODE in terms of the time-dependent output layer coefficients ci(t)
(right), obtained by solving the ODE and computing the solution û(x, t).

To address these limitations, we propose an approach to training neural PDE solvers without back-
propagation by integrating two key ideas: separation of variables (space and time) and random
sampling of hidden layer weights and biases. For the latter, we employ Extreme Learning Machines
(ELMs, cf. Huang et al. (2006)) and Sampling Where It Matters (SWIM, cf. Bolager et al. (2023)).
Figure 1 illustrates the key components of our approach. Our key contributions are listed below.

• We propose two approaches to solving time-dependent PDEs with neural networks without
backpropagation that synergistically combine data-driven (SWIM-ODE) or data-agnostic
(ELM-ODE) sampling algorithms for computing hidden layer parameters with classical
ODE solvers from scientific computing (See Section 3.2, Section 3.3).

• We propose novel techniques to satisfy boundary conditions for solving time-dependent
PDEs with a neural network ansatz (See Section 3.4).

• We demonstrate the strengths of our backpropagation-free training algorithm for neural PDE
solvers—high accuracy, reduced training time, spectral convergence, and mesh-free basis
functions—by solving complex PDEs involving high-frequency temporal dynamics, long-
time simulations, complicated domains, non-linearities, shocks, and high-dimensionality
(See Section 4).

Our approach outperforms PINNs trained with backpropagation by 1-5 orders of magnitude in
accuracy and up to 4 orders of magnitude in training time. Compared to classical mesh-based
methods like FEM, our approach is very easy to implement on complicated geometries. It yields
a comparable performance (in low dimensions), but it can also deal with high-dimensional PDEs,
where mesh-based methods suffer from the curse of dimensionality.
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2 RELATED WORK

Randomized neural networks for solving PDEs have been studied, mostly combining Extreme
Learning Machines (ELMs) with the self-supervised setting of PINNs (Chen et al., 2024; Wang
& Dong, 2024; Shang & Wang, 2024; Sun et al., 2024). Dwivedi & Srinivasan (2020) propose a
physics-informed extreme learning machine (PIELM) to efficiently solve linear PDEs, while Calabrò
et al. (2021); Galaris et al. (2022) employ ELMs to learn invariant manifolds as well as PDE from data.
Dong & Yang (2022) establish that given a fixed computational budget, ELMs achieve substantially
higher accuracy compared to classical second-order FEM and slightly higher accuracy compared to
higher-order FEM. For static, nonlinear PDEs, ELMs can be used together with nonlinear optimization
schemes (Fabiani et al., 2021). On larger spatiotemporal domains, Dong & Li (2021) and Dwivedi
et al. (2021) propose using multiple distributed ELMs on multiple subdomains. These approaches
treat time similarly to an extra dimension in space, and neural basis functions are used to span (a part
of) the entire spatiotemporal domain, unlike our approach.

Neural Galerkin schemes (cf. work from Finzi et al. (2023); Aghili et al. (2024); Berman et al.
(2024); Bruna et al. (2024)) offer an alternative to the full spatiotemporal approach of the randomized
neural networks and PINNs. These approaches treat all or sparse subsets of network parameters,
beyond just the last layer’s parameters, as time-dependent. This leads to a much larger system of
ODEs compared to our approach. Chen et al. (2023); Yin et al. (2023) also use neural network basis
functions to represent the space component but are based on backpropagation.

Physics-informed neural networks (PINNs) are widely used to solve PDEs with neural networks.
For high-frequency temporal variations, Krishnapriyan et al. (2021) propose curriculum learning with
gradually increasing advection coefficients. Our approach is much easier to implement, much more
computationally efficient, and accurate, as we demonstrate in Section 4.1. Subramanian et al. (2023)
propose using adaptive self-supervision of PINNs for sampling collocation points using the gradient
of the loss function. We instead use the solution gradient to capture locally sharp features in the
solution (cf. Section 4.4). Many specialized approaches based on PINNs (cf Cho et al. (2024), Meng
et al. (2020)), Sharma & Shankar (2022), and Chiu et al. (2022)), methods based on hash-encoding
(cf. Huang & Alkhalifah (2024), Wang et al. (2024a)) and transfer learning (cf. Kapoor et al. (2024b)))
have been proposed, but are still based on backpropagation, unlike ours.

Classical numerical methods to solve PDEs: Finite elements, finite volumes, and finite differences
have been used to solve PDEs for decades. They often have a rich theoretical grounding and high
accuracy. Isogeometric analysis (IGA) is such a method in which spline-based basis functions are
defined over a structured grid (cf. Hughes et al. (2005); Cottrell et al. (2009; 2006)). Mesh-based
methods often entail a time-consuming setup phase, especially when mesh generation is challenging.
In this work, we benchmark our results against IGA and finite-element-based methods.

For an extended review of related work, please refer to Appendix A.

3 APPROXIMATION OF PDE SOLUTIONS USING NEURAL NETWORKS

We discuss solution methods for PDEs on domains Ω ∈ Rd with boundary ∂Ω. We address linear
and nonlinear time-dependent PDEs with solutions u : Ω × R → R. These PDEs are defined by
linear operators L and B that only involve derivative operators in space, and functions f : Ω → R,
g : ∂Ω → R, and u0 : Ω → R that define forcing, boundary condition, and initial condition,
respectively. For nonlinear PDEs, we denote the nonlinear operator by N , and its scaling γ ≥ 0 is
either zero (for linear PDEs) or positive (for nonlinear PDEs). Then,

ut(x, t) + Lu(x, t) + γN (u)(x, t) = f(x), x ∈ Ω, t ∈ [0, T ], (1)
Bu(x, t) = g(x), x ∈ ∂Ω, u(x, 0) = u0(x), x ∈ Ω, (2)

where we denote by ut the first derivative of u by time.

We first describe the neural network ansatz in Section 3.1, and then describe how to construct the
spatial basis functions of the ansatz in Section 3.2. For time-dependent PDEs, we propose solving
an ordinary differential equation associated with our construction of the spatial basis using classical
ODE solvers in Section 3.3 by evolving the last layer coefficients in time. In Section 3.4, we explain
different approaches for satisfying boundary conditions by adding a linear layer. Lastly, in Section 3.5,
we summarize the algorithm for backpropagation-free training of neural PDE solvers.
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3.1 NEURAL NETWORK ANSATZ

We parameterize the approximation of a solution with a neural network with one hidden layer,
activation function σ = tanh, M neurons, so that

û(x, t) = C(t)[Φ(x),1] = c(t)σ(Wx⊤ + b) + c0(t). (3)

Here, c(t) ∈ R1×M and c0(t) ∈ R are time-dependent parameters, W ∈ RM×d and b ∈ RM×1

are time-independent parameters, and C := [c, c0] ∈ R1×(M+1). The activation functions are
stacked in Φ = [ϕ1, . . . , ϕM ], where ϕm(x) = σ(wmx⊤ + bm). We will distinguish between two
approaches with different weight spaces for the hidden layer. For the extreme learning machine
(ELM) framework, the weight and bias space is the full space RM×d× [−η, η], where η is sufficiently
large. The second approach, the sampling where it matters (SWIM) framework, follows Bolager et al.
(2023) and restricts the weight space to Ω× Ω. We construct each weight and bias pair wm, bm by
taking two points x(1), x(2) ∈ Ω and construct the weight and bias as wm = s1

x(2)−x(1)

∥x(2)−x(1)∥2 , bm =

−⟨wm, x(1)⟩+ s2, where s1, s2 are constants dependent on the activation function. We distinguish
between the two approaches by referring to neural networks constructed by SWIM or ELM.

3.2 COMPUTING HIDDEN LAYER PARAMETERS WITHOUT GRADIENT-BASED OPTIMIZATION

To sample the coefficients of the first hidden layer, we propose two approaches: ELM and SWIM.

ELM (Data-agnostic): In ELM, the weights are sampled from a Gaussian distribution, and biases are
sampled from a uniform distribution in [−η, η] for each hidden layer, where η is a hyper-parameter.

SWIM (Data-dependent): The SWIM algorithm samples weights and biases using a data-dependent
distribution. The weight and bias of each neuron in the hidden layer are sampled using one pair of
spatial collocation points (x(1), x(2)). In the unsupervised setting, one can choose pairs of collocation
points from a uniform distribution over all possible pairs of collocation points, which is the default
setting in this paper, as we do not know the solution of the PDE beforehand. In the supervised setting,
the data points are selected based on the density ∥f(x(2))−f(x(1))∥

∥x(2)−x(1)∥ , with f being the true function in a
supervised setting. The weights and bias of each neuron with a tanh activation function are chosen
such that the neuron’s output is −0.5 for the input x(1) and +0.5 for the input x(2). This ensures that
the centers of the activation functions are always placed in the spatial domain—unlike ELM, where
the centers of the functions could be randomly placed outside the spatial domain. It also ensures that
the activation functions are oriented in the direction from point x(1) to point x(2).

The key benefits of randomly sampling basis functions include much shorter training times and
improved accuracy compared to PINNs (both from one to five orders of magnitude), nearly matching
the numerical state-of-the-art solvers. Moreover, the advantages compared to the classical numerical
solvers such as finite elements, finite differences, or finite volume approaches include spectral
convergence (i.e., requiring much fewer basis functions) without requiring a mesh, making it much
easier to implement on complex geometries.

The suitability of each of the proposed approaches depends on the true PDE solution’s gradient
distribution. For a detailed comparison, please refer to Appendix B.1.3. We empirically observe that
ELM performs better in approximating solutions with shallow gradients, while SWIM (by sampling
weights from close data points) performs better in approximating solutions with steep gradients. In
Figure 2, we illustrate the difference between the basis functions sampled with ELM and SWIM.

3.3 SOLVING TIME-DEPENDENT PDES BY SEPARATION OF VARIABLES

For both linear and nonlinear time-dependent PDEs, we plug the ansatz (see Equation (3)) into the
PDE Equation (1) to re-formulate it as an ODE for the time-dependent coefficients c(t). We first
assemble Nc spatial collocation points in R1×d in the columns of a matrix X ∈ RNc×d. We next
sample weights and biases of M neurons and evaluate Φ(X). We then reformulate the PDE described
in Equation (1) as an ODE,

Ct(t) = R(X,C(t))[Φ(X),1]+, where

R(X,C(t)) = −C(t)L[Φ(X),1]− γN (C(t)[Φ(X),1]) + [f(X)]⊤,
(4)
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sample

SWIM ELM

sample

Figure 2: SWIM sampling (left) is data-dependent and allows placement of basis functions near steep
gradients. ELM sampling (right) is data-agnostic because the parameters of the basis functions are
sampled from a Gaussian distribution.

where we denote the pseudo-inverse as ·+, [Φ(X),1] ∈ R(M+1)×Nc . The initial condition for this
ODE is given through C(0) = u(X, 0)⊤[Φ(X),1]+. We use classical solvers with step-size control
like the Runge-Kutta-45 method (cf. Dormand & Prince (1980)) and implicit ODE solvers like
LSODA (cf. Petzold (1983)). We then interpolate the predicted solution C(t) at test points. The
ansatz (see Equation (3)) does not explicitly take boundary conditions into consideration. In the next
section, we discuss how to address this.

