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Abstract

Domain Generalization (DG), a crucial research area, seeks to train models across multiple
domains and test them on unseen ones. In this paper, we introduce a novel approach, namely,
Selective Cross-Modality Distillation for Domain Generalization (SCMD). SCMD leverages
the capabilities of large vision-language models, specifically CLIP, to train a more efficient
model, ensuring it acquires robust generalization capabilities across unseen domains. Our
primary contribution is a unique selection framework strategically designed to identify hard-
to-learn samples for distillation. In parallel, we introduce a novel cross-modality module that
seamlessly combines the projected features of the student model with the text embeddings
from CLIP, ensuring the alignment of similarity distributions. We assess SCMD’s perfor-
mance on various benchmarks, where it empowers a ResNet50 to deliver state-of-the-art
performance, surpassing existing domain generalization methods. Furthermore, we provide
a theoretical analysis of our selection strategy, offering deeper insight into its effectiveness
and potential in the field of DG.

1 Introduction

Imagine a young pianist learning to perform a complex piece of music. Initially, she listens to her experienced
piano teacher’s rendition, absorbing the nuances and techniques. Yet, the most crucial learning comes from
recording and listening to her own performances. When she listens to her own recordings, she can identify
where her performance differs from the perfect melody she has in mind - the ideal, real-world performance.
These differences are more valuable for her improvement than simply comparing her performance to the
ideal. This is because these disparities directly reflect her unique challenges, and addressing them (with the
teacher’s help) will have the most direct impact on improving her performance.

This learning scenario is akin to the process of Knowledge Distillation (Hinton et al., 2015). The simpler
problems that the pianist initially tackles resemble the easily learnable features of a dataset, which a student
model can grasp without assistance. The complex music pieces, however, symbolize the hard-to-grasp parts
of the data, where the student model benefits immensely from the teacher model’s guidance.

As the pianist matures artistically, she discerns that mastering known pieces alone does not capture the
full essence of her musical journey. Wanting to elevate her compositions, she begins to intertwine lyrics
into her melodies. This is not a mere juxtaposition of words and tunes; it is a realization that lyrics can
heighten the clarity and expressiveness of her music. In the same vein, the harmonization of visual content
and natural language in CLIP Radford et al. (2021) is not just for the sake of fusion, but because language
can significantly augment the nuances of visual recognition.
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Deep learning models, much like the pianists, may falter when faced with unfamiliar terrains or “genres” in
the form of out-of-domain data, despite their proficiency in various tasks. This situation frequently arises
in real-world applications. Numerous algorithms have been developed to ensure consistency across distribu-
tions (Ben-David et al., 2010; Ben-David et al., 2006) and regularize the models to learn domain-invariant
features (Lu et al., 2022; Huang et al., 2020; 2022), but they often yield only modest improvements (Gulrajani
& Lopez-Paz, 2021) over traditional Empirical Risk Minimization (ERM) technique (Vapnik, 1998).

Inspired by the pianist’s pursuit of harmony between melody and lyrics, and her introspective approach to
identify discrepancies in her performance to perfect her craft, our work similarly seeks to focus on challeng-
ing aspects of training data and incorporate semantic information to better capture the domain-invariant
features. In this paper, we present the Selective Cross-Modality Distillation (SCMD) framework.

Rather than relying on the soft target distribution from the teacher model, SCMD emphasizes the discrepan-
cies, specifically, the gap between the student’s performance and real-world expectations. Just as the pianist
hones in on the variations between her rendition and the ideal composition, SCMD selects hard-to-learn
samples in the training data, targeting those for knowledge distillation. This approach, we believe, not only
enhances the learning process but also equips the student model with robust feature representations, crucial
for navigating unfamiliar terrains.

We have chosen to utilize CLIP as a key component of our approach, not only for its ability to combine
visual and linguistic information but also for its proficiency in matching images with textual descriptions.
This special capacity of CLIP enhances our framework, offering a more comprehensive knowledge base from
which our student models can extract and learn.

Contributions:

• We present the Selective Cross-Modality Distillation (SCMD) framework, an innovative departure
from traditional methods, emphasizing adaptive sample treatments over the uniform approaches
commonly found in current knowledge distillation techniques.

• We emphasize the importance of complex and hard-to-learn training samples and provide a compre-
hensive theoretical foundation for our selection strategies.

• We propose a cross-modality distillation module within our SCMD framework to leverage the unique
capabilities of CLIP, seamlessly integrating linguistic comprehension with visual perception for a
more nuanced learning paradigm.

• We substantiate the effectiveness of our SCMD method through empirical evaluations, demonstrating
its superior performance and capability to establish new standards on various benchmarks.

2 Related Work

2.1 Domain Generalization

Domain Generalization (DG) (Muandet et al., 2013) has recently emerged as a key area in machine learning,
focused on training models with data from multiple source distributions for application on a distinct target
distribution.

DG is generally classified into two facets: data augmentation and invariance regularization (Liu et al., 2023).
Data augmentation thread (Shankar et al., 2018; Yue et al., 2019; Gong et al., 2019; Zhou et al., 2020; Huang
et al., 2021; Wang et al., 2022b) refines the inputs to facilitate learning of generalizable representations.
Invariance regularization techniques (Li et al., 2018b;c; Wang et al., 2017; Akuzawa et al., 2020; Ding et al.,
2022; Han et al., 2021; Wang et al., 2022a; Meng et al., 2022; Lee et al., 2022; Ge et al., 2021; Lu et al.,
2022) aim for domain-invariant feature representations to enhance generalization. In addition, some methods
employ learning strategies like meta-learning (Li et al., 2018a) to simulate domain shifts during training,
improving the model’s adaptability to unseen domains. Recent studies indicate that weight averaging can
further boost DG task performance (Cha et al., 2021; Arpit et al., 2022), contributing to more stable out-
of-domain test results.
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Several previous studies have leveraged vision-language models to enhance Domain Generalization (DG)
performance, closely aligning with our contribution. For instance, Domain Prompt Learning (DPL) (Zhang
et al., 2021) employs a lightweight prompt adapter to automatically generate a prompt estimating domain-
specific features from unlabeled examples across distributions. However, these generated prompts often lack
clear semantic meanings, potentially limiting their effectiveness in certain contexts (Zhou et al., 2022). Other
research (Li et al., 2022) dispatches appropriate pretrained models, including CLIP, to each sample based
on their generalization ability. Another approach (Cha et al., 2022) reformulates the DG objective using
mutual information with oracle models, including CLIP.

