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Abstract

Trained classification models can unintention-001
ally lead to biased representations and predic-002
tions, which can reinforce societal preconcep-003
tions and stereotypes. Existing debiasing meth-004
ods for classification models, such as adversar-005
ial training, are often expensive to train and006
fragile to optimise. Here, we propose a method007
for mitigating bias in classifier training by in-008
corporating contrastive learning, in which in-009
stances sharing the same class label are encour-010
aged to have similar representations, while in-011
stances sharing a protected attribute are forced012
further apart. In such a way our method learns013
representations which capture the task label in014
focused regions, while ensuring the protected015
attribute has diverse spread, and thus has lim-016
ited impact on prediction and thereby results in017
fairer models. Extensive experimental results018
on three tasks show that: our method achieves019
fairer representations larger bias reduction than020
competitive baselines; it does so without sac-021
rificing main task performance; and it general-022
izes across modalities and binary- and multi-023
class classification tasks, being conceptually024
simple and agnostic to network architecture,025
and incurring minimal additional compute cost.026

1 Introduction027

Neural methods have achieved great success for028

classification tasks in NLP and computer vision.029

However, datasets which neural models are trained030

on embody cultural and societal stereotypes from031

the real world. Models trained on such datasets of-032

ten capture spurious correlations between target la-033

bels and protected attributes, leading to biased pre-034

dictions (i.e., models perform unequally for differ-035

ent sub-groups) and leakage of authorship-related036

sensitive information from learned representations037

(i.e., attackers can recover the demographic infor-038

mation from learned representations). This kind039

of unfairness has been identified in various tasks,040

such as twitter sentiment analysis (Blodgett et al.,041

2016; Han et al., 2021b), part-of-speech tagging 042

(Hovy and Søgaard, 2015; Li et al., 2018; Han et al., 043

2021a), and image activity recognition (Wang et al., 044

2019; Zhao et al., 2017). 045

To mitigate bias associated with protected at- 046

tributes, various kinds of methods have been pro- 047

posed (Zhao et al., 2018, 2017; Li et al., 2018). 048

Data manipulation, such as balancing the dataset 049

with respect to the protected attribute (Wang et al., 050

2019) and augmenting a gender-biased dataset with 051

gender-swapped sentences (Zhao et al., 2018), can 052

reduce bias at the input level. However it can be 053

costly in terms of time and compute resources, and 054

has been shown to have a limited debiasing effect. 055

Adversarial training is a popular method for mit- 056

igating bias by preventing a discriminator from 057

reverse engineering protected attribute information 058

from learned representations (Elazar and Goldberg, 059

2018; Resheff et al., 2019; Han et al., 2021b,a; 060

Li et al., 2018). However, it is often difficult to 061

optimise and increases model complexity and, con- 062

sequently, computational cost. 063

We propose a novel debiasing method based on 064

contrastive learning (Oord et al., 2018; Li et al., 065

2021a; Tian et al., 2020; Henaff, 2020; Bui et al., 066

2021; Li et al., 2021b; Chen et al., 2020b), which is 067

both effective and efficient. Driven by the intuition 068

that good and fair representations for classification 069

should pull instances together only if they belong 070

to the same class but not based on shared protected 071

attributes (such as gender or race), we present an 072

effective debiasing method based on contrastive 073

learning. Specifically, our proposed method com- 074

bines two contrastive loss components with a cross- 075

entropy loss, thereby maximising the similarities 076

of instance pairs which share a main task label and 077

minimising the similarities of pairs with a shared 078

protected attribute. To the best of our knowledge, 079

our work is the first to integrate contrastive loss 080

components to obtain fairer representations. We 081

demonstrate the effectiveness of our method across 082
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three tasks, spanning NLP and computer vision. To083