3.4 APPROACHES FOR SATISFYING BOUNDARY CONDITIONS

To satisfy certain boundary conditions, we propose adding a linear transformation A ∈ RMb×Ms ,
where Ms := M . We call this a “boundary-compliant layer” (See Figure 3). With this linear
transformation, we now rewrite Equation (4) to

Ct(t) = R(X,C(t))ΦA(X)+, where

R(X,C(t)) = −C(t)LΦA(X)− γN (C(t)ΦA(X)) + [f(X)]⊤,
(5)

and ΦA := [AΦ,1] and C(t) ∈ R1×(Mb+1). The boundary conditions are dictated by B and g, which
alters how we construct A. We now discuss how to compute A for different boundary conditions.

Periodic boundary condition: If each basis function satisfies the periodic boundary condition,
then the ansatz, a linear combination of these functions, will also satisfy it. Thus, we find A so
that AΦ(xl) = AΦ(xr), where xl, xr are the left and right boundary points of the spatial domain.
In this paper, if required for a given PDE, for x ∈ Ω and k = 1, 2, . . . ,Ms, we approximate
[AΦ]k(x) = sin(kx) (for k even) and [AΦ]k(x) = cos(kx) (for k odd) and set c0(t) = 1 for all t.
This can be useful for PDEs where the basis functions are not known explicitly but only through
boundary conditions, which we can then incorporate by constructing useful outer basis functions.

Dirichlet boundary conditions: For zero Dirichlet boundary condition u(x) = 0, we can use the
technique described above by choosing basis functions so that Aϕ(x) = 0 for x ∈ ∂Ω.

For non-zero Dirichlet boundary condition, where u(x) = g(x), we augment the ODE (Equation (5))
with an additional equation, ût(x) = −κ(û(x)− g(x)) for x ∈ ∂Ω, and solve the augmented ODE

Ct(t) = [R(X,C(t)),−κ(C(t)ΦA(Xb)−g(Xb)
⊤)]︸ ︷︷ ︸

∈R1×(Nc+Nb)

ΦA([X,Xb])
+︸ ︷︷ ︸

∈R(Nc+Nb)×(Mb+1)

,

where κ > 0 is a fixed parameter, X are the Nc collocation points and Xb ∈ RNb×d is a collection of
Nb points on the boundary ∂Ω. The intuition behind the augmented ODE for the boundary points
is that the approximate solution is forced towards the true solution on the boundary with a rate
proportional to the difference (û(x, t)−g(x)) at any time step. We choose a default value of κ = 100.
This technique with the augmented ODE allows setting A to the identity matrix (not using the linear
layer at all) to enforce the Dirichlet boundary conditions.

Other types of boundary conditions: We use similar ideas to deal with time-dependent Dirichlet
and Neumann boundary conditions (See Appendix B.1.1).
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3.5 SVD LAYER AND SUMMARY OF THE BACKPROPAGATION-FREE ALGORITHM

SVD layer: As the last step in the construction of our architecture, we add a linear layer to improve
the condition number of the associated ODE in Equation (5) and to reduce the size of the ODE system.
To achieve this, we propose orthogonalizing the basis functions using an “SVD layer”. We compute
a truncated singular value decomposition of AΦ(X) ∈ RMb×Nc to obtain matrices Vr,Σr, and Ur

with r ≤ Mb such that VrΣrU
⊤
r = AΦ(X) + O(Σr+1). We then define Ar := V ⊤

r A and use it
instead of the matrix A and C(t) ∈ R1×(r+1). This ensures ArΦ(X) are orthogonal functions on the
data X , and the matrix ArΦ(X) has a bounded condition number. Our ablation study reveals that the
SVD layer improves speed (1.2–77x) and reduces the dimension of the ODE system (1.2–22x).

This completes the full procedure and we summarize it in Algorithm 1, where the hyper-parameter
ϵSV D is a ratio of the largest to smallest singular value that governs how many singular values should
be retained (width of the SVD-layer). In addition, Figure 3 visualizes the complete model û. For
details on reformulating PDEs as ODEs, please refer to Appendix B.1.2.

Algorithm 1 Backpropagation-free training algorithm to solve a given PDE
Input: PDE (Equation (1)) with boundary and initial conditions (Equation (2)), test grid points
Xtest × Ttest
Output: Solution of the PDE evaluated on the test grid points û(Xtest, Ttest)
Parameters: Nc, Ms, Mb, ϵSV D

1: Sample Nc collocation points in a d-dimensional space and store it as a matrix X ∈ RNc×d

2: Construct hidden layer parameters {wm, bm}Ms
m=1 using SWIM or ELM ▷ Section 3.2

3: Compute the output of the hidden layer Φ(X) ∈ RMs×Nc

4: Construct parameters of the linear hidden layer and evaluate AΦ(X) ∈ RMb×Nc ▷ Section 3.4
5: Compute truncated SVD with ϵSV D: VrΣrU

⊤
r = AΦ(X) and compute V ⊤

r AΦ(X) = ArΦ(X)
6: Compute the spatial basis functions ΦAr

(X) := (ArΦ(X), 1)⊤ ∈ R(r+1)×Nc

7: Compute the initial condition for the last layer parameters: C(0) = u(X, 0)⊤ΦAr
(X)+

8: Compute C(t) ∈ R1×(r+1) by solving the ODE using basis functions ΦAr ▷ Equation (5)
9: Compute û(Xtest, Ttest) = C(Ttest)ΦAr (Xtest) ▷ Equation (3)

Figure 3: Architecture of our neural-PDE solver trained with backpropagation-free training algorithm.

4 COMPUTATIONAL EXPERIMENTS

We now demonstrate how our approach of separation of variables can be used to solve several
time-dependent PDEs, each involving a different challenge. We compare our approach with physics-
informed neural networks (PINNs), both classical Raissi et al. (2019) and causality-respecting (causal
PINNs) Wang et al. (2024b). In contrast to the trend of comparing neural PDE-solvers only with other
neural PDE-solvers, leading to overly optimistic views of neural solvers and neglecting numerical
methods (cf. McGreivy & Hakim (2024)), we also benchmark our method against the state-of-the-
art, mesh-based IGA-FEM method Hughes et al. (2005); Cottrell et al. (2009; 2006) or classical
FEM. We use the root mean squared error (RMSE) and the relative L2 error to quantify errors
in all experiments (cf. Appendix B for the definitions). We compute the test error on a uniform
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grid for all time-dependent PDEs with 256 points in space and 100 points in time. We perform all
experiments with three seeds and report the mean and standard deviation in all numerical examples.
We use the method solve_ivp in the Python package SciPy (cf. Virtanen et al. (2020)) to solve
ODEs in Equation (5). The software and hardware environments used to perform the experiments
are listed in Appendix B. Table 1 lists all PDEs we solve, together with forcing and boundary terms.
Please refer to Appendix C for details of the PDEs, a detailed comparison with other approaches, and
ablation studies for all computational experiments described below.

Table 1: Summary of PDEs we solve in this paper. T denotes the final time, functions f, g are forcing
and boundary terms, and the parameters β, ν are described in their subsections.

Sec. PDE Boundary Domain

4.1 Advection ut + βux = 0 u(0, t) = u(2π, t) [0, 2π]× [0, T ]
4.2 Euler-Bernoulli utt + uxxxx = f(x, t) (u, uxx) = 0 [0, π]× [0, 1]
4.3 Nonlinear diffusion ut − u∆u = f(x, t) g(x, t) [0.65, 0.9]2 × [0, 1]
4.4 Burgers’ ut + uux − ν∆u = 0 0 [−1, 1]× [0, 1]
4.5 (n-dim) Diffusion ut −∆u = f(x, t) g(x, t) [−1, 1]n × [0, 1]

4.1 HIGH ADVECTION SPEEDS AND LONG-TIME SIMULATION

We consider the linear advection equation ut + βux = 0 (also see Appendix C.1) with the initial
condition u(x, 0) = sin(x) and periodic boundary conditions. The analytical solution is given by
u(x, t) = sin(x− βt).

High advection speeds: We solve the advection equation using different neural PDE solvers and
IGA-FEM for increasing flow velocities β over the domain Ω× T = [0, 2π]× [0, 1]. The details on
hyper-parameters and the setup of this experiment are listed in Appendix C.1. Figure 4 shows that
approaches using basis functions in the entire spatiotemporal domain, such as PINNs, ELM, and
SWIM, fail as the flow velocity β increases beyond 40. In contrast, ELM-ODE, SWIM-ODE, and
IGA-FEM can accurately solve the PDE, even for high values of β. Figure 5 shows that for β = 40,
L2

relative decays exponentially with the number of basis functions for ELM-ODE, SWIM-ODE, and
IGA-FEM. In contrast to IGA-FEM, which uses local basis functions, ELM-ODE and SWIM-ODE
require fewer basis functions for a fixed L2

relative because they use global basis functions. In this
example, PINNs yield high errors. Note that compared to the curriculum learning approach proposed
by Krishnapriyan et al. (2021), ELM-ODE and SWIM-ODE produce errors that are 4-5 orders of
magnitude lower for the advection coefficient β = 40, are extremely fast. Our approach even works
for convection coefficients as high as 104, where traditional neural PDE solvers completely fail.

Long-time simulation: We attempt to solve the PDE with β = 1 for T = [0, 1000], with the
true solution shown in Figure 6a. Simulating long-time dynamics is a longstanding challenge for
traditional neural PDE solvers (Lippe et al., 2024; Kapoor et al., 2024a), and all solvers using neural
network basis functions extending over both space and time, such as PINN, fail at approximating
functions on long time intervals. Figure 6b shows that with ELM-ODE and SWIM-ODE, we can
solve over 1000 seconds with L2

relative of less than 0.001%, requiring only 0.94 seconds of runtime.
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Figure 4: Growth of test error with varying flow
velocities β for different PDE solvers (14 basis
functions) and IGA-FEM (15 basis functions).

20 40
Number of basis functions

10 9

10 6

10 3

100

Re
la

tiv
e 

 
2 e

rro
r PINN

ELM-ODE
SWIM-ODE
IGA
Spectral

Figure 5: Fast exponential decay of test error
with the number of neurons in the hidden layer
(number of basis functions) for β = 40.
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(a) Analytical solution u(x, t) = sin(x− βt) at β = 1.
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(b) Slow error growth with time

Figure 6: Advection equation: Long time simulation at β = 1.

