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Abstract

Trained classification models can unintention-
ally lead to biased representations and predic-
tions, which can reinforce societal preconcep-
tions and stereotypes. Existing debiasing meth-
ods for classification models, such as adversar-
ial training, are often expensive to train and
fragile to optimise. Here, we propose a method
for mitigating bias in classifier training by in-
corporating contrastive learning, in which in-
stances sharing the same class label are encour-
aged to have similar representations, while in-
stances sharing a protected attribute are forced
further apart. In such a way our method learns
representations which capture the task label in
focused regions, while ensuring the protected
attribute has diverse spread, and thus has lim-
ited impact on prediction and thereby results in
fairer models. Extensive experimental results
on three tasks show that: our method achieves
fairer representations larger bias reduction than
competitive baselines; it does so without sac-
rificing main task performance; and it general-
izes across modalities and binary- and multi-
class classification tasks, being conceptually
simple and agnostic to network architecture,
and incurring minimal additional compute cost.

1 Introduction

Neural methods have achieved great success for
classification tasks in NLP and computer vision.
However, datasets which neural models are trained
on embody cultural and societal stereotypes from
the real world. Models trained on such datasets of-
ten capture spurious correlations between target la-
bels and protected attributes, leading to biased pre-
dictions (i.e., models perform unequally for differ-
ent sub-groups) and leakage of authorship-related
sensitive information from learned representations
(i.e., attackers can recover the demographic infor-
mation from learned representations). This kind
of unfairness has been identified in various tasks,
such as twitter sentiment analysis (Blodgett et al.,

2016; Han et al., 2021b), part-of-speech tagging
(Hovy and Se¢gaard, 2015; Li et al., 2018; Han et al.,
2021a), and image activity recognition (Wang et al.,
2019; Zhao et al., 2017).

To mitigate bias associated with protected at-
tributes, various kinds of methods have been pro-
posed (Zhao et al., 2018, 2017; Li et al., 2018).
Data manipulation, such as balancing the dataset
with respect to the protected attribute (Wang et al.,
2019) and augmenting a gender-biased dataset with
gender-swapped sentences (Zhao et al., 2018), can
reduce bias at the input level. However it can be
costly in terms of time and compute resources, and
has been shown to have a limited debiasing effect.
Adversarial training is a popular method for mit-
igating bias by preventing a discriminator from
reverse engineering protected attribute information
from learned representations (Elazar and Goldberg,
2018; Resheff et al., 2019; Han et al., 2021b,a;
Li et al., 2018). However, it is often difficult to
optimise and increases model complexity and, con-
sequently, computational cost.

We propose a novel debiasing method based on
contrastive learning (Oord et al., 2018; Li et al.,
2021a; Tian et al., 2020; Henaff, 2020; Bui et al.,
2021; Li et al., 2021b; Chen et al., 2020b), which is
both effective and efficient. Driven by the intuition
that good and fair representations for classification
should pull instances together only if they belong
to the same class but not based on shared protected
attributes (such as gender or race), we present an
effective debiasing method based on contrastive
learning. Specifically, our proposed method com-
bines two contrastive loss components with a cross-
entropy loss, thereby maximising the similarities
of instance pairs which share a main task label and
minimising the similarities of pairs with a shared
protected attribute. To the best of our knowledge,
our work is the first to integrate contrastive loss
components to obtain fairer representations. We
demonstrate the effectiveness of our method across



three tasks, spanning NLP and computer vision. To
ensure reproducibility, our code with this research
will be released on publication. Our contributions
in this work are:

1. We present a debiasing method based on
contrastive learning, combining cross-entropy
loss with two contrastive loss components;

2. Experimental results over two NLP and one
computer vision task show that our proposed
method achieves the best accuracy—fairness
tradeoff in each case;

3. Our method is simple to implement and agnos-
tic to model architectures, and incurs minimal
additional computing cost.

2 Related Work

We briefly review research in the two most related
areas: debiasing methods and contrastive learning.