ensure reproducibility, our code with this research084

will be released on publication. Our contributions085

in this work are:086

1. We present a debiasing method based on087

contrastive learning, combining cross-entropy088

loss with two contrastive loss components;089

2. Experimental results over two NLP and one090

computer vision task show that our proposed091

method achieves the best accuracy–fairness092

tradeoff in each case;093

3. Our method is simple to implement and agnos-094

tic to model architectures, and incurs minimal095

additional computing cost.096

2 Related Work097

We briefly review research in the two most related098

areas: debiasing methods and contrastive learning.099

2.1 Debiasing Methods100

Prior debiasing methods fall into three categories.101

First, data manipulation aims to balance the in-102

put, followed by re-training the model on a fairer103

dataset (Wang et al., 2019; Badjatiya et al., 2019;104

De-Arteaga et al., 2019; Elazar and Goldberg,105

2018). However, it has been shown to be both106

computationally prohibitive for large datasets and107

models, and ineffective in ensuring fair models (De-108

Arteaga et al., 2019; Wang et al., 2019). Second,109

post-processing methods “bleach” sensitive infor-110

mation from learnt representations after main task111

training. In the third category, approaches aug-112

ment the original training objective, to encourage113

the model to learn representations that are oblivi-114

ous to protected attributes. Adversarial models are115

the prime example (Li et al., 2018; Zhang et al.,116

2018; Resheff et al., 2019; Wang et al., 2019; Bar-117

rett et al., 2019; Han et al., 2021b), in leveraging118

one (Li et al., 2018; Elazar and Goldberg, 2018) or119

more (Han et al., 2021b) discriminators to encour-120

age the main model to learn representations that do121

not reveal protected information. Our method also122

introduces an augmented objective, however, un-123

like adversarial methods, it does not add additional124

model parameters, and hence is computationally125

much lighter weight.126

There are studies directly optimising fairness127

measures during training (Madras et al., 2018a;128

Zhao et al., 2020; Cho et al., 2020a), such as demo-129

graphic parity (Feldman et al., 2015; Zafar et al.,130

2017; Cho et al., 2020b), equalized odds (Cho et al.,131

2020b; Hardt et al., 2016; Madras et al., 2018b), 132

and equal opportunity (Hardt et al., 2016; Madras 133

et al., 2018b). For example, Cho et al. (2020b) 134

use kernel density estimation to approximate equal- 135

ized odds during training, where this method is tai- 136

lored to binary classification and can lead to a poor 137

performance–fairness tradeoff in high-dimensional 138

settings. Our proposed contrastive loss method can 139

be shown to optimise for equal opportunity, encour- 140

aging the model to achieve the same true positive 141

rate across two subgroups for instances with the 142

same main task label (§3.4). 143

2.2 Contrastive Learning 144

The basic idea behind contrastive learning is to 145

pull similar instances together and push dissimilar 146

instances apart by maximising the similarities of 147

similar instances and minimising those of dissimi- 148

lar pairs within the unit feature space (Oord et al., 149

2018; Tian et al., 2020; Li et al., 2021a; Grill et al., 150

2020; Chen et al., 2020a; Henaff, 2020). It has been 151

particularly successful in computer vision, where 152

positive (similar) instance pairs can be generated 153

via data augmentation (i.e., systematic, meaning- 154

invariant manipulation of an input image such as 155

cropping or blurring (Chen et al., 2020a; Fang et al., 156

2020; Cubuk et al., 2019)), and negative (dissimi- 157

lar) instance pairs correspond to different items in 158

the original data. More recently, supervised con- 159

trastive learning (SCL) was proposed in the context 160

of classification, where positive instances belong 161

to the same class, and negative instances belong 162

to different classes (Khosla et al., 2020). When 163

combined with a cross entropy loss, it has been 164

shown to improve model robustness to noise and 165

data sparsity (Gunel et al., 2021), as well as adver- 166

sarial attacks (Bui et al., 2021). We adapt SCL to 167

fair supervised learning, and present evidence of its 168

effectiveness in learning debiased representations 169

and fair classifiers. 170

3 Fair & Supervised Contrastive 171

Learning 172

Our proposed method equips supervised con- 173

trastive learning with an improved loss function 174

which simultaneously encourages data separation 175

in terms of the main class labels, and discourages 176

the differentiation of data points on the basis of 177

their protected attributes. Fair contrastive learning 178

is illustrated in Figure 1, and is compatible with 179

different classifier architectures and data modali- 180
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Figure 1: Illustration of our proposed method in the
context of sentiment classification, where Lce is cross-
entropy loss, Lscl is contrastive loss based on main task,
and Lfcl is contrastive loss based on the protected at-
tribute.