4.2 HIGHER-ORDER DERIVATIVES IN SPACE AND TIME

In this example, the beam equation (utt + uxxxx = f , also see Appendix C.2) with fourth- and
second-order derivatives in space and time, respectively, is solved with initial data u(x, 0) = sin(x)
on the spatial domain Ω = [0, π]. The force function and the analytical solution are taken from
Kapoor et al. (2023). Table 2 shows that ELM-ODE is more than five orders of magnitude faster and
more accurate than PINNs.

4.3 NON-LINEARITY AND COMPLICATED DOMAIN GEOMETRY

In this example, we demonstrate the efficiency and superior accuracy (by 4 orders of magnitude) of
SWIM-ODE in solving a non-linear diffusion equation on a complicated spatial domain compared
to PINNs (see Figure 12 for the geometry and Table 2 for results). SWIM-ODE with less than 500
basis functions is three orders of magnitude more accurate than the mesh-based FEM with 2000 finite
elements (cf Table 10). We keep the grid points used to generate a mesh in the FEM the same as
the data points used to solve the re-formulated ODE with our approach. The details concerning the
experiments and boundary conditions can be found in Appendix C.3, Appendix B.1.1, respectively.

4.4 NON-LINEARITY AND SHOCKS

We demonstrate how sampling weights and biases from a data-dependant distribution can be exploited
to handle locally steep gradients in the solution of the non-linear viscous Burgers’ equation. In
Figure 8, we compare the SWIM-ODE solution to the numerical solution provided by Raissi et al.
(2019). Table 19 indicates that ELM-ODE cannot accurately represent the sharp gradient in the
domain’s center due to the exponentially small probability of having large norms of internal weights.
Sampling ELM-ODE weights from a broader uniform distribution increases the probability of
having steeper basis functions, as Calabrò et al. (2021) discuss for linear PDEs. However, given
enough collocation points in the domain’s center, SWIM-ODE can create numerous basic functions
with steep gradients, accurately placing them in the domain’s center by factoring in the data. To
concentrate collocation points near the shock in the domain’s center, we resample them two times
after a set number of time steps, guided by a probability distribution that leverages the gradient of the
approximated solution. At the resampling time tr ∈ [0, T ], we approximate the probability density
p(x) ∼ |∇û(x, tr)|, which we then use to re-sample collocation points at random. While PINNs
provide a reasonable error, SWIM-ODE is more accurate by order of magnitude, almost twice as
fast as regular PINN, and over ten times faster than causal PINN (See Table 2, Table 19). Please
refer to Appendix C.4 for details. We also demonstrate with a snapshot of the Burgers’ solution
that SWIM basis functions exhibit a rapid exponential decay of error with increasing network width,
where Fourier and Chebyshev basis functions used in classical spectral methods suffer from the Gibbs
phenomenon Gottlieb & Shu (1997) (See Appendix C.4.1).

4.5 HIGH-DIMENSIONALITY

The goal of this example is to highlight our algorithm’s ability to solve high-dimensional PDEs
efficiently, unlike the vanilla FEM and spectral methods, which suffer from exponential growth in grid
points and basis functions as the dimension increases. We demonstrate in Figure 7 that ELM-ODE
can accurately solve the heat equation accurately in 3, 5, 7, and 10 dimensions. For the 3-dimensional
heat equation, ELM-ODE is around 10000 times more accurate and 100 times faster than PINNs.
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Table 2: Summary of the results of the computational experiments (a detailed comparison with more
neural PDE solvers in Appendix C). We outperform PINNs trained with backpropagation by 1-5
orders of magnitude in accuracy and up to 4 orders of magnitude in training time. The results are
even comparable to the state-of-the-art mesh-based solvers (shown in italics) while retaining all the
advantages of mesh-free methods. Note that the number of basis functions differs for all methods
and was chosen to optimize the individual results. For SWIM-ODE, the number of basis functions is
always much lower than the finite elements used in the mesh-based methods.

PDE Method Training time (s) Relative L2 error

Advection (β = 40) PINN 30.5 6.92e-1 ± 2.96e-2
ELM-ODE (our) 2.7 3.84e-6 ± 5.2e-7
Mesh-based method (IGA) 0.07 1.17e-10

Euler-Bernoulli PINN 2303.71 4.21e-3 ± 9.56e-4
ELM-ODE (our) 0.06 3.50e-8 ± 7.79e-9
Mesh-based method (IGA) 0.94 4.21e-7

Burgers PINN 275.2 3.88e-3 ± 2.61e-3
SWIM-ODE (our) 141.5 3.33e-4 ± 4.63e-4
Mesh-based method (IGA) 13.61 2.20e-4

Nonlinear diffusion PINN 143.3 1.22e-2 ± 2.38e-4
SWIM-ODE (our) 423 2.00e-6 ± 1.99e-6
ELM-ODE (our) 4.8 7.34e-3 ± 1.8e-3
Mesh-based method (FEM) 2.71 2.68e-3

10-d heat equation PINN 189.6 6.06e-4 ± 1.00e-4
ELM-ODE-fast (our) 0.65 7.18e-4 ± 3e-4
ELM-ODE-accurate (our) 168.6 2.28e-5 ± 2.1e-5

For the 10-dimensional heat equation, ELM-ODE-fast has a lower width of 500 and matches the
accuracy of PINNs but is 300 times faster to train, whereas ELM-ODE-accurate, with a higher width
of 4000, is 25 times more accurate than PINNs. Note that if we consider 10 grid points per dimension
for the FEM, one would need 10 billion grid points, whereas our approach requires around 3000
basis functions for the 10-dimensional heat equation. We also observe in Figure 7 that the error
decays rapidly (roughly exponentially until dimension 5) for ELM-ODE until it plateaus at a certain
network width. Moreover, the error is uniformly low in different parts of the domain. Due to the
smoothness and lack of steep gradients in the solution of the PDE, ELM-ODE is clearly more suitable
for approximating the solution of the chosen PDE and is one to three orders of magnitude more
accurate than vanilla SWIM-ODE. Please refer to Appendix C.5 for details. We summarize the utility
of our algorithm compared to the classical general-purpose methods in Table 3.
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Figure 7: High-dimensional heat equation: (Left) Comparison of test errors for varying dimensions
of the PDE, (Middle): Fast decay of test error with the number of neurons in the hidden layer (S:
SWIM-ODE), (E: ELM-ODE), (Right): Pointwise test errors of ELM-ODE evaluated at 100 test
points each in different 2-dimensional slices (all other dimensions set as the center values of the
spatial domain) and time t = 0.5.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparison of our algorithm with classical mesh-based FEM in different problem settings
presented in this paper. Our algorithm (SWIM-ODE / ELM-ODE) is fast, accurate, easy to implement,
and robust to the different PDE settings (shocks, complicated geometries, high-dimensional PDEs).
We use the acronym (CoD) for the Curse of Dimensionality in the following.

PDE setting FEM PINNs SWIM-ODE / ELM-ODE

Solutions with shocks ✓ ✓ ✓ (SWIM-ODE)
Complex domains Difficult to mesh Easy Easy
High dimensionality ✗ (CoD) ✓ ✓
Accuracy High Low High
Speed Fast Training (slow) Fast
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Figure 8: Comparison of SWIM-ODE solution to Burgers’ equation and ground truth. Black dashed
lines indicate the times at which the solution is compared on the right. Gray dotted lines indicate the
times at which the collocation points are re-sampled.

5 CONCLUSION

To address the fundamental difficulties stemming from the gradient-based iterative optimization
of neural network parameters, we propose a backpropagation-free algorithm for training neural
PDE solvers by combining ideas of separation of variables and random sampling of hidden layer
parameters.

Benefits of our method: Firstly, we demonstrate that our backpropagation-free algorithm for training
neural PDE solvers is 2 to 30, 000 times faster and, at the same time, 10 to 100, 000 times more
accurate than the physics-informed neural networks trained with backpropagation for the PDEs
considered in this paper. Secondly, by leveraging classical ODE solvers with adaptive time-stepping,
we demonstrate that our neural PDE solver can capture high-frequency temporal dynamics and can
solve over long time spans, where traditional state-of-the-art neural-PDE solvers fail. Thirdly, our
approach reduces the accuracy gap with mesh-based solvers while retaining advantages like mesh-free
basis functions, ease of implementation, ability to handle complex domains, and spectral convergence
for PDEs with smooth solutions. Finally, we show that our approach can solve high-dimensional
PDEs efficiently and accurately, as illustrated by the ten-dimensional heat equation.

Limitations and future work: Our approach requires knowledge of the PDE, so grey-box settings
and inverse problems, where parts of the PDE must be estimated, are challenging. However, the much
faster time-to-solution of our approach should prove very useful for this inverse problem setting.
Compared to neural PDE solvers trained with backpropagation, our networks may require more
neurons for the same accuracy, leading to higher inference times. Universal approximation properties
concerning specific PDE settings and understanding the role of re-sampling network parameters in
overcoming the Kolmogorov n-width barrier Peherstorfer (2022) are some of the important theoretical
open areas of investigation. Lastly, solving high-dimensional PDEs with complicated solutions is still
an interesting avenue to explore further, where traditional numerical methods have many difficulties
due to the curse of dimensionality. We hope that our approach can open doors for neural PDE solvers
to deal with real-world applications in science and engineering, especially applications where limited
accuracy and long training times have been the main reasons for the lack of success.
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Reproducibility Statement: The code to reproduce the experiments from the paper and an up-to-
date code base can be found in the supplemental material and will be published as an open-source
repository upon acceptance. We also run with different seeds to compute mean and standard deviations
of the results, and store all seeds in the repository to enforce reproducibility. The dataset describing
the complicated geometry used in Section 4.3 is included in the supplemental material, and the details
to reproduce all experiments can be found in Appendix C.

Ethics Statement: Ethical considerations are important for any new machine learning approach
because neural networks are generally dual-use. Our approach is based on classical methods from
scientific computing, which are well understood. This connection now allows researchers to better
understand our neural solvers’ behavior, failure modes, and robustness. We believe that the benefits
of our approach far outweigh the potential downsides of misuse because a system that is understood
better can also be controlled more straightforwardly.
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A EXTENDED REVIEW OF RELATED WORK

Spectral methods for solving PDEs promise fast convergence with much fewer basis functions.
Meuris et al. (2023) present a method to extract hierarchical spatial basis functions from a trained
DeepONet and employ it in a spectral method to solve the given PDE. Xia et al. (2023) integrate
adaptive techniques into PINN-based PDE solvers to obtain numerical solutions of unbounded domain
problems that standard PINNs cannot efficiently approximate. Lange et al. (2021) propose spectral
methods that fit linear and nonlinear oscillators to data and facilitate long-term forecasting of temporal
signals. Dresdner et al. (2022) demonstrate spectral solvers that provide sub-grid corrections to
classical spectral methods to improve their accuracy. Du et al. (2023) use fixed orthogonal bases to
learn PDE solutions as a map between spectral coefficients and introduce a training strategy based on
spectral loss. These methods differ from ours in problem setting, architecture, and training.