Recent work (Huang et al., 2023) introduces RISE, a method that utilizes both absolute and relative distances
for distilling CLIP for domain generalization. Building on this foundation, our approach prioritizes the
identification and selection of hard-to-learn samples for knowledge distillation. This combination of ideas,
though seemingly straightforward, represents a new direction that has not been extensively explored in prior
research.

2.2 Contrastive Language-Image Pre-Training

CLIP (Radford et al., 2021), a vision-language model utilizing contrastive loss to align visual and text
encoders within a shared feature space, has recently garnered significant attention.

Pretrained on 400 million image-text pairs (Radford et al., 2021), CLIP effectively aligns semantic meanings
between images and sentences, demonstrating its promise for generic visual representation learning and zero-
shot transfer via prompt (Radford et al., 2021; Jia et al., 2021; Yang et al., 2022b;a; Yao et al., 2022; You
et al., 2022). Notably, CLIP matches a fully-supervised ResNet101 model’s performance with a 76.2% top-1
accuracy rate on the ImageNet (Deng et al., 2009) validation set and even outperforms it on the ImageNet
Sketch Dataset with 60.2% accuracy rate.

These results highlight CLIP’s exceptional capabilities in tasks like image classification. More importantly,
CLIP’s extensive pretraining not only bolsters its standalone performance but also demonstrates its poten-
tial to transfer extensive knowledge to other architectures, offering new possibilities for enhancing model
generalization across diverse domains.

In this paper, we present a novel method to distill knowledge from CLIP, a multi-modal vision-language
model, into a single-modal student model. By transitioning from multi-modal to single-modal distillation,
we aim to enhance the student model’s domain generalization, opening up new avenues for leveraging these
potent models.

2.3 Knowledge Distillation

Knowledge distillation, introduced by Hinton et al. (Hinton et al., 2015), is a pivotal technique for balancing
model performance and computational complexity by training a smaller student network with the soft output
of a larger teacher model. This approach has spurred extensive research in model compression (Cheng et al.,
2017) and knowledge transfer (Tan et al., 2018).

Numerous distillation techniques have emerged, including feature-based knowledge transfer methods (Romero
et al., 2015a; Bengio et al., 2013; Zagoruyko & Komodakis, 2017; Kim et al., 2018a; Heo et al., 2019a) that
align embeddings from certain layers, (Zhang et al., 2018) that train teacher and student models concurrently.
The design of loss functions operating on the outputs of both models has also been a significant research
area, with notable methods including l1 (Kim et al., 2018b), l2 (Chen et al., 2020; Passban et al., 2021;
Wang et al., 2020), Maximum Mean Discrepancy (MMD) (Huang & Wang, 2017), KL divergence (Chen
et al., 2018; Passalis et al., 2020a;b), and cross-entropy losses (Xu et al., 2020; Liu et al., 2019).

However, most studies focus on homologous-architecture distillation, leaving cross-architecture distillation
relatively untapped. Recently, Liu et al. (Liu et al., 2022) made significant progress in this area by mapping
a CNN’s feature space into a transformer’s attention and feature space using a partially cross-attention pro-
jector and a group-wise linear projector. With a cross-view robust training scheme, they achieved remarkable
performance on ImageNet (Deng et al., 2009).
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Our approach diverges from conventional methods, introducing fresh perspectives on knowledge distillation
through two key innovations. Firstly, we implement a novel selection mechanism that identifies hard-to-
learn samples, which enhances the student model’s depth of understanding. Secondly, we leverage CLIP’s
multi-modal capabilities by employing a cross-modality module. This strategy not only facilitates a profound
transfer of both visual and linguistic knowledge but also significantly enhances the domain generalization
capability of the student model.

3 Methods

In this section, we provide a detailed description of our Selective Cross-Modality Distillation Framework,
which leverages a pretrained CLIP model (Radford et al., 2021) with fixed weights as the guiding teacher
model.

Figure 1: SCMD that features a selection mechanism to focus on hard-to-learn samples and a cross-modality
module that projects the student’s feature into CLIP multi-modal space for alignment.

3.1 Vanilla Knowledge Distillation

The vanilla knowledge distillation process is

θ̂KD = arg min
θ

∑
(xi,yi)∈(X,Y)

L(ϕ(xi), f(xi; θ))

+λ1H(f(xi; θ), y)
+λ2R(ϕ, f, p, q, xi, yi)

(1)

where ϕ is the teacher model, f(·; θ) is the student model. (X, Y) is the standard dataset that is used
for training the student model. L is a generic distance function (can be the KL divergence between soft
target distributions), H represents a generic loss function (usually cross-entropy loss), and R is an arbitrary
designed regularization. p and q correspond to certain layers or attention maps.

3.2 Selection Mechanism

S = xi : xi ∈ X, i ∈ I where I = i : H(f(xi), yi) ≥ τ (2)

In the preceding equation, X denotes the batch of samples, xi an individual sample, and yi its true label.
The set S consists of selected samples. The function H(f(xi; θ), yi) computes the cross-entropy loss for the
i-th sample, while I contains indices of samples in the batch with a cross-entropy loss exceeding the threshold
τ .
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Cross-entropy loss quantifies the divergence between the predicted probability distribution and the actual
labels. High cross-entropy indicates challenging samples or model uncertainty. In our optimization, we use
this loss to identify hard-to-learn samples. During each forward pass, samples with higher losses are selected
for adjustment, a methodology also adopted in prior works (Huang et al., 2022; Byrd & Lipton, 2019; Chang
et al., 2017; Katharopoulos & Fleuret, 2018).