ties, such as language and vision. Our architecture181

consists of three components:182

1. An embedding module, e = Embed(x), which183

maps an input instance x (e.g., a document or184

an image) to a vector representation e, which185

is in turn used as input to the encoder network;186

2. An encoder network, h = Enc(e), which187

maps the input representation to the final hid-188

den representation;189

3. An aggregated objective (L∗), which is a190

weighted combination of a cross-entropy loss,191

contrastive loss based on main task labels, and192

contrastive loss based on protected attribute193

labels, as described next.194

3.1 Cross-entropy Loss195

The cross-entropy loss is defined as

Lce = − 1

N

N∑
i=1

Y∑
c=1

yi,c log ŷi,c,

where Y is the number of main task classes; yi,c196

denotes that the ith instance belongs to the main197

task class c; ŷi,c denotes the predicted probability198

of the ith instance belonging to the main task class199

c; and ŷi,c is obtained after softmax normalization200

of the classifier output, whose input is h. However,201

cross-entropy loss focuses on maximising the pre-202

dicted probability of the ith instance belonging to203

the gold-standard class, but not on ensuring larger204

distances in representation space between dissimi-205

lar instances than between similar ones (Figure 1,206

left). In this work, we explicitly model the simi-207

larity of instances in the representation space via208

supervised contrastive learning.209

3.2 Contrastive Losses 210

Given a mini-batch with a set of N randomly
sampled instances, positive instance pairs (those
which represent the same concept) and negative in-
stance pairs (those representing distinct concepts)
are formed. We use two different criteria for cre-
ating these pairs: their main task label, and their
protected attribute, as described below. Assuming a
batch of positive and negative pairs, the contrastive
loss is computed as,

Lscl =

N∑
i=1

−1

|P (i)|
∑

p∈P (i)

log
exp(h̃i · h̃p/τ)∑

q∈Q(i) exp(h̃i · h̃q/τ)
,

where i=1 . . . N is the index of an instance in 211

the mini-batch, and Q(i) ≡ {1 . . . N} \ {i}; 212

h̃i = l2(Enc(Embed(xi))) is the normalised rep- 213

resentation; and τ > 0 is a scalar temperature 214

parameter controlling smoothness. P (i) ≡ {p ∈ 215

Q(i) : yp = yi} is the set of instances that result in 216

positive pairs with the ith instance, and |P (i)| is its 217

cardinality. We next describe how positive/negative 218

pairs are created. 219

Supervised Contrastive Loss: Lscl is computed 220

on positive and negative samples constructed based 221

on main task labels (e.g., POS vs NEG sentiment), 222

where instances in the mini-batch belonging to the 223

same main task class are used to construct positive 224

samples; otherwise, they are used to form negative 225

samples. The intuition behind this loss component 226

is that representations that are well-separated for 227

the main task are more desirable, as illustrated in 228

the top quadrant of Figure 1, where the main task 229

labels are indicated in blue and orange, and are 230

separated into distinct clusters. 231

Fair Contrastive Loss: Lfcl is based on posi- 232

tive and negative samples with respect to protected 233

attribute labels (e.g., MALE vs FEMALE), where 234

instances belonging to the same protected attribute 235

class form positive samples; otherwise, they are 236

used to construct negative samples. Our goal is 237

to infer latent representations which are oblivious 238

to the protected attribute of an instance. We en- 239

force representations of instances with different 240

protected attribute values to mix together by dis- 241

couraging the model from effectively contrasting 242

those instances, with the goal of reducing the corre- 243

lation between the main task and protected attribute. 244

We do not condition the loss on the class label, as 245

this leads to an increase in leakage in preliminary 246

3



experiments. The intuition behind this loss is illus-247

trated in Figure 1 (bottom).248

3.3 Objective Function249

Our final objective incorporates both contrastive
learning methods, to produce task-indicative and
protected-attribute-agnostic representations, as il-
lustrated in the right quadrant of Figure 1, formu-
lated as a weighted average of Lce, Lscl, and Lfcl,

L∗ = αLce + β{Lscl − Lfcl}.

