
Finding separatrices of dynamical flows with Deep Koopman Eigenfunctions

Kabir V. Dabholkar

Faculty of Mathematics

Technion – Israel Institute of Technology

Haifa, Israel 3200003

kabir@campus.technion.ac.il

Omri Barak

Rappaport Faculty of Medicine and Network Biology Research Laboratory

Technion – Israel Institute of Technology

Haifa, Israel 3200003

omri.barak@gmail.com

Abstract

Many natural systems, including neural circuits involved in decision making, are modeled as high-dimensional dynamical systems with multiple stable states. While existing analytical tools primarily describe behavior near stable equilibria, characterizing separatrices—the manifolds that delineate boundaries between different basins of attraction—remains challenging, particularly in high-dimensional settings. Here, we introduce a numerical framework leveraging Koopman Theory combined with Deep Neural Networks to effectively characterize separatrices. Specifically, we approximate Koopman Eigenfunctions (KEFs) associated with real positive eigenvalues, which vanish precisely at the separatrices. Utilizing these scalar KEFs, optimization methods efficiently locate separatrices even in complex systems. We demonstrate our approach on synthetic benchmarks, ecological network models, and high-dimensional recurrent neural networks trained on either neuroscience-inspired tasks or fit to real neural data. Moreover, we illustrate the practical utility of our method by designing optimal perturbations that can shift systems across separatrices, enabling predictions relevant to optogenetic stimulation experiments in neuroscience. Our code is available on GitHub and we share an interactive description of the work and its extensions in a UniReps blog.

1 Introduction

Recurrent neural networks (RNNs) are widely used in neuroscience as models of computation arising from the coordinated dynamics of many neurons, motivating efforts to reverse-engineer their underlying dynamical mechanisms [1, 2]. In particular, many cognitive tasks such as decision-making [3] and associative memory [4] can be modeled as multistable dynamical systems, where distinct decisions or memories correspond to different stable attractor states in phase space. Transitions between these attractors are governed by the geometry of the basins of attraction and, crucially, by the *separatrix*: the manifold that delineates the boundary between basins (Figure 1A).

A reverse-engineering method that has yielded significant insights about RNN computations involves finding approximate fixed points and linearising around them [5]. This involves minimizing a scalar function—the kinetic energy $q(x) = \|f(x)\|^2$ —to locate these points (Figure 1B). Once found, the

linearisation of the dynamics at the fixed point can shed light on the mechanism of computations [6–16].

However, fixed points alone do not capture the global organization of multistable dynamics. Since inputs perturb the state in arbitrary directions, it is critical to know whether they cross the separatrix. To predict the effects of perturbations or design targeted interventions, one must characterize the separatrix itself.

Ideally, we would have a scalar function analogous to the kinetic energy—smooth, yet vanishing precisely on the separatrix (Figure 1C). This would allow gradient-based optimization to locate the decision boundary and enable the design of optimal decision-changing perturbations (Figure 1A).

In this work, we propose a novel method to characterize separatrices in high-dimensional black-box dynamical systems by leveraging Koopman operator theory [17, 18]. Specifically, we approximate scalar-valued Koopman eigenfunctions (KEFs) with positive real eigenvalues using deep neural networks. These eigenfunctions vanish precisely on the separatrix.

We apply this framework to synthetic systems, ecological models, RNNs trained on neuroscience-inspired tasks, and trained to reproduce neural recordings. In addition, we demonstrate that the learned KEFs can be used to design minimal perturbations that push the system across separatrices—a setting relevant to experimental protocols such as optogenetic stimulation.

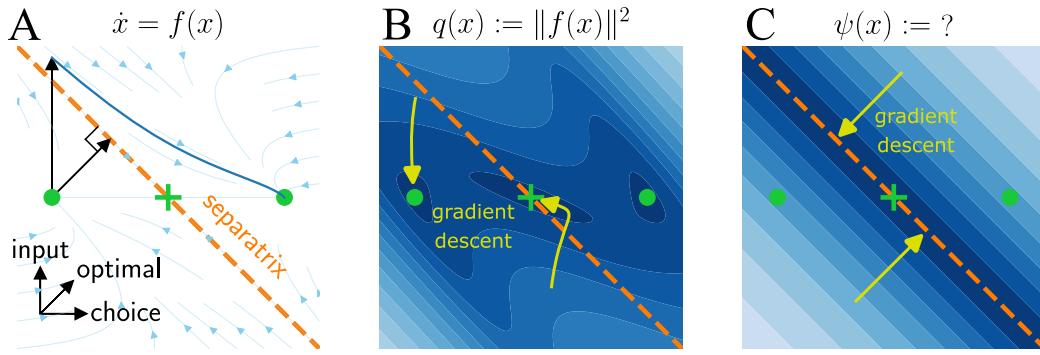


Figure 1: (A) Phase-portrait of a 2D bistable system. The two attractors can signify different choices, and therefore the direction between them is called the choice direction. External input pushes the system across the separatrix letting it relax to the other attractor. The optimal perturbation has a different direction. (B) The kinetic energy vanishes at the fixed points (green ‘o’ stable and ‘+’ unstable) but does not reveal the full separatrix. (C) We aim to learn a scalar function $\psi(x)$ that vanishes precisely on the separatrix. Gradient descent from random initial points yields a numerical method to locate the respective minima of the scalar functions.

We summarise our main contributions:

- We develop a tool to locate separatrices, the surfaces between basins of attraction in black-box multi-stable dynamical systems: a gap in the RNN reverse-engineering toolkit.
- We demonstrate that KEFs with positive eigenvalues vanish precisely on the separatrix and can be trained using deep neural networks and a loss based on the Koopman PDE error.
- We identify two degeneracies of the Koopman PDE and propose effective regularization strategies to resolve them.
- We show how the learned KEFs can be used to design minimal norm perturbations that shift the system across separatrices.
- We demonstrate the method on systems ranging from low-dimensional models to a 668-dimensional RNN fit to mouse neural data.

2 Related Work

Our work builds on a growing body of literature at the intersection of Koopman operator theory, deep learning, and the analysis of dynamical systems, particularly in neuroscience and machine learning.

Koopman theory has recently been used to evaluate similarity between dynamical systems, both in neuroscience [19]—where it is applied to study the temporal structure of computation—and in machine learning, where it has been used to compare training dynamics across models [20]. These approaches typically analyze system-level behavior using dynamic mode decomposition [21–23], a finite-dimensional approximation of the Koopman operator.

In parallel, deep learning methods have emerged as powerful tools for solving partial differential equations (PDEs) in high-dimensions. Notably, the Deep Ritz Method [24] and Deep Galerkin Method (DGM) [25] which eliminate the need for meshes of points. A related line of work uses physics-informed neural networks (PINNs), which incorporate known physics (often PDEs in fluid dynamics) as part of the loss function during DNN training [26].

Koopman-based embeddings have also been proposed as a tool for analyzing the internal dynamics of RNNs. In [27], the authors show that eigenvectors of finite-dimensional approximations of the Koopman operator can uncover task-relevant latent structure in RNNs. More generally, several works explore DNN-based approximations of Koopman operators for learning meaningful embeddings of nonlinear dynamics [28–30].

An alternative line of research for identifying Lagrangian Coherent Structures (LCS) employs the Finite-Time Lyapunov Exponent (FTLE) [31–33], which quantifies sensitivity to initial conditions by measuring the exponential rate of separation between nearby trajectories over a finite time horizon. Ridges in the FTLE field reveal stable and unstable LCS, with the latter corresponding to separatrices in our terminology. These methods are most often applied to two- or three-dimensional fluid flows, where they delineate dynamically distinct regions in the velocity field.

Finally, our approach is conceptually connected to work on the geometry of Koopman eigenfunctions themselves. In particular, [34] studies the level sets of KEFs and their relationship to isostables and isochrons in systems with stable fixed points. In the setting of linear systems, and nonlinear systems topologically conjugate to them, [35, 36] establish theoretical links between KEF level sets and separatrices (stable manifolds). Together, these studies motivate our approach of deep-learning KEFs, as a method for identifying separatrices in general high-dimensional, multi-stable systems.

3 Results

3.1 KEFs as Scalar Separatrix Indicators

We consider autonomous dynamical systems of the form:

$$\dot{x} = f(x), \quad x \in \mathcal{X} \quad (1)$$

where the $\dot{\square}$ is shorthand for the time derivative $\frac{d}{dt}\square$ and $f : \mathcal{X} \rightarrow \mathcal{X}$ defines the dynamics on an N dimensional state space \mathcal{X} .