The uniqueness of our method lies not in the recognition of hard-to-learn samples but in its integration within
knowledge distillation. By doing so, we harness the teacher model’s rich knowledge more efficiently, opti-
mizing the learning of the student model. We explore the theoretical foundation of our selection mechanism
in Section 4.

The “hard-to-learn” tag for the samples can change each iteration. However, to ensure holistic learning
across the entire training dataset, we switch to full-batch training for the final k% of the training epochs.

3.3 Cross-Modality Module

Various feature-based knowledge distillations have been explored (Romero et al., 2015a; Bengio et al., 2013;
Zagoruyko & Komodakis, 2017; Kim et al., 2018a; Heo et al., 2019a); however, direct alignment of clas-
sification features often presents challenges. To address this, we exploit the robust cross-modal alignment
capabilities of the CLIP (Radford et al., 2021) and employ a cross-modality distillation strategy.

In the context of our method, the student features are transformed into the CLIP’s (Radford et al., 2021)
multi-modal space using a linear projection. This is analogous to how CLIP projects its image features into a
multi-modal space to achieve alignment with text embeddings. This transformation bridges the semantic gap
between the student model and the teacher model, facilitating a more effective knowledge-transfer process.
After projection, we calculate the scaled pairwise cosine similarity with the text embeddings derived from
the CLIP (Radford et al., 2021) model.

Our cross-modality loss is expressed as follows:

LCM = DKL(pt||(ps)′)
where pt is the soft target distribution of CLIP and

(ps)′ = σ(γ · W (e(xi; θe)) · ϕtext; T = t)
(3)

In this equation, γ is a scale factor, which adjusts the magnitude of the projected student feature. e represents
the backbone of the student model. A linear projection W is applied to the student feature e(xi; θe), and
ϕtext represents the text embedding of CLIP. σ is the softmax function parameterized by the distillation
temperature T .

In order to generate unbiased text features using CLIP, we use a generic template: “this is a photo of a
{class}”. This method helps us avoid incorporating any human prior knowledge about the dataset, ensuring
that the feature generation process remains objective and is not influenced by any preconceived human
understanding of the data.

During the inference phase, we omit the feature projector and rely solely on the student model’s backbone
and its associated classifier for generating predictions, introducing no additional computation overhead.

3.4 SCMD

Figure 1 illustrates the overall framework of our proposed method.
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The final training objective can be summarized as follows:

θ̂SCMD = arg min
θ

∑
(xi,yi)∈(X,Y)

λ1H(f(xi; θ), yi)

+λ2Llogits + λ3LCM

where Llogits = DKL(pt||ps)
and xi and yi

are the selected samples and corresponding labels

(4)

4 Theoretical Evidence for Selection Strategy

To be consistent with the notation, we let (X, Y) denote the standard data set and (xi, yi) be one of the
samples. We let P denote a distribution and P denote the distribution of distributions. We let f(·; θ) denote
the student model, ϕ denote the teacher model, and r(·) denote the risk. For convenience of notation, we
allow r(·) to be parameterized by a distribution or by a dataset.

When r(·) is parameterized by a dataset, we have the empirical risk as

r
(
(X, Y)

)
= 1

n

∑
(xi,yi)∈(X,Y)

L(f(xi; θ), yi),

where L is a generic loss function.

When r(·) is parameterized by a distribution, we have the expected risk as

r
(
P

)
= E(xi,yi)∼P L(f(xi; θ), yi),

For simplicity of discussion, we only use r
(
P , ϵ

)
to denote robustness performance when we do not need to

specify how the test distribution deviates from the training distribution.
Assumption 1. for any data pair (xi, yi) studied in the context of this paper, there is a gold standard
labeling function (albeit unknown) that yi = f(xi).

We believe this assumption is fundamental for numerous works studying the robustness behaviors of models
with respect to feature perturbations, especially in the context of OOD robustness, where the test dataset
is manually collected rather than generated by noise addition. Intuitively, this assumption stipulates that a
musical piece recognized in the training phase must also be identified as the same piece in the testing phase,
despite substantial shifts in the performance style or instrument used. In other words, these variations in
representation, akin to distribution shifts in data, should not alter the fundamental recognition of the piece,
preserving the semantics of the data.
Lemma 4.1. Given Assumptions A1 such that there is a gold standard labeling function for source and
target domains. For two arbitrary distributions P ′ and P ,

r(P ′) ≤ r(P ) + tv(P ′, P )

where tv denotes the total variation.

Proof. We leave the proof in Appendix A
Lemma 4.2. Given the assumption that samples are independent and identically distributed, hypothesis
space Θ and any δ > 0, with probability at least 1 − δ, we have

r
(
P ′) ≤ r

(
(X, Y)P

)
+ tv(P ′, P ) + ξ(n(X,Y)P

, Θ, δ)

where we let n(X,Y)P
denote the number of sample sizes in the finite dataset (X, Y)P , ξ is a vanilla term

that connects the number of samples and hypothesis space with generalization error bound.
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Proof. We leave the proof in Appendix A

The above results demonstrate that empirical robustness is determined by three factors: the divergence
between training and test distributions, the measurable empirical error on the training distribution, and
a technical term influenced by sample size and hypothesis space. Therefore, the critical term that will
bound the robustness performance is how the training distribution deviates from the testing distribution.
This intuitively gives us the idea that training with the distributions that are the most similar to the test
distribution will benefit the model most.

The above results apply to arbitrary distributions P ∼ P. However, this does not necessarily encode the
characteristics of the cases we are studying: some samples are hard for the model to learn.

To address this, we consider datasets generated by multiple distributions, some of which present more
challenging learning scenarios. We represent these as a set P , consisting of m distributions, i.e., P =
{P1, P2, . . . , Pm}. Each data point is considered to be sampled from these distributions. For the convenience
of discussion, we use tv(P ′, P ) to denote the average divergence between the distributions within the set.
tv(P ′, P ) :=

∑m
i tv(P ′, Pi)/m, ∀Pi ∈ P .