Neural operator frameworks (cf. Lu et al. (2021a); Kovachki et al. (2021); Li et al. (2020); Pfaff et al.
(2021)) are promising but are typically trained with PDE solutions with different initial conditions,
spatial domains (geometries), or parameter settings. Instead, in our setting here, we solve the PDE
using given coefficients, domain, and initial conditions without relying on any training data. The ease
of implementation, rapid training, and high accuracy of our backpropagation-free approach can be
leveraged to generate PDE solution data for training operator networks.

Mesh-free methods are typically based on radial basis functions (RBFs, cf. Powell (1992); Chen
et al. (2014)) or moving least squares (MLS, cf. Shepard (1968); Lancaster & Salkauskas (1981)).
These often do not have user-friendly software or are only applicable in specialized settings (e.g.,
smoothed particle hydrodynamics, cf. Lucy (1977); Gingold & Monaghan (1977); Shadloo et al.
(2016)). Moreover, despite the ease of dealing with complicated geometries, these methods typically
suffer from many challenges, such as the choice of kernel, imposing boundary conditions, and
convergence issues. These methods are not the focus of this work.

B METHODS

B.1 SWIM-ODE AND ELM-ODE

B.1.1 HANDLING BOUNDARY CONDITIONS

Our approaches to satisfying the Dirichlet and periodic boundary conditions are already explained in
the main text. Here, we explain how we handle time-dependent Dirichlet boundary conditions and
Neumann boundary conditions.

Time-dependent Dirichlet boundary conditions: For handling time-dependent Dirichlet boundary
conditions (u(x, t) = g(x, t) for x ∈ ∂Ω), we set A to the identity map and augment the ODE
(Equation (4)) with an additional equation,

ût(x, t) = gt(x, t) for x ∈ ∂Ω =⇒ Ct(t) = [R(X,C(t)), gt(Xb, t)]︸ ︷︷ ︸
∈R1×(Nc+Nb)

ΦA([X,Xb])
+︸ ︷︷ ︸

∈R(Nc+Nb)×(Mb+1)

,

In the example in Section 4.3, we know the solution on the boundary at all time points, which is
continuously differentiable. If the solution on the boundary points is not available at all time points,
one can interpolate and approximate the derivative of the solution on the boundary.

Neumann boundary conditions: For simple spatial domains, one can choose appropriate outer basis
functions as described in Appendix B.1.1 that inherently satisfy the Neumann boundary conditions.
For instance, for zero Neumann boundary conditions on a one-dimensional domain, one can choose
outer basis functions consisting of cosines of different frequencies scaled to the domain (function
value is 1 at the boundaries) so that their spatial derivatives, which are the sine functions, are zero on
the boundary points.

On complicated domain geometries, to satisfy Neumann boundary conditions (∇u(x, t) · n̂(x) = 0
for x ∈ ∂Ω), we set A to the identity map and augment the ODE (Equation (4)) with an additional
equation for the boundary points and solve

Ct(t) = [R(X,C(t)), 0]︸ ︷︷ ︸
∈R1×(Nc+Nb)

[ΦA(X),∇ΦA(Xb)[n̂(Xb)]
⊤]+︸ ︷︷ ︸

∈R(Nc+Nb)×(Mb+1)

.
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B.1.2 DERIVATION OF SPECIFIC FORM OF ODES

We use the notation described in Section 3 of the manuscript. We first discuss how to compute
different spatial and temporal derivative terms appearing in the PDEs described in this manuscript
using the neural network ansatz. We then use these expressions to reformulate the PDEs described in
this manuscript as corresponding ODEs. We consider neural networks in the most general setting by
considering the outer basis functions and the SVD layer (cf Algorithm 1).

Computing spatial and temporal derivatives of the neural network solution

Computing spatial derivatives: We compute the first-order spatial derivative as

ûx(x, t) = C(t)[ΦAr ]x(x)

= C(t)[ArW ⊙ σ̃x(x), 0] ∈ R1×d,
(6)

where ⊙ is the Hadamard product,

σ̃x(x) := [σz(z)|z=Wx⊤+b, σz(z)|z=Wx⊤+b, . . . , σz(z)|z=Wx⊤+b] ∈ RMs×d, (7)

with σz(z) ∈ RMs and σz is the first derivative of the tanh activation function.

Similarly, we compute the second- and fourth-order spatial derivatives as:

ûxx(x, t) = C(t)[ΦAr
]xx(x)

= C(t)[ArW ⊙W ⊙ σ̃xx(x), 0] ∈ R1×d,
(8)

where σ̃xx(x) is defined equivalently as σ̃x(x) but with σxx being the second-order spatial derivative
of the tanh activation function.

∆û(x, t) = C(t)[ΦAr ]xx(x)1, where, 1 ∈ Rd×1

= C(t)[ArW ⊙W ⊙ σ̃xx(x), 0]1 ∈ R1×1,
(9)

Finally,

ûxxxx(x, t) = C(t)[ΦAr
]xxxx(x)

= C(t)[ArW ⊙W ⊙W ⊙W ⊙ σ̃xxxx(x), 0] ∈ R1×d,
(10)

where σzzzz is the fourth-order spatial derivative of the tanh activation function.

Computing time derivatives:

We compute the first-order time derivative as

ût(x, t) = Ct(t)[ΦAr
](x). (11)

Similarly, we compute the second-order time derivative as

ûtt(x, t) = Ctt(t)[ΦAr ](x). (12)

Reformulating PDEs as ODEs We now reformulate the PDEs as ODEs using the space and time
derivatives derived in Appendix B.1.2. We denote the pseudo-inverse by ·+.

Advection equation: The one-dimensional advection equation is

ut(x, t) + βux(x, t) = 0,

where β is a scalar. Approximating the solution with neural network ansatz (Equation (3)) and
substituting Equation (11) and Equation (6) in the advection equation, we get,

Ct(t)[ΦAr (X)] = −βC(t)[ΦAr (X)]x

Ct(t) = −βC(t)[ΦAr
(X)]x[ΦAr

(X)]+.

The initial condition is given by

C(0) = u(X, 0)⊤[ΦAr (X)]+.
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Burgers’ equation: The one-dimensional Burgers’ PDE we consider is
ut + uux − αuxx = 0,

where α is a scalar. Approximating the solution with neural network ansatz (Equation (3)) and
substituting Equation (11), Equation (6) and Equation (8) in the Burgers equation, we get,

Ct(t)ΦAr
(X) = − (C(t)ΦAr

(X)⊙ C(t)[ΦAr
]x(X)) + α (C(t)[ΦAr

]xx(X))

Ct(t) = − (C (t) ΦAr
(X)⊙ C (t) [ΦAr

]x(X) + α (C (t) [ΦAr
]xx (X))) [ΦAr

(X)]+

Note that the non-linearity is transferred to the right-hand side of the ODE. The initial condition is
given by

C(0) = u(X, 0)⊤Φ(X)+.

Euler-Bernoulli equation: The Euler-Bernoulli PDE considered in this manuscript is
utt + uxxxx = f(x, t).

Approximating the solution with neural network ansatz (Equation (3)) and substituting Equation (10)
and Equation (12) in the Euler-Bernoulli equation, we get,

Ctt(t)Φ(X) = f(X, t)⊤ − C(t)Φxxxx(X)

We re-write this second-order ODE as a combination of first-order ODEs given by
Ct(t) = D(t),

Dt(t)Φ(X) = f(X, t)⊤ − C(t)Φxxxx(X).

We then reformulate the ODEs as

(Ct(t) Dt(t)) = (C(t) D(t))

(
0 −Φ(X)xxxxΦ(X)+

1 0

)
+ (0 1) [f(X, t)]⊤Φ(X)+.

The initial condition is given by
C(0) = u(X, 0)⊤Φ(X)+,

D(0) = ut(X, 0)⊤Φ(X)+.

Nonlinear diffusion equation: The two-dimensional nonlinear diffusion equation we consider is
ut − u∆u = f(x, t), x ∈ Ω ⊂ R2, t ∈ [0, 1]. (13)

Approximating the solution with neural network ansatz (Equation (3)), substituting Equation (11),
and Equation (8) in the nonlinear diffusion equation, we get,

Ct(t)Φ(X) = (C(t)Φ(X)⊙ [C(t)Φxx(X)]1) + [f(X, t)]⊤

Ct(t) =
(
C (t) Φ(X)⊙ [C (t) Φxx(X)]1+ [f(X, t)]⊤

)
Φ(X)+

Note that the non-linearity is transferred to the right-hand side of the ODE. The initial condition is
given by

C(0) = u(X, 0)⊤Φ(X)+

High-dimensional diffusion equation: The d-dimensional diffusion equation we consider is
ut −∆u = f(x, t), x ∈ Ω ⊂ Rd, t ∈ [0, 1]. (14)

Approximating the solution with neural network ansatz (Equation (3)), substituting Equation (11),
and Equation (8) in the diffusion equation, we get,

Ct(t)Φ(X) = [C(t)Φxx(X)]1+ [f(X, t)]⊤

Ct(t) =
(
[C (t) Φxx(X)]1+ [f(X, t)]⊤

)
Φ(X)+

The initial condition is given by
C(0) = u(X, 0)⊤Φ(X)+

Note on ODE solvers and interpolation in time: We use the solve_ivp routine of the SciPy
package Virtanen et al. (2020). One can pass test points in time as an argument to the method
solve_ivp. One can optionally set the parameter dense_output to true, which means that the
output of the ODE is a function handle that can be evaluated by interpolation at any time point t ∈ Ω.
The method specified dictates the interpolation order. RK23 uses a cubic Hermite polynomial, while
DOPRI85 uses a seventh-order polynomial.
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B.1.3 EXTENDED DISCUSSION OF OUR METHOD

Kolmogorov n-width barrier: Without resampling the internal network parameters, our method
faces the Kolmogorov n-width barrier Peherstorfer (2022); Du & Zaki (2021); Berman & Peherstorfer
(2024); Kast & Hesthaven (2024) because our basis functions are not time-dependent. However,
resampling basis functions at certain time points of the SWIM-ODE (as done in the Burgers’ equation
in Section 4.4) results in a solution- and time-dependent basis approximation of the solution manifold
and, thus, in theory, can break the barrier.

