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Abstract
In reinforcement learning (RL), different reward
functions can define the same optimal policy
but result in drastically different learning perfor-
mance. For some, the agent gets stuck with a
suboptimal behavior, and for others, it solves the
task efficiently. Choosing a good reward function
is hence an extremely important yet challenging
problem. In this paper, we explore an alterna-
tive approach for using rewards for learning. We
introduce max-reward RL, where an agent opti-
mizes the maximum rather than the cumulative
reward. Unlike earlier works, our approach works
for deterministic and stochastic environments and
can be easily combined with state-of-the-art RL
algorithms. In the experiments, we study the per-
formance of max-reward RL algorithms in two
goal-reaching environments from Gymnasium-
Robotics and demonstrate its benefits over stan-
dard RL. The code is available at https://
github.com/veviurko/To-the-Max.

1. Introduction
Reinforcement Learning (RL) is a learning paradigm where
an intelligent agent solves sequential decision-making prob-
lems through trial and error. The main objective that an
RL agent learns to optimize is the cumulative return, i.e.,
a discounted sum of the rewards. This makes the reward
a crucial element of the problem, as it defines the optimal
decision-making policy that the agent will try to learn.

It is well known (Ng et al., 1999) that there are infinitely
many ways to define the reward function under which a de-
sired policy is optimal. Practically, however, these rewards
often result in drastically different learning processes. For
example, many major successes of RL required meticulous
engineering of the reward: by hand (Berner et al., 2019) or
by learning it from a human example (Vinyals et al., 2019).
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Hence, designing a reward function that enables learning
and corresponds to a certain optimal policy is a challenging
problem in modern reinforcement learning.

In many RL problems, the true reward function is sparse, i.e.,
only successful completion of the task is rewarded. In par-
ticular, the sparse reward is characteristic to goal-reaching
problems where the agent needs to enter the goal state (Plap-
pert et al., 2018; Florensa et al., 2018; Ghosh et al., 2020).
Sparse reward problems are notoriously hard to solve with
standard RL. A popular and simple solution is to introduce
a dense surrogate reward that represents some sort of dis-
tance between the agent and the goal (Towers et al., 2023;
de Lazcano et al., 2023). However, this approach is very
sensitive and should be carefully tailored to each problem
individually, in order to not change the induced optimal pol-
icy. Specifically, this dense artificial dense reward should a)
increase when the agent gets closer to the goal, and b) not
distract the agent from the reaching the goal. Designing a
function that satisfies both criteria can be tricky for a human
expert, as it requires estimating the (discounted) cumulative
returns in various states.

In this work, we propose max-reward RL, where the agent
optimizes the maximum reward achieved in the episode
rather than the cumulative return. This paradigms makes
the reward design process much more intuitive and straight-
forward, as it only requires that “better” states correspond
to larger rewards. Hence, as long as the goal-reaching ac-
tion has the highest reward, the optimal policy does not
change. Besides simplifying the reward design, the max-
imum reward objective can also be easier to optimize for.
In standard RL, learning a value of a non-terminal state
involves bootstrapping, and hence has a moving target. In
max-reward RL, bootstrapping does not happen when the
immediate reward is not smaller than the largest reward
explored so far. Therefore, max-reward RL bootstraps less
and hence, potentially, learns better.

One of the key properties of the cumulative return is that it
satisfies the Bellman equation (Bellman, 1954) and hence
can be efficiently approximated and optimized by iteratively
applying the Bellman operator. To make the max-reward
RL approach viable, an analogous learning rule is required.
However, Cui & Yu (2023) prove that naively changing
summation into a max operator in the standard Bellman
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update rule works only in a deterministic setting and hence
cannot be used in most RL problems and algorithms.

Inspired by results from stochastic optimal control the-
ory (Kröner et al., 2018), this paper introduces a theoreti-
cally justified framework for max-reward RL in the general
stochastic setting. We introduce a Bellman-like equation,
prove the stochastic and deterministic policy gradient the-
orems, and reformulate some of the state-of-the-art algo-
rithms (PPO, TD3) for the max-reward case. Using the
Maze environment (de Lazcano et al., 2023) with different
surrogate dense rewards, we experimentally demonstrate
that max-reward algorithms outperform their cumulative
counterparts. Finally, experiments with a challenging Fetch
environment (de Lazcano et al., 2023) show the promise of
max-reward RL in more realistic goal-reaching problems.

2. Related work
The first attempt to formulate max-reward RL was made by
Quah & Quek (2006), where the authors derived a learning
rule for the maximum reward state-action value function.
However, as it was shown later (Gottipati et al., 2020), that
work made a technical error of interchanging expectation
and maximum operators. Gottipati et al. (2020) corrected
this error, but the value functions learned via their approach
differ from the expected maximum reward if stochasticity
is present. Independently, Wang et al. (2020) derived a
similar method in the context of planning in determinis-
tic Markov Decision Processes (MDPs). Later, Cui & Yu
(2023) demonstrated that the presence of stochasticity poses
a problem not only for the max-reward RL but also for other
non-cumulative rewards.

There exists a parallel branch of research that (re)discovered
maximum reward value functions in the context of safe
RL for reach-avoid problems (Fisac et al., 2014). In their
work, Fisac et al. (2019) considered a deterministic open-
loop dynamic system, where the agent’s goal is to avoid
constraint violations. The authors derived a contraction
operator, similar to the one by Gottipati et al. (2020), to
learn the max-cost safe value function. Hsu et al. (2021)
extended this approach to reach-avoid problems, where the
goal is to reach the goal while not violating constraints.
Later, max-cost value functions were utilized within the
safe RL context to learn the best-performing policy that
does not violate the constraints (Yu et al., 2022). The main
limitation of the three aforementioned works is the same
as for Gottipati et al. (2020) – their methods only apply to
deterministic environments and policies.

Effective reward design is a long-standing challenge in rein-
forcement learning which dates back to at least as early as
1994 (Mataric, 1994). In this paragraph, we briefly summa-
rize the existing work related to the reward design problem.

For further reading, we refer the reader to Eschmann (2021).
Some of the big successes of RL utilize a hand-designed
reward function, e.g., in the game of DOTA (Berner et al.,
2019) or robots playing soccer (Haarnoja et al., 2023). How-
ever, manually designed rewards often lead to undesirable
behavior (Krakovna et al., 2020). Alternatively, the reward
can be designed in an automated fashion. For example,
based on state novelty to encourage exploration (Tang et al.,
2017; Pathak et al., 2017; Burda et al., 2018), by learning it
from the experiences (Trott et al., 2019), or by using human
data (Ibarz et al., 2018).