Finally, we use s() to denote the distribution selection mechanism, and compare two selection mechanisms:
selecting the hard-to-learn samples (denoted as s1) and selecting random samples (denoted as s2).

Lemma 4.3. P is continuous and has a finite expected value; for the two selection mechanism that are
formally defined as

tv(s1(P ), P ) = sup
P ∈P

tv(P , P ), EP tv(s2(P ), P ) = 0

for a fixed testing dataset P ′, with the assumption that tv(P, P ′) = tv(P, P ) + tv(P , P ′), ∀P ∈ P we have

EP

[
tv(s1(P ), P ′)

]
≤ EP

[
tv(s2(P ), P ′)

]
Proof. We leave the proof in Appendix A

Our result compares the upper-bounded differences between the two training distribution selection strategies,
and our results suggest that selecting the hard-to-learn samples will lead to a tighter generalization error
bound.

Another important factor to note is that, given assumption A1 and Lemma 4.1 and 4.2, the selection strategy
applicable to our theoretical discussion (i.e. tv(s1(P ), P ) = supP ∈P tv(P , P )) is only when selecting the hard-
to-learn samples according to the label of the samples (thus cross-entropy loss). Other selection strategies
such as selecting based on KL-divergence or distillation loss (experimented in Section 6.2) despite might
following a similar goal, does not strictly match our theoretical discussion with will likely lead to an error
bound in between s1 and s2. Therefore, with the support of the theoretical discussion, we argue that the
most effective hard-to-learn selection mechanism is to be based on cross-entropy loss.

Another possible question is that the assumption tv(P, P ′) = tv(P, P ) + tv(P , P ′), ∀P ∈ P might appear
strong. In fact, the proof will hold with any assumptions that describe the concept that the more different
one distribution is from the average of the training set, the more it will benefit the testing distribution. In
the typical domain generalization setting, where there are no guaranteed connections between training and
testing distributions, we believe this is one of the practical assumptions we can consider, also widely used in
practical by other domain generalization literature (Huang et al., 2022; Byrd & Lipton, 2019; Chang et al.,
2017; Katharopoulos & Fleuret, 2018).

5 Experiment

In this section, we demonstrate the effectiveness of our proposed method using the DomainBed (Gulrajani
& Lopez-Paz, 2021) benchmark and compare it to the current state-of-the-art DG techniques.
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5.1 Experimental Setup

We adhere to the protocol set out in (Gulrajani & Lopez-Paz, 2021) for our experimental setup and assess the
performance of SCMD using VLCS (Fang et al., 2013), PACS (Li et al., 2017), OfficeHome (Venkateswara
et al., 2017), TerraIncognita (Beery et al., 2018), and DomainNet (Peng et al., 2019). It is noteworthy that
CLIP does not perform well on the TerraIncognita (Beery et al., 2018) dataset, and we will explore these
results in the discussion section.

Due to the intensive computing requirements of DomainBed’s (Gulrajani & Lopez-Paz, 2021) hyperparameter
search protocol, we take a more simplified approach. We restrict our research to five distinct hyperparameter
combinations, each tested three times. We assign 80% of the data for training and 20% for validation, choose
the model based on the training-domain validation performance, and report the results on the held-out
domain.

To ensure a fair comparison with other methods, we employ ResNet50 (He et al., 2016) pretrained on
ImageNet1k (Deng et al., 2009) as the student model and CLIP ViT-B/32 (Radford et al., 2021) as the
teacher model, aligning our approach with existing research in the field.

Consistent with findings from previous studies (Cha et al., 2021; Arpit et al., 2022), we also incorporate weight
averaging into our experiments to access SCMD performance. This technique has been shown to mitigate
the discrepancy between training-domain validation performance and out-of-domain test performance.

Eight RTX 3090 GPUs are utilized for all experiments.

5.2 Experimental results

Algorithm Ens
MA

VLCS PACS OffHome TerraInc DNet Avg

Teacher (CLIP with ViT-B/32) No 78.4 ± 0.0 94.7 ± 0.1 79.6 ± 0.1 19.0 ± 0.1 54.0 ± 0.0 65.1

ERM (Vapnik, 1998) No 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
CORAL (Sun & Saenko, 2016) No 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.6
VREx (Krueger et al., 2021) No 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9
RSC (Huang et al., 2020) No 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7
ERM + SWAD (Cha et al., 2021) Yes 79.1 ± 0.1 88.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
CORAL + SWAD (Cha et al., 2021) Yes 78.9 ± 0.1 88.3 ± 0.1 71.3 ± 0.1 51.0 ± 0.1 46.8 ± 0.0 67.3
AdaClust (Thomas et al., 2021) No 78.9 ± 0.6 87.0 ± 0.3 67.7 ± 0.5 48.1± 0.1 43.3 ± 0.5 64.9
MIRO + SWAD (Cha et al., 2022) Yes 79.6 ± 0.2 88.4 ± 0.1 72.4 ± 0.1 52.9 ± 0.2 47.0 ± 0.0 68.1
EoA (Arpit et al., 2022) Yes 79.1 88.6 72.5 52.3 47.4 68.0
Model rata(Greedy)(Ramé et al., 2022) Yes 78.7 ± 0.2 90.5 ± 0.2 73.4 ± 0.3 49.2 ± 0.9 47.7 ± 0.0 67.9
Model rata(Uni)(Ramé et al., 2022) Yes 78.3 89.8 73.5 52.0 47.7 68.3
SCMD (ours) Yes 80.9 ± 0.2 90.1 ± 0.0 74.8 ± 0.1 51.3 ± 0.2 48.4 ± 0.0 69.1

Table 1: Performance benchmarking on 5 datasets of the DomainBed benchmark. The gray background
shows our proposed method. Experiments report the performance based on training-domain validation
accuracy follow (Gulrajani & Lopez-Paz, 2021). ‘Ens/MA’ stands for ensemble/moving average. (best in
bold and second underlined)

Table 1 shows that our proposed method achieves the best performance on the DomainBed benchmark. It
outperforms existing methods on all datasets, with Model Ratatouille (Ramé et al., 2022) coming in second.