2.1 Debiasing Methods

Prior debiasing methods fall into three categories.
First, data manipulation aims to balance the in-
put, followed by re-training the model on a fairer
dataset (Wang et al., 2019; Badjatiya et al., 2019;
De-Arteaga et al., 2019; Elazar and Goldberg,
2018). However, it has been shown to be both
computationally prohibitive for large datasets and
models, and ineffective in ensuring fair models (De-
Arteaga et al., 2019; Wang et al., 2019). Second,
post-processing methods “bleach” sensitive infor-
mation from learnt representations after main task
training. In the third category, approaches aug-
ment the original training objective, to encourage
the model to learn representations that are oblivi-
ous to protected attributes. Adversarial models are
the prime example (Li et al., 2018; Zhang et al.,
2018; Resheff et al., 2019; Wang et al., 2019; Bar-
rett et al., 2019; Han et al., 2021b), in leveraging
one (Li et al., 2018; Elazar and Goldberg, 2018) or
more (Han et al., 2021b) discriminators to encour-
age the main model to learn representations that do
not reveal protected information. Our method also
introduces an augmented objective, however, un-
like adversarial methods, it does not add additional
model parameters, and hence is computationally
much lighter weight.

There are studies directly optimising fairness
measures during training (Madras et al., 2018a;
Zhao et al., 2020; Cho et al., 2020a), such as demo-
graphic parity (Feldman et al., 2015; Zafar et al.,
2017; Cho et al., 2020b), equalized odds (Cho et al.,

2020b; Hardt et al., 2016; Madras et al., 2018b),
and equal opportunity (Hardt et al., 2016; Madras
et al., 2018b). For example, Cho et al. (2020b)
use kernel density estimation to approximate equal-
ized odds during training, where this method is tai-
lored to binary classification and can lead to a poor
performance—fairness tradeoff in high-dimensional
settings. Our proposed contrastive loss method can
be shown to optimise for equal opportunity, encour-
aging the model to achieve the same true positive
rate across two subgroups for instances with the
same main task label (§3.4).

2.2 Contrastive Learning

The basic idea behind contrastive learning is to
pull similar instances together and push dissimilar
instances apart by maximising the similarities of
similar instances and minimising those of dissimi-
lar pairs within the unit feature space (Oord et al.,
2018; Tian et al., 2020; Li et al., 2021a; Grill et al.,
2020; Chen et al., 2020a; Henaff, 2020). It has been
particularly successful in computer vision, where
positive (similar) instance pairs can be generated
via data augmentation (i.e., systematic, meaning-
invariant manipulation of an input image such as
cropping or blurring (Chen et al., 2020a; Fang et al.,
2020; Cubuk et al., 2019)), and negative (dissimi-
lar) instance pairs correspond to different items in
the original data. More recently, supervised con-
trastive learning (SCL) was proposed in the context
of classification, where positive instances belong
to the same class, and negative instances belong
to different classes (Khosla et al., 2020). When
combined with a cross entropy loss, it has been
shown to improve model robustness to noise and
data sparsity (Gunel et al., 2021), as well as adver-
sarial attacks (Bui et al., 2021). We adapt SCL to
fair supervised learning, and present evidence of its
effectiveness in learning debiased representations
and fair classifiers.

3 Fair & Supervised Contrastive
Learning

Our proposed method equips supervised con-
trastive learning with an improved loss function
which simultaneously encourages data separation
in terms of the main class labels, and discourages
the differentiation of data points on the basis of
their protected attributes. Fair contrastive learning
is illustrated in Figure 1, and is compatible with
different classifier architectures and data modali-
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Figure 1: Illustration of our proposed method in the
context of sentiment classification, where L. is cross-
entropy loss, Lg is contrastive loss based on main task,
and Ly is contrastive loss based on the protected at-
tribute.

ties, such as language and vision. Our architecture
consists of three components:

1. Anembedding module, e = Embed(x), which
maps an input instance x (e.g., a document or
an image) to a vector representation e, which
is in turn used as input to the encoder network;

2. An encoder network, h = Enc(e), which
maps the input representation to the final hid-
den representation;

3. An aggregated objective (L.), which is a
weighted combination of a cross-entropy loss,
contrastive loss based on main task labels, and
contrastive loss based on protected attribute
labels, as described next.