To conclude, reward design and reward shaping remain
challenging topics. In this work, we propose a new way
to think about the reward – the max-reward RL framework.
While self-sufficient in some cases, this approach can also be
combined with various existing methods for reward design.

3. Background
We consider a standard reinforcement learning setup for
continuous environments. An agent interacts with an MDP
defined by a tuple (S,A, R, P, p0, γ), where S is the con-
tinuous state space, A is the continuous action space, and
R : S ×A× S → [0, R̄] is a non-negative and bounded re-
ward function.1 For each state-action pair, (s, a) ∈ S ×A,
the transition function P (·|s, a) ∈ P(S) is a probability
density function (PDF) of the next state s′ and p0(·) ∈ P(S)
is the PDF of the initial state s0. Scalar 0 ≤ γ < 1 is the
discount factor. We use π : S → P(A) to denote a stochas-
tic policy and µ : S → A to denote a deterministic policy.
The time is discrete and starts at zero, i.e., t ∈ N ∪ {0}.
For each timestep t, the state is denoted by st, the action
by at, and the reward by rt+1 := R(st, at, st+1). Every-
where in the text, the expectation over policy, Eπ, denotes
the expectation over the joint distribution of st, at, rt+1 for
t ∈ N ∪ {0} induced by π, P , and p0. Sometimes, we use
such notation as Ex∼π (or just Ex) to emphasize that the
expectation is taken only over x.

In standard RL, the main quantity being optimized is the
cumulative return, defined as Gt =

∑∞
i=0 γ

irt+1+i. To
maximize Eπ

[
Gt

]
, most RL algorithms learn state and/or

state-action value functions defined as follows:

vπ(s) = Eπ

[
Gt

∣∣st=s
]
, v∗(s) = max

π
vπ(s).

qπ(s, a) = Eπ

[
Gt

∣∣st=s
at=a

]
, q∗(s, a) = max

π
qπ(s, a).

Crucially, these functions are solutions to the corresponding
Bellman equations:

vπ(s) = E at
st+1

[
rt+1 + γvπ(st+1)

∣∣st=s
]

1Non-negativity of reward can be achieved in any MDP with
bounded reward function.
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Figure 1. Five-state chain MDP with three actions (left, stay, right) available in each state and the training results for cumulative (in green)
and max-reward (in violet) value iteration. The y− axis is the number of training epochs to recover the optimal policy; the x−axis shows
the values of the intermediate reward x. Four panels correspond to different probabilities of skipping transitions into s4 during training.

qπ(s, a) = Est+1
at+1

[
rt+1 + γqπ(st+1, at+1)

∣∣st=s
at=a

]
q∗(s, a) = Est+1

[
rt+1 + γmax

a′
q∗(st+1, a

′)
∣∣st=s
at=a

]
The defining feature of these equations is that they can be
solved by repeatedly applying Bellman operators. These
operators are contractions and hence each of them has a
unique fixed point that corresponds to one of the value
functions above. For example, the optimal state-action value
function q∗(s, a) is the fixed point of the Bellman optimallity
operator T ∗:(
T ∗q

)
(s, a) = Est+1

[
rt+1+γmax

a′
q(st+1, a

′)
∣∣st=s
at=a

]
(1)

The Bellman equation is foundational for all state-of-the-art
RL algorithms as it allows training neural networks to ap-
proximate value functions. Therefore, for the max-reward
framework to be useable, it is necessary to derive an analog
of the Bellman equation. Below, we describe such an at-
tempt made by Gottipati et al. (2020) and demonstrate that
it is limited to purely deterministic problems.

3.1. Deterministic max-reward RL

Instead of cumulative return, max-reward RL aims at opti-
mizing the max-reward return:

Ĝt = max
{
rt+1, γrt+2, γ

2rt+3 . . .
}

(2)

Similarly to cumulative returns, Ĝt uses the discount factor
γ which is necessary for learning with Bellman-like updates,
as we show later. To approximate Eπ

[
Ĝt

]
, Gottipati et al.

(2020) introduced the following definition of the state-action

value functions:

q̂πdet(s, a) = Est+1
at+1

[
rt+1 ∨ γq(st+1, at+1)

∣∣∣st=s
at=a

]
q̂∗det(s, a) = Est+1

[
rt+1 ∨ γmax

a′
q(st+1, a

′)
∣∣∣st=s
at=a

]
where ∨ denotes the binary max operator, i.e.,
a ∨ b := max{a, b}. By construction, q̂∗det and q̂πdet
satisfy Bellman-like recursive equations. In their work,
Gottipati et al. (2020) proved that the following operator is
a contraction:(
T̂ ∗
detq

)
(s, a) = E

st+1

[
rt+1 ∨ γmax

a′
q(st+1, a

′)
∣∣st=s
at=a

]
(3)

Therefore, q̂∗det is the unique fixed point of T̂ ∗
det and can be

learned, e.g., with Q-learning.

Chain environment example. Before going into the lim-
itations of the approach above, we conduct a simple ex-
periment to motivate the use of max-reward reinforcement
learning. We show that max-reward RL is a better approach
in a goal-reaching problem where the agent needs to learn to
reach the goal state. Specifically, it dominates the standard
cumulative RL when transitions into the goal state occur
infrequently in the training data, which is often the case in
larger-scale goal-reaching problems.

Consider the five-state chain environment in Figure 1. Tran-
sitions leading into s4 have reward of 1, transitions into s2
have a reward parametrized with x ∈ (0, 1), and other re-
wards are zero. Hence, the optimal policy, concerning both
max-reward and cumulative returns, is to go to s4 and stay
there. We run tabular Q−value iteration algorithm using
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Figure 2. A three-state MDP with deterministic transitions and
stochastic rewards. Two different policies, π1 and π2, share the
same first action a1, but then have different a2, thereby resulting
in different reward distributions.

standard (Eq. (1)) and max-reward (Eq. (3)) Bellman oper-
ators for different values of the intermediate reward x. In
each training epoch, we iterate over all possible transitions.
For each transition, we compute the target value using one
of the Bellman operators and update the Q-table. Crucially,
we randomly skip some of the transitions into s4 with a cer-
tain probability. In the experiment, we consider four values
for the skip probability – pskip ∈ {0, 0.3, 0.6, 0.9}. During
training, when a transition into s4 is sampled, the Q-table
is updated with probability 1 − pskip and otherwise left
unchanged. Transitions into other states are never skipped.
In this way, we can control how often the agent is exposed
to the transitions into the optimal state and thereby sim-
ulate problems where goal-reaching transitions are rarely
encountered.