Model Ratatouille (Ramé et al., 2022) utilizes a technique that adjusts the model on multiple extra tasks to
obtain different weight initializations. These weights are then adjusted for the desired tasks, and the final
model is created by taking the average of these weights. This is exemplified by Model Ratatouille (Uniform),
which averages a total of 60 models to achieve the final result, as shown in the Table.

In contrast, our proposed method uses a single teacher model and evaluates performance using just one
student model. Furthermore, our method is orthogonal to existing DG methods, potentially providing
additional avenues and perspectives in the broader landscape of DG research.
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6 Ablation Studies

We conduct a thorough analysis of SCMD by breaking it down into its components and examining each
using the PACS dataset. To evaluate the effectiveness of the proposed cross-modality module and the selec-
tion mechanism, we follow the same standardized hyperparameter search protocol as the main experience,
ensuring consistency and comparability.

6.1 Impact of the Cross-Modality Module

Table 2 (Top Section) presents the comprehensive results of our method alongside its different variations.
• “Vanilla KD” (Hinton et al., 2015) denotes the conventional knowledge distillation technique

where the KL divergence between the predicted distributions of the student and teacher models is
minimized.

• “SCMD (logits)” is the combination of the selection mechanism and the minimization of KL
divergence.

• “SCMD (logits + CM)” represents the full version of our method, including all our proposed
components.

We have included weight averaging into the Vanilla KD to guarantee a fair comparison and show the effec-
tiveness of our proposed components.

As shown in the top part of Table 2, our selection mechanism alone leads to a 0.5% improvement in com-
parison to the average performance of Vanilla KD. Additionally, our cross-modality (CM) module further
boosts the performance by 0.6%. When both are combined, our proposed methodology offers a significant
increase in performance, surpassing Vanilla KD by a total of 1.1%. These results demonstrate the combined
power and effectiveness of our proposed approach.

Algorithm Avg

Vanilla KD (Hinton et al., 2015) 89.0 ± 0.3
SCMD (logits) 89.5 ± 0.2
SCMD (logits + CM) (full method) 90.1 ± 0.0

SCMD (no selection) 89.4 ± 0.3
SCMD (selection based on KL) 89.6 ± 0.3
SCMD (selection based on distill loss) 89.8 ± 0.2
SCMD (selection based on focal loss) 89.2 ± 0.4
SCMD (selection based on CE loss) 90.1 ± 0.0

Table 2: Performance evaluations: (Top) Impact of the cross-modality module in SCMD on the PACS
dataset. (Bottom) SCMD performance with different strategies for selecting hard-to-learn samples on the
PACS dataset. (best in bold)

6.2 Empirical Validation of Our Theoretical Analysis

As illustrated in Table 2 (Bottom Section), we employed various selection strategies for the samples.
• “no selection” represents the baseline scenario where the entire training dataset is used without

any hard-to-learn sample selection.
• “selection based on KL” refers to sample selection based on the KL-divergence between the

predicted distributions of the student and teacher models.
• “selection based on distill loss” implies that samples are chosen according to the distill loss, as

defined in Eq 4.
• “selection based on focal loss” implies that samples are chosen according to the focal loss (Lin

et al., 2017).
• “selection based on CE loss” denotes our proposed selection strategy.
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It is evident that any selection strategy except “selection based on focal loss” yields better results than the
“no selection” baseline. Our proposed “selection based on CE loss” approach is the most successful on the
PACS dataset, outperforming “selection based on KL” by 0.5%, “selection based on distill loss” by 0.3%, and
the no selection strategy by 0.7%. It is worth noting that the “distill loss” (Eq 4) includes the cross-entropy
loss, which could explain why its performance is similar to “selection based on CE loss”, albeit slightly lower.

These results provide empirical support to our theoretical proposition: “Other selection strategies such as
selecting based on KL-divergence or distillation loss despite might following a similar goal, do not strictly
match our theoretical discussion which will likely lead to an error bound between s1 and s2.” Therefore,
with the support of the theoretical discussion and empirical evidence, we argue that the most effective
hard-to-learn selection mechanism is to be based on cross-entropy loss.

7 Discussion and Limitations

7.1 Impact of Prompts Variations
Prompt Avg

this is an art of a {} 88.9 ± 0.4
this is a sketch of a {} 89.6 ± 0.2
this is a cartoon of a {} 88.7 ± 0.4
a photo of a {} 89.9 ± 0.2
this is a photo of a {} 89.9 ± 0.4
a {} 88.8 ± 0.2

Table 3: The performance of SCMD on PACS
with different prompts, using the same hyper-
parameters for three trials.

In order to reduce bias in the feature extraction process with
CLIP, we use a template that does not contain any human-
derived insights, which is: “this is a photo of a {}”. This
template anchors the feature generation process in a way that
is not dependent on any particular domain, thus avoiding the
impact of any human preconceptions.

Our experiments show that the prompt “photo” was the most
effective for optimizing performance. We also found that
slight changes to the prompt, such as “a photo of a {}” and
“this is a photo of a {}”, had little effect on the success of
the distillation process. This demonstrates the resilience of
feature distillation to minor changes in the prompt structure.
Table 3 provides further details on the ablation studies.

7.2 Analysis on TerraInc Performance
Table 4: Impact of KD on TerraIncognita.
‘MA’: Moving Average. ‘SCMD_no_KD’:
variant when KD not used.

Algorithm MA Terra Avg

ERM No 46.1 ± 1.8
SCMD (without KD) Yes 53.1 ± 0.5
SCMD Yes 51.3 ± 0.2

CLIP itself exhibits sub-optimal zero-shot performance,
which becomes evident when we distill it into ResNet50 using
the TerraIncognita dataset, as detailed in Table 1. Despite
this challenge, our approach still offers advantages; notably,
SCMD-no-KD outperforms the baseline ERM method. This
suggests that pre-conditioning the CLIP model through fine-
tuning before distillation could be a beneficial strategy to
enhance performance for similar tasks.