The second term, Lscl, pulls instances from the250

same main task label closer together, and pushes251

instances from different classes further apart, while252

the third term, Lfcl, encourages instances with the253

same protected attribute to disperse and instances254

from different groups to mix together. Our Lfcl can255

directly extend to non-binary protected attributes256

which cover more than two groups, in which case257

negative instances would be sampled at random258

from any alternative subgroup. α and β are hyper-259

parameters that control the relative importance of260

the cross entropy and contrastive learning terms.261

Here, we adopt the same β for both Lscl and Lfcl262

as they are similar conceptually as well as in mag-263

nitude, and weighing them equally balances perfor-264

mance with bias reduction, as confirmed in exten-265

sive preliminary experiments.266

We experiment with two versions of the pre-267

sented model. Con∗ learns all components in268

an end-to-end fashion. In addition, we present269

a pipelined setup, where we first train the Enc(·)270

module using the two contrastive loss components271

Lscl − Lfcl, and then use its output to train a logis-272

tic classifier for the main classification task. This273

method is denoted as Conft
∗ , which separates the274

representation learning and classifier training and275

is more efficient.276

Our method differs from existing debiasing meth-277

ods in that fairer representations and predictions278

are: (1) achieved via contrastive learning rather279

than data manipulation; (2) jointly trained with the280

base classifier, rather than removing protected at-281

tribute information through post-processing, such282

as with INLP (Ravfogel et al., 2020); and (3) ob-283

tained without the need to train an additional net-284

work, as necessary for adversarial methods (Li285

et al., 2018). We show in extensive experiments286

that our model is superior to adversarial and post-287

processing methods in terms of the performance–288

fairness tradeoff, and faster to train than adversarial289

debiasing.290

3.4 Theoretical Connection 291

Lce-Lfcl (Figure 1, lower quadrant) optimises for 292

demographic parity (Zafar et al., 2017; Cho et al., 293

2020b), where the prediction of models is indepen- 294

dent of the protected attribute value. Our full loss 295

adds Lscl to Lce-Lfcl (Figure 1, right quadrant), thus 296

encouraging instances from different groups within 297

the same class to be treated equally. This corre- 298

sponds to equal opportunity (Hardt et al., 2016; 299

Madras et al., 2018b), conforming to theoretical 300

motivation and well-connected with target fairness 301

metric (GAP, see Section 4.2). The learnt rep- 302

resentations (Figure 4) corroborate this argument 303

empirically. 304

4 Experiments 305

We vary the architecture of Embed(·) across dif- 306

ferent tasks, and do not finetune it during train- 307

ing.1 The architecture of Enc(·) consists of two 308

fully-connected layers with a hidden size of 300. 309

All models are trained and evaluated on the same 310

dataset splits, and models are selected based on 311

their performance on the development set. For fair 312

comparisons, we finetune the learning rate, batch 313

size, and extra hyperparameters introduced by the 314

corresponding debiasing methods for each model 315

on each dataset. Details of the hyperparameters 316

for each model and dataset, such as the number of 317

layers and activation functions, are included in Sup- 318

plementary Material. For all experiments, we use 319

the Adam optimiser (Kingma and Ba, 2015) and 320

early stopping with a patience of 5. In the absence 321

of a standardised method for performing model 322

selection in fairness research (noting the complex- 323

ity of model selection given the multi-objective 324

accuracy–fairness tradeoff), we determine the best- 325

achievable accuracy for a given model, and select 326

the hyperparameter settings that minimise GAP 327

while maintaining accuracy as close as possible 328

to the best-achievable value (all based on the dev 329

set). The development of a robust, reproducible, 330

standardised model selection method is desperately 331

needed in fairness research, and something that we 332

plan to investigate in future work. 333

4.1 Baselines 334

We compare our method with various baselines: 335

1For image activity recognition, Embed(·) is first finetuned
to obtain task-specific representations, and then fixed in later
stages of training.
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1. CE: train Enc(·) with cross-entropy loss and336