The results in Figure 1 indicate that for larger values of the
skip probability, the max-reward approach converges to the
optimal policy significantly faster than the cumulative ap-
proach. We believe that this phenomenon can be explained
by differences in bootstrapping. In standard RL, the target
for the q−value is a sum of the immediate reward and the
q−value at the next timestep. Therefore, this target changes
in each epoch until convergence. In the max-reward case,
on the other hand, the target in the max-reward state is just
the reward and does not change with time. This example
suggests that the max-reward approach is a better choice
in environments where the task of the agent is to reach the
goal state.

Issues when stochasticity is present. Unfortunately, the
max-reward approach described above has a serious the-
oretical drawback. Expanding the definition of q̂∗det for
more timesteps, we obtain a nested sequence of non-
interchangeable ∨ and E:

q̂∗det(s, a) = Eπ∗

[
rt+1 ∨ γEπ∗

[
rt+2 ∨ . . .

]∣∣∣st=s
at=a

]
Using Jensen’s inequality (Jensen, 1906), we conclude the
following:

q̂∗det(s, a) ≤ Eπ∗
[
Ĝt|st=s

at=a

]
(4)

When both the policy and the transition model are determin-
istic, Eq. (4) becomes an equality. However, if stochasticity
is present, the value of q̂∗det(s, a) is merely a lower bound
of the expected return. Hence, it can induce suboptimal
policies.

In Figure 2, we show an example where the policy maximiz-
ing q̂∗det is suboptimal. The figure demonstrates a three-state
MDP and two policies, π1 (red arrows) and π2 (blue arrows).
Let γ = 1 for simplicity. For the state s0, the expected max-
reward return is higher for the policy π1 :

Eπ1
[Ĝ0] = Eπ1

[r1 ∨ r2] = 9 >

Eπ2
[Ĝ0] = Eπ2

[r1 ∨ r2] = 8

So π1 is better in terms of the expected max-reward return,
but the value functions have the following values:

q̂π1

det(s0) = Eπ1

[
r1 ∨ Eπ1

[r2]
]
= Eπ1

[r1 ∨ 6] = 6

q̂π2

det(s0) = Eπ2

[
r1 ∨ Eπ2

[r2]
]
= Eπ2

[r1 ∨ 8] = 8

Based on the values of q̂πdet, we would conclude that π2 is
better, which we already showed to be incorrect. This exam-
ple demonstrates that even in a simple stochastic environ-
ment, the operator T̂ ∗

det can lead to incorrect policies. There-
fore, it is an open question whether there exists a Bellman-
like operator that would enable learning max-reward returns
in the stochastic setting.

4. Max-reward RL
In this section, we introduce a novel approach to max-reward
RL that is theoretically sound, works for both stochastic and
deterministic cases, and can be combined with state-of-the-
art RL algorithms. First, we expand the definition of the
max-reward return given in Eq. (2):

Eπ[Ĝt] = Eπ

[
rt+1 ∨ γĜt+1

]
(5)

Since E and ∨ do not commute, it is impossible to extract
the term Eπ

[
Gt+1

]
on the right-hand side of Eq. (5). Be-

cause of that, we cannot obtain an equation involving only
Eπ

[
Gt

]
, Eπ

[
Gt+1

]
, and rt+1. Instead, we will utilize an

approach from stochastic optimal control theory (Kröner
et al., 2018) and define the max-reward value function using
an auxiliary variable that allows propagating information
between timesteps:

Definition 4.1. Let y ∈ R be an auxiliary real variable. The
max-reward value functions are defined as follows:

v̂π(s, y) = Eπ[y ∨ Ĝt

∣∣st=s]

q̂π(s, a, y) = Eπ[y ∨ Ĝt

∣∣st=s
at=a]
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Since reward is lower-bounded, rt+1 ≥ 0, we can always
recover the expected max-reward return Eπ

[
Ĝt

]
by substi-

tuting y = 0 into the value functions:

v̂π(s, 0) = Eπ[Ĝt

∣∣st=s]

q̂π(s, a, 0) = Eπ[Ĝt

∣∣st=s
at=a]

(6)

Hence, if we find an efficient method of learning the max-
reward value functions, we will be able to optimize Eπ[Ĝt].

The auxiliary variable y is crucial when dealing with the
max-reward returns. When we look at the value of the state
s′ from the perspective of state s, we must consider the
immediate reward r = r(s, a, s′). Specifically, we should
treat low reward trajectories from s′ as if they still yield the
reward of r. Expanding upon this observation, we conclude
that maximization of the maximum reward requires propa-
gating information about the past rewards. This is achieved
via the auxiliary variable y.

By combining the definition of the max-reward value func-
tions with Eq. (5), we obtain the following recursive equa-
tions:

Lemma 4.2. Let y ∈ R and let y′ := R(s,a,st+1)∨y
γ . Then,

the max-reward value functions are subject to the following
Bellman-like equations:

v̂π(s, y) = γE at
st+1

[
y′ ∨ v̂π(st+1, y

′)
∣∣st=s

]
q̂π(s, a, y) = γEst+1

at+1

[
y′ ∨ q̂π(st+1, at+1, y

′)
∣∣st=s
at=a

]
Proof of this lemma, as well as all other proofs, can be found
in Appendix A. The extra term y′∨ might seem redundant,
but it is important since it enforces the boundary conditions.
Without it, the functions v ≡ 0 and q ≡ 0 would be solu-
tions to these equations. Using Lemma 4.2, we can define
Bellman-like operators for the max-reward value functions:

Definition 4.3. Let v : S × R→ R, q : S × A× R→ R
be real-valued functions and let y′ := R(s,a,st+1)∨y

γ . Then,

the max-reward Bellman operator T̂ π is defined as follows:

T̂ πv(s, y) := γE at
st+1

[
y′ ∨ v(st+1, y

′)
∣∣st=s

]
T̂ πq(s, a, y) := γEst+1

at+1

[
y′ ∨ q(st+1, at+1, y

′)
∣∣st=s
at=a

]
In the following theorem, we prove that this operator is a
contraction and that the max-reward state and state-action
value functions are its fixed points.