Our goal is to construct a smooth scalar function ψ that vanishes precisely on the separatrix between basins of attraction. Consider two such basins (Figure 2). All we care about is the existence of the separatrix manifold, with dynamics moving away from it. The simplest such dynamics is a one-dimensional linear system $\dot{\psi} = \lambda\psi$, with $\lambda > 0$. This motivates a mapping that projects $x \in \mathcal{X}$ to $\psi(x) \in \mathbb{R}$, and induces these dynamics. Such a mapping needs to satisfy:

$$\frac{d}{dt} \left(\psi(x(t)) \right) = \lambda\psi(x(t)) \quad (2)$$

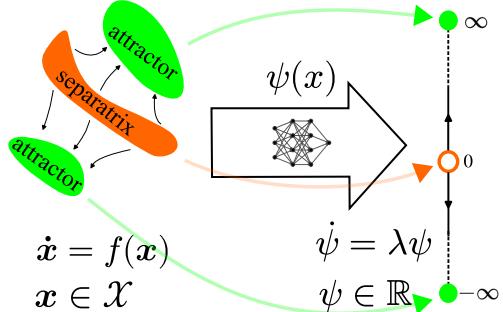


Figure 2: Mapping the high-dimensional dynamics of x with an unstable manifold – the separatrix – to the one dimensional linear dynamics of ψ with instability at $\psi = 0$, i.e., $\lambda > 0$. We approximate the mapping $\psi(x)$ with a DNN.

along any trajectory $\mathbf{x}(t)$ in \mathcal{X} . See Appendix J for a formal link between ψ and the separatrix.

This is precisely the behavior of a Koopman eigenfunction (KEF) with eigenvalue $\lambda > 0$. Note that Koopman eigenfunctions are usually introduced in a different manner, and Appendix C shows the connection to our description.

Equation (2) can be re-written as:

$$\nabla\psi(\mathbf{x}) \cdot f(\mathbf{x}) = \lambda\psi(\mathbf{x}). \quad (3)$$

by employing the chain-rule of differentiation and requiring it to hold at all $\mathbf{x} \in \mathcal{X}$. This is the Koopman partial differential equation (PDE). λ relates to the timescale of ψ and is an important hyperparameter of our method (Appendix I).

We approximate ψ using a deep neural network (Appendix F) and train it by minimizing the Koopman PDE residual. Specifically, we define the loss:

$$\mathcal{L}_{\text{PDE}} = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} [\nabla\psi(\mathbf{x}) \cdot f(\mathbf{x}) - \lambda\psi(\mathbf{x})]^2, \quad (4)$$

where $p(\mathbf{x})$ is a sampling distribution over the phase space [24, 25]. As with any eigenvalue problem, this loss admits the trivial solution $\psi \equiv 0$. To discourage such solutions, we introduce a shuffle-normalization loss where the two terms are sampled independently from the same distribution:

$$\mathcal{L}_{\text{shuffle}} = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x}), \tilde{\mathbf{x}} \sim p(\mathbf{x})} [\nabla\psi(\mathbf{x}) \cdot f(\mathbf{x}) - \lambda\psi(\tilde{\mathbf{x}})]^2, \quad (5)$$

and optimize the ratio:

$$\mathcal{L}_{\text{ratio}} = \frac{\mathcal{L}_{\text{PDE}}}{\mathcal{L}_{\text{shuffle}}}. \quad (6)$$

We train using stochastic gradient descent, where expectations are approximated by a batch of samples drawn from $p(\mathbf{x})$ and the shuffle corresponds to a random permutation of the samples in the batch (see Appendix G for details).

To illustrate the method, we start with an analytically solvable system in 1D (Figure 3A):

$$\dot{x} = x - x^3 \quad (7)$$

The system has three fixed points, corresponding to minima of $q(x)$ (Figure 3B). A $\lambda = 1$ KEF can be derived analytically (Appendix A):

$$\psi(x) = \frac{x}{\sqrt{|1 - x^2|}} \quad (8)$$

And the zero of this function corresponds to the unstable point, which serves as a separatrix in this 1D case. Figure 3C shows that the DNN approximates this function well, with the location of the zero (separatrix) being captured precisely.

We also apply the method to two 2D bistable systems: a 2D damped Duffing oscillator (Figure 3DEF), and a 2-unit GRU RNN trained on a one-bit flip-flop task (Figure 3GHI). In both cases, the system has two stable fixed points (green circles) and one unstable saddle (green crosses). Kinetic energy functions, shown for comparison, are minimized at the fixed points. In contrast, the learned $\lambda = 1$ KEFs are zero on the separatrix (green contours).

3.2 Challenges and Solutions

While the examples above show cases where simple optimization leads to the separatrix, there are several crucial implementation details of our proposed methods. In particular, even a $\psi(x)$ that satisfies the Koopman PDE may fail to identify the true separatrix. This arises from known degeneracies in Koopman eigenfunctions, particularly in multistable or high-dimensional systems. To enable utilization of our tool, we describe two key failure modes and our strategies to resolve them, as summarized in Figure 4.

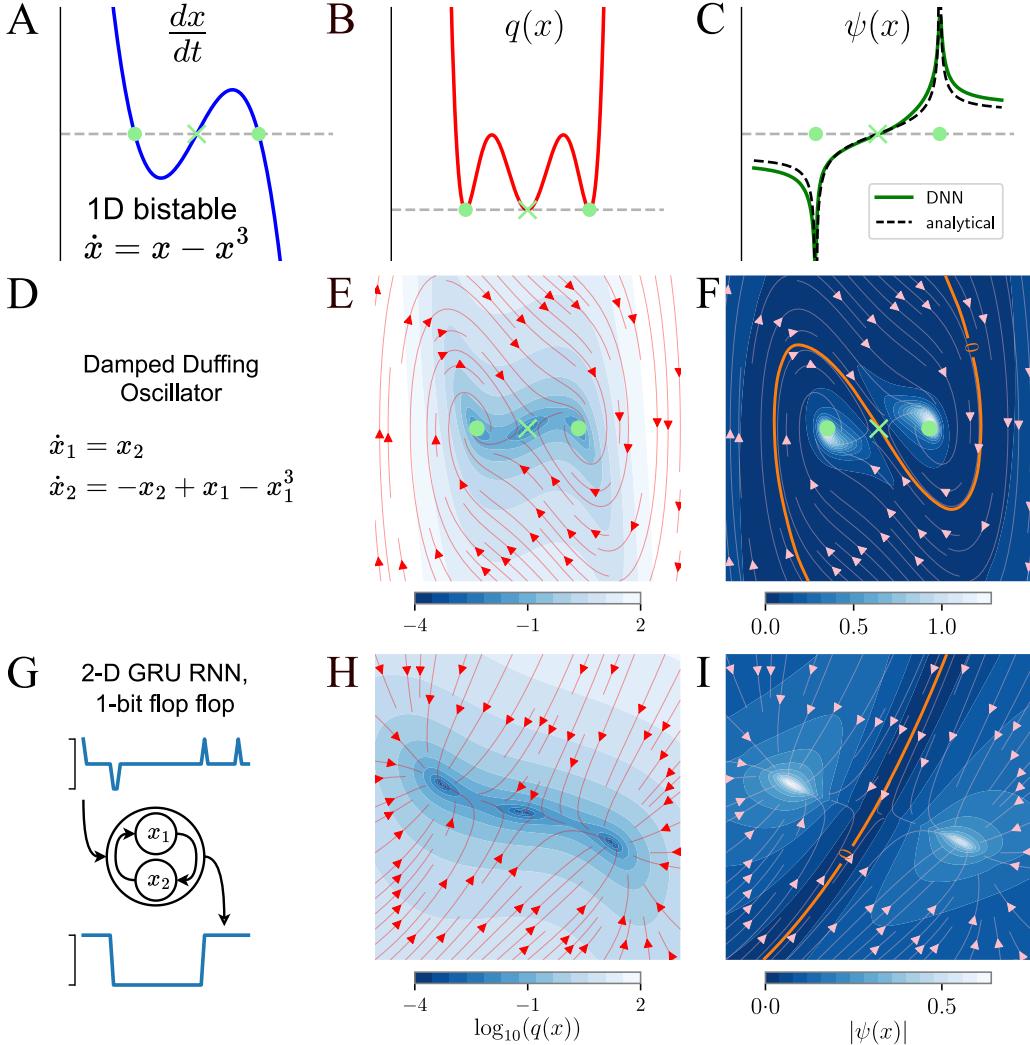


Figure 3: Our method to approximate KEFs in three bistable systems. (A) A 1D system $\dot{x} = x - x^3$. The curve shows $f(x)$, and its fixed points in light green – ‘o’s stable and ‘x’s unstable. (B) The kinetic energy $q(x)$ of this system. (C) the true KEF (8) and its DNN approximation obtained by our method. (D,E,F) Damped Duffing Oscillator in 2D (G,H,I) 2-unit GRU [37] RNN trained on 1-bit flip flop (1BFF) [5] and our KEFs.

Degeneracy across basins. A central issue stems from the compositional properties of Koopman eigenfunctions. Let $\psi_1(x)$ and $\psi_2(x)$ be eigenfunctions with eigenvalues λ_1 and λ_2 . Then, their product is also a KEF:

$$\nabla[\psi_1(x)\psi_2(x)] \cdot f(x) = (\lambda_1 + \lambda_2)\psi_1(x)\psi_2(x). \quad (9)$$

In particular, consider a smooth KEF ψ^1 with $\lambda = 1$ that vanishes only on the separatrix (e.g., as in Figure 3). Now, consider a piecewise-constant function ψ^0 with $\lambda = 0$ that takes constant values within each basin and may be discontinuous at the separatrix. The product $\psi^1\psi^0$ remains a valid KEF with $\lambda = 1$, but it can now be zero across entire basins—thereby destroying the separatrix structure we aim to capture (Figure 4 top).