3.1 Cross-entropy Loss

The cross-entropy loss is defined as

1 N Y
Lee = _N Z Z Yic log gi,w
1

1=1 c=

where Y is the number of main task classes; y; .
denotes that the :th instance belongs to the main
task class c; ; . denotes the predicted probability
of the ith instance belonging to the main task class
c; and gj; . is obtained after softmax normalization
of the classifier output, whose input is h. However,
cross-entropy loss focuses on maximising the pre-
dicted probability of the ith instance belonging to
the gold-standard class, but not on ensuring larger
distances in representation space between dissimi-
lar instances than between similar ones (Figure 1,
left). In this work, we explicitly model the simi-
larity of instances in the representation space via
supervised contrastive learning.

3.2 Contrastive Losses

Given a mini-batch with a set of N randomly
sampled instances, positive instance pairs (those
which represent the same concept) and negative in-
stance pairs (those representing distinct concepts)
are formed. We use two different criteria for cre-
ating these pairs: their main task label, and their
protected attribute, as described below. Assuming a
batch of positive and negative pairs, the contrastive
loss is computed as,
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where ¢=1... N is the index of an instance in
the mini-batch, and Q(i) = {1...N} \ {i};
h; = lo(Enc(Embed(x;))) is the normalised rep-
resentation; and 7 > 0 is a scalar temperature
parameter controlling smoothness. P(i) = {p €
Q(i) : yP = y'} is the set of instances that result in
positive pairs with the ith instance, and | P(7)] is its
cardinality. We next describe how positive/negative
pairs are created.

Supervised Contrastive Loss: L is computed
on positive and negative samples constructed based
on main task labels (e.g., POS vs NEG sentiment),
where instances in the mini-batch belonging to the
same main task class are used to construct positive
samples; otherwise, they are used to form negative
samples. The intuition behind this loss component
is that representations that are well-separated for
the main task are more desirable, as illustrated in
the top quadrant of Figure 1, where the main task
labels are indicated in blue and orange, and are
separated into distinct clusters.

Fair Contrastive Loss: Lg is based on posi-
tive and negative samples with respect to protected
attribute labels (e.g., MALE vs FEMALE), where
instances belonging to the same protected attribute
class form positive samples; otherwise, they are
used to construct negative samples. Our goal is
to infer latent representations which are oblivious
to the protected attribute of an instance. We en-
force representations of instances with different
protected attribute values to mix together by dis-
couraging the model from effectively contrasting
those instances, with the goal of reducing the corre-
lation between the main task and protected attribute.
We do not condition the loss on the class label, as
this leads to an increase in leakage in preliminary



experiments. The intuition behind this loss is illus-
trated in Figure 1 (bottom).

3.3 Objective Function

Our final objective incorporates both contrastive
learning methods, to produce task-indicative and
protected-attribute-agnostic representations, as il-
lustrated in the right quadrant of Figure 1, formu-
lated as a weighted average of Lce, L1, and Lg,

Ly =ale+ B{ﬁscl - Efcl}'

The second term, L, pulls instances from the
same main task label closer together, and pushes
instances from different classes further apart, while
the third term, L¢, encourages instances with the
same protected attribute to disperse and instances
from different groups to mix together. Our Ly can
directly extend to non-binary protected attributes
which cover more than two groups, in which case
negative instances would be sampled at random
from any alternative subgroup. « and /3 are hyper-
parameters that control the relative importance of
the cross entropy and contrastive learning terms.
Here, we adopt the same [ for both Ly and Ly
as they are similar conceptually as well as in mag-
nitude, and weighing them equally balances perfor-
mance with bias reduction, as confirmed in exten-
sive preliminary experiments.

We experiment with two versions of the pre-
sented model. Con, learns all components in
an end-to-end fashion. In addition, we present
a pipelined setup, where we first train the Enc(-)
module using the two contrastive loss components
L1 — Lge1, and then use its output to train a logis-
tic classifier for the main classification task. This
method is denoted as Con't, which separates the
representation learning and classifier training and
is more efficient.