Theorem 4.4. T̂ π is a γ−contraction with respect to the
L∞ norm, and v̂π(or q̂π) is its fixed point.

Theorem 4.4 implies that the max-reward value functions
can be learned in the same way as the standard value func-
tions – by sampling from the environment and applying

Bellman operators. In the next section, we define the ob-
jective function of the max-reward RL problem and discuss
how the presence of the auxiliary variable y impacts the
notion of optimal policy.

4.1. Max-reward objective

Similarly to standard RL, the main objective in the max-
reward RL problems is to maximize the expected (max-
reward) return from the initial state, defined as follows:

Ĵ(π) = Es0∼p0

[
v̂π(s0, 0)

]
(7)

Then, the optimal policy is naturally defined as :

π∗ = argmax
π

Ĵ(π). (8)

To better understand the properties of the max-reward opti-
mal policy, consider again the MDP in Figure 2. Let γ = 1.
Then, the values of the objective function for π1 and π2 can
be computed as follows:

Ĵ(π1) = Eπ1
[6 ∨ r2] = 9

Ĵ(π2) = Eπ2 [6 ∨ r2] = 8

Hence, π1 is optimal. However, if we consider the max-
reward return from t = 1, we have

Eπ1
[G1] =

12 + 0

2
= 6 Eπ2

[G1] =
9 + 7

2
= 8

and hence π2 obtains higher expected max-reward return
starting at s = s1. Seemingly, there is a contradiction: π1

is optimal but π2 is better from the state s1. However, the
explanation is simple: the maximum reward is the highest
reward encountered anywhere along the trajectory. An op-
timal decision thus not only depends on the current state,
as with the cumulative reward, but also on the maximum
reward that has been acquired thus far. In the example, if we
start from s1, then we haven’t encountered any reward yet.
Hence, following π1, we will have r2 = 0 as the maximum
reward half of the time. If we start from s0, we receive a
reward of r1 = 6 when going to s1. Then, the maximum
reward will not be lower than 6, even if we get r2 = 0. Thus,
we conclude:

In max-reward RL, the optimal policy π∗ maximizing Ĵ(·)
should depend not only on the current state, but also on the

rewards obtained so far.

To formalize this observation, we introduce additional nota-
tion. We define the extended state space as Ŝ := S ×R and
we denote extended states by ŝ = (s, y), s ∈ S, y ∈ R.
Then, for an extended state (s, y) ∈ Ŝ and for an action
a ∈ A, the extended transition model P̂ (·, ·|s, y, a) is a
PDF over (s′, y′) ∈ Ŝ, defined as

P̂ (s′, y′|s, y, a) = P (s′|s, a) δ
(
y′ − R(s, a, s′) ∨ y

γ

)
5
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where δ(·) is the Dirac delta function. The initial distribution
of (s0, y0) is given by p̂0(s0, y0) = p(s0)δ(y0) thereby
ensuring y0 ≡ 0. Combining everything, we introduce the
following definition:

Definition 4.5. Let M = (S,A, R, P, p0, γ) be an MDP.
Then, the extended max-reward MDP is an MDP M̂ given
by the tuple (Ŝ,A, R, P̂ , p̂0, γ).

Essentially, the extended MDP defined above tracks the
(inversely) discounted maximum reward obtained so far.
For example, if the maximum reward so far is r1, then the
extended state at timestep t is (st, r1

γt ). Hence, to improve

Ĵ , we need rt+1 > r1
γt .

Using the notion of extended MDP, we can redefine policy
for the max-reward RL:

Definition 4.6. Let M be an MDP and let M̂ be its induced
extended max-reward MDP. Then, any policy π̂ in M̂ is an
extended max-reward policy.

After we have defined optimality in the max-reward sense,
we can introduce the max-reward Bellman optimality opera-
tor:

Definition 4.7. Let q : S × A × R → R be a real-valued
function and let y′ := R(s,a,st+1)∨y

γ . Then, the max-reward

Bellman optimality operator T̂ ∗ is defined as follows:

T̂ ∗q(s, a, y) := γEst+1

[
y′ ∨max

a′
q(st+1, a

′, y′)
∣∣st=s
at=a

]
Similarly to T̂π, this operator is also a contraction:

Theorem 4.8. T̂ ∗ is a γ−contraction with respect to the
L∞ norm, and q̂∗ is its fixed point.

We have most of the pieces of the max-reward RL frame-
work. We established that it operates on the extended max-
reward MDP M̂ , where the extended states preserve infor-
mation about the past rewards. Then, both the max-reward
optimal and on-policy value functions can be learned by
sampling transitions from M̂ . Therefore, all DQN-based
methods (Mnih et al., 2013) can be used under the max-
reward RL paradigm directly. However, most state-of-the-
art RL algorithms utilize policies parametrized by neural
networks. This is possible due to the policy gradient theo-
rems (Sutton et al., 1999; Silver et al., 2014), as they allow
estimating the objective function gradient with respect to
the policy parameters via sampling. In the next section, we
formulate and prove max-reward policy gradient theorems
for both deterministic and stochastic extended max-reward
policies.

4.2. Policy gradient theorems

First, we define p̂π̂t (s0, y0, s, y) – the probability measure of
arriving in the extended state (s, y) after t timesteps, starting

from (s0, y0) and executing the extended policy π̂. Let

P̂ π̂(s′, y′|s, y) =
∫
a

π̂(a|s, y)P̂ (s′, y′|s, y, a)da

be the “on-policy” transition model. Then, p̂π̂t (s0, y0, s, y)
is defined as follows:

p̂0(s0, y0, s, y) = δ(s− s0)δ(y − y0)

p̂π̂t (s0, y0, s, y) =

∫
s̃,ỹ

p̂π̂t−1(s0, y0, s̃, ỹ) P̂
π̂(s, y|s̃, ỹ) ds̃ dỹ

The discounted stationary state distribution of an extended
max-reward MDP is then given by

d̂π̂(s, y) =

∫
s0,y0

p̂0(s0, y0)

∞∑
t=0

γt p̂π̂t (s0, y0, s, y) ds0 dy0.

As such, d̂π̂ is not a distribution. However, it can be normal-
ized into one by dividing it by C =

∫
s,y

d̂π̂(s, y) ds dy.