7.3 Experiments on various student models

We investigate the effect of different teacher models and model sizes by applying SCMD to the PACS
dataset. We use ResNet152 and ResNet18 and follow the same experimental setup and hyperparameter
search protocol as in our previous experiments.

Table 2 demonstrates that our SCMD approach consistently outperforms Vanilla KD across various scenar-
ios, including when different vision encoders from CLIP, such as RN101, are used as the teacher model.
Specifically, SCMD achieved an improvement of approximately 0.6% over Vanilla KD. This result high-
lights the versatility and effectiveness of our method in both cross-architecture and homologous-architecture
distillation scenarios.

Our approach demonstrates significant enhancements in performance, yielding a noteworthy improvement
of 3.4% over the ERM technique and 0.8% over Vanilla KD when using ResNet152 as the student model.
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Algorithm CLIP Student Avg

ERM(reproduced) ViT-B/32 / 94.7 ± 0.1
ERM(reproduced) RN101 / 94.9 ± 0.1

Vanilla KD RN101 RN-50 87.9 ± 0.3
SCMD 88.5 ± 0.2

Vanilla KD ViT-B/16 RN-50 89.2 ± 0.3
SCMD 89.5 ± 0.3

ERM (reproduced)
ViT-B/32 RN-152

88.7 ± 0.5
Vanilla KD 91.3 ± 0.1
SCMD 92.1 ± 0.2

ERM (Ye et al., 2021)

ViT-B/32 RN-18

81.5 ± 0.0
RSC (Huang et al., 2020) 82.8 ± 0.4
IRM (Arjovsky et al., 2019) 81.1 ± 0.3
MMD (Li et al., 2018b) 81.7 ± 0.2
Vanilla KD 84.8 ± 0.3
SCMD 85.0 ± 0.2

Figure 2: Evaluation of SCMD’s performance across various student and CLIP model architectures on the
PACS dataset

Even with a smaller model like ResNet18, our method maintains strong performance relative to other DG
methods, showing a marginal improvement of 0.2% over Vanilla KD. This slight difference may be attributed
to the substantial capacity gap between ResNet18 and CLIP.

8 Conclusion

In this paper, we introduce Selective Cross-Modality Distillation (SCMD) for Domain Generalization, a
novel approach that enhances the traditional knowledge distillation framework. Our method is designed to
supplement existing DG techniques. We introduce a cross-modality module that leverages the robust cross-
modal alignment capabilities of CLIP. Central to SCMD is a selection mechanism that is both theoretically
grounded and empirically validated through extensive experimentation. Our results demonstrate the efficacy
of our proposed method, underscoring its potential to advance domain generalization.
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Appendix

A Theoretical Evidence for Selection Strategy

To be consistent with notation, we let (X, Y) denote the standard dataset, and (xi, yi) as one of the samples.
We let P denote a distribution and P denote the distribution of distributions. We let f(·; θ) denote the
student model, ϕ denote the teacher model, and r(·) denote the risk. For the convenience of notations, we
allow r(·) to be parameterized by a distribution or by a dataset.
Lemma A.1. Given assumptions A1 such that there is a gold standard labeling function for source and
target domains. For two arbitrary distributions P ′ and P ,

r(P ′) ≤ r(P ) + tv(P ′, P )

where tv denotes the total variation.

Proof. Recall that we are assuming the same labelling function, let σ and σ′ be the density functions of
P and P ′

r(P ′) = r(P ′) + r(P ) − r(P ) ≤ r(P )+ | r(P ′) − r(P ) |

≤ r(P ) +
∫

| σ(x) − σ′(x) || f(x; θ) − y | dx

≤ r(P ) + tv(P ′, P )

Lemma A.2. Given assumption that samples are independent and identically distributed, hypothesis space
Θ and any δ > 0, with probability at least 1 − δ, we have

r
(
P ′) ≤ r

(
(X, Y)P

)
+ tv(P ′, P ) + ξ(n(X,Y)P

, Θ, δ)

where we let n(X,Y)P
denote the number of sample sizes in the finite dataset (X, Y)P , ξ is a vanilla term

that connects the number of samples and hypothesis space with generalization error bound.

Proof. Recall that we are assuming that samples are independent and identically distributed, we have
ξ(n(X,Y)P

, Θ, δ) = 2R(L) +
√

(log 1/δ)/2n where R(L) stands for Rademacher complexity and L = {lθ | θ ∈
Θ} where lθ is the loss function corresponding to the student model f(·; θ)

r(P ′) ≤ r(P ) + tv(P ′, P )
≤ r

(
(X, Y)P

)
+ tv(P ′, P ) + ξ(n(X,Y)P

, Θ, δ)

This is an direct application of Lemma A.1 and generalization error bound.

The above results demonstrate that empirical robustness is determined by three factors: the divergence
between training and test distributions, the measurable empirical error on the training distribution, and
a technical term influenced by sample size and hypothesis space. Therefore, the critical term that will
bound the robustness performance is how the training distribution deviates from the testing distribution.
This intuitively gives us the idea that training with the distributions that are the most similar to the test
distribution will benefit the model most.

The above results apply to arbitrary distributions P ∼ P. However, this does not necessarily encode the
characteristics of the cases we are studying: some samples are hard for the model to learn.

To address this, we consider datasets generated by multiple distributions, some of which present more
challenging learning scenarios. We represent these as a set P , consisting of m distributions, i.e., P =
{P1, P2, . . . , Pm}. Each data point is considered as sampled from these distributions. For the convenience
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of discussion, we use tv(P ′, P ) to denote the average divergence between the distributions within the set.
tv(P ′, P ) :=

∑m
i tv(P ′, Pi)/m, ∀Pi ∈ P .