We observe this behavior empirically in Appendix D, where independently initialized networks converge to different spurious solutions. To mitigate this, we introduce a *balance regularization* term that biases ψ to have nonzero values in opposing basins, encouraging sign changes across the

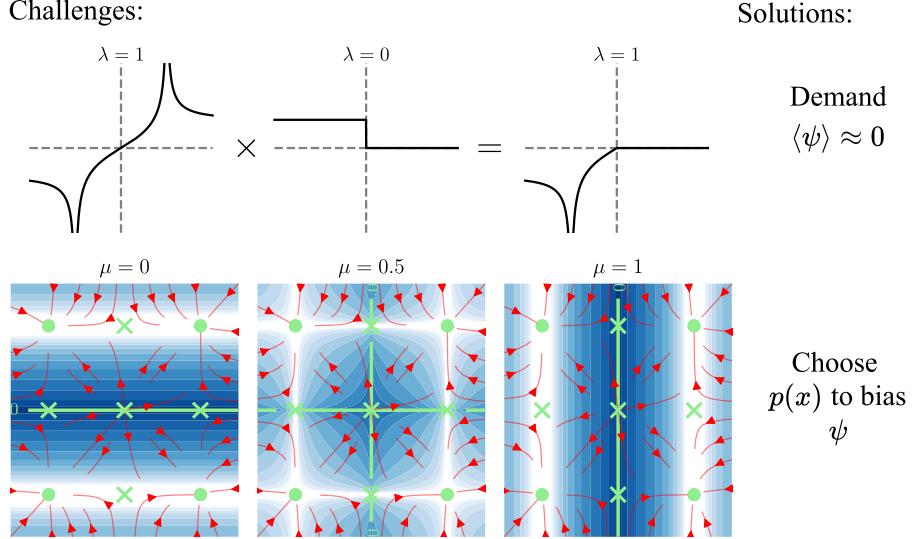


Figure 4: Top: In the presence of multiple basins, a KEF can collapse to zero within a single basin. This degeneracy is realised by multiplying the KEF with a piecewise constant KEF with $\lambda = 0$ and invoking (9). This example corresponds to $\dot{x} = x - x^3$. We introduce a regularisation term (10) to encourage the mean value $\langle \psi \rangle \approx 0$. This encourages solutions with sign changes across basins. Bottom: In higher dimensions, degeneracy arises from directional ambiguity in solutions. We visualise the analytical solution (12) for $\dot{x} = x - x^3$; $\dot{y} = y - y^3$. We address this by sampling from multiple local distributions around separatrix points and training an ensemble of KEFs.

separatrix. Specifically, we define:

$$\mathcal{L}_{\text{bal}} = \frac{(\mathbb{E}[\psi(x)])^2}{\text{Var}[\psi(x)]}, \quad (10)$$

and train using the combined loss $\mathcal{L}_{\text{ratio}} + \gamma_{\text{bal}} \mathcal{L}_{\text{bal}}$, where γ_{bal} is a scalar hyperparameter.

In higher-dimensional systems, the Koopman PDE admits a family of valid KEFs that differ in their directional dependence. Consider a separable 2D system:

$$\dot{x} = f_1(x), \quad \dot{y} = f_2(y). \quad (11)$$

Solving the PDE for this system (appendix B) yields a family of KEFs parameterised by $\mu \in \mathbb{R}$:

$$\psi(x, y) = A(x)^\mu B(y)^{1-\mu}, \quad (12)$$

where $A(x)$ and $B(y)$ are KEFs to the respective 1D problems. For example, when $\mu = 1$, the eigenfunction depends only on x and ignores y – therefore unable to capture y -dependent separatrices. Figure 4 (bottom) illustrates this effect: different values of μ yield KEFs aligned with different separatrices.

Even in non-separable systems, this degeneracy can arise. Optimizing $\mathcal{L}_{\text{total}}$ can lead to a KEF that identifies some separatrices and ignores others (Appendix D). To address this, we train multiple KEFs $\{\psi_i(x)\}_{i=1}^k$, while using their input distributions to bias each one to capture a different separatrix. For $\psi_i(x)$, we choose two points in different basins of attraction, and then use a binary search on the line connecting them to find a point on the separatrix. Note that the KEF is still needed to obtain the full separatrix, and not just a point. Around each such point β_i , we define a local distribution $\mathcal{N}(\beta_i, \sigma_{ij}^2 I)$, using a range of scales $\{\sigma_{ij}\}_{j=1}^J$ to span both fine and global structure. For each distribution, we minimize the sum $\sum_{j=1}^J \mathcal{L}_{\text{total}}^j$. We then consider the union of the separatrices obtained from each of the KEFs to complete the picture (see 2-bit flip flop demonstration below).

3.3 Demonstrations

We demonstrate the applicability of the method on several qualitative examples.

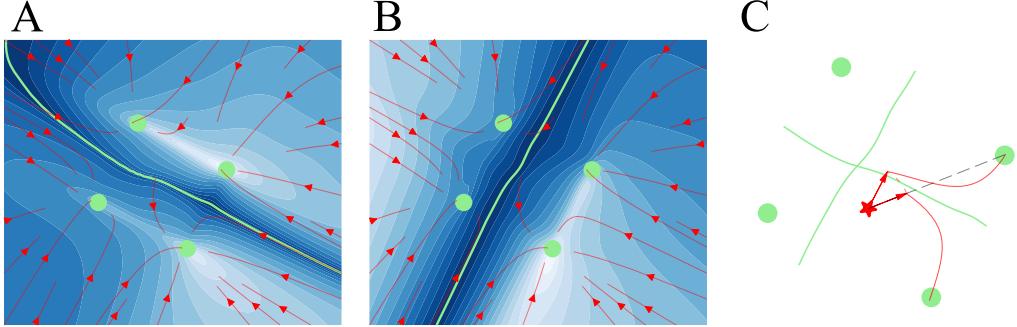


Figure 5: Two-bit flip flop task in a 3-unit GRU. The system has 4 stable fixed points (light-green points). (A,B) Two KEFs obtained by our method. They complement each other as they each captures a separatrix along one direction. (C) Use of KEF to design minimal perturbations that push trajectories across the separatrix.

3D GRU RNN Performing Two-Bit Flip Flop

We first demonstrate our method on a low-dimensional recurrent neural network trained to perform a two-bit flip flop (2BFF) task. Specifically, we use a 3-unit gated recurrent unit (GRU) network [37]. The trained network exhibits four stable fixed points (Figure 5), corresponding to different memory states of the task.

To overcome the degeneracies described in Figure 4, we adopt a targeted sampling strategy. We first identify points on the separatrix by interpolating between pairs of fixed points and performing binary search: at each step, we simulate the dynamics to determine basin membership and refine the search. Around these discovered separatrix points, we construct concentric isotropic Gaussian distributions, and sample from them to train on the loss $\mathcal{L}_{\text{total}}$ (Appendix G).

Two resulting KEF are shown in Figure 5 A,B). As expected, the KEFs vanish precisely along the separatrices. This result validates the ability of our method to recover boundary manifolds in neural dynamical systems, even in the presence of degeneracy. Once we know the separatrices, we can determine optimal perturbation directions (Figure 5C). Starting from a given initial condition (red star), we see that the same amplitude perturbation is sufficient to reach a different attractor when using the separatrix information, and insufficient when directed at the desired attractor. A more quantitative depiction of this effect is shown below in a higher-dimensional system.

11D Ecological Dynamics

We next apply our method (Appendix G) to a high-dimensional ecological model: a generalized Lotka–Volterra (gLV) system fit to genus-level abundance data from a mouse model of antibiotic-induced *Clostridioides difficile* infection (CDI) [38]. The system has five stable fixed points. Following [39] we focus our analysis to two of these fixed points representing healthy and diseased microbial states.

We optimize the KEF in the full 11-dimensional state space. For interpretability, we follow the projection approach of [39], visualizing the dynamics in the 2D plane spanned by the two chosen stable fixed points and the origin (see Figure 6). Although the KEF is trained entirely in the original 11-dimensional space, its zero level set (light green curve) aligns well with the true separatrix (orange line) computed using a grid of initial conditions in the 2D slice [39].

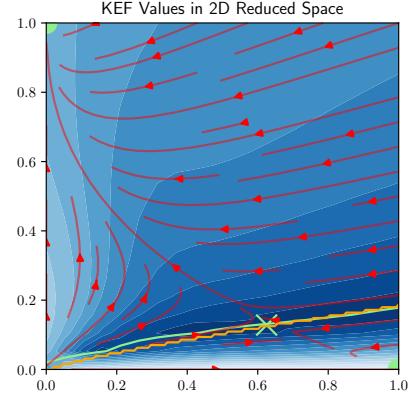


Figure 6: KEF approximation in a fitted 11D gLV model of CDI [38, 39]. Zero level set of the KEF aligns with the separatrix in a 2D projection plane. Separatrix (orange line) computed using a grid of initial conditions in the 2D slice [39].