PINNs can theoretically break the Kolmogorov n-width barrier as time is treated as an extra spatial
dimension, and internal network parameters are time-dependent. However, for PINNs, the optimiza-
tion issues pose much more severe challenges even on very simple PDEs and in low dimensions
(Krishnapriyan et al., 2021; Wang et al., 2021; 2022). So even though our vanilla SWIM-ODE/ELM-
ODE approach (without periodically resampling hidden layer weights) faces the Kolmogorov n-width
barrier, we outperform PINNs, typically by several orders of accuracy and time in practice.

Influence of random sampling on the method: Similar to the question of how PINNs trained with
Adam/SGD perform based on their random network initialization, understanding the influence of
weights on the output is a challenge. There are two main differences between (stochastic) gradient
optimization and our setting. First, after fixing the internal weights, we use regularized least-squares
(not a stochastic method) to fit the initial condition. Second, we do not use a stochastic method
to solve over time. Therefore, even though PINNs can adapt their random initialization over the
gradient-based optimization, precisely that optimization also adds stochasticity. If the number of
neurons for the model increases, the randomness in our case decreases because the regularized
least-squares fit to the initial condition (which converges to a single solution in the limit of many
neurons), while stochastic gradient descent will only converge to a distribution (because of mini-batch
optimization). This has been observed for the supervised learning problems in Bolager et al. (2023),
particularly in the transfer learning experiments. In Table 2, we observe that our model’s performance
is often orders of magnitude better, and the variance is on the same scale as the magnitude.

Comparison between SWIM-ODE and ELM-ODE: One of the main factors influencing the
performance of SWIM-ODE and ELM-ODE is the underlying solution of the PDE.

We explain, with an example of the Burgers’ equation, how the SWIM sampling can be leveraged
when the solution has steep gradients, as one can sample localized basis functions in the part of the
domain where the solution has steep gradients. For ELM, the probability of sampling steep basis
functions with the vanilla ELM is lower, as illustrated in the Figure 2 of the paper. Even if one
uses a different distribution to sample the network parameters such that more basis functions with
steep gradients are sampled, placing the basis functions at appropriate spatial locations is another
challenge. With ELM, one cannot resample or choose basis functions using data as it is data-agnostic.
Thus, especially if the solution has localized steep gradients, the performance of ELM is typically
worse compared to SWIM. We additionally demonstrate with a snapshot of the Burgers’ solution
that SWIM basis functions exhibit a rapid exponential decay of error with increasing network width,
where ELM, Fourier, and Chebyshev basis functions used in classical spectral methods suffer from
the Gibbs phenomenon (see Appendix C.4.1) and lead to poor scaling and accuracy (see Figure 15,
Figure 16).

If the underlying solution is sufficiently smooth and does not have steep gradients anywhere in the
domain, ELM typically performs very well, as seen in the example with the Advection equation
(see Section 4.1), Euler Bernoulli equation (see Section 4.2), and the effect is most apparent in the
newly added example of high-dimensional PDEs (Section 4.5), where ELM-ODE performs much
better than SWIM-ODE as shown in Table 22. While we just use the vanilla SWIM algorithm in the
presented results, one can easily adapt the algorithm and, after sampling the network parameters with
SWIM, multiply the basis functions with a tunable scaling factor before applying the non-linearity to
sample many more basis functions with shallow slopes.

Thus, the choice between the two strategies is particularly governed by the underlying solution of
the PDE. Apart from the favorable cases for each method mentioned above, both methods have
comparable performance and typically outperform PINNs by several orders of magnitude in speed
and time. Thus, the rapid training of our approach could be leveraged to try out both approaches if
one has no information about what the solution of the PDE could look like.
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A discussion on “data-driven” and “data-agnostic” sampling: We emphasize what we mean by
data-driven sampling: our data are random pairs of collocation points, but we do not have access to
the solution function values (because, in the beginning, we have not solved the PDE yet). Thus, even
though we do not have access to the true solution of the PDE, we call this "data-driven" sampling
because we create the parameters of our basis functions (neurons) so that they are centered strictly
within the domain. We achieve this by using data points sampled in the domain, thereby considering
the geometry and bounds of the spatial domain. Note that with data-agnostic sampling in ELM, the
neurons can easily be centered outside the spatial domain because weights and biases are chosen
without considering any information about the geometry and bounds of the spatial domain. To
summarize, though our algorithm proposes "data-driven" sampling, we do not start with time-series
data and instead work in a self-supervised setting.

B.2 PHYSICS-INFORMED NEURAL NETWORKS

This work employs two prominent variants of physics-informed machine learning to compare the
results obtained by the proposed methods. In particular, physics-informed neural network (PINN)
Raissi et al. (2019) and causality-respecting physics-informed neural network (causal PINN) Wang
et al. (2024b) are utilized to compare the obtained approximations.

Vanilla PINNs are feedforward deep neural networks designed to simulate PDEs by incorporating
physical laws into the learning process. The architecture of a vanilla PINN includes a deep neural
network that maps inputs (e.g., space and time coordinates) to outputs (e.g., physical quantities of
interest) and is trained to minimize a loss function that combines both data and physics-based errors.
The data term ensures that the neural network fits the provided data points, while the physics term
enforces the PDE constraints with automatic differentiation. Hence, the loss function for PINN could
be defined by

L(µ) = λ1LPDE(µ) + λ2LData(µ). (15)

Here, µ represents the trainable network parameters. Considering the generic nonlinear PDE defined
by equation 1 with well-posed boundary and initial conditions equation 2, the individual loss terms
weighted by the hyperparameters λi, i = 1, 2, are defined by

LPDE(µ) =
1

Nint

Nint∑
n=1

||u∗
t (x

(n), t(n)) + Lu(x(n), t(n)) + λN(u∗)(x(n), t(n))− f(x(n))||p. (16)

The data loss term considering the initial and boundary conditions is defined by

LData(µ) =
1

Ni

Ni∑
n=1

||Bu∗(x(n), t(n))− g(x(n))||p. (17)

Here, N is the total number of training points, which is the sum of interior training points (Nint)
and initial or boundary training points (N). The neural network predicted solution of u at a point in
computational domain, (x(n), t(n)) is denoted by u∗(x(n), t(n)). The experiments are trained with
L2-norm, implying p = 2. The main goal is to minimize equation 15 and determine the optimal
parameters (µ). These parameters, once optimized, are employed to predict the solution of the PDE
within the computational domain.

The second physics-informed method employed is Causal PINNs, which modifies the PINN loss
function to explicitly adhere to the temporal causality inherent in time-dependent PDEs. In vanilla
PINNs, the loss function does not prioritize resolving the solution at lower times before higher
times, leading to inaccuracies, especially in time-dependent problems. Causal PINNs address this by
introducing a weighting factor for the loss at each time step, which depends on the accumulated loss
from previous time steps. The resulting loss function ensures that the network prioritizes learning
the solution accurately at earlier times before focusing on later times, thus maintaining the causal
structure of the physical problem being solved. The causal PDE loss term is defined by

LPDE(µ) =

Nt∑
i=1

wiLPDE(ti, µ),

w1 = 1, wi = e−ϵ
∑i−1

k=1 LPDE(tk,µ), i = 2, 3, . . . Nt.

(18)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Nt represents the number of time steps into which the computational domain is divided. The causality
hyperparameter ϵ regulates the steepness of the weights and is incorporated in the loss function similar
to Kapoor et al. (2024b). This modification introduces a weighting factor, wi, for the loss at each time
level ti, with wi being dependent on the cumulative PDE loss up to time ti. The network prioritizes a
fully resolved solution at earlier time levels by exponentiating the negative of this accumulated loss.
Consequently, the modified loss function for causal PINN is expressed as

LPDE(µ) =
1

Nt

[
w1LPDE(t1, µ) +

Nt∑
i=2

e−ϵ
∑i−1

k=1 LPDE(tk,µ)LPDE(ti, µ)

]
. (19)

B.3 IGA-FEM

First introduced in Hughes et al. (2005), Isogeometric analysis (IGA) is a numerical method developed
to unify the fields of computer-aided design (CAD) and finite element analysis (FEA). The key idea
is to represent the solution space for the numerical analysis using the same functions that define the
geometry in CAD (cf. Cottrell et al. (2009)), which include the B-Splines and Non-Uniform Rational
B-Splines (NURBS) (cf. Piegl & Tiller (1997)).

In this paper, we use B-Splines as the basis functions. The B-Splines are defined using the Cox-de
Boor recursion formula (cf. COX (1972); de Boor (1972)), i.e.,

Ni,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise,

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ),

where ξi is the ith knot, and p is the polynomial degree. The vector Ξ = [ξ1, ξ2, . . . , ξn+p+1] is the
knot vector, where n is the number of B-Splines. By specifing the knot vector, we define the basis
functions we use to solve the PDEs. We use an uniform open knot vector, where the first and last
knots have multiplicity p+ 1, the inner knots have no multiplicity, and all knots that have different
values are uniformly distributed. We refer to the knots with different values as "nodes". The intervals
between two successive nodes are knot spans, which can be viewed as "elements". The elements
form a "patch". A domain can be partitioned into subdomains and each is represented by a patch. In
our work, we use a single patch to represent the entire 1D domain. Figure 9a shows an example of
such a patch, where the B-Splines are Cp-continuous within the knot spans and Cp−1 continuous
at the inner knots. In order to address the boundary conditions, we adapt the B-Splines as shown in
Figure 9b Figure 9c, so that the boundary conditions are directly built into the solution space.

(a) Number of basis func-
tions = 7.

(b) Number of basis func-
tions = 5.

(c) Number of basis func-
tions = 5.

Figure 9: Examples of B-Splines representing the 1D domain [0, 1]. Number of nodes = 6 and
degree of polynomials = 2. Left: The original B-Splines. Middle: Adapted B-Splines to satisfy the
Dirichlet boundary condition. Right: Adapted B-Splines to satisfy the periodic boundary condition.
Note that the first (blue) spline is identical to the second last (brown) one, and the second (orange)
spline is identical to the last (pink) one, as they share the same coefficient. The gray dashed lines
indicate where the domain starts and ends.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

In the following, we refer to the adapted B-Splines as basis functions ϕk(x). Thus, the solutions of
PDEs are approximated by

u(x, t) =

K∑
k=1

ck(t)ϕk(x).