no explicit bias mitigation.337

2. INLP: train Enc(·) with cross-entropy loss,338

and apply iterative null-space projection339

(“INLP”: Ravfogel et al. (2020)) to the learned340

representations. Specifically, a linear discrim-341

inator is iteratively trained over the protected342

attribute to project the representation onto the343

discriminator’s null-space, thereby reducing344

protected attribute information from the repre-345

sentation.346

3. Adv: jointly train Enc(·) with cross-entropy347

loss and an ensemble of 3 adversarial discrim-348

inators over the protected attribute, with an349

orthogonality constraint applied to each pair350

of sub-discriminators to encourage them to351

learn different aspects of the representations352

(Han et al., 2021b).353

4.2 Evaluation Metrics354

To evaluate the performance of models on the main355

task, we adopt Accuracy for all three datasets. We356

measure model bias in a number of different ways,357

via bias in the model predictions or linear leakage358

over hidden or logit representations.359

True positive rate (TPR) GAP measures the dif-360

ference in TPR between binary protected attribute361

a and ¬a (such as FEMALE vs. MALE, or AAE362

vs. SAE) for each main task class. It is defined as363

GAPTPR
a,y = |TPRa,y − TPR¬a,y|, y ∈ Y , where364

TPRa,y = P{ŷ = y|y, a}. Here ŷ and y are the365

predicted and gold-standard main task labels; Y366

is the set of main task labels. TPRa,y measures367

the percentage of correct predictions among in-368

stances with main task label y and protected at-369

tribute a. GAPTPR
a,y measures the absolute differ-370

ence between the two different groups represented371

by the protected attribute, with a larger absolute372

value indicating larger bias. A difference of 0 indi-373

cates a fair model, as the prediction ŷ is condition-374

ally independent of protected attribute a. Note that375

this formulation of the metric does not generalise376

to multiclass protected attributes, but in all three377

datasets used in this paper, all protected attributes378

are binary. To be able to evaluate fairness where379

the main task label is multiclass, we follow De-380

Arteaga et al. (2019) and Ravfogel et al. (2020) in381

calculating the root mean square of GAPTPR
a,y over382

all classes y ∈ Y , to get a single score:383

GAP =

√
1

|Y |
∑
y∈Y

(GAPTPR
a,y )2

Linear leakage measures the ability of a linear 384

classifier to recover the protected attribute from a 385

model’s output hidden representations or logits. 386

1. Leakage@h: based on the final hidden repre- 387

sentation before the classifier layer. 388

2. Leakage@ŷ: based on the main task output ŷ 389

(logits). 390

In each case, we train a linear-kernel SVM on out- 391

puts generated for the training instances, and mea- 392

sure leakage over the test instances. Lower values 393

indicate a fairer model. 394

Tradeoff is a single aggregate measure com- 395

prising model performance as well as the three 396

fairness metrics (GAP and leakage at h and ŷ). 397

Before aggregation, we scale each metric to the 398

unit interval by dividing the model-specific val- 399

ues by their respective maximum (N(·)), so that 400

normalized values reflect the performance of each 401

model relative to the best result. Next we assign 402

predictive performance and overall fairness equal 403

weights. Between fairness measures, we weigh 404

prediction bias equal to overall leakage, leading 405

to: Tradeoff=1
2N(Accuracy) + 1

4N(1−GAP) + 406
1
8N(1−Leakage@h)+1

8N(1−Leakage@ŷ). The 407

best achievable Tradeoff is 1, which indicates that 408

a model outperformed all other models with respect 409

to all metrics. 410

Efficiency measures the GPU time required to 411

train a model to achieve the reported results, aver- 412

aged over 10 runs. 413

We apply our models across 3 datasets, covering 414

NLP and vision tasks, in the form of both binary 415

and multi-class main task classification tasks. We 416

report results in terms of accuracy, fairness (GAP 417

and leakage), and efficiency across all tasks. We 418

additionally explore the accuracy–fairness tradeoff 419

in detail for one binary NLP task (Moji) and one 420

multi-class computer vision task (imSitu). 421

4.3 Experiment 1: Sentiment Analysis 422

4.3.1 Task and Dataset 423

The task is to predict the binary sentiment for a 424

given English tweet, based on the dataset of Blod- 425

gett et al. (2016) (Moji hereafter), where each tweet 426

is also annotated with a binary private attribute 427

indirectly capturing the ethnicity of the tweet au- 428

thor as either African American English (AAE) 429
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Dataset Model Accuracy↑ GAP↓ Leakage@h↓ Leakage@ŷ↓ Tradeoff↑ Time↓

Moji

CE 72.09±0.65 40.21±1.23 85.75±0.46 70.96±2.11 0.77 1.0×
INLP 72.81±0.01 36.81±3.49 68.15±1.98 67.80±1.80 0.84 –
Adv 74.47±0.68 30.59±2.94 81.98±2.90 65.04±1.49 0.84 6.5×
Conft

∗ 75.99±0.20 14.40±1.83 57.01±2.41 55.42±1.14 0.99 0.2×
Con∗ 75.84±0.16 13.92±0.44 55.75±0.21 55.32±0.25 1.00 1.5×

Bios

CE 82.19±0.04 16.68±0.46 99.24±0.05 92.72±0.85 0.76 1.0×
INLP 79.42±0.28 15.45±1.05 92.77±6.22 67.01±0.77 0.85 –
Adv 79.72±1.02 16.78±0.87 71.41±7.44 69.54±6.62 0.92 2.8×
Conft

∗ 56.57±0.97 7.35±1.18 66.66±2.29 61.06±1.34 0.84 0.2×
Con∗ 81.69±0.07 16.83±0.36 75.20±1.10 66.38±1.12 0.93 0.9×

imSitu

CE 58.97±0.66 11.77±0.73 72.78±0.70 64.96±0.30 0.94 1.0×
INLP 57.36±0.47 10.53±0.87 60.10±2.04 59.06±0.38 0.97 –
Adv 58.38±0.50 10.58±0.60 67.31±0.94 62.37±0.73 0.97 4.5×
Conft