Finally, we use s() to denote the distribution selection mechanism, and we compare two selection mechanisms:
selecting the hard-to-learn samples (denoted as s1) and selecting random samples (denoted as s2).
Lemma A.3. P is continuous and has a finite expected value; for the two selection mechanism that are
formally defined as

tv(s1(P ), P ) = sup
P ∈P

tv(P , P ), EP tv(s2(P ), P ) = 0

for a fixed testing dataset P ′, with the assumption that tv(P, P ′) = tv(P, P ) + tv(P , P ′), ∀P ∈ P we have

EP

[
tv(s1(P ), P ′)

]
≤ EP

[
tv(s2(P ), P ′)

]
Proof. Based on our definition of s1 and s2,

EP tv(s2(P ), P ′) = EP tv(P, P ′)

And based on our assumption that tv(P, P ′) = tv(P, P ) + tv(P , P ′), we have

EP

[
tv(s1(P ), P ′) − tv(s2(P ), P ′)

]
= EP

[
inf

P ∈P
tv(P , P ′) − EP tv(P, P ′)

]
≤ 0

Our result compares the upper-bounded differences between the two training distribution selection strategies,
and our results suggest that selecting the hard-to-learn samples will lead to a tighter generalization error
bound.

Another important factor to note is that, given assumption A1 and Theorem 0.1, the selection strategy
applicable to our theoretical discussion (i.e. tv(s1(P ), P ) = supP ∈P tv(P , P )) is only when selecting the
hard-to-learn samples according to the label of the samples (thus, cross-entropy loss). Other selection
strategies such as selecting based on KL-divergence or distillation loss despite might following a similar goal,
do not strictly match our theoretical discussion, which will likely lead to an error bound in between s1 and
s2. Therefore, with the support of the theoretical discussion, we argue that the most effective hard-to-learn
selection mechanism is to be based on cross-entropy loss.

Another possible question is that Assumption tv(P, P ′) = tv(P, P )+ tv(P , P ′) might appear strong. In fact,
the proof will hold with any assumptions that describe the concept that the more different one distribution
is from the average of the training set, the more it will benefit the testing distribution. In the typical domain
generalization setting, where there are no guaranteed connections between training and testing distributions,
we believe this is one of the practical assumptions we can consider, also widely used in practical context
by other domain generalization literature (Huang et al., 2022; Byrd & Lipton, 2019; Chang et al., 2017;
Katharopoulos & Fleuret, 2018)

B Method

B.1 Algorithm

B.2 Selection Mechanism

S = xi : xi ∈ X, i ∈ I where I = i : H(f(xi), yi) ≥ τ (5)
In the preceding equation, X denotes the batch of samples, xi an individual sample, and yi its true label.
The set S consists of selected samples. The function H(f(xi; θ), yi) computes the cross-entropy loss for the
i-th sample, while I contains indices of samples in the batch with a cross-entropy loss exceeding the threshold
τ .
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Algorithm 1 Selective Cross-Modality Distillation
Input: Dataset (X , Y) of size n; Percentile of hard-to-learn samples per batch ρ; Percentile of full-batch
training κ; Batch size η; Maximum number of iterations T ; Feature Projector P ; pretrained teacher model
ϕ; Student model θ (randomly initialized)
Output: Trained student model θ

while t ≤ T do
while t ≤ (1 − κ)T do

Identify top ρ percentile samples with highest Cross-entropy loss based on Eq 2
For selected samples, compute student features and project to CLIP’s multi-modal space via P .
Distill knowledge from the teacher model ϕ to the student model θ using Eq 4

end while
Distill knowledge from ϕ to θ across the entire batch and calculate the final loss with Eq 4

end while
return optimized student model θ

B.3 Cross-Modality Module

LCM = DKL(pt||(ps)′)
where pt is the soft target distribution of CLIP and

(ps)′ = σ(γ · W (e(xi; θe)) · ϕtext; T = t)
(6)

In this equation, γ is a scale factor, which adjusts the magnitude of the projected student feature. e represents
the backbone of the student model. A linear projection W is applied to the student feature e(xi; θe), and
ϕtext represents the text embedding of CLIP. σ is the softmax function parameterized by the distillation
temperature T .

B.4 SCMD

θ̂SCMD = arg min
θ

∑
(xi,yi)∈(X,Y)

λ1H(f(xi; θ), yi)

+λ2Llogits + λ3LCM

where Llogits = DKL(pt||ps)
and xi and yi

are the selected samples and their corresponding labels

(7)

C More Analysis

C.1 Parameter Sensitivity Analysis

To reiterate the definition of the parameters for clarity: for implementation purposes, we set τ to be the
percentile of samples selected as hard-to-learn, with τ = 0.25 indicating the selection of samples with a loss
exceeding the 75th percentile. Meanwhile, k denotes the fraction of steps before the transition to full-batch
training occurs; for example k = 0.25 implies that this shift happens during the last 25% of the steps.

The table presents the performance of our model across various domains of PACS as we adjust the values of
k and τ , keeping all other parameters constant during the experiment.

k Sensitivity (with τ = 0.2): The model’s performance remains relatively stable across an array of k
values, as evidenced by the average accuracy consistently around 90.0%.

τ Sensitivity (with k = 0.25): Having very few samples is not helpful to the learning process. And a
slight decrement in the model’s performance is observed as the value of τ increases, after reaching 0.2. This
trend can be ascribed to the dilution of the impact of hard-to-learn samples as their proportion increases.
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Figure 3: Sensitivity analysis for τ and k

Specifically, as more samples are classified as hard-to-learn (with a higher τ), the advantage of focusing on
these challenging samples is somewhat mitigated, subtly influencing the overall model performance.

C.2 Are high-loss samples outliers?

Exclude Top-K Domain A Domain C Domain P Domain S Average

0 93.0 86.8 99.0 81.1 90.0
1 92.5 86.8 99.2 80.8 89.8
2 92.1 86.0 99.3 80.3 89.4
3 93.0 86.4 99.3 80.6 89.8
4 92.6 86.4 98.8 80.8 89.6
5 91.7 85.2 99.1 79.7 88.9

Table 5: Performance upon the exclusion of top hard-to-learn samples

As depicted in Table 5, our empirical analysis confirms the critical role of the highest-loss samples in influ-
encing the model’s overall performance. The data reveals a clear pattern: excluding these high-loss samples
consistently leads to a reduction in performance metrics. Specifically, the deliberate removal of the top 1
and top 2 highest-loss samples results in a quantifiable decrease in model efficacy, with average performance
dropping from 90.0% to 89.8%, and then to 89.4%. These findings highlight that high-loss samples are
not merely outliers but are crucial for the model’s learning process, significantly enhancing its ability to
generalize and perform accurately across various domains.