Our method differs from existing debiasing meth-
ods in that fairer representations and predictions
are: (1) achieved via contrastive learning rather
than data manipulation; (2) jointly trained with the
base classifier, rather than removing protected at-
tribute information through post-processing, such
as with INLP (Ravfogel et al., 2020); and (3) ob-
tained without the need to train an additional net-
work, as necessary for adversarial methods (Li
et al., 2018). We show in extensive experiments
that our model is superior to adversarial and post-
processing methods in terms of the performance—
fairness tradeoff, and faster to train than adversarial
debiasing.

3.4 Theoretical Connection

Lee-Lsc1 (Figure 1, lower quadrant) optimises for
demographic parity (Zafar et al., 2017; Cho et al.,
2020b), where the prediction of models is indepen-
dent of the protected attribute value. Our full loss
adds L to Lee-Lsc) (Figure 1, right quadrant), thus
encouraging instances from different groups within
the same class to be treated equally. This corre-
sponds to equal opportunity (Hardt et al., 2016;
Madras et al., 2018b), conforming to theoretical
motivation and well-connected with target fairness
metric (GAP, see Section 4.2). The learnt rep-
resentations (Figure 4) corroborate this argument
empirically.

4 Experiments

We vary the architecture of Embed(-) across dif-
ferent tasks, and do not finetune it during train-
ing.! The architecture of Enc(-) consists of two
fully-connected layers with a hidden size of 300.
All models are trained and evaluated on the same
dataset splits, and models are selected based on
their performance on the development set. For fair
comparisons, we finetune the learning rate, batch
size, and extra hyperparameters introduced by the
corresponding debiasing methods for each model
on each dataset. Details of the hyperparameters
for each model and dataset, such as the number of
layers and activation functions, are included in Sup-
plementary Material. For all experiments, we use
the Adam optimiser (Kingma and Ba, 2015) and
early stopping with a patience of 5. In the absence
of a standardised method for performing model
selection in fairness research (noting the complex-
ity of model selection given the multi-objective
accuracy—fairness tradeoff), we determine the best-
achievable accuracy for a given model, and select
the hyperparameter settings that minimise GAP
while maintaining accuracy as close as possible
to the best-achievable value (all based on the dev
set). The development of a robust, reproducible,
standardised model selection method is desperately
needed in fairness research, and something that we
plan to investigate in future work.

4.1 Baselines

We compare our method with various baselines:

'For image activity recognition, Embed(-) is first finetuned
to obtain task-specific representations, and then fixed in later
stages of training.



1. CE: train Enc(+) with cross-entropy loss and
no explicit bias mitigation.

2. INLP: train Enc(-) with cross-entropy loss,
and apply iterative null-space projection
(“INLP”: Ravfogel et al. (2020)) to the learned
representations. Specifically, a linear discrim-
inator is iteratively trained over the protected
attribute to project the representation onto the
discriminator’s null-space, thereby reducing
protected attribute information from the repre-
sentation.

3. Adv: jointly train Enc(-) with cross-entropy
loss and an ensemble of 3 adversarial discrim-
inators over the protected attribute, with an
orthogonality constraint applied to each pair
of sub-discriminators to encourage them to
learn different aspects of the representations
(Han et al., 2021b).

4.2 Evaluation Metrics

To evaluate the performance of models on the main
task, we adopt Accuracy for all three datasets. We
measure model bias in a number of different ways,
via bias in the model predictions or linear leakage
over hidden or logit representations.