We solve the PDEs in the weak formulation. For the linear advection equation equation 21, the weak
form of the equation is

K∑
k=1

c′k(t)

∫
X

ϕk(x)v(x)dx+ β

K∑
k=1

ck(t)

∫
X

ϕ′
k(x)v(x)dx = 0, (20)

where v(x) are the test functions. The test functions are chosen to be the same as the basis functions.
The integral of the functions is computed using Gaussian quadrature. Then we solve the linear
Ordinary differential equation (ODE)

Mċ+Kc = 0,

where matrix M and matrix K contain the integral of the B-Splines and their derivatives, and the
coefficient β, which are given. We solve the Euler-Bernoulli equation equation 23 and the Burgers’
equation equation 27 in a similar way. The boundary condition for the Euler-Bernoulli equation is in
addition weakly imposed, as is done in Prudhomme et al. (2001).

B.3.1 DOLFINX

DOLFINx (cf. Baratta et al. (2023)), which is part of the FEniCS project, is a C++ and Python library
used for solving PDEs with the finite element method (FEM). It provides tools for defining complex
geometries, formulating variational problems, and solving them efficiently on distributed architectures.
In this paper, we use DOLFINx 0.8.0 to solve the nonlinear diffusion equation equation 24. The
programming language is Python. The runtime of the FEM experiment in Table 15 was measured on
a Lenovo ThinkPad T14s laptop equipped with 12th Gen Intel® Core™ i7-1255U (12 cores) and
16GB of RAM. In addition, the software Gmsh (cf. Geuzaine & Remacle (2009)) is used to generate
mesh for the complex geometry for this experiment, as shown in Figure 12a.

C NUMERICAL EXPERIMENTS

Code repository: The code to reproduce the experiments from the paper and an up-to-date code base
can be found (with MIT Licence) in the supplemental material (open-source and publicly available
after acceptance).

Hardware details: The computational experiments were performed with: Ubuntu 20.04.6 LTS,
NVIDIA driver 515.105.01 and i7 CPU.

Metrics for computing errors: Let d be the dimension of space and Ω× [0, T ] ⊂ Rd × R be the
spatio-temporal domain. Given N points in a test set Xtest, the error metrics we use to compare
numerical results are Root Mean Squared Error (RMSE) and relative L2 error given by

RMSE :=

√∑
x∈X(utrue(x)− upred(x))2

N
, and L2

relative :=

√∑
x∈X(utrue(x)− upred(x))2√∑

x∈X(utrue(x))2
.

The mean and standard deviation of the RMSE and L2
relative are computed with 3 seeds in all the

computational experiments.

C.1 LINEAR ADVECTION EQUATION

Problem setup: The advection equation models the propagation of a quantity at a speed β without
altering the shape. We solve the linear advection equation with periodic boundary conditions described
by

ut(x, t) + βux(x, t) = 0, for x ∈ [0, 2π], t ∈ [0, 1], (21)
u(x, 0) = sin(x). (22)
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We describe additional details in solving the advection equation with various neural PDE solvers
in Table 4. The hidden layer weights for ELM and ELM-ODE are sampled from the Gaussian
distribution and biases from a uniform distribution in [−4, 4].

Ablation studies: In addition, hyperparameter optimization for PINN for the case of β = 10 was
carried out, varying the number of neurons and interior points. The results for the hyperparameter
optimization are detailed in Table 5, Table 6. For SWIM and ELM, we use 1000 interior points for
β ∈ {10−2, 10−1, 1, 10}, and we use 8000 interior points for β ∈ {40, 100}. The ablation study for
the width of the network for SWIM-ODE and ELM-ODE is already presented in the main text in
Figure 5. We do not perform ablation studies for the SVD layer in this case, as we do not need to use
the SVD layer. Since the width is already quite low for optimal parameters, the SVD layer retains the
width.

Comparison of results:

Figure 10 shows the absolute errors obtained with the SWIM-ODE, ELM-ODE, PINN, Causal PINN,
and IGA methods.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

2.5

5.0

x

5.0e-08 1.0e-07 1.5e-07

(a) SWIM-ODE
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(c) PINN

(d) Causal PINN
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(f) Ground truth

Figure 10: Advection equation: absolute error plots and ground truth

C.2 EULER-BERNOULLI PDE

Problem Setup: This is a time-dependent PDE given by

utt + uxxxx = f(x, t) x ∈ [0, π], t ∈ [0, 1] (23)

where f(x, t) = (1− 16π2) sin (x) cos(4πt), with initial and boundary conditions

u(x, 0) = sin(x), ut(x, 0) = 0

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0.

It models a simply supported beam with varying transverse force. We describe additional details in
solving the Euler-Bernoulli with various neural PDE solvers in Table 8. The hidden layer weights
for ELM-ODE are sampled from the Gaussian distribution and biases from a uniform distribution in
[−2, 2].

Comparison of results: Figure 11 shows the absolute errors obtained with the SWIM-ODE, ELM-
ODE, PINN, and IGA methods, and Table 9 shows the summary of results for Euler Bernoulli beam
equation for different methods.
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Table 4: Advection equation: Network hyperparameters used for β ∈ {10−2, 10−1, 1, 10, 40, 100}
(optimal hyper-parameters in bold)

Parameter Value

SWIM-ODE, ELM-ODE Number of hidden layers 2
Hidden layer width [140,380, 560]
Activation tanh
L2-regularization [10−8,10−10, 10−12]
Loss mean-squared error

SWIM, ELM Number of hidden layers 2
SVD cutoff 10−12

Hidden layer width [140,380, 560]
Activation tanh
L2-regularization [10−8,10−10, 10−12]
Loss mean-squared error
# Initial and boundary points 400
# Interior points [1000, 8000]

IGA Number of nodes 16
Degree of polynomials 8
Number of basis functions 15

PINN Number of hidden layers 4
Layer width [10, 20, 30, 40]
Activation tanh
Optimizer LBFGS
Epochs 5000
Loss mean-squared error
Learning rate 0.1
Batch size 200
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points [500, 1000, 1500, 2000]
# Initial and boundary points 600

Causal PINN Number of hidden layers 4
Layer width 30
Activation tanh
Optimizer ADAM followed by LBFGS
ADAM Epochs 2000
LBFGS Epochs 5000
Loss mean-squared error
Learning rate 0.1
Batch size 2000
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points 40000
# Initial and boundary points 6000
Causality parameter, ϵ 10

C.3 NONLINEAR DIFFUSION EQUATION

Problem Setup: We solve a two-dimensional nonlinear diffusion equation

ut − u∆u = f(x, y, t), (x, y) ∈ Ω, t ∈ [0, 1], (24)

f(x, y, t) = 5e−t sin(πx)y−3
(
−1 + e−t sin(πx)y−5

(
−12 + π2y2

))
(25)

on a complicated geometry inspired by a tree-like pattern occurring during the controlled shaping
of fluids (Islam & Gandhi, 2017). The initial condition and time-dependent Dirichlet boundary
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Table 5: Advection equation: Ablation study for PINN with respect to the network width for β = 10.
The mean is computed over 3 seeds.

Layer width Training time (s) RMSE Relative L2 error

10 24.47 ± 0.19 1.24e-3 ± 2.38e-4 1.76e-3 ± 3.37e-4
20 27.46 ± 0.08 6.52e-4 ± 2.59e-4 9.22e-4 ± 3.66e-4
30 30.43 ± 0.50 3.69e-4 ± 4.33e-5 5.23e-4 ± 6.13e-5
40 33.64 ± 0.41 3.86e-4 ± 9.37e-5 5.46e-4 ± 1.32e-4

Table 6: Advection equation: hyperparameter optimization for PINN varying the number of interior
points for β = 10. The mean is computed over 3 seeds.

Interior points Training time (s) RMSE Relative L2 error

500 25.76 ± 0.29 4.10e-4 ± 7.20e-5 5.80e-4 ± 1.01e-4
1000 27.44 ± 0.25 3.72e-4 ± 4.06e-5 5.27e-4 ± 5.74e-5
1500 29.61 ± 0.16 5.68e-4 ± 1.97e-4 8.03e-4 ± 2.79e-4
2000 30.43 ± 0.50 3.69e-4 ± 4.33e-5 5.23e-4 ± 6.13e-5

Table 7: Advection equation: Summary of results for β = 40.

Method Training time (s) RMSE Relative L2 error architecture

SWIM 66.30 6.81 ± 0.26 9.63 ± 0.38 (2, 4000, 1)
ELM 59.05 3.78 ± 0.21 5.35 ± 0.29 (2, 4000, 1)
Causal PINN 357.63 ± 3.11 2.07 ± 0.87 2.92 ± 1.23 (2, 4 × 30, 1)
PINN 30.56 ± 0.27 4.89e-1 ± 2.09e-2 6.92e-1 ± 2.96e-2 (2, 4 × 30, 1)
SWIM-ODE (our) 2.72 5.04 e-6 ± 1.45e-6 7.13e-6 ± 2.05 e-6 (1, 350, 15, 1)
ELM-ODE (our) 2.71 2.73e-6 ± 3.68e-7 3.84e-6 ± 5.2e-7 (1, 350, 15, 1)
IGA-FEM 0.07 8.24e-11 1.17e-10 15
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Figure 11: Euler-Bernoulli equation: absolute error plots and ground truth

conditions are obtained from the constructed solution of the PDE
u(x, y, t) = 5e−t sin(πx)y−3, (x.y) ∈ Ω, t ∈ [0, 1]. (26)
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Table 8: Euler-Bernoulli equation: Summary of all hyperparameters.

Parameter Value

SWIM-ODE and ELM-ODE Number of hidden layers 2
Hidden layer width 200
Outer layer width 10
Activation tanh
L2-regularization 10−12

Loss mean-squared error

IGA Number of nodes 27
Degree of polynomials 9
Number of basis functions 33

PINN Number of hidden layers 4
Layer width 20
Activation tanh
Optimizer LBFGS
Epochs 15000
Loss mean-squared error
Learning rate 0.1
Batch size 2000
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 0.1, 1
# Interior points 10000
# Initial and boundary points 6000

Table 9: Euler-Bernoulli equation: Summary of results.

Method Training time (s) RMSE Relative L2 error architecture

PINN 2303.71 ± 278.68 2.11e-3 ± 4.79e-4 4.21e-3 ± 9.56e-4 (2, 4× 20, 1)
SWIM-ODE (our) 0.05 6.06e-8 ± 2.96e-8 1.20e-7 ± 5.91e-8 (1, 200, 10, 1)
ELM-ODE (our) 0.06 1.75e-8 ± 3.91e-9 3.50e-8 ± 7.79e-9 (1, 200, 10, 1)
IGA-FEM 0.94 2.11e-7 4.21e-7 33

The training is performed on 1500 data points in the interior and boundary. We test the neural-PDE
solvers with 5000 data points in the interior and boundary. The weights of the hidden layer for the
ELM-ODE are sampled from the Gaussian distribution and biases from a uniform distribution in
[−1, 1]. For our approach to handling time-dependent Dirichlet boundary conditions, please refer to
Appendix B.1.1.