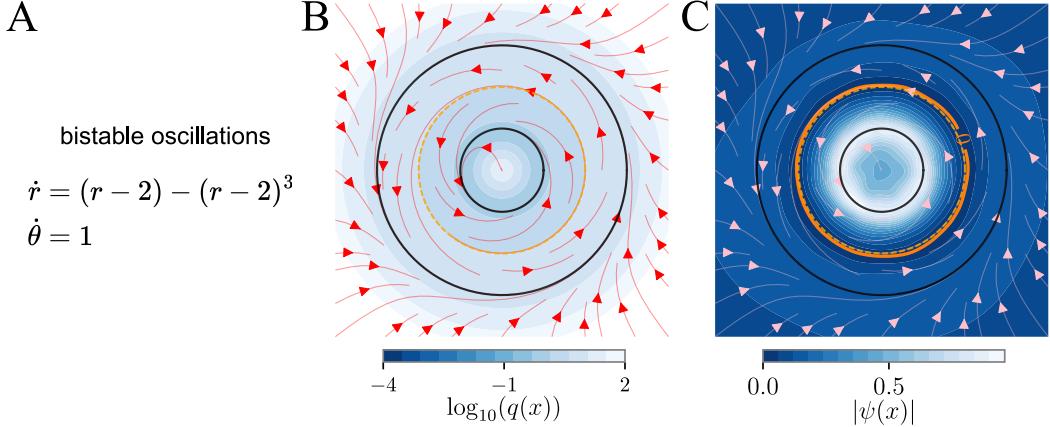


Figure 7: Applying our method to a system of stable and unstable limit cycles, a system without any fixed points on the separatrix. (A) system equations. (B) kinetic energy, with dashed line for separatrix. (C) KEF from our method with zero level highlighted.

This result demonstrates that our technique can be applied directly to real-world fitted models, without dimensionality reduction at training time.

Limit cycle separatrix

We test our method in a setting where there are no fixed points along the separatrix. We construct a system which oscillates at a fixed frequency ($\dot{\theta} = 1$), but converges to one of two preferred amplitudes ($\dot{r} = (r - 2) - (r - 2)^3$). The system has three limit-cycles, two of them stable ($r = 1, 3$) and one unstable ($r = 2$). In Figure 7B we visualise the flow, its kinetic energy and the limit cycles. The system has no fixed points, and thus fixed point analysis is futile. We utilize Radial basis function neural network [40] to parameterise the KEF (Appendix F).

We show that our approximation of the KEF recovers the separatrix at $r = 2$ (Figure 7C).

668D RNN fit to mouse neural activity

To demonstrate our method in a high-dimensional (see Appendix H for scaling results) and neuroscientifically relevant setting, we applied it to a recurrent neural network (RNN) trained to reproduce mouse neural activity from Finkelstein et al. [9]. The trained RNN exhibits bistability between two memory states. As in lower-dimensional systems, we first located a point on the separatrix by performing a binary search along the line connecting the fixed-point attractors, simulating the dynamics at each step to determine basin membership.

In the original experiment, mice were trained to respond to optogenetic stimulation of their sensory cortices, and the RNN was fit to the peristimulus time histogram of recorded neural activity. The network undergoes a bifurcation from monostability to bistability as a function of an external ramping input u_{ext} . For analysis, we fixed $u_{\text{ext}} = 0.9$ within the bistable regime and trained the Koopman eigenfunction (KEF) network (Appendix G) using samples drawn from isotropic Gaussian distributions centered at the separatrix point.

Because of the high-dimensionality, direct visualization of the learned KEF and dynamics is not feasible. Instead, we validated the model using a curve-based evaluation approach. We construct multiple Hermite polynomial curves that interpolate between the two stable fixed points. The curvature of each curve is parameterized by a random vector, and each is defined by a parameter $\alpha \in [0, 1]$, where $\alpha = 0$ corresponds to one attractor and $\alpha = 1$ to the other (see appendix E). Because each curve continuously connects the fixed points, it must cross the separatrix. Figure 8A shows a 2D PCA projection of several such Hermite curves. Crucially, the actual curves span the entire 668D space. We simulate dynamics from 100 points along each curve and determine their final basin to infer where each curve crosses the separatrix, forming a ground-truth reference.

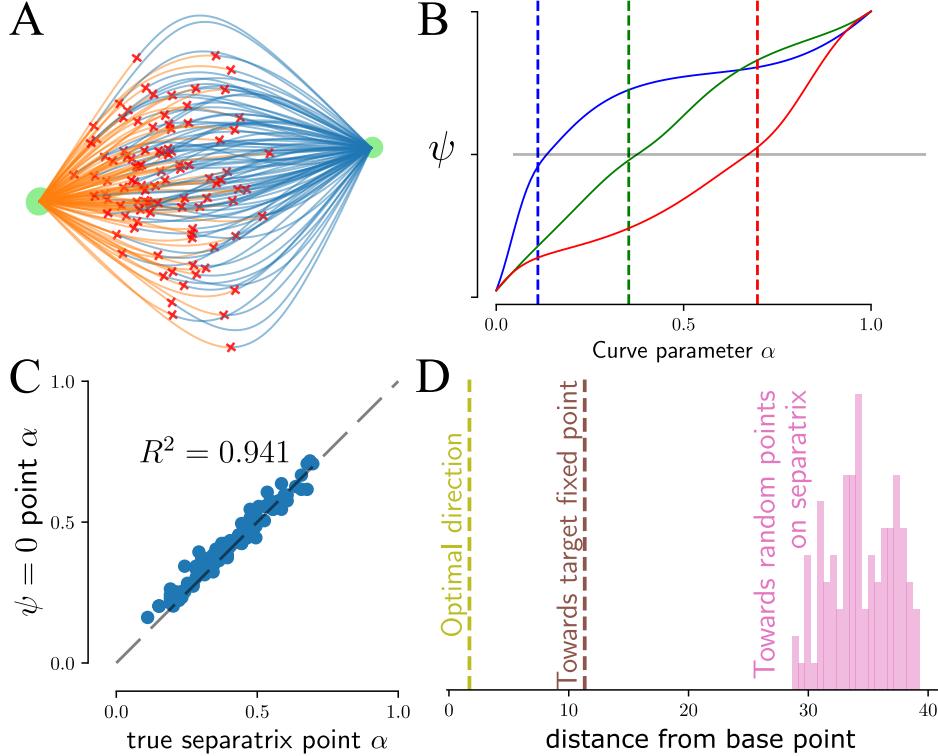


Figure 8: Validation of KEF approximation in a 668D RNN fit to mouse neural activity [9]. (A) PCA projection of Hermite curves between fixed points coloured by true basin labels and separatrix points along the curves (red crosses). (B) KEF values along three Hermite curves versus curve parameter α , as well the true separatrix point along the curve. (C) Comparison between true and predicted separatrix positions along curves. (D) Perturbation amplitudes $\|\Delta\|$, i.e., distance from x_{base} to perturbation targets. The KEF-guided solution yields the smallest perturbation crossing the separatrix.

Next, we evaluate the learned KEF along these same curves. Figure 8B shows KEF values along sample Hermite curves as a function of α , with the zero crossing indicating our predicted separatrix. Figure 8C compares the α -locations of the ground truth and the KEF-predicted separatrix points. We observe strong agreement, indicating that the learned KEF reliably tracks the separatrix in this high-dimensional system.

Finally, we demonstrate how the KEF can be used to design minimal perturbations that shift the state across the separatrix (similar to Figure 1A, Figure 5C). In general, this involves an input-driven dynamics $\dot{\mathbf{x}} = \tilde{f}(\mathbf{x}, \mathbf{u})$, with time-varying inputs $\mathbf{u}(t)$. To demonstrate the utility of the method we study a specific, simplified scenario in which the input is a strong instantaneous perturbation $\mathbf{u}(t) := \Delta \delta(t)$, which moves the state $\mathbf{x}(0_+) = \mathbf{x}(0_-) + \Delta$, after which the dynamics evolves according to $f(\mathbf{x}) := \tilde{f}(\mathbf{x}, 0)$.

Given a base point $\mathbf{x}(0_-) := \mathbf{x}_{\text{base}}$, just before perturbation, we aim to solve:

$$\Delta^* = \arg \min_{\Delta} \|\Delta\|_2^2 \quad \text{subject to} \quad |\psi(\mathbf{x}_{\text{base}} + \Delta)| = 0. \quad (13)$$

Taking advantage of the differentiable nature of ψ in our method, we use the Adam optimizer [41] to find Δ^* from random initialization. Figure 8D shows that indeed the optimised perturbation Δ^* is smaller, compared to simply aiming the perturbation towards the target fixed point, or towards random points on the separatrix.

4 Discussion

We presented a novel framework for identifying separatrices in high-dimensional, black-box dynamical systems using Koopman eigenfunctions (KEFs). This method is particularly useful for analyzing recurrent neural networks (RNNs), which are commonly used to model neural computations involving multiple stable states.

Prior efforts in reverse-engineering RNNs relied heavily on locating fixed points and linearizing dynamics locally [6–16]. While powerful, these methods cannot directly capture global structures or predict system responses to large perturbations that cross basin boundaries. By directly approximating scalar-valued KEFs that vanish precisely on separatrices, our method complements and extends existing local linearization approaches. Practitioners can use our KEFs alongside fixed-point analysis to achieve a comprehensive understanding of the dynamical system’s landscape.