True positive rate (TPR) GAP measures the dif-
ference in TPR between binary protected attribute
a and —a (such as FEMALE vs. MALE, or AAE
vs. SAE) for each main task class. It is defined as
GAP, R = |TPRoy — TPR-qyl,y € Y, where
TPR.y = P{y = yly,a}. Here y and y are the
predicted and gold-standard main task labels; Y
is the set of main task labels. TPR, , measures
the percentage of correct predictions among in-
stances with main task label y and protected at-
tribute a. GAPaTgR measures the absolute differ-
ence between the two different groups represented
by the protected attribute, with a larger absolute
value indicating larger bias. A difference of 0 indi-
cates a fair model, as the prediction g is condition-
ally independent of protected attribute a. Note that
this formulation of the metric does not generalise
to multiclass protected attributes, but in all three
datasets used in this paper, all protected attributes
are binary. To be able to evaluate fairness where
the main task label is multiclass, we follow De-
Arteaga et al. (2019) and Ravfogel et al. (2020) in
calculating the root mean square of GAPTPR

ay over
all classes y € Y, to get a single score:

1
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G \/’Y’ (G a,y )
yey

Linear leakage measures the ability of a linear
classifier to recover the protected attribute from a
model’s output hidden representations or logits.
1. Leakage@h: based on the final hidden repre-
sentation before the classifier layer.
2. Leakage@y: based on the main task output
(logits).
In each case, we train a linear-kernel SVM on out-
puts generated for the training instances, and mea-
sure leakage over the test instances. Lower values
indicate a fairer model.

Tradeoff is a single aggregate measure com-
prising model performance as well as the three
fairness metrics (GAP and leakage at h and g).
Before aggregation, we scale each metric to the
unit interval by dividing the model-specific val-
ues by their respective maximum (N (-)), so that
normalized values reflect the performance of each
model relative to the best result. Next we assign
predictive performance and overall fairness equal
weights. Between fairness measures, we weigh
prediction bias equal to overall leakage, leading
to: Tradeoff=1 N (Accuracy) + 2N (1-GAP) +
+N(1—Leakage@h)+ 1 N (1—Leakage@y). The
best achievable Tradeoff is 1, which indicates that
a model outperformed all other models with respect
to all metrics.

Efficiency measures the GPU time required to
train a model to achieve the reported results, aver-
aged over 10 runs.

We apply our models across 3 datasets, covering
NLP and vision tasks, in the form of both binary
and multi-class main task classification tasks. We
report results in terms of accuracy, fairness (GAP
and leakage), and efficiency across all tasks. We
additionally explore the accuracy—fairness tradeoff
in detail for one binary NLP task (Moji) and one
multi-class computer vision task (imSitu).

4.3 Experiment 1: Sentiment Analysis
4.3.1 Task and Dataset

The task is to predict the binary sentiment for a
given English tweet, based on the dataset of Blod-
gett et al. (2016) (Moji hereafter), where each tweet
is also annotated with a binary private attribute
indirectly capturing the ethnicity of the tweet au-
thor as either African American English (AAE)



Dataset Model Accuracyt GAP| Leakage@h| Leakage@y| Tradeofff Time|
CE 72.09+0.65 40.21£1.23  85.75+0.46 70.96+2.11 0.77 1.0x
INLP  72.81+£0.01 36.81£3.49  68.15+1.98 67.80+1.80 0.84 -
Moji Adv 74.47+0.68 30.59+£2.94  81.98+2.90 65.04+1.49 0.84 6.5x%
Conft 75994020 14.40+1.83 57.014+2.41 55.42+1.14 0.99 0.2x
Con, 75.844+0.16 13.92+0.44  55.75+0.21 55.3240.25 1.00 1.5%
CE 82.19+0.04 16.68+£0.46  99.24+0.05 92.724+0.85 0.76 1.0x
INLP  79.42+0.28 15.45£1.05 92.774+6.22 67.014+0.77 0.85 -
Bios Adv 79.72+1.02 16.78+£0.87  71.41+7.44 69.5446.62 0.92 2.8x%
Conf*  56.57+£0.97 7.35+1.18  66.66+2.29 61.06+1.34 0.84 0.2x
Con,  81.69+0.07 16.83£0.36  75.20+1.10 66.38+1.12 0.93 0.9x
CE 58.97+0.66 11.77£0.73  72.78+0.70 64.9640.30 0.94 1.0x
INLP  57.36+£0.47 10.53+£0.87  60.10+2.04 59.06+0.38 0.97 -
imSitu  Adv 58.38+0.50 10.58+£0.60  67.31+0.94 62.374+0.73 0.97 4.5x%
Conf 57.67+£0.30 9.41+1.12  71.0440.83 58.34+0.47 0.97 0.1x
Con, 57.14+0.83 10.41+0.77 64.44+1.37 59.51+1.47 0.98 0.9x