Ablation studies: For PINN, the results for the ablation studies for the width of the network and
the number of data points are included in Table 12, Table 13. The ablation study for the number of
neurons in the hidden layer of the network for ELM-ODE and SWIM-ODE is presented in Table 11.
Additionally, we perform an ablation study for the SVD layer to demonstrate its impact on the
computation time saved in Table 14. Particularly, we observe that with the SVD layer, the number of
basis functions (width after the SVD layer) is reduced by up to 22x for ELM-ODE and up to 1.5x for
SWIM-ODE and we obtain substantial speed-ups (more than a factor of 50) in the computation time.

Comparison of results: The exact architectures and comparison of training times and errors are
presented in Table 10 and Table 15. Figure 13 shows the errors with all approaches and the ground
truth.

C.4 BURGERS
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(a) Generated Mesh: FEM (b) Sampled collocation
points: Neural PDE solvers

Figure 12: Advatages of mesh-free methods: For mesh-based methods, a complicated mesh must be
constructed (a), while for our method, one can easily sample arbitrary points on the domain (b).

Table 10: Non-linear diffusion equation: Summary of hyper-parameters.

Parameter Value

SWIM-ODE Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 500
Activation tanh
L2-regularization 10−15

SVD cutoff 10−15

ODE solver tolerance 10−6

Loss mean-squared error

ELM-ODE Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 200
Activation tanh
L2-regularization 10−15

SVD cutoff 10−15

ODE solver tolerance 10−6

Loss mean-squared error

FEM Number of entities 154
Number of nodes 1193
Number of elements 2070
Type of elements Lagrange
Shape of elements triangle
Degree of polynomials 1
Number of basis functions 1193
Solver Newton solver
Timestep size 0.001

PINN Number of hidden layers 4
Layer width [10, 20, 30, 40]
Activation tanh
Optimizer LBFGS
Epochs 10000
Loss mean-squared error
Learning rate 0.01
Batch size 1000
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 0.01, 1
# Interior points [8790, 1760, 880, 440]
# Initial and boundary points [3140, 630, 320, 160]
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(a) Ground truth

(b) Absolute error: SWIM-ODE

(c) Absolute error: ELM-ODE
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Figure 13: Non-linear diffusion equation: absolute error plots and ground truth at four-time instants
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Table 11: Non-linear diffusion equation: ablation study for the network width for SWIM-ODE and
ELM-ODE. The mean is computed over 3 seeds.

Width Relative L2 error (SWIM-ODE) Relative L2 error (ELM-ODE)

200 1.34e-4 4.92e-3
200 1.34e-4 4.92e-3
300 5.07e-6 3.13e-5
400 2.88e-6 1.02e05
500 3.02e-7 1.52e-5

Table 12: Non-linear diffusion equation equation 24: hyperparameter optimization for PINN varying
layer width. The mean is computed over 3 seeds.

Layer width Training time (s) RMSE Relative L2 error

10 61.09 ± 1.62 4.11e-2 ± 2.04e-3 1.50e-2 ± 7.48e-4
20 68.05 ± 1.56 3.74e-2 ± 1.04e-3 1.37e-2 ± 3.82e-4
30 76.01 ± 0.57 3.67e-2 ± 1.03e-3 1.34e-2 ± 3.78e-4
40 82.43 ± 0.45 3.76e-2 ± 1.69e-3 1.37e-2 ± 6.21e-4

Table 13: Non-linear diffusion equation equation 24: hyperparameter optimization for PINN varying
interior points

Interior points Training time (s) RMSE Relative L2 error

600 65.08 ± 4.23 3.74e-2 ± 1.04e-3 1.37e-2 ± 3.82e-4
1200 98.48 ± 3.78 3.51e-2 ± 6.67e-4 1.28e-2 ± 2.44e-4
2390 143.31 ± 5.50 3.34e-2 ± 6.53e-4 1.22e-2 ± 2.38e-4
11930 1154.48 2.01 0.73

Table 14: Non-linear diffusion equation: Ablation Study for the SVD layer with SWIM-ODE and
ELM-ODE. We write ∞ if the computation takes more than 3 hours. ELM-ODE-accurate is the one
that takes longer, but results in a much lower error, and ELM-ODE-fast is the one that takes less time
but produces an error comparable/to or better than PINNs (which facilitates comparison with PINNs).
We denote the ratio of the width of the hidden layer to the width of the SVD layer by Cr.

Method Quantity With SVD layer Without SVD layer Ratio

ELM-ODE-accurate Width 62 300 Cr ≈ 22.8x
Time (s) 60.98 7087.38 Speed-up ≈ 52x

Rel. L2 error 6.49e-8 1.02e-6 -

ELM-ODE-fast Width 35 300 Cr ≈ 8.5x
Time (s) 30.57 ∞ Speed-up ∞

Rel. L2 error 5.12e-5 - -

SWIM-ODE Width 316 500 Cr ≈ 1.5x
Time (s) 328.03 ∞ Speed-up ∞

Rel. L2 error 2e-6 - -

Problem Setup: The inviscid Burgers’ equation is a non-linear PDE, which can form shock waves.
We solve Burgers’ equation on Ω = [−1, 1] for time t ∈ (0, 1], so that

ut + uux − (0.01/π)uxx = 0, x ∈ Ω, t ∈ [0, 1], (27)
u(0, x) = − sin(πx), (28)

u(1,−1) = u(t, 1) = 0. (29)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 15: Non-linear diffusion equation: Summary of results.

Method Training time (s) RMSE Relative L2 error architecture

PINN 143.31 3.34e-2 ± 6.53e-4 1.22e-2 ± 2.38e-4 (2, 4 × 30, 1)
ELM-ODE (our) 30.57 5.02e-5 ± 4.84e-5 5.12e-5 ± 4.95e-5 (2, 200, 1)
SWIM-ODE (our) 423 1.96e-6 ± 1.95e-6 2.00e-6 ± 1.99e-6 (2, 500, 1)
FEM 2.71 7.33e-3 2.68e-3 1193

Ablation studies: The results of the ablation study with the number of neurons in the hidden layer
for SWIM-ODE are presented in Table 16. We observe that starting with a width of 1200, the error
decreases with a width up to 600 and increases again below 600. We believe that for widths lower
than 600, the network capacity seems to be the reason for the loss of accuracy. For very high widths,
the regularization constant has to be kept to a higher value to avoid overfitting. Otherwise, the ODE
system becomes highly stiff and unstable. With this high regularization constant, the training becomes
stable but affects the training accuracy. We do not include results for ELM-ODE as it fails on all
widths as it is not able to capture the sharp shocks and exhibits Gibbs phenomenon Gottlieb & Shu
(1997), which is explained in detail in Appendix C.4.1.

We describe additional details in solving the Burgers’ equation with various neural PDE solvers in
Table 17 and Table 18.

We also perform an ablation study for the SVD layer for SWIM-ODE. Please refer to Table 20. The
ablation study reveals that the SVD layer compresses the number of neurons by a factor of 1.58,
which reduces the output computation time by a factor of 7 for almost the same accuracy. This
highlights the utility of the SVD layer.

Comparison of results: Figure 14 shows the absolute errors obtained with the PINN, Causal PINN,
and IGA methods.

(a) PINN (b) Causal PINN

0.0 0.2 0.4 0.6 0.8 1.0
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x

0.0e+00 1.0e-03 2.0e-03

(c) IGA

0.0 0.2 0.4 0.6 0.8 1.0
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x

-8.0e-01 0.0e+00 8.0e-01

(d) Ground truth

Figure 14: Burgers’ equation: absolute error plots and ground truth

C.4.1 COMPARISON WITH CLASSICAL SPECTRAL METHODS

We compare to other traditional spectral methods by fitting the Burgers’ equation solution directly
at a certain time step, where the function has a locally steep gradient. We argue that if a method
fails to approximate this function well, it is unlikely to achieve better results in solving the PDE.
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Table 16: Burgers’ equation: ablation study for the network width for SWIM-ODE.

Width Relative L2 error

120 1.24e-2
240 4.27e-4
600 2.93e-4
800 3.12e-4
1200 4.92e-3

Table 17: Burgers’ equation: Summary of hyper-parameters.

Parameter Value

SWIM-ODE Number of hidden layers 2
Hidden layer width [450]
Activation tanh
L2-regularization [10−6,10−7, 10−8, 10−10, 10−12]
Loss mean-squared error
# collocation points (space) [800]
# sampling points [6000]

ELM-ODE Number of hidden layers 2
Hidden layer width [2000]
Activation tanh
L2-regularization [10−6,10−7, 10−8, 10−10, 10−12]
Loss mean-squared error
# collocation points (space) [3000]
# sampling points [6000]

Figure 16 shows the approximation of the Burgers’ equation solution at t = 0.99, using SWIM
basis functions, ELM basis functions, Fourier series, and Chebyshev polynomials, respectively. The
number of basis functions is 102 for all methods. Figure 15 shows the approximation error using a
different number of basis functions. We can see that for ELM basis functions, Fourier series and
Chebyshev polynomials, there are oscillations near the nonlinearity, and the error is large compared
to the SWIM basis functions, where we are able to take the advantage of resampling data points and
basis functions in order to adapt to the target function well. Note that in this experiment, the weights
for the ELM basis functions are sampled from a Gaussian distribution with a standard deviation of 10
in order to increase the number of basis functions. The biases are sampled from a uniform distribution
in [−10, 10]. For the Fourier series and Chebyshev polynomials, we use equispaced grid points. We
also experimented with quadrature points and placed more points near the steep gradient in an attempt
to mitigate the oscillations associated with the Gibbs phenomenon and the Runge phenomenon, but it
did not lead to any significant improvement in the results.

C.5 HIGH-DIMENSIONAL DIFFUSION EQUATION

Problem setup: We consider up to 10-dimensional diffusion equation on spatial domain Ω =
[−1, 1]d and time domain t ∈ (0, 1]:

ut −∆u =

(
1

d
− 1

)
cos

(
1

d

d∑
i=1

xi

)
exp (−t) , x ∈ Ω, t ∈ [0, 1], (30)

u(x, t) = cos

(
1

d

d∑
i=1

xi

)
exp (−t) , (31)

u(x, 0) = cos

(
1

d

d∑
i=1

xi

)
, (32)
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Table 18: Burgers’ equation: Network hyper-parameters used for PINN, Causal PINN, and IGA.