While FTLE methods [31–33] also identify separatrices as ridges of finite-time trajectory divergence, they may change sharply near separatrices while providing little gradient elsewhere. We speculate that this could limit their usefulness in high-dimensional systems, where gradient-based localization is needed. Moreover, differentiating FTLE requires differentiating through the dynamical function, which may be computationally expensive or even infeasible due to vanishing/exploding gradients. In contrast, our Koopman eigenfunction framework, by integrating globally, provides a smooth scalar field whose zero level set identifies the separatrix, enabling efficient gradient-based searches without repeated forward simulations of the target system.

Our work also advances the application of Koopman operator theory to dynamical systems. Previous studies primarily utilized Koopman eigenfunctions to predict or control dynamics within a single basin of attraction [28, 42–45]. Likewise, methods comparing dynamical systems to one another use the dynamic mode decomposition which does not always discern between different basins [19, 20, 46]. Such studies usually involve KEFs associated with negative eigenvalues ($\lambda < 0$), which exhibit opposite behavior to ours: they explode at separatrices and approach zero at attractors. In contrast, we specifically targeted eigenfunctions associated with positive eigenvalues, ensuring their zeros correspond exactly to separatrices.

To help practitioners use our method, we highlight inherent challenges, such as degeneracy in the Koopman PDE. To overcome these, we introduced a specific regularization—a balance term ensuring eigenfunctions change sign across different basins and show how to choose distributions for the Koopman PDE. These ideas build on existing work on KEF approximation [30, 29, 47], enabling reliable identification of separatrices in diverse and high-dimensional systems.

Our method provides an alternative to more direct approaches for locating separatrices, such as grid searches or bisection methods that repeatedly simulate the ODE from many initial conditions [39]. While learning a KEF involves iteratively solving a PDE over phase space, trajectory-based approaches scale with simulation time and often revisit the same regions of phase space. In contrast, solving the PDE resembles dynamic programming and can be made more efficient (Appendix H), particularly near separatrices where critical slowing down makes ODE-based methods computationally demanding.

While we demonstrated the applicability of our method to diverse scenarios, we do not provide theoretical guarantees linking the accuracy of the KEF approximation and that of the separatrix location. Furthermore, like techniques for finding fixed points [5, 48], our method requires knowing the dynamics in the entire phase space. Extending this to trajectory-based methods [49, 50, 19] can facilitate separatrix inference directly from neural data.

An interesting extension of our work is to stochastic dynamical systems [51, 52]. While one can approximate separatrices using only the deterministic component of the dynamics, a full treatment of stochasticity and its effect on basin boundaries remains open. Likewise, data-driven models with uncertainty in the inferred flow [53] raise questions about how this uncertainty propagates to the separatrix. Since separatrices often occupy sparsely sampled or unstable regions of phase space, this motivates active sampling—potentially through targeted optogenetic stimulations—to improve model accuracy along these boundaries [54].

In conclusion, we hope that by focusing on separatrices, our method could inform intervention strategies in neuroscience, ecological or engineering systems, providing a general-purpose tool to predict and control transitions between stable states in complex dynamical landscapes.

Acknowledgements

This work was supported by the Israel Science Foundation (grant No. 1442/21 to OB) and Human Frontiers Science Program (HFSP) research grant (RGP0017/2021 to OB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

- [1] Omri Barak. Recurrent neural networks as versatile tools of neuroscience research. *Current Opinion in Neurobiology*, 46:1–6, October 2017. ISSN 0959-4388. doi: 10.1016/j.conb.2017.06.003. URL <https://www.sciencedirect.com/science/article/pii/S0959438817300429>.
- [2] Saurabh Vyas, Matthew D. Golub, David Sussillo, and Krishna V. Shenoy. Computation Through Neural Population Dynamics. *Annual Review of Neuroscience*, 43(1):249–275, July 2020. ISSN 0147-006X, 1545-4126. doi: 10.1146/annurev-neuro-092619-094115. URL <https://www.annualreviews.org/doi/10.1146/annurev-neuro-092619-094115>.
- [3] Christian K. Machens, Ranulfo Romo, and Carlos D. Brody. Flexible Control of Mutual Inhibition: A Neural Model of Two-Interval Discrimination. *Science*, 307(5712):1121–1124, February 2005. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1104171. URL <https://www.science.org/doi/10.1126/science.1104171>.
- [4] J J Hopfield. Neural networks and physical systems with emergent collective computational abilities. *Proceedings of the National Academy of Sciences*, 79(8):2554–2558, April 1982. doi: 10.1073/pnas.79.8.2554. URL <https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554>. Publisher: Proceedings of the National Academy of Sciences.
- [5] David Sussillo and Omri Barak. Opening the Black Box: Low-Dimensional Dynamics in High-Dimensional Recurrent Neural Networks. *Neural Computation*, 25(3):626–649, March 2013. ISSN 0899-7667. doi: 10.1162/NECO_a_00409. URL https://doi.org/10.1162/NECO_a_00409.
- [6] Federico Carnevale, Victor de Lafuente, Ranulfo Romo, Omri Barak, and Néstor Parga. Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty. *Neuron*, 86(4):1067–1077, May 2015. ISSN 0896-6273. doi: 10.1016/j.neuron.2015.04.014. URL <https://www.sciencedirect.com/science/article/pii/S0896627315003645>.
- [7] Niru Maheswaranathan, Alex H. Williams, Matthew D. Golub, Surya Ganguli, and David Sussillo. Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics. *Advances in Neural Information Processing Systems*, 32:15696–15705, December 2019. ISSN 1049-5258.
- [8] Niru Maheswaranathan, Alex H. Williams, Matthew D. Golub, Surya Ganguli, and David Sussillo. Universality and individuality in neural dynamics across large populations of recurrent networks. *Advances in Neural Information Processing Systems*, 2019:15629–15641, December 2019. ISSN 1049-5258.
- [9] Arseny Finkelstein, Lorenzo Fontolan, Michael N. Economo, Nuo Li, Sandro Romani, and Karel Svoboda. Attractor dynamics gate cortical information flow during decision-making. *Nature Neuroscience*, 24(6):843–850, June 2021. ISSN 1097-6256, 1546-1726. doi: 10.1038/s41593-021-00840-6. URL <https://www.nature.com/articles/s41593-021-00840-6>.
- [10] Valerio Mante, David Sussillo, Krishna V. Shenoy, and William T. Newsome. Context-dependent computation by recurrent dynamics in prefrontal cortex. *Nature*, 503(7474):78–84, November 2013. ISSN 1476-4687. doi: 10.1038/nature12742. URL <https://www.nature.com/articles/nature12742>. Publisher: Nature Publishing Group.
- [11] Mengyu Liu, Aditya Nair, Nestor Coria, Scott W. Linderman, and David J. Anderson. Encoding of female mating dynamics by a hypothalamic line attractor. *Nature*, 634(8035):901–909, October 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07916-w. URL <https://www.nature.com/articles/s41586-024-07916-w>. Publisher: Nature Publishing Group.

- [12] Laura N. Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent networks utilizes shared dynamical motifs. *Nature Neuroscience*, 27(7):1349–1363, July 2024. ISSN 1546-1726. doi: 10.1038/s41593-024-01668-6. URL <https://www.nature.com/articles/s41593-024-01668-6>. Publisher: Nature Publishing Group.
- [13] Isabel IC Low, Lisa M Giocomo, and Alex H Williams. Remapping in a recurrent neural network model of navigation and context inference. *eLife*, 12:RP86943, July 2023. ISSN 2050-084X. doi: 10.7554/eLife.86943. URL <https://doi.org/10.7554/eLife.86943>. Publisher: eLife Sciences Publications, Ltd.
- [14] Warasinee Chaisangmongkon, Sruthi K. Swaminathan, David J. Freedman, and Xiao-Jing Wang. Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions. *Neuron*, 93(6):1504–1517.e4, March 2017. ISSN 0896-6273. doi: 10.1016/j.neuron.2017.03.002. URL [https://www.cell.com/neuron/abstract/S0896-6273\(17\)30185-X](https://www.cell.com/neuron/abstract/S0896-6273(17)30185-X). Publisher: Elsevier.
- [15] Marino Pagan, Vincent D. Tang, Mikio C. Aoi, Jonathan W. Pillow, Valerio Mante, David Sussillo, and Carlos D. Brody. Individual variability of neural computations underlying flexible decisions. *Nature*, 639(8054):421–429, March 2025. ISSN 1476-4687. doi: 10.1038/s41586-024-08433-6. URL <https://www.nature.com/articles/s41586-024-08433-6>. Publisher: Nature Publishing Group.
- [16] Jing Wang, Devika Narain, Eghbal A. Hosseini, and Mehrdad Jazayeri. Flexible timing by temporal scaling of cortical responses. *Nature Neuroscience*, 21(1):102–110, January 2018. ISSN 1546-1726. doi: 10.1038/s41593-017-0028-6. URL <https://www.nature.com/articles/s41593-017-0028-6>. Publisher: Nature Publishing Group.
- [17] B. O. Koopman. Hamiltonian Systems and Transformation in Hilbert Space. *Proceedings of the National Academy of Sciences*, 17(5):315–318, May 1931. doi: 10.1073/pnas.17.5.315. URL <https://www.pnas.org/doi/10.1073/pnas.17.5.315>. Publisher: Proceedings of the National Academy of Sciences.
- [18] Marko Budišić, Ryan Mohr, and Igor Mezić. Applied Koopmanism. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 22(4):047510, December 2012. ISSN 1054-1500. doi: 10.1063/1.4772195. URL <https://doi.org/10.1063/1.4772195>.
- [19] Mitchell Ostrow, Adam Eisen, Leo Kozachkov, and Ila Fiete. Beyond Geometry: Comparing the Temporal Structure of Computation in Neural Circuits with Dynamical Similarity Analysis. *Advances in Neural Information Processing Systems*, 36:33824–33837, December 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/6ac807c9b296964409b277369e55621a-Abstract-Conference.html.
- [20] William T. Redman, Juan Bello-Rivas, Maria Fonoferova, Ryan Mohr, Yannis G. Kevrekidis, and Igor Mezić. Identifying Equivalent Training Dynamics. *Advances in Neural Information Processing Systems*, 37:23603–23629, December 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/2a07348a6a7b2c208ab5cb1ee0e78ab5-Abstract-Conference.html.
- [21] Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. *Journal of Fluid Mechanics*, 656:5–28, August 2010. ISSN 1469-7645, 0022-1120. doi: 10.1017/S0022112010001217. URL <https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4>.
- [22] Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. *Journal of Computational Dynamics*, 1(2):391–421, December 2014. ISSN 2158-2491. doi: 10.3934/jcd.2014.1.391. URL <https://www.aimscolleges.org/en/article/doi/10.3934/jcd.2014.1.391>. Publisher: Journal of Computational Dynamics.