Table 1: Experimental results on the three datasets (averaged over 10 runs). The best result for each dataset is
indicated in bold. Here, 1 and | indicate that higher and lower performance, resp., is better for the given metric.

or Standard American English (SAE). Following
previous studies (Ravfogel et al., 2020; Han et al.,
2021b), the training dataset is balanced with re-
spect to both sentiment and ethnicity but skewed
in terms of sentiment—ethnicity combinations (40%
HAPPY-AAE, 10% HAPPY-SAE, 10% SAD-AAE,
and 40% SAD-SAE, respectively).” The dataset
contains 100K/8K/8K train/dev/test instances.

4.3.2 Implementation Details

Following previous work (Elazar and Goldberg,
2018; Ravfogel et al., 2020; Han et al., 2021b), we
use DeepMoji (Felbo et al., 2017), a model pre-
trained over 1.2 billion English tweets, as Embed(-)
to obtain text representations. The parameters of
DeepMoji are fixed in our experiments.

4.3.3 Results

Table 1 (Moji) presents the results. Compared to
the CE model, INLP moderately reduces model
bias across all metrics while retaining comparable
accuracy, and Adv improves main task accuracy
compared to CE while simultaneously reducing
model bias. Both versions of our model, Con,
and Conf, lead to the largest gain in accuracy and
also the largest bias reduction across all metrics,
requiring less GPU time compared to Adv. With
leakage scores around 55, our model approaches
the lower-bound value of 50 (indicating that an at-
tacker would guess the binary protected attribute at
exactly chance level). Overall, our methods achieve

2Note that the dev and test set are balanced in terms of
sentiment—ethnicity combinations.

the best accuracy—fairness tradeoff. It is encourag-
ing to see that incorporating debiasing techniques
can contribute to improvement on the main task.
We hypothesise that incorporating debiasing tech-
niques (either in the form of adversarial training
or contrastive loss) acts as a form of regularisa-
tion, leading to greater robustness over the training
dataset skew relative to the unbiased test set.

Accuracy-Fairness tradeoff. We plot the trade-
off between Accuracy and Leakage@h for INLP,
Adv, and Con, on the test set in Figure 2 (left),
where points in red circles are Pareto frontiers for
each model.? The results are obtained by varying
the most-sensitive hyperparameter for each model:
the number of iterations for INLP, the weight for
adversarial loss for Adv, and § for our method
Con,. We can see that our proposed method
achieves the best performance in terms of both
Accuracy and Leakage @h.

4.4 Experiment 2: Profession Classification
4.4.1 Task and Dataset

The task is to predict a person’s profession given
their biography, based on the dataset of De-Arteaga
et al. (2019), consisting of short online biographies
which have been labelled with one of 28 profes-
sions (main task label) and binary gender (protected

3Given two predictions whose Accuracy and Leakage @h
are (a1, b1) and (a2, b2), if a1 > a2 and by < bz, we say the
prediction (a2, b2) is dominated by the prediction (a1, b1);
otherwise, they are non-dominated predictions, and form part
of the Pareto frontier.
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Figure 2: Accuracy vs. Leakage @h of different models
on the Moji (left) and imSitu (right) test set, as we vary
the most sensitive hyperparameter for each model. Note
that points in red circles are pareto-optimal for each
model.

attribute). We use the dataset split of (De-Arteaga
et al., 2019; Ravfogel et al., 2020), consisting of
257K/40K/99K train/dev/test instances.*

4.4.2 Implementation Details

Following the work of Ravfogel et al. (2020), we
use the “CLS” token representation of the pre-
trained uncased BERT-base (Devlin et al., 2019) as
Embed(-), without any further finetuning.