Finally, we can formulate and prove the max-reward policy
gradient theorems. Consider a neural network with weights
θ that represents a stochastic policy. Then, we have the
following result:

Theorem 4.9. Let π̂θ : S × R → P(A) be a stochastic
extended max-reward policy parameterized with θ. Then,
the following holds for∇θĴ(θ):

∇θ Ĵ(θ) ∝ E(s,y)∼d̂π̂

a∼π̂θ

[
q̂π̂θ (s, a, y)∇θ ln π̂θ(a|s, y)

]
The deterministic max-reward policy gradient follows from
the stochastic version:

Corollary 4.10. Let µ̂θ : S × R → A be a deterministic
extended max-reward policy parameterized with θ. Then
∇θĴ(θ) can be computed as follows:

∇θJ(θ) ∝ Ed̂µ̂

[
∇θµ̂θ(s, y)∇aq̂

µ̂θ (s, a, y)|a=µθ(s,y)

]
The policy gradient theorems allow us to use various algo-
rithms from standard RL, such as REINFORCE (Williams,
1992), A2C (Sutton et al., 1999), A3C (Mnih et al., 2016),

Figure 3. Left: Single-goal maze, where the goal (red ball) is al-
ways in the same location. Right: Two-goals maze with two spawn
locations of the goal (red balls).
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Figure 4. Learning curves of TD3, max-reward TD3, PPO, and max-reward PPO on two different mazes. The vertical axis is the success
ratio, i.e., whether the goal was reached during the episode. The shaded area is the standard error of the mean. The horizontal axis is the
total environmental timesteps in millions. For each maze, we present results for six different reward functions (columns).

TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017),
DDPG (Lillicrap et al., 2016), and TD3 (Fujimoto et al.,
2018), to optimize maximum rewards. In this work, we
focus on PPO and TD3, as they are considered to be the
best-performing algorithms within their corresponding fam-
ilies. For max-reward PPO, the only difference compared
to the standard version is that the advantage estimation uses
max-reward returns. For max-reward TD3, the target value
for the Q functions is computed using the max-reward Bell-
man optimality operator (4.7). In Appendix, we provide
descriptions of max-reward TD3 and PPO in pseudocode.

5. Experiments
To empirically evaluate the benefits of using maximum in-
stead of cumulative reward, we compare the max-reward
TD3 and PPO with their cumulative counterparts using
two goal-reaching environments from Gymnasium-Robotics
(de Lazcano et al., 2023) under different dense reward func-
tions.

5.1. Maze with shortest path rewards

First, we consider the Maze environment from Gym
Robotics (de Lazcano et al., 2023) illustrated in Figure 3,
where the agent controls a ball by applying acceleration in
two dimensions. The objective is to reach the goal position
in the maze. Episodes last 1000 timesteps and there are no
terminal states. We use two mazes: single-goal maze, where
the goal is always in the same location, and the two-goals
maze where at each episode the goal location is chosen ran-
domly from the two possible options. The main metric in
this environment is success ratio – a binary value indicating

whether the goal was reached during the episode.

We consider several reward functions that induce the same
optimal policy of reaching the goal state:

1. Sparse reward – only reaching the goal is rewarded
with r = 1.

2. Dense l2 reward – default dense reward, defined as the
exponent of the negative of the l2-distance to the goal.
Reaching the goal is rewarded with r = 1.

3. Discrete shortest path (DSP) – our custom reward that
represents the true, topology aware distance to the goal.
To compute it, the maze is split into n×m cells. Then,
the distance matrix D ∈ Rn×m is computed such that
for each cell (i, j), D[i, j] is the number of cells be-
tween (i, j) and the goal-containing cell. The DSP
reward with parameter k ∈ N is then defined as

rkdsp(i, j) =

{
βD[i,j]+1, if D[i, j] = 0 mod k

0, otherwise

where β ∈ (0, 1) is a hyperparameter. The value of
k controls the sparsity of the reward, i.e., for larger k
fewer cells have a non-zero reward. Reaching the goal
is rewarded with r = 1.

For the DSP reward, we first tune the value of β by running
standard TD3 and PPO on the single-goal maze. We set
k = 1 and run 10 random seeds for each algorithm for β ∈
{0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}. Additionally, we test
the negative version of the DSP reward, rkdsp(i, j)−1, which,
in theory, should cause better exploration. For TD3, the best-
performing reward was the negative DSP with βTD3 = 0.9,
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Figure 5. Learning curves of TD3, max-reward TD3, deterministic max-reward TD3, PPO, and max-reward PPO on a stochastic version of
the single-goal maze with DSP reward, k = 3. The vertical axis is the success ratio, the shaded area is the standard error of the mean. The
horizontal axis is the total environmental timesteps. The results confirm that our max-reward methods work in stochastic environments.

and for PPO – negative DSP with βPPO = 0.95. In all other
runs involving DSP reward we use these values of β.

Finally, we compare TD3, PPO, max-reward TD3, and max-
reward PPO on the single-goal and two-goals mazes using
sparse, dense l2, and DSP reward for k = 1, 2, 3, 4 (for
cumulative methods, negative DSP reward is used). Figure
4 demonstrates the learning curves. The sparse reward per-
forms inconsistently due to insufficient exploration. Dense
l2 reward has local maximums (especially in the single-goal
maze) and its performance greatly depends on the maze
topology. The DSP reward, which represents the true dis-
tance to the goal, overall performs better.

Importantly, we see that the max-reward approaches work
for all values of k, while the standard RL methods do not.
For larger k, the reward becomes sparser, and cumulative
approaches tend to converge to suboptimal policies. We
believe that the nature of this phenomenon is the same as
in the chain environment example discussed in Section 3.1.
Specifically, the Maze environment can be seen as a larger
chain with multiple intermediate rewards. During train-
ing, all methods quickly learn to stay in one of the cells
with non-zero reward. Then, to update the policy, samples
of transitions to a better state are needed. For larger k,
these transitions become less frequent, as the cells with
non-zero reward become further from one another. In line
with the chain environment results, max-reward methods
require fewer such transitions and therefore perform more
efficiently.

Another potential reason for the superiority of max-reward
methods lies in the way how they handle local optima. Since
max-reward policy is conditioned on the discounted max-
reward so far, y, it has no incentive to stay in the local
optima. As y “remembers” the reward at a local optimum,
any trajectory leaving this optimum is at least as good as
staying in the optimum. Combined with exploration tech-
niques, e.g., entropy regularization in PPO, this causes the

agent to leave local optima after visiting them.