∗ 57.67±0.30 9.41±1.12 71.04±0.83 58.34±0.47 0.97 0.1×
Con∗ 57.14±0.83 10.41±0.77 64.44±1.37 59.51±1.47 0.98 0.9×

Table 1: Experimental results on the three datasets (averaged over 10 runs). The best result for each dataset is
indicated in bold. Here, ↑ and ↓ indicate that higher and lower performance, resp., is better for the given metric.

or Standard American English (SAE). Following430

previous studies (Ravfogel et al., 2020; Han et al.,431

2021b), the training dataset is balanced with re-432

spect to both sentiment and ethnicity but skewed433

in terms of sentiment–ethnicity combinations (40%434

HAPPY-AAE, 10% HAPPY-SAE, 10% SAD-AAE,435

and 40% SAD-SAE, respectively).2 The dataset436

contains 100K/8K/8K train/dev/test instances.437

4.3.2 Implementation Details438

Following previous work (Elazar and Goldberg,439

2018; Ravfogel et al., 2020; Han et al., 2021b), we440

use DeepMoji (Felbo et al., 2017), a model pre-441

trained over 1.2 billion English tweets, as Embed(·)442

to obtain text representations. The parameters of443

DeepMoji are fixed in our experiments.444

4.3.3 Results445

Table 1 (Moji) presents the results. Compared to446

the CE model, INLP moderately reduces model447

bias across all metrics while retaining comparable448

accuracy, and Adv improves main task accuracy449

compared to CE while simultaneously reducing450

model bias. Both versions of our model, Con∗451

and Conft
∗ , lead to the largest gain in accuracy and452

also the largest bias reduction across all metrics,453

requiring less GPU time compared to Adv. With454

leakage scores around 55, our model approaches455

the lower-bound value of 50 (indicating that an at-456

tacker would guess the binary protected attribute at457

exactly chance level). Overall, our methods achieve458

2Note that the dev and test set are balanced in terms of
sentiment–ethnicity combinations.

the best accuracy–fairness tradeoff. It is encourag- 459

ing to see that incorporating debiasing techniques 460

can contribute to improvement on the main task. 461

We hypothesise that incorporating debiasing tech- 462

niques (either in the form of adversarial training 463

or contrastive loss) acts as a form of regularisa- 464

tion, leading to greater robustness over the training 465

dataset skew relative to the unbiased test set. 466

Accuracy–Fairness tradeoff. We plot the trade- 467

off between Accuracy and Leakage@h for INLP, 468

Adv, and Con∗ on the test set in Figure 2 (left), 469

where points in red circles are Pareto frontiers for 470

each model.3 The results are obtained by varying 471

the most-sensitive hyperparameter for each model: 472

the number of iterations for INLP, the weight for 473

adversarial loss for Adv, and β for our method 474

Con∗. We can see that our proposed method 475

achieves the best performance in terms of both 476

Accuracy and Leakage@h. 477

4.4 Experiment 2: Profession Classification 478

4.4.1 Task and Dataset 479

The task is to predict a person’s profession given 480

their biography, based on the dataset of De-Arteaga 481

et al. (2019), consisting of short online biographies 482

which have been labelled with one of 28 profes- 483

sions (main task label) and binary gender (protected 484

3Given two predictions whose Accuracy and Leakage@h
are (a1, b1) and (a2, b2), if a1 > a2 and b1 < b2, we say the
prediction (a2, b2) is dominated by the prediction (a1, b1);
otherwise, they are non-dominated predictions, and form part
of the Pareto frontier.
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Figure 2: Accuracy vs. Leakage@h of different models
on the Moji (left) and imSitu (right) test set, as we vary
the most sensitive hyperparameter for each model. Note
that points in red circles are pareto-optimal for each
model.