4.4.3 Results

Table 1 (Bios) shows the results on the test set.
We can see that INLP achieves the best perfor-
mance in terms of GAP, but the absolute bias re-
duction is small compared to CE. Worryingly, both
Adv and Con, marginally increase GAP. We hy-
pothesise that this is because of the multi-class
setting (28 classes), where the large number of
main task classes inhibits the ability of adversarial
training and contrastive learning to mitigate bias
in the model under joint training. Con, achieves
the best performance in terms of Leakage@y at
similar accuracy to CE, while Adv achieves the
best performance in terms of Leakage @h. While
Conft substantially reduces bias across the three
fairness metrics, it comes at the cost of a large drop
in accuracy, indicating the necessity of explicitly
incorporating class information during training for
this task. Overall, Con, once again achieves the
best Tradeoff of all the models with less GPU time.

4.5 Experiment 3: Activity Recognition
4.5.1 Task and Dataset

We include action recognition, a computer vision
task, to demonstrate the generality of our method.

“There are slight differences between our dataset and that
used by De-Arteaga et al. (2019) and Ravfogel et al. (2020)
as a small number of biographies were no longer available on
the web when we scraped them.

Given an image, the model predicts the activity
depicted in the image. We use the imSitu dataset
(Wang et al., 2019; Zhao et al., 2017; Yatskar et al.,
2016), which contains 211 activity classes and
binary gender labels. The dataset contains only
about 110 instances per activity, making it difficult
to obtain decent performance without finetuning
the backbone model. Therefore, we group these
fine-grained labels according to their correspond-
ing coarse-grained labels, where similar verbs are
grouped into one class according to the FrameNet
label hierarchy (Baker et al., 1998). The resulting
dataset contains 12 target labels, and 12K/3K/2K
train/dev/test instances.

4.5.2 Implementation Details

Following Wang et al. (2019) and Zhao et al.
(2017), we use a standard ResNet-50 encoder
(He et al., 2016) pretrained on ImageNet to ex-
tract activity-capturing representations. The classi-
fier layer is first trained with a learning rate of
0.0001 and a batch size of 128. Then ResNet-
50 is finetuned with a learning rate of le-5 and
a batch size of 64 for at most 60 epochs. The best-
performing snapshot evaluated on the dev set is
used as Embed(-) to obtain image representations.

4.5.3 Results

Table 1 (imSitu) shows the results on the test set.
INLP and Adv decrease GAP and leakage to vary-
ing degrees, with INLP achieving better perfor-
mance in terms of Leakage@y, and Adv achiev-
ing better performance in terms of Leakage@h.
On the other hand, Con, achieves the best perfor-
mance in terms of Leakage@y and Leakage@h
with less GPU training time. Surprisingly, Con'®
achieves the best performance in terms of GAP and
Leakage @y, which we attribute to the fact that the
classifier for the main task is disconnected from the
encoder training, thereby leading to better bias re-
duction. Once again, Con, is best overall in terms
of Tradeoff.

Accuracy-Fairness tradeoff. Figure 2 shows the
tradeoff plot between Accuracy and Leakage@h
on the test set. The models exhibit distinct tradeoff
curves, with INLP achieving the lowest leakage at
high levels of accuracy.

4.6 Analysis

Effect of Loss Components To explore the im-
pact of Ly and Lg, we conduct ablation studies
on the Moji and Bios datasets by ablating one of
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Figure 3: Effects of contrastive loss components.
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Figure 4: t-SNE scatter plots of learned representations
of CE and Con,, over the Moji dataset (based on 100
random samples from each main task class; best viewed
in colour). Red and blue colours indicate that they have
different sentiment (main task) labels: red — SAD and
blue — HAPPY. Green and purple colours indicate that
they have different ethnic groups (protected attribute):
green — SAE and purple — AAE.

the two contrastive loss components. We denote the
model trained with awLee + 3Lyt as CONge 1 g¢l, and
the model trained with aLce — 3L as CONge_ql-

The results are shown in Figure 3. We can see
that Con, achieves the best performance across
all evaluation metrics on the Maoji dataset. On the
imSitu dataset, Con, also achieves the best accu-
racy, while roughly equalling the best bias results.
This illustrates the advantage of incorporating both
contrastive loss components.