Stochastic Maze. One of the strengths of our RL formula-
tion is that it works with stochastic environments and/or
policies. To experimentally verify that, we conduct an
additional experiment using a stochastic variation of the
single-goal maze. Specifically, we introduce a parameter
pslip which regulates the level of stochasticity. Whenever
the agent makes an action, it is replaced with a random
action with probability pslip. We compare max-reward and
standard versions of TD3 and PPO on this environment. Ad-
ditionally, we implement and test deterministic max-reward
TD3 (Gottipati et al., 2020). In this experiment, we use
the DSP reward with k = 3, as it is a case where the max-
reward paradigm demonstrates improvement over standard
RL in a deterministic Maze. The results presented in Fig-
ure 5 confirm the theory: our max-reward TD3 solves this
stochastic environment while the deterministic max-reward
TD3 is highly inconsistent. Therefore, we conclude that our
method indeed can be used for stochastic environments.

5.2. Fetch environment

In the second experiment, we consider more challenging
robotics problems. Specifically, we study the Fetch-Slide
and Fetch-Push environments depicted in Figure 6. The
agent controls a 7-DoF manipulator and its goal is to move
the puck into the target location. In Fetch-Slide, the goal
is located beyond agent’s reach and hence it needs to slide
the puck into the goal. In Fetch-Push, the agent needs to
push the puck into the goal which can be anywhere on the
platform. Each episode is truncated after 100 timesteps and
there are no terminal states. We use the standard dense re-
ward for this problem defined as negative of the l2−distance
between the puck and the goal. The performance metric
for this environment is again the success ratio – a binary
value that indicates whether the goal was reached during

8



To the Max: Reinventing Reward in Reinforcement Learning

0.0 0.5 1.0 1.5 2.0
Timesteps (×106) 1e6

0.0

0.2

0.4

0.6

0.8
Su

cc
es

s r
at

io

Fetch Slide

0.0 0.5 1.0 1.5 2.0
Timesteps (×106) 1e6

0.0

0.2

0.4

0.6

0.8

Fetch Push

TD3 TD3Max

Figure 6. Success ratio for standard (light red) and max-reward (dark-red) TD3 in Fetch Slide (left) and Fetch Push (right) environments.

the episode. This environment is known to be challenging
for standard RL and it cannot be solved without special
approaches (Plappert et al., 2018).

The plot in Figure 6 demonstrates that the max-reward TD3
achieves a goal-reaching policy in both environments, while
the standard version, in line with the prior work, fails to learn
completely. We believe that this happens due to the differ-
ence in bootstrapping mentioned earlier. The environment is
complex and multidimensional and the goal-reaching tran-
sitions are rare which makes the learning problem really
hard for the standard methods. We believe that this experi-
ment shows the great potential of max-reward RL in more
realistic goal-reaching environments.

6. Conclusions and future work
In this work, we provide a theoretical description of the
max-reward reinforcement learning paradigm and verify
it experimentally. Our theoretical contributions include a
novel formulation of the max-reward value functions and
a Bellman-like contraction operator that enables efficient
learning. Besides, we prove the policy gradient theorems
for max-reward policies and hence enable using the state-of-
the-art RL algorithms in the context of max-reward RL.

In the experiments with two robotic environments, we show
that max-reward RL works better for sparse reward prob-
lems with surrogate dense reward. This result confirm our
intuition that maximum reward is a better choice for goal-
reaching environments. Moreover, we demonstrate that our
max-reward RL, unlike prior work, is also consistent in
stochastic environments.

Qualitatively, we believe that the main strengths of the max-
reward algorithms can be summarized as follows:

1. In max-reward RL, bootstrapping works differently
than in the standard RL. Specifically, it allows for more
efficient propagation of reward from the goal states.

2. Max-reward agents are more prone to getting stuck in
local optima. Since the maximum reward obtained so
far is a part of the extended state space, the agents do
not have any incentive to stay in these optima.

3. Due to the auxiliary variable y, max-reward value func-
tions are inherently distributional. As reported in prior
work (Bellemare et al., 2017), learning distributional
value functions can have positive impact even in deter-
ministic problems.

In future work, we aim to study how max-reward RL can be
combined with the existing methods for automated reward
design and explore its potential in other problems.
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Kröner, A., Picarelli, A., and Zidani, H. Infinite horizon
stochastic optimal control problems with running max-
imum cost. SIAM J. Control Optim., 56(5):3296–3319,
January 2018.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous con-
trol with deep reinforcement learning. In International
Conference on Learning Representations (ICLR), 2016.

Mataric, M. J. Reward functions for accelerated learning.
In Machine learning proceedings 1994, pp. 181–189. El-
sevier, 1994.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 1928–1937. PMLR, 2016.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, pp. 278–287.
Citeseer, 1999.

10

http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics


To the Max: Reinventing Reward in Reinforcement Learning

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion, 2017.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B.,
Baker, B., Powell, G., Schneider, J., Tobin, J., Chociej,
M., Welinder, P., et al. Multi-goal reinforcement learn-
ing: Challenging robotics environments and request for
research. arXiv preprint arXiv:1802.09464, 2018.

Quah, K. and Quek, C. Maximum reward reinforcement
learning: A non-cumulative reward criterion. Expert
Systems with Applications, 31(2):351–359, 2006. ISSN
0957-4174. doi: https://doi.org/10.1016/j.eswa.2005.09.
054.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In Proceedings
of Machine Learning Research (ICML), volume 37, pp.
1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International conference on machine learning, pp. 387–
395. Pmlr, 2014.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X.,
Duan, Y., Schulman, J., Turck, F. D., and Abbeel, P.
exploration: A study of count-based exploration for deep
reinforcement learning, 2017.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U.,
Cola, G. d., Deleu, T., Goulão, M., Kallinteris, A., KG,
A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff,
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A. Proofs
Proof of Lemma 4.2. First, we prove the equation for the state value function v̂π :

v̂π(s, y) = Eπ

[
y ∨ Ĝt

∣∣st=s
]
= Eπ

[
y ∨ rt+1 ∨ γĜt+1

∣∣st=s
]

= γEπ

[
y′ ∨ Ĝt+1

∣∣st=s
]
= γEπ

[
y′ ∨ y′ ∨ Ĝt+1

∣∣st=s
]

= γE at
st+1

[
y′ ∨ v̂π(st+1, y

′)
∣∣st=s

]
Then, for the state-action value function q̂π :

q̂π(s, a, y) = Eπ

[
y ∨ Ĝt

∣∣st=s
at=a

]
= Eπ

[
y ∨ rt+1 ∨ γĜt+1

∣∣st=s
at=a

]
= γEπ

[
y′ ∨ Ĝt+1

∣∣st=s
at=a

]
= γEπ

[
y′ ∨ y′ ∨ Ĝt+1

∣∣st=s
at=a

]
= γEst+1

at+1

[
y′ ∨ q̂π(st+1at+1, y

′)
∣∣st=s
at=a

]