C.3 Training Time Analysis

Figure 4: Average step time per domain for different algorithms on PACS
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The results indicate that the average training overhead of SCMD is comparable to that of Vanilla KD.
This is attributed to our training strategy that focuses on hard-to-learn samples for the majority of the
duration, transitioning to full-batch training only in the last k steps. This method balances the overall
training overhead.

C.4 Compare with other KD methods

Algorithm MA Avg

FitNet (Romero et al., 2015b) Yes 88.4 ± 0.2
BSS (Heo et al., 2019b) Yes 89.3 ± 0.1
RKD (Park et al., 2019) Yes 87.4 ± 0.2
Vanilla (Hinton et al., 2015) Yes 89.0 ± 0.3
SCMD Yes 90.1 ± 0.0

Table 6: SCMD vs. other KD on PACS. “MA”: Moving Average

At the core of SCMD is the knowledge distillation process. To evaluate the effectiveness of SCMD, we
conduct comparative experiments with other knowledge distillation methods on the PACS dataset. The
results in Table 6 demonstrate that SCMD outperforms these contemporary techniques.

D Full Results

Full details of the results from Table 1 in the main paper are provided in Table 9.

D.1 hyperparameters search space

We adhere to the experimental setup described in the DomainBed (Gulrajani & Lopez-Paz, 2021) paper.
The specifics of our setup are outlined below:

• Data Split: We partition datasets into 80% training and 20% validation sets. Model selections are
based on training domain validation performances, and we report on the corresponding test domain.

• hyperparameters: Although many hyperparameters follow (Gulrajani & Lopez-Paz, 2021), devi-
ations are documented in Table 7.

• Batch & Decay: We adjust our batch size and weight decay following the guidelines of (Cha et al.,
2021).

• Dropout: The ResNet dropout rate is set to 0 to mitigate excessive randomness.
• Learning Rate: We abandon the rate of 1 × 10−5 because it converges too slowly, and instead

focus on rates of 3 × 10−5 and 5 × 10−5.

Table 8 outlines the search space specific to our algorithm’s hyperparameters. We consistently set λ1, the
balance factor for cross-entropy, to 1, while conducting random sweeps for the other weight factors.

Parameter Default DomainBed (Gulrajani & Lopez-Paz, 2021) SWAD (Cha et al., 2021) Ours

batchsize 32 2U(3,5.5) 32 32
learning rate 5e-5 10U(−5,−3.5) [1e-5, 3e-5, 5e-5] [3e-5, 5e-5]
ResNet dropout 0 [0.0, 0.1, 0.5] [0.0, 0.1, 0.5] 0
weight decay 0 10U(−6,−2) [1e-4, 1e-6] [1e-4, 1e-6]

Table 7: Unconditional hyperparameter search space. (U and list indicate Uniform distribution and random
choice, respectively)
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Parameter Default Value Sweep range

λ1 (for CE loss) 1 1
λ2 0.5 U(0.5, 1.0)
λ3 0.5 U(0.5, 1.0)
last_k_epoch 0.25 U(0.2, 0.4)
hard-to-learn sample percentage 1/3 [0.2, 0.25, 0.3]
temperature 3.0 U(2.0, 5.0)

Table 8: Algorithm-specific hyperparameter search space. (U and list indicate Uniform distribution and
random choice, respectively)

VLCS

CLIP Student A C P S Avg
SCMD ViT-B/32 RN50 98.8 ± 0.1 64.6 ± 0.4 78.2 ± 0.3 81.9 ± 0.3 80.9 ± 0.2

PACS

C L S V Avg
SCMD ViT-B/32 RN50 92.9 ± 0.3 86.0 ± 0.3 99.0 ± 0.1 82.3 ± 0.1 90.1 ± 0.0
SCMD ViT-B/32 RN152 94.0 ± 0.2 89.1 ± 0.5 99.3 ± 0.1 85.9 ± 0.6 92.1 ± 0.2
SCMD ViT-B/32 RN18 84.7 ± 0.1 80.7 ± 0.5 96.2 ± 0.1 78.6 ± 0.6 85.0 ± 0.2
SCMD RN101 RN50 90.2 ± 0.8 83.4 ± 0.3 99.1 ± 0.1 81.1 ± 0.8 88.5 ± 0.2

Vanilla KD ViT-B/32 RN50 91.2 ± 0.2 85.2 ± 0.3 99.4 ± 0.1 80.3 ± 0.9 89.0 ± 0.3
Vanilla KD ViT-B/32 RN152 93.8 ± 0.1 87.3 ± 0.4 99.6 ± 0.0 84.7 ± 0.2 91.3 ± 0.1
Vanilla KD ViT-B/32 RN18 84.1 ± 0.5 80.0 ± 0.2 96.7 ± 0.2 78.5 ± 0.6 84.8 ± 0.3
Vanilla KD RN101 RN50 89.8 ± 0.2 80.8 ± 0.9 99.1 ± 0.1 81.8 ± 0.5 87.9 ± 0.3

OfficeHome

A C P R Avg
SCMD ViT-B/32 RN50 72.7 ± 0.0 58.7 ± 0.1 82.4 ± 0.1 85.5 ± 0.1 74.8 ± 0.1

TerraIncognita

L100 L38 L43 L46 Avg
SCMD ViT-B/32 RN50 52.9 ± 1.1 45.3 ± 0.1 60.5 ± 0.5 46.6 ± 1.0 51.3 ± 0.2

DomainNet

clip info paint quick real sketch Avg
SCMD ViT-B/32 RN50 66.2 ± 0.1 25.2 ± 0.0 56.9 ± 0.2 14.3 ± 0.2 70.4 ± 0.0 57.4 ± 0.1 48.4 ± 0.0

Table 9: Detailed Performance of SCMD and Vanilla KD
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