attribute). We use the dataset split of (De-Arteaga485

et al., 2019; Ravfogel et al., 2020), consisting of486

257K/40K/99K train/dev/test instances.4487

4.4.2 Implementation Details488

Following the work of Ravfogel et al. (2020), we489

use the “CLS” token representation of the pre-490

trained uncased BERT-base (Devlin et al., 2019) as491

Embed(·), without any further finetuning.492

4.4.3 Results493

Table 1 (Bios) shows the results on the test set.494

We can see that INLP achieves the best perfor-495

mance in terms of GAP, but the absolute bias re-496

duction is small compared to CE. Worryingly, both497

Adv and Con∗ marginally increase GAP. We hy-498

pothesise that this is because of the multi-class499

setting (28 classes), where the large number of500

main task classes inhibits the ability of adversarial501

training and contrastive learning to mitigate bias502

in the model under joint training. Con∗ achieves503

the best performance in terms of Leakage@ŷ at504

similar accuracy to CE, while Adv achieves the505

best performance in terms of Leakage@h. While506

Conft
∗ substantially reduces bias across the three507

fairness metrics, it comes at the cost of a large drop508

in accuracy, indicating the necessity of explicitly509

incorporating class information during training for510

this task. Overall, Con∗ once again achieves the511

best Tradeoff of all the models with less GPU time.512

4.5 Experiment 3: Activity Recognition513

4.5.1 Task and Dataset514

We include action recognition, a computer vision515

task, to demonstrate the generality of our method.516

4There are slight differences between our dataset and that
used by De-Arteaga et al. (2019) and Ravfogel et al. (2020)
as a small number of biographies were no longer available on
the web when we scraped them.

Given an image, the model predicts the activity 517

depicted in the image. We use the imSitu dataset 518

(Wang et al., 2019; Zhao et al., 2017; Yatskar et al., 519

2016), which contains 211 activity classes and 520

binary gender labels. The dataset contains only 521

about 110 instances per activity, making it difficult 522

to obtain decent performance without finetuning 523

the backbone model. Therefore, we group these 524

fine-grained labels according to their correspond- 525

ing coarse-grained labels, where similar verbs are 526

grouped into one class according to the FrameNet 527

label hierarchy (Baker et al., 1998). The resulting 528

dataset contains 12 target labels, and 12K/3K/2K 529

train/dev/test instances. 530

4.5.2 Implementation Details 531

Following Wang et al. (2019) and Zhao et al. 532

(2017), we use a standard ResNet-50 encoder 533

(He et al., 2016) pretrained on ImageNet to ex- 534

tract activity-capturing representations. The classi- 535

fier layer is first trained with a learning rate of 536

0.0001 and a batch size of 128. Then ResNet- 537

50 is finetuned with a learning rate of 1e-5 and 538

a batch size of 64 for at most 60 epochs. The best- 539

performing snapshot evaluated on the dev set is 540

used as Embed(·) to obtain image representations. 541

4.5.3 Results 542

Table 1 (imSitu) shows the results on the test set. 543

INLP and Adv decrease GAP and leakage to vary- 544

ing degrees, with INLP achieving better perfor- 545

mance in terms of Leakage@ŷ, and Adv achiev- 546

ing better performance in terms of Leakage@h. 547

On the other hand, Con∗ achieves the best perfor- 548

mance in terms of Leakage@ŷ and Leakage@h 549

with less GPU training time. Surprisingly, Conft
∗ 550

achieves the best performance in terms of GAP and 551

Leakage@ŷ, which we attribute to the fact that the 552

classifier for the main task is disconnected from the 553

encoder training, thereby leading to better bias re- 554

duction. Once again, Con∗ is best overall in terms 555

of Tradeoff. 556

Accuracy–Fairness tradeoff. Figure 2 shows the 557

tradeoff plot between Accuracy and Leakage@h 558

on the test set. The models exhibit distinct tradeoff 559

curves, with INLP achieving the lowest leakage at 560

high levels of accuracy. 561

4.6 Analysis 562

Effect of Loss Components To explore the im- 563

pact of Lscl and Lfcl, we conduct ablation studies 564

on the Moji and Bios datasets by ablating one of 565
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Figure 3: Effects of contrastive loss components.

Figure 4: t-SNE scatter plots of learned representations
of CE and Con∗ over the Moji dataset (based on 100
random samples from each main task class; best viewed
in colour). Red and blue colours indicate that they have
different sentiment (main task) labels: red → SAD and
blue → HAPPY. Green and purple colours indicate that
they have different ethnic groups (protected attribute):
green → SAE and purple → AAE.