Proof of Theorem 4.4. First, we demonstrate a simple property of the ∨ operator that we will use later. Let a, x, y ∈ R.
Then, using equation x ∨ y = 0.5(x+ y + |x− y|), we obtain the following:

a ∨ x− a ∨ y = 0.5
(
a+ x+ |x− a| − a− y − |y − a|

)
= 0.5(x− y + |x− a| − |y − a|)
≤ 0.5(x− y + |x− a− (y − a)|)
= 0.5(x− y + |x− y|)
≤ |x− y|

(9)

Now, we can prove that T̂ π is a contraction. We begin with the state-action case. Let q, z : S ×A× R be two-real valued
functions. Then, we can expand ∥T̂ πq − T̂ πz∥∞ as follows:

∥T̂ πq − T̂ πz∥∞ = γ sup
s∈S,a∈A,y∈R

∣∣∣Est+1
at+1

[
y′ ∨ q(st+1, at+1, y

′)− y′ ∨ z(st+1, at+1, y
′)
∣∣st=s
at=a

]∣∣∣
≤ γ sup

s∈S,a∈A,y∈R
Est+1
at+1

[∣∣∣y′ ∨ q(st+1, at+1, y
′)− y′ ∨ z(st+1, at+1, y

′)
∣∣∣∣∣st=s
at=a

]
|

(∗)
≤ γ sup

st+1∈S,at+1∈A,y′∈R

∣∣∣y′ ∨ q(st+1, at+1, y
′)− y′ ∨ z(st+1, at+1, y

′)
∣∣∣

= γ sup
s∈S,a∈A,y∈R

∣∣∣y ∨ q(s, a, y)− y ∨ z(s, a, y)
∣∣∣

≤ γ sup
s∈S,a∈A,y∈R

∣∣∣q(s, a, y)− z(s, a, y)
∣∣∣ = ∥q − z∥∞

The first inequality follows from the fact that
∣∣∣Ex[x]

∣∣∣ ≤ Ex

[
|x|

]
and the last inequality follows from Eq. (9). In (∗), we use

the following property of the expectation: supy
{
E[x|y]

}
≤ supx{x}. Now, we demonstrate the contraction property for

the state value function: Let v, u : S × R be two-real valued functions. Then, we expand ∥T̂ πv − T̂ πu∥∞ as follows:

∥T̂ πv − T̂ πu∥∞ = γ sup
s∈S,y∈R

∣∣∣E at
st+1

[
y′ ∨ v(st+1, y

′)− y′ ∨ u(st+1, y
′)
∣∣st=s

]∣∣∣
≤ γ sup

s∈S,y∈R
E at
st+1

[∣∣∣y′ ∨ v(st+1, y
′)− y′ ∨ u(st+1, y

′)
∣∣∣∣∣st=s

]
≤ γ sup

st+1∈S,y′∈R

∣∣∣y′ ∨ v(st+1, y
′)− y′ ∨ u(st+1, y

′)
∣∣∣

= γ sup
s∈S,y∈R

∣∣∣y ∨ v(s, y)− y ∨ u(s, y)
∣∣∣

≤ γ sup
s∈S,y∈R

∣∣∣v(s, y)− u(s, y)
∣∣∣ = ∥v − u∥∞

12
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Therefore, the max-reward Bellman operator is a contraction. Hence, by the Banach fixed-point theorem, it has a unique
fixed-point(s). From Lemma 4.2, we conclude that this is the max-reward value function(s).

Proof of Lemma 4.8.

∥T̂ ∗q − T̂ ∗z∥∞ = γ sup
s∈S,a∈A,y∈R

∣∣∣Est+1

[
y′ ∨max

a′
q(st+1, a

′, y′)− y′ ∨max
a′

z(st+1, a
′, y′)

∣∣st=s
at=a

]∣∣∣
≤ γ sup

s∈S,a∈A,y∈R
Est+1

[∣∣∣y′ ∨max
a′

q(st+1, a
′, y′)− y′ ∨max

a′
z(st+1, a

′, y′)
∣∣∣∣∣st=s
at=a

]
≤ γ sup

s∈S,a∈A,y∈R
Est+1

[
max
a′

∣∣∣y′ ∨ q(st+1, a
′, y′)− y′ ∨ z(st+1, a

′, y′)
∣∣∣∣∣st=s
at=a

]
≤ γ sup

st+1∈S,at+1∈A,y′∈R

∣∣∣y′ ∨ q(st+1, at+1, y
′)− y′ ∨ z(st+1, at+1, y

′)
∣∣∣

= γ sup
s∈S,a∈A,y∈R

∣∣∣y ∨ q(s, a, y)− y ∨ z(s, a, y)
∣∣∣

≤ γ sup
s∈S,a∈A,y∈R

∣∣∣q(s, a, y)− z(s, a, y)
∣∣∣ = ∥q − z∥∞

(10)

Proof of Theorem 4.9. First of all, we notice that the max-reward Bellman equation implies another recursive equation for
v̂π and q̂π :

q̂π(s, a, y) = γEst+1

[
y′ ∨ v̂π(st+1, y

′)
∣∣st=s

]
= γE at

st+1

[
v̂π(st+1, y

′)
∣∣st=s
at=a

]
(11)

As discussed in the main paper, we use the version with extra ∨y′ to enforce boundary conditions. However, we can still use
the equation above as it is a property of the max-reward value function.