- [23] Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control. *PLOS ONE*, 11(2):e0150171, February 2016. ISSN 1932-6203. doi: 10.1371/journal.pone.0150171. URL <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150171>. Publisher: Public Library of Science.
- [24] Weinan E and Bing Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. *Communications in Mathematics and Statistics*, 6(1):1–12, March 2018. ISSN 2194-671X. doi: 10.1007/s40304-018-0127-z. URL <https://doi.org/10.1007/s40304-018-0127-z>.
- [25] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations. *Journal of Computational Physics*, 375:1339–1364, December 2018. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.08.029. URL <https://www.sciencedirect.com/science/article/pii/S0021999118305527>.
- [26] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378:686–707, February 2019. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.10.045. URL <https://www.sciencedirect.com/science/article/pii/S0021999118307125>.
- [27] Ilan Naiman and Omri Azencot. An Operator Theoretic Approach for Analyzing Sequence Neural Networks. *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(8):9268–9276, June 2023. ISSN 2374-3468. doi: 10.1609/aaai.v37i8.26111. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26111>. Number: 8.
- [28] Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear embeddings of nonlinear dynamics. *Nature Communications*, 9(1):4950, November 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-07210-0. URL <https://www.nature.com/articles/s41467-018-07210-0>. Publisher: Nature Publishing Group.
- [29] Enoch Yeung, Soumya Kundu, and Nathan Hudas. Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems. In *2019 American Control Conference (ACC)*, pages 4832–4839, July 2019. doi: 10.23919/ACC.2019.8815339. URL <https://ieeexplore.ieee.org/document/8815339>. ISSN: 2378-5861.
- [30] Shankar A. Deka, Alonso M. Valle, and Claire J. Tomlin. Koopman-based Neural Lyapunov functions for general attractors. In *2022 IEEE 61st Conference on Decision and Control (CDC)*, pages 5123–5128, December 2022. doi: 10.1109/CDC51059.2022.9992927. URL <https://ieeexplore.ieee.org/abstract/document/9992927>. ISSN: 2576-2370.
- [31] G. Haller and G. Yuan. Lagrangian coherent structures and mixing in two-dimensional turbulence. *Physica D: Nonlinear Phenomena*, 147(3):352–370, December 2000. ISSN 0167-2789. doi: 10.1016/S0167-2789(00)00142-1. URL <https://www.sciencedirect.com/science/article/pii/S0167278900001421>.
- [32] Martin L. Tanaka and Shane D. Ross. Separatrices and basins of stability from time series data: an application to biodynamics. *Nonlinear Dynamics*, 58(1):1–21, October 2009. ISSN 1573-269X. doi: 10.1007/s11071-008-9457-9. URL <https://doi.org/10.1007/s11071-008-9457-9>.
- [33] George Haller. Lagrangian Coherent Structures. *Annual Review of Fluid Mechanics*, 47(Volume 47, 2015):137–162, January 2015. ISSN 0066-4189, 1545-4479. doi: 10.1146/annurev-fluid-010313-141322. URL <https://www.annualreviews.org/content/journals/10.1146/annurev-fluid-010313-141322>. Publisher: Annual Reviews.
- [34] A. Mauroy, I. Mezić, and J. Moehlis. Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. *Physica D: Nonlinear Phenomena*, 261:19–30, October 2013. ISSN 0167-2789. doi: 10.1016/j.physd.2013.06.004. URL <https://www.sciencedirect.com/science/article/pii/S0167278913001620>.

- [35] Igor Mezić. On applications of the spectral theory of the Koopman operator in dynamical systems and control theory. In *2015 54th IEEE Conference on Decision and Control (CDC)*, pages 7034–7041, December 2015. doi: 10.1109/CDC.2015.7403328. URL <https://ieeexplore.ieee.org/document/7403328/>.
- [36] Igor Mezić. Koopman Operator, Geometry, and Learning of Dynamical Systems. *Notices of the American Mathematical Society*, 68(07):1, August 2021. ISSN 0002-9920, 1088-9477. doi: 10.1090/noti2306. URL <https://www.ams.org/notices/202107/rnoti-p1087.pdf>.
- [37] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, December 2014. URL [http://arxiv.org/abs/1412.3555](https://arxiv.org/abs/1412.3555). arXiv:1412.3555 [cs].
- [38] Richard R. Stein, Vanni Bucci, Nora C. Toussaint, Charlie G. Buffie, Gunnar Rätsch, Eric G. Pamer, Chris Sander, and João B. Xavier. Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota. *PLOS Computational Biology*, 9(12):e1003388, December 2013. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1003388. URL <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003388>. Publisher: Public Library of Science.
- [39] Eric W. Jones and Jean M. Carlson. Steady-state reduction of generalized Lotka-Volterra systems in the microbiome. *Physical Review E*, 99(3):032403, March 2019. doi: 10.1103/PhysRevE.99.032403. URL <https://link.aps.org/doi/10.1103/PhysRevE.99.032403>. Publisher: American Physical Society.
- [40] M. J. D. Powell. Radial basis functions for multivariable interpolation: a review. In *Algorithms for approximation*, pages 143–167. Clarendon Press, USA, January 1987. ISBN 978-0-19-853612-3.
- [41] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017. URL [http://arxiv.org/abs/1412.6980](https://arxiv.org/abs/1412.6980). arXiv:1412.6980 [cs].
- [42] Ido Cohen and Guy Gilboa. Latent Modes of Nonlinear Flows: A Koopman Theory Analysis. *Elements in Non-local Data Interactions: Foundations and Applications*, May 2023. doi: 10.1017/9781009323826. URL <https://www.cambridge.org/core/elements/latent-modes-of-nonlinear-flows/3F47DD0C6D918D1C6DDB848276CBCC5E>. ISBN: 9781009323826 9781009323857 Publisher: Cambridge University Press.
- [43] Igor Mezić. Spectral Properties of Dynamical Systems, Model Reduction and Decompositions. *Nonlinear Dynamics*, 41(1):309–325, August 2005. ISSN 1573-269X. doi: 10.1007/s11071-005-2824-x. URL <https://doi.org/10.1007/s11071-005-2824-x>.
- [44] Igor Mezic and Amit Surana. Koopman Mode Decomposition for Periodic/Quasi-periodic Time Dependence*. *IFAC-PapersOnLine*, 49(18):690–697, January 2016. ISSN 2405-8963. doi: 10.1016/j.ifacol.2016.10.246. URL <https://www.sciencedirect.com/science/article/pii/S2405896316318262>.
- [45] Yiming Meng, Ruikun Zhou, Melkior Ornik, and Jun Liu. Koopman-Based Learning of Infinitesimal Generators without Operator Logarithm. In *2024 IEEE 63rd Conference on Decision and Control (CDC)*, pages 8302–8307, December 2024. doi: 10.1109/CDC56724.2024.10886084. URL <https://ieeexplore.ieee.org/document/10886084>. ISSN: 2576-2370.
- [46] Igor Mezić and Andrzej Banaszuk. Comparison of systems with complex behavior. *Physica D: Nonlinear Phenomena*, 197(1):101–133, October 2004. ISSN 0167-2789. doi: 10.1016/j.physd.2004.06.015. URL <https://www.sciencedirect.com/science/article/pii/S0167278904002507>.
- [47] Shankar A. Deka and Dimos V. Dimarogonas. Supervised Learning of Lyapunov Functions Using Laplace Averages of Approximate Koopman Eigenfunctions. *IEEE Control Systems Letters*, 7:3072–3077, 2023. ISSN 2475-1456. doi: 10.1109/LCSYS.2023.3291657. URL <https://ieeexplore.ieee.org/abstract/document/10171181>.