Visualising Representations In Figure 4, we
show t-SNE plots of the learned representations
of CE and Con, on the Moji training set from the
perspectives of the main task labels and protected
attribute values. We can clearly see that for CE,

the positive (HAPPY) instances are mostly on the
left of the figure and negative (SAD) instances are
mostly on the right of Figure 4 (upper left). From
the ethnicity perspective, AAE instances are more
likely towards the left and instances with SAE are
most likely to be towards the right of Figure 4 (bot-
tom left). For Con,, the resulting representations
show that instances belonging to the same class
cluster together in terms of sentiment (top right),
and instances belonging to the different classes mix
together in terms of ethnicity (bottom right), affirm-
ing our motivation.

4.7 Limitations

A limitation of our proposed approach is that the
method is designed to remove information related
to protected attributes based on the assumption
that the attacker model will be a linear classifier.
We leave the investigation of protecting against at-
tacks by non-linear classifiers to future work. In
our work, Embed(-) is not learned or fine-tuned to-
gether with Enc(-) and the classification layer in
an end-to-end fashion. However, finetuning the
Embed(-) has the potential for better task-specific
or semantic-preserving representations of text and
images, which may further remove biases encoded
in the the pretrained models. We presented diverse
experiments including existing data sets across lan-
guage and vision, and balanced and imbalanced
data, but acknowledge several simplifying assump-
tions: we restrict to binary protected attributes, im-
plying the adoption of an oversimplified binary no-
tion of gender. Exploring attributes of higher arity,
and more complex and realistic bias dimensions is
an important direction for future work.

5 Conclusion

Biased representations and predictions can re-
inforce existing societal biases and stereotypes.
Based on the intuition that similar instances belong-
ing to the same main task class should be pulled to-
gether and similar instances belonging to the same
protected attribute class should be pushed apart in
the representation space, we proposed to combine
cross-entropy loss with two contrastive loss compo-
nents in optimising neural networks. Experimental
results over NLP and vision datasets demonstrate
the effectiveness of our proposed method. Further
analysis and ablation studies indicate the necessity
of incorporating both contrastive loss components
in bias reduction, to maintain main task accuracy.
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A Adv Settings

Each sub-discriminator consists of two MLP layers
with a hidden size of 256, where the first layer is
accompanied with LeakyReL.U activation function.
A subsequent classifier layer is used to predict the
protected attribute. Sub-discriminators are opti-
mised for at most 100 epochs after each epoch of
Enc(-) training, leading to extra training time.

B Hyperparameter Settings

B.1 Twitter Sentiment Analysis

For CE, the learning rate is 3e-3, and the batch
size is 2,048. For Adv, the learning rate is le-
3, the batch size of 2,048, the number of sub-
discriminators is 3, A,qy 1S 0.5, and Ag;g is le-3.
For INLP, following Ravfogel et al. (2020), we use
300 linear SVM classifiers. For Con, and Conft,
the learning rate is 7e-5, the batch size is 1,024,
7=0.01,and @ = 5 = 0.5.

B.2 Occupation Classification

For CE, the learning rate is 3e-3, and the batch
size is 2,048. For Adv, the learning rate is
0.01, the batch size is 1,024, the number of sub-
discriminators is 3, A\,qv 1S 0.01, and Ay is led.
For INLP, we use 300 linear SVM classifiers. For
Con, and Con, the learning rate is 3e-3, the batch
size is 512, 7 = 0.01, « = 0.91, and 5 = 0.09.

B.3 imSitu Activity Recognition

For CE, the learning rate is 5e-4, and the batch
size is 512. For Adv, the learning rate is le-3, the
batch size is 256, the number of sub-discriminators
is 3, Aaqv 18 0.01, and Agig is 1.0. For INLP, we
use 300 linear SVM classifiers. For Con, and
Conft, the learning rate is 5e-3, the batch size is
512, 7 = 0.01, a = 0.95, and 8 = 0.05.
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