Parameter Value

PINN Number of hidden layers 9
Layer width 20
Activation tanh
Optimizer LBFGS
Epochs 10000
Loss mean-squared error
Learning rate 0.1
Batch size 200
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points 10000
# Initial and boundary points 600

Causal PINN Number of hidden layers 9
Layer width 20
Activation tanh
Optimizer ADAM followed by LBFGS
ADAM Epochs 5000
LBFGS Epochs 10000
Loss mean-squared error
Learning rate 0.1
Batch size 200
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points 40000
# Initial and boundary points 600
Causality parameter, ϵ 5

IGA Number of nodes 400
Degree of polynomials 8
Number of basis functions 405

Table 19: Burgers’ Equation: Summary of results.

Method Training time (s) RMSE Relative L2 error architecture

ELM-ODE (our) 2.41 1.51e-1 ± 3.27 e-4 2.47e-1 ± 5.33e-4 (1, 2000, 1)
PINN 275.23 ± 5.38 2.38e-3 ± 1.61e-3 3.88e-3 ± 2.61e-3 (2, 9×20, 1)
Causal-PINN 1531.79 ± 18.45 9.85e-3 ± 5.51e-3 1.60e-2 ± 8.97e-3 (2, 9×20, 1)
SWIM-ODE (our) 141.35 2.05e-4 ± 2.84e-4 3.33e-4 ± 4.63e-4 (1, 400, 1)
IGA-FEM 13.61 1.35e-4 2.20e-4 405

Table 20: Burgers’ Equation: Ablation Study for the SVD layer with SWIM-ODE.

With SVD layer Without SVD layer Ratio

Number of neurons 500 316 Width Compression ≈ 1.58x
Time (s) 141.5 989.84 Speed-up ≈ 7x
Rel. L2 error 3.34e-4 3.28e-4 -

where d ∈ {3, 5, 7, 10}. This example is considered in (Wang & Dong, 2024), but only up to 7
dimensions. For the high-dimensional diffusion equation, we use 16000 training points in the interior
and 4000 points on the boundary randomly sampled using the Latin hypercube strategy. The test
data contains 8000 points in the interior and 2000 points on the domain’s boundary, which were also
sampled with a Latin hypercube strategy.
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basis functions. Here, we directly fit the Burgers’
equation solution at t = 0.99. The approxima-
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Figure 16: Approximation of Burgers’ equation
solution at t = 0.99 with four types of basis
functions. The number of basis functions in all
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steep gradient for the methods using ELM ba-
sis functions, Fourier functions, and Chebyshev
polynomials.

Ablation studies: The ablation study with respect to the network width for ELM-ODE and SWIM-
ODE is already presented in Figure 7, where we observe a rapid exponential decay of error with
respect to increasing width of the network (even exponential convergence for the high-dimensional
diffusion equation in 3 and 5 dimensions).

The hyper-parameters for all neural PDE solvers considered in this work are presented in Table 21,
and the results for the high-dimensional diffusion equation with up to 3, 5, 7, and 10 dimensions are
summarized in Table 22.

We also perform an ablation study on the SVD layer. To quantify the compression in width after
the SVD layer, we define a compression ratio as Cr = Ms

r , where Ms is the width of the (sampled)
hidden layer before the SVD layer (see Figure 3), and r is the width of the SVD layer. We define a
speed-up in computation time as s = Tno-svd

Tsvd
as the ratio of computational time without the SVD layer

to the time required with the SVD layer.

The results of the ablation study for the SVD layer with the high-dimensional diffusion equations
demonstrate that for ELM-ODE, the SVD layer results in substantial speed-ups for 3, 5, and 7 dimen-
sional heat equations - by factors of 52, 77, and 21 respectively. We observe that the compression
ratios achieved with the SVD layer are also substantial 22.8, 5, and 1.2, for dimensions 3, 5, and 7,
respectively. For the 10-dimensional diffusion equation, to cover the high-dimensional space, we
observe a (relatively lower compared to other dimensions) compression ratio of 1.4, as more basis
functions are required to represent functions in high dimensions accurately. Thus, the time required
with the SVD layer is around 94 percent of the time required without the SVD layer. In all the cases,
the loss is always in the same order as the one without the SVD layer.

Note that in all cases, the extra cost of computing the SVD easily pays off by substantially saving time
in the ODE solver for ELM-ODE. This is because of the improved conditioning of the feature matrix
and the reduction in the size of the ODE system to be solved. With SWIM-ODE, the observations are
similar but with lower compression ratios and speed-ups. But, for this problem, SWIM-ODE is not
the preferred method, as the underlying solution is smooth, has low-frequency spatial variations, and
does not have steep gradients anywhere in the domain. Thus, SWIM basis functions are not optimal
in the vanilla setting. See Appendix B.1.3 for details on this.

Comparison of results: We demonstrate that ELM-ODE accurately solves the high-dimensional
diffusion equation by visualizing the ground truth, the ELM-ODE solution, and the point-wise
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absolute error for the 10-dimensional diffusion equation across different cross-sections for a fixed
time in Figure 17 and the time evolution of solution at some sampled points in space in Figure 18.
We show the solution across different spatial coordinates evaluated at three different time instants
(rest of the coordinates fixed to the center) in Figure 19.

Table 21: Summary of hyper-parameters for the 10-dimensional diffusion equation.

Parameter Value
SWIM-ODE Number of hidden layers 2 (nonlinear and SVD layer)

Hidden layer width 4000
Activation tanh
L2-regularization 10−10

SVD cutoff 10−10

ODE solver tolerance 10−6

Loss mean-squared error

ELM-ODE-fast Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 1000
Activation tanh
L2-regularization 10−10

SVD cutoff 10−10

ODE solver tolerance 10−6

parameter range [−rm, rm] rm = 0.05
Loss mean-squared error

ELM-ODE-accurate Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 4000
Activation tanh
L2-regularization 10−10

SVD cutoff 10−10

ODE solver tolerance 10−6

parameter range [−rm, rm] rm = 0.05
Loss mean-squared error

PINN Number of hidden layers 4
Layer width 20
Activation tanh
Optimizer LBFGS
Epochs 1000
Loss mean-squared error
Learning rate 0.1
Batch size 4000
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points 16000
# Initial and boundary points 4000
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Figure 17: 10-dimensional diffusion equation: Ground truth, ELM-ODE solution, and point-wise
absolute error across different cross-sections of the spatiotemporal domain (located exactly in the
center of the spatial-temporal domain with respect to the remaining coordinates).
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Figure 18: 10-dimensional diffusion equation: Ground truth, ELM-ODE solution, and point-wise
absolute error at various planes at different time points (The rest of the spatial coordinates are set to
the center of the spatial-temporal domain).
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(b) 5-Dimensional heat equation:: coordinate x2
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(c) 7-Dimensional heat equation: coordinate x2
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Figure 19: High-dimensional diffusion equation: Ground truth and ELM-ODE solution across
different spatial coordinates evaluated at t = 0.01 (column 1), t = 0.5 (column 2) and t = 0.99
(column 3), where the rest of the spatial coordinates are set to the center of the spatial-temporal
domain.
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Table 22: Summary of results for high-dimensional diffusion equation.

Dimension Method Time (s) RMSE Relative L2 error

3-d PINN 102.32 2.84e-4 ± 3.73e-5 4.54e-4 ± 5.97e-5
SWIM-ODE (our) 95.73 2.18e-6 ± 1.93e-6 5.37e-6 ± 4.27e-7
ELM-ODE-fast (our) 0.9 2.42e-6 ± 1.37e-6 3.90e-6 ± 2.98e-6
ELM-ODE-accurate (our) 60.98 3.48e-8 ± 2.17e-6 6.49e-8 ± 4.31e-8

5-d PINN 133.95 2.91e-4 ± 5.34e-5 4.52e-4 ± 8.30e-5
SWIM-ODE (our) 129.65 1.03e-4 ± 5.94e-5 2.39e-4 ± 8.69e-5
ELM-ODE-fast (our) 1.2 1.25e-4 ± 2.42e-5 3.74e-4 ± 5.37e-5
ELM-ODE-accurate (our) 102.95 4.71e-7 ± 3.56e-7 7.5e-7 ± 3.92e-7

7-d PINN 163.89 3.05e-4 ± 2.94e-5 4.69e-4 ± 4.51e-5
SWIM-ODE (our) 198.20 3.96e-4 ± 1.03e-4 7.8e-4 ± 2.50e-4
ELM-ODE-fast (our) 5.95 1.05e-5 ± 8.76e-6 2.21e-5 ± 1.01e-5
ELM-ODE-accurate (our) 176.95 1.19e-6 ± 2.93e-7 2.54e-6 ± 5.10e-7

10-d PINN 189.67 3.98e-4 ± 6.59e-5 6.06e-4 ± 1.00e-4
SWIM-ODE (our) 61.07 1.01e-3 ± 3.09e-4 2.31e-3 ± 1.03e-3
ELM-ODE-fast (our) 2.07 2.89e-4 ± 5.91e-5 4.46e-4 ± 9.61e-5
ELM-ODE-accurate (our) 182.91 1.04e-5 ± 3.32e-6 2.28e-5 ± 5.91e-6

Table 23: High-dimensional diffusion equation: Ablation Study for the SVD layer with SWIM-ODE.

Dimension Quantity With SVD layer Without SVD layer Ratio

3-d Width 1391 4000 Compression ≈ 2.9x
Time (s) 95.73 388.12 Speed-up ≈ 4x

Rel. L2 error 5.29e-6 4.77e-6 -

5-d Width 1437 4000 Compression ≈ 2.8x
Time (s) 129.65 199.92 Speed-up ≈ 1.5x

Rel. L2 error 2.39e-4 2.18e-4 -

7-d Width 3114 4000 Compression ≈ 1.3x
Time (s) 120.32 198.31 Speed-up ≈ 1.6x

Rel. L2 error 7.83e-4 7.83e-4 -

10-d Width 3100 4000 Compression ≈ 1.3x
Time (s) 121.93 111.8 Speed-up ≈ 0.91x

Rel. L2 error 2.30e-3 2.30e-3 -

Table 24: High-dimensional diffusion equation: Ablation Study for the SVD layer with ELM-ODE.

Dimension Quantity With SVD layer Without SVD layer Ratio

3-d Width 175 4000 Compression ≈ 22.8x
Time (s) 60.98 7087.38 Speed-up ≈ 52x

Rel. L2 error 6.49e-8 1.02e-6 -

5-d Width 794 4000 Compression ≈ 5x
Time (s) 89.27 6873.8 Speed-up ≈ 77x

Rel. L2 error 7.30e-7 2.19e-6 -

7-d Width 3336 4000 Compression ≈ 1.2x
Time (s) 176.95 3770.09 Speed-up ≈ 21x

Rel. L2 error 2.54e-6 4.06e-6 -

10-d Width 2856 4000 Compression ≈ 1.4x
Time (s) 119 127 Speed-up ≈ 1.06x

Rel. L2 error 5.57e-5 4.36e-5 -
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