- [48] Garrett E. Katz and James A. Reggia. Using Directional Fibers to Locate Fixed Points of Recurrent Neural Networks. *IEEE Transactions on Neural Networks and Learning Systems*, 29(8):3636–3646, August 2018. ISSN 2162-2388. doi: 10.1109/TNNLS.2017.2733544. URL <https://ieeexplore.ieee.org/document/8016349>.
- [49] Elia Turner, Kabir V Dabholkar, and Omri Barak. Charting and Navigating the Space of Solutions for Recurrent Neural Networks. In *Advances in Neural Information Processing Systems*, volume 34, pages 25320–25333. Curran Associates, Inc., 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/d530d454337fb09964237fecb4bea6ce-Abstract.html>.
- [50] Connor Brennan, Adeeti Aggarwal, Rui Pei, David Sussillo, and Alex Proekt. One dimensional approximations of neuronal dynamics reveal computational strategy. *PLOS Computational Biology*, 19(1):e1010784, January 2023. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1010784. URL <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010784>. Publisher: Public Library of Science.
- [51] Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski. Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems. In *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, pages 914–922. PMLR, April 2017. URL <https://proceedings.mlr.press/v54/linderman17a.html>. ISSN: 2640-3498.
- [52] Lea Duncker, Gergo Bohner, Julien Boussard, and Maneesh Sahani. Learning interpretable continuous-time models of latent stochastic dynamical systems. In *Proceedings of the 36th International Conference on Machine Learning*, pages 1726–1734. PMLR, May 2019. URL <https://proceedings.mlr.press/v97/duncker19a.html>. ISSN: 2640-3498.
- [53] Amber Hu, David Zoltowski, Aditya Nair, David Anderson, Lea Duncker, and Scott Linderman. Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems. *Advances in Neural Information Processing Systems*, 37:33805–33835, December 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/3b64416915026a6744bf10a819571041-Abstract-Conference.html.
- [54] Andrew Wagenmaker, Lu Mi, Marton Rozsa, Matthew S. Bull, Karel Svoboda, Kayvon Daie, Matthew D. Golub, and Kevin Jamieson. Active learning of neural population dynamics using two-photon holographic optogenetics. *Advances in Neural Information Processing Systems*, 37:31659–31687, December 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/381efefc0d765e680451978c0392f637-Abstract-Conference.html.
- [55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 770–778, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.90. URL [http://ieeexplore.ieee.org/document/7780459](https://ieeexplore.ieee.org/document/7780459).
- [56] Yulong Lu, Jianfeng Lu, and Min Wang. A Priori Generalization Analysis of the Deep Ritz Method for Solving High Dimensional Elliptic Partial Differential Equations. In *Proceedings of Thirty Fourth Conference on Learning Theory*, pages 3196–3241. PMLR, July 2021. URL <https://proceedings.mlr.press/v134/lu21a.html>. ISSN: 2640-3498.
- [57] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using deep learning. *Proceedings of the National Academy of Sciences*, 115(34):8505–8510, August 2018. doi: 10.1073/pnas.1718942115. URL <https://www.pnas.org/doi/full/10.1073/pnas.1718942115>.
- [58] Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse of dimensionality with physics-informed neural networks. *Neural Networks*, 176:106369, August 2024. ISSN 0893-6080. doi: 10.1016/j.neunet.2024.106369. URL <https://www.sciencedirect.com/science/article/pii/S0893608024002934>.

A Analytical KEF derivation in 1D bistable system

We would like to find an analytical Koopman eigenfunction for the scalar dynamical system:

$$\dot{x} = x - x^3 \quad (14)$$

In the 1D case, the Koopman PDE (3) reduces to a first-order ordinary differential equation

$$\frac{d\psi}{dx} f(x) = \lambda\psi(x). \quad (15)$$

With $f(x) = x - x^3$ and $\lambda = 1$ we have:

$$\psi'(x)(x - x^3) = \psi(x) \quad (16)$$

$$\Rightarrow \frac{\psi'(x)}{\psi(x)} = \frac{1}{x - x^3} \quad (17)$$

To solve this integral we first simplify the integrand.

$$x - x^3 = x(1 - x^2) = x(1 - x)(1 + x) \quad (18)$$

So,

$$\frac{1}{x(1 - x)(1 + x)} = \frac{A}{x} + \frac{B}{1 - x} + \frac{C}{1 + x} \quad (19)$$

Solving for A, B, C yields $A = 1$, $B = \frac{1}{2}$, $C = -\frac{1}{2}$.

Now we can integrate,

$$\int \frac{1}{x - x^3} dx = \int \left(\frac{1}{x} + \frac{1}{2(1 - x)} - \frac{1}{2(1 + x)} \right) dx \quad (20)$$

$$= \log|x| - \frac{1}{2} \log|1 - x| - \frac{1}{2} \log|1 + x| + C \quad (21)$$

$$\log \psi(x) = \log|x| - \frac{1}{2} \log|1 - x| - \frac{1}{2} \log|1 + x| + C \quad (22)$$

$$\Rightarrow \psi(x) = C' \cdot \frac{|x|}{\sqrt{|1 - x^2|}} \quad (23)$$

To bring it into the form in the main text we use the product composition rule (9). We can multiply our solution by the $\text{sign}(x)$ function which is a $\lambda = 0$ eigenfunction because it remains constant in each basin (see Figure 4A). In other words, we flip the sign of our solution $\psi(x) \rightarrow -\psi(x)$ for $x < 0$.

$$\psi(x) = C' \frac{x}{\sqrt{|1 - x^2|}} \quad (24)$$

and this remains a KEF with $\lambda = 1$.

B Eigenfunction Degeneracy in higher dimensions

Consider a separable 2D dynamical system:

$$\dot{x} = f_x(x), \quad (25)$$

$$\dot{y} = f_y(y), \quad (26)$$

which we write compactly as:

$$\dot{\mathbf{x}} = \mathbf{f}(x, y) = \begin{bmatrix} f_x(x) \\ f_y(y) \end{bmatrix}. \quad (27)$$

We seek a Koopman eigenfunction $\psi(x, y)$ satisfying:

$$\nabla \psi \cdot \mathbf{f}(x, y) = \lambda \psi(x, y). \quad (28)$$

Assume $\lambda = 1$ and a separable form $\psi(x, y) = X(x)Y(y)$. Then:

$$\frac{\partial \psi}{\partial x} = X'(x)Y(y), \quad (29)$$

$$\frac{\partial \psi}{\partial y} = X(x)Y'(y), \quad (30)$$

$$\nabla \psi \cdot \mathbf{f} = X'(x)Y(y)f_x(x) + X(x)Y'(y)f_y(y) = X(x)Y(y). \quad (31)$$

Dividing both sides by $X(x)Y(y)$ gives:

$$\frac{X'(x)}{X(x)}f_x(x) + \frac{Y'(y)}{Y(y)}f_y(y) = 1. \quad (32)$$

The above equation requires that the sum of the above two terms, which each depend on different variables must be 1 for all x, y . It follows that each term is also a constant function.

$$\frac{X'(x)}{X(x)}f_x(x) = \mu, \quad (33)$$

$$\frac{Y'(y)}{Y(y)}f_y(y) = 1 - \mu, \quad (34)$$

for an arbitrary constant $\mu \in \mathbb{R}$.

Define the antiderivatives:

$$A(x) = \int \frac{1}{f_x(x)} dx, \quad (35)$$

$$B(y) = \int \frac{1}{f_y(y)} dy. \quad (36)$$

Then the logarithms of the separated components are:

$$\log X(x) = \mu A(x) \Rightarrow X(x) = \left(e^{A(x)} \right)^\mu, \quad (37)$$

$$\log Y(y) = (1 - \mu)B(y) \Rightarrow Y(y) = \left(e^{B(y)} \right)^{1-\mu}. \quad (38)$$

Thus, the general separable Koopman eigenfunction is:

$$\psi(x, y) = \left(e^{A(x)} \right)^\mu \cdot \left(e^{B(y)} \right)^{1-\mu}. \quad (39)$$

C Relation of our definition to the Koopman Operator

In the main text, we introduced Koopman eigenfunctions as scalar functions $\psi : \mathcal{X} \rightarrow \mathbb{R}$ that evolve exponentially along trajectories $\mathbf{x}(t) \in \mathcal{X}$ of a dynamical system $\dot{\mathbf{x}} = f(\mathbf{x})$:

$$\frac{d}{dt} \psi(\mathbf{x}(t)) = \lambda \psi(\mathbf{x}(t)). \quad (40)$$

Here, we clarify the origin of this equation by defining the Koopman operator, linking our approach to the broader theory.

Let $g : \mathcal{X} \rightarrow \mathbb{R}$ be a real-valued function of the system state—commonly referred to as an *observable*. The collection of such observables forms an infinite-dimensional function space, typically a Hilbert space once equipped with an inner product $\langle g, g' \rangle$. The Koopman operator acts linearly on this space.