Before proving the theorem, we introduce simplified notation to improve readability – for all functions, we use subscripts
to denote the input variables. For example, v̂t := v̂π̂(st, yt). The proof follows the one for the standard policy gradient
theorem. We begin by obtaining a recurrent equation for∇θv̂0 :

∇θv̂0 = ∇θ

( ∫
a0

π̂0q̂0da0
)
=

∫
a0

(∇θπ̂0)q̂0da0︸ ︷︷ ︸
ϕ0

+

∫
a0

π̂0(∇θq)0da0

Eq.(11)
= ϕ0 + γ

∫
a0

π̂0

(
∇θ

∫
s1,y1

p̂(s1, y1|s0, y0, a0)v̂1ds1dy1
)
da0

= ϕ0 + γ

∫
s1,y1

∫
a0

π̂0p̂(s1, y1|s0, y0, a0)(∇θv̂1)ds1dy1da0

= ϕ0 + γ

∫
s1,y1

p̂π̂1 (s0, y0, s1, y1)(∇θv̂1)ds1dy1 ,

where we introduced the shorthand ϕt = ϕ(st, yt) =
∫
a
∇θπ̂(a|st, yt) q(st, a, yt) da. Expanding this recurrence further,

we obtain

∇θv̂0 =

∞∑
t=0

∫
st,yt

γtp̂π̂t (s0, y0, st, yt)ϕ(st, yt)dstdyt

=

∫
s,y

( ∞∑
t=0

γtp̂π̂t (s0, y0, s, y)
)
ϕ(s, y)dsdy

∝
∫
s,y

d̂π̂(s, y|s0, y0)ϕ(s, y)dsdy

=

∫
s,y

d̂π̂(s, y|s0, y0)
(∫

a

(
∇θπ̂(a|s, y)

)
q̂(s, a, y)da

)
dsdy

13
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Above, d̂π̂(s, y|s0, y0) is the discounted stationary distribution of s, y for policy π given s0, y0. Finally, we substitute this
formula for∇θv̂0 into the definition of Ĵ(θ) and conclude the proof:

∇θĴ(θ) =

∫
s0,y0

p̂0(s0, y0)

∫
s,y

d̂π̂(s, y|s0, y0)
(∫

a

(
∇θπ̂(a|s, y)

)
q̂(s, a, y)da

)
dsdyds0dy0

=

∫
s,y

d̂π̂(s, y)
(∫

a

(
∇θπ̂(a|s, y)

)
q̂(s, a, y)da

)
dsdy

= E s,y∼d̂π̂

a∼π̂(·|s,y)

[
q̂π̂(s, a, y)∇θ ln π̂(a|s, y)

] (12)

B. Experimental details
For all experiments, we used our implementation of TD3 and PPO that we verified on several MuJoco domains. The
implementation of the max-reward algorithms is similar to their cumulative versions except for the following differences:

1. The input layer of all neural networks has an extra dimension to work with the extended states (s, y).

2. The output layer of the value networks uses Tanh activation and is rescaled to u ∈ [0, R̄]. Then, it is transformed with
ReLU(u− y) + y to enforce v̂π(s, y) ≥ y.

Hyperparameters of all runs are reported in Tables 1-2.

Parameter PPO PPOMax TD3 TD3Max
Parallel environments 16 16 16 16
Discount factor γ 0.99 0.999 0.99 0.995
Learning rate 3e-4 3e-4 3e-4 3e-4
Lr. annealing No No No No
Entropy weight 5e-2 5e-2
Value loss weight 0.5 0.5
Clip coef. 0.2 0.2
GAE λ 0.95 1
Policy update freq. 2 2
Target soft update τ 0.005 0.005
Expl. noise type pink pink
Expl. noise std 0.7 0.7
Expl. noise clip 0.5 0.5
Target noise scale 0.2 0.2
Initial expl. steps 25000 25000
Tr. epochs per rollout 10 10
Rollout length 1024 2048
Minibatch size 32 32 256 256

Table 1. Hyperparameters for the experiments with Maze environment.

C. Algorithms

14
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Parameter TD3 TD3Max
Parallel environments 16 16
Discount factor γ 0.99 0.995
Learning rate 3e-4 3e-4
Lr. annealing No No
Policy update freq. 2 2
Target soft update τ 0.005 0.005
Expl. noise type pink pink
Expl. noise std 0.1 0.1
Expl. noise clip 0.5 0.5
Target noise scale 0.2 0.2
Initial expl. steps 25000 25000
Minibatch size 256 256

Table 2. Hyperparameters for the experiments with Fetch environment.

Algorithm 1 Max-reward TD3
1: Initialize critic networks q̂ϕ1 , q̂ϕ2 and actor network µθ

2: Initialize target networks ϕ′
1 ← ϕ1, ϕ

′
2 ← ϕ2, θ

′ ← θ
3: Initialize replay buffer D
4: for episode = 1, 2, . . . do
5: Initialize s0, y0 ∼ p̂0
6: for t = 0, 1, . . . , T − 1 do
7: Sample exploration noise ϵt
8: Execute at = µ(st, yt) + ϵt and get st+1, rt+1

9: Update yt+1 = (yt ∨ rt+1)/γ
10: Save (st, yt, at, st+1, rt+1, yt+1) into D
11: if initial exploration is over then
12: Sample a mini-batch of size N from D
13: Sample target actions noise η
14: ã← µθ′(s′, y′) + η
15: z ← y′ ∨ γmini=1,2 q̂ϕ′

i
(s′, ã, y′)

16: Critic loss Lc =
1
N

∑2
i=1(z − q̂ϕi

(s, a, y))2

17: Perform gradient update step on Lc

18: if time to update policy then
19: La ← E

[
q̂ϕ1

(s, µθ(s, y), y)
]

20: Perform gradient update step on La

21: ϕ′
i ← τϕi + (1− τ)ϕ′

i, i = 1, 2
22: θ′ ← τθ + (1− τ)θ
23: end if
24: end if
25: end for
26: end for

15
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Algorithm 2 Max-reward PPO
1: Initialize actor π̂θ and critic v̂ϕ
2: for iteration = 1, 2, . . . do
3: Initialize trajectories buffer D
4: for actor = 1, 2, . . . , N do
5: Initialize s0, y0 ∼ p̂0
6: for t = 0, 1, . . . , T − 1 do
7: Execute at ∼ πθ(·|st, yt) and get st+1, rt+1

8: Update yt+1 = (yt ∨ rt+1)/γ
9: Save (st, yt, at, st+1, rt+1, yt+1) into D

10: end for
11: Ĝn

t ← γnv̂ϕ(st+n, yt+n), n = 1, . . . , T − t

12: Ĝt(λ) = (1− λ)
∑T−t

n=1 λ
n−1Ĝn

t

13: Compute advantages Ât = Ĝt(λ)− v̂ϕ(st, yt)
14: end for
15: for k=1, 2 . . .K do
16: Critic loss: Lc ← 1

T

∑
t(Ĝ

T−t
t − v̂ϕ(s, y))

2

17: Actor loss: La ← LPPO(πθ, {Ât}Tt=1)
18: Perform gradient update step on La + Lc

19: end for
20: end for
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