the two contrastive loss components. We denote the566

model trained with αLce+βLscl as Conce+scl, and567

the model trained with αLce − βLfcl as Conce−fcl.568

The results are shown in Figure 3. We can see569

that Con∗ achieves the best performance across570

all evaluation metrics on the Moji dataset. On the571

imSitu dataset, Con∗ also achieves the best accu-572

racy, while roughly equalling the best bias results.573

This illustrates the advantage of incorporating both574

contrastive loss components.575

Visualising Representations In Figure 4, we576

show t-SNE plots of the learned representations577

of CE and Con∗ on the Moji training set from the578

perspectives of the main task labels and protected579

attribute values. We can clearly see that for CE,580

the positive (HAPPY) instances are mostly on the 581

left of the figure and negative (SAD) instances are 582

mostly on the right of Figure 4 (upper left). From 583

the ethnicity perspective, AAE instances are more 584

likely towards the left and instances with SAE are 585

most likely to be towards the right of Figure 4 (bot- 586

tom left). For Con∗, the resulting representations 587

show that instances belonging to the same class 588

cluster together in terms of sentiment (top right), 589

and instances belonging to the different classes mix 590

together in terms of ethnicity (bottom right), affirm- 591

ing our motivation. 592

4.7 Limitations 593

A limitation of our proposed approach is that the 594

method is designed to remove information related 595

to protected attributes based on the assumption 596

that the attacker model will be a linear classifier. 597

We leave the investigation of protecting against at- 598

tacks by non-linear classifiers to future work. In 599

our work, Embed(·) is not learned or fine-tuned to- 600

gether with Enc(·) and the classification layer in 601

an end-to-end fashion. However, finetuning the 602

Embed(·) has the potential for better task-specific 603

or semantic-preserving representations of text and 604

images, which may further remove biases encoded 605

in the the pretrained models. We presented diverse 606

experiments including existing data sets across lan- 607

guage and vision, and balanced and imbalanced 608

data, but acknowledge several simplifying assump- 609

tions: we restrict to binary protected attributes, im- 610

plying the adoption of an oversimplified binary no- 611

tion of gender. Exploring attributes of higher arity, 612

and more complex and realistic bias dimensions is 613

an important direction for future work. 614

5 Conclusion 615

Biased representations and predictions can re- 616

inforce existing societal biases and stereotypes. 617

Based on the intuition that similar instances belong- 618

ing to the same main task class should be pulled to- 619

gether and similar instances belonging to the same 620

protected attribute class should be pushed apart in 621

the representation space, we proposed to combine 622

cross-entropy loss with two contrastive loss compo- 623

nents in optimising neural networks. Experimental 624

results over NLP and vision datasets demonstrate 625

the effectiveness of our proposed method. Further 626

analysis and ablation studies indicate the necessity 627

of incorporating both contrastive loss components 628

in bias reduction, to maintain main task accuracy. 629
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A Adv Settings850

Each sub-discriminator consists of two MLP layers851

with a hidden size of 256, where the first layer is852

accompanied with LeakyReLU activation function.853

A subsequent classifier layer is used to predict the854

protected attribute. Sub-discriminators are opti-855

mised for at most 100 epochs after each epoch of856

Enc(·) training, leading to extra training time.857

B Hyperparameter Settings858

B.1 Twitter Sentiment Analysis859

For CE, the learning rate is 3e-3, and the batch860

size is 2,048. For Adv, the learning rate is 1e-861

3, the batch size of 2,048, the number of sub-862

discriminators is 3, λadv is 0.5, and λdiff is 1e-3.863

For INLP, following Ravfogel et al. (2020), we use864

300 linear SVM classifiers. For Con∗ and Conft
∗ ,865

the learning rate is 7e-5, the batch size is 1,024,866

τ = 0.01, and α = β = 0.5.867

B.2 Occupation Classification868

For CE, the learning rate is 3e-3, and the batch869

size is 2,048. For Adv, the learning rate is870

0.01, the batch size is 1,024, the number of sub-871

discriminators is 3, λadv is 0.01, and λdiff is 1e4.872

For INLP, we use 300 linear SVM classifiers. For873

Con∗ and Conft
∗ , the learning rate is 3e-3, the batch874

size is 512, τ = 0.01, α = 0.91, and β = 0.09.875

B.3 imSitu Activity Recognition876

For CE, the learning rate is 5e-4, and the batch877

size is 512. For Adv, the learning rate is 1e-3, the878

batch size is 256, the number of sub-discriminators879

is 3, λadv is 0.01, and λdiff is 1.0. For INLP, we880

use 300 linear SVM classifiers. For Con∗ and881

Conft
∗ , the learning rate is 5e-3, the batch size is882

512, τ = 0.01, α = 0.95, and β = 0.05.883

11