Remark. When studying nonlinear dynamical systems with multiple basins of attraction, as we do, the corresponding Koopman eigenfunctions are generally *not* square-integrable, and therefore fall outside the Hilbert space defined by the standard inner product. We are aware of this theoretical limitation and continue to employ the Koopman framework regardless. In practice, neural networks learn finite, smooth approximations to these otherwise singular structures.

For a continuous-time system, the Koopman operator \mathcal{K}_τ evolves observables according to the flow map $F_\tau : \mathcal{X} \rightarrow \mathcal{X}$, which advances the state forward by time τ :

$$(\mathcal{K}_\tau g)(\mathbf{x}(t)) = g(F_\tau(\mathbf{x}(t))) = g(\mathbf{x}(t + \tau)). \quad (41)$$

The infinitesimal generator of the Koopman semigroup $\{\mathcal{K}_\tau\}_{\tau \geq 0}$, often denoted simply as \mathcal{K} , is defined as:

$$\mathcal{K}g := \lim_{\tau \rightarrow 0} \frac{\mathcal{K}_\tau g - g}{\tau} = \lim_{\tau \rightarrow 0} \frac{g(F_\tau(\mathbf{x})) - g(\mathbf{x})}{\tau}. \quad (42)$$

When evaluated along a trajectory $\mathbf{x}(t)$, this yields:

$$\mathcal{K}g(\mathbf{x}(t)) = \lim_{\tau \rightarrow 0} \frac{g(\mathbf{x}(t + \tau)) - g(\mathbf{x}(t))}{\tau} \quad (43)$$

$$= \frac{d}{dt} g(\mathbf{x}(t)) = \nabla g(\mathbf{x}(t)) \cdot \dot{\mathbf{x}}(t) = \nabla g(\mathbf{x}(t)) \cdot f(\mathbf{x}(t)). \quad (44)$$

This operator is also known as the *Lie derivative* of g along the vector field f .

Thus, an eigenfunction ψ of \mathcal{K} satisfying

$$\mathcal{K}\psi = \lambda\psi \quad (45)$$

recovers the Koopman eigenfunction equation (3) used in the main text.

D KEF degeneracy in randomly initialised DNN solutions

Main text Figure 4 illustrates challenges arising due to the degeneracy of the Koopman PDE (3). In Figure 9, we train several DNNs on a 2-unit GRU trained on the 2BFF. Each DNN is independently initialised and trained on a single distribution without the balance regularisation term \mathcal{L}_{bal} , i.e., $\gamma_{\text{bal}} = 0$. The resulting KEF approximations exhibit the same modes of degeneracy - zero on certain basins as well as vertical and horizontal variants.

E Curve-based validation approach

In high-dimension, we cannot visualize the entire phase space to check whether zeros of the KEF coincide with the separatrix. Instead, we generate a family of smooth curves that connect two attractors, and hence must pass through a separatrix. In the 64D GRU flip flop example, the two attractors are the two stable fixed points $x, y \in \mathbb{R}^N$. We use *cubic Hermite interpolation* with randomized tangent vectors at the endpoints. Each curve is defined by:

$$H(\alpha) = h_{00}(\alpha) x + h_{10}(\alpha) m_x + h_{01}(\alpha) y + h_{11}(\alpha) m_y, \quad \alpha \in [0, 1] \quad (46)$$

where the Hermite basis functions are:

$$h_{00}(\alpha) = 2\alpha^3 - 3\alpha^2 + 1, \quad (47)$$

$$h_{01}(\alpha) = -2\alpha^3 + 3\alpha^2, \quad (48)$$

$$h_{10}(\alpha) = \alpha^3 - 2\alpha^2 + \alpha, \quad (49)$$

$$h_{11}(\alpha) = \alpha^3 - \alpha^2. \quad (50)$$

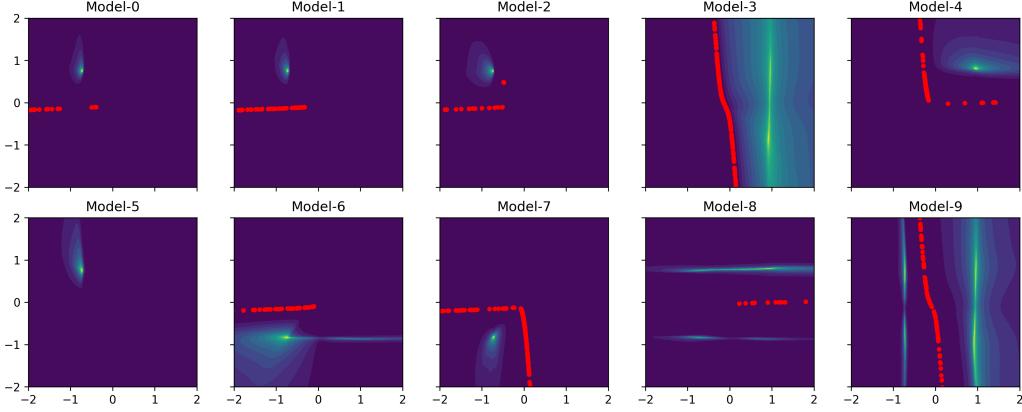


Figure 9: Many KEFs of to for 2 bit flip flop in 2D

Notice that $H(0) = x$ and $H(1) = y$.

The tangent vectors m_x and m_y are initialized as $y - x$ and perturbed with Gaussian noise:

$$m_x = (y - x) + \epsilon_x, \quad m_y = (y - x) + \epsilon_y, \quad \epsilon_x, \epsilon_y \sim \mathcal{N}(0, \sigma^2 I). \quad (51)$$

We sample multiple such curves with independently drawn perturbations. This produces a family of curves that interpolate between x and y , while varying in geometry, enabling randomized exploration of intermediate regions in state space. Crucially, the curves are not limited to the manifold spanned by the attractors, but extend to all dimensions (controlled by σ). Optional constraints (e.g., non-negativity) can be imposed by rejecting any curve that violates them. For each such curve, we both evaluate the KEF and simulate the ODE to determine the position of the separatrix.

F Neural network architectures

In most of the demonstrations we use a ResNet architecture [55] with a tanh activation function.

Let the input to the network be $\mathbf{x}_{\text{in}} \in \mathbb{R}^{d_{\text{in}}}$, and let the hidden activations be $\mathbf{x}^{(\ell)} \in \mathbb{R}^{d_{\text{hid}}}$, with output $\mathbf{x}_{\text{out}} \in \mathbb{R}^{d_{\text{out}}}$ and L layers.

The network receives inputs at the first layer as $\mathbf{x}^{(0)} = \text{Pad}(a \mathbf{x}_{\text{in}})$, where Pad appends zeros to the input (we always choose $d_{\text{hid}} > d_{\text{in}}$), and $a \in \mathbb{R}_+$ is a scalar chosen so that the elements of $\mathbf{x}^{(0)}$ are $\mathcal{O}(1)$. The network then updates the hidden state at each layer ℓ as

$$\mathbf{x}^{(\ell+1)} = \mathbf{x}^{(\ell)} + \tanh\left(W^{(\ell)} \mathbf{x}^{(\ell)} + \mathbf{b}^{(\ell)}\right), \quad \ell = 0, \dots, L-1, \quad (52)$$

where $W^{(\ell)} \in \mathbb{R}^{d_{\text{hid}} \times d_{\text{hid}}}$ and $\mathbf{b}^{(\ell)} \in \mathbb{R}^{d_{\text{hid}}}$.

The output is obtained by applying a final linear layer:

$$\mathbf{x}_{\text{out}} = W^{\text{out}} \mathbf{x}^{(L)} + \mathbf{b}^{\text{out}}, \quad (53)$$

where $W^{\text{out}} \in \mathbb{R}^{d_{\text{out}} \times d_{\text{hid}}}$ and $\mathbf{b}^{\text{out}} \in \mathbb{R}^{d_{\text{out}}}$. During optimization, gradients $\nabla_{\theta} \mathcal{L}_{\text{total}}$ are computed for all parameters $\theta = (W^{(0:L-1)}, \mathbf{b}^{(0:L-1)}, W^{\text{out}}, \mathbf{b}^{\text{out}})$.

Choices for each system

For the results in Figures 3, 5, 8, we use $L = 20$, $d_{\text{hid}} = 400$, $d_{\text{out}} = 1$ and $d_{\text{in}} = N$ the dimension of the dynamical system. For the gLV system in Figure 6 we use $L = 25$ and $d_{\text{hid}} = 1000$.

Radial Basis Function (RBF) Layer

For the limit cycles example in Figure 7 we use a single Radial Basis Function layer [40].

Given an input $\mathbf{x} \in \mathbb{R}^{d_{\text{in}}}$, the RBF layer maps it to an output $\mathbf{y} \in \mathbb{R}^{d_{\text{out}}}$ through a set of M radial basis functions, each centered at $\mathbf{c}_i \in \mathbb{R}^{d_{\text{in}}}$, with a shape parameter $\varepsilon_i > 0$ and linear combination weights $a_{ij} \in \mathbb{R}$.

To compute RBF activations for $i = 1, \dots, M$, we define the scaled radial distance:

$$s_i(\mathbf{x}) = \varepsilon_i \cdot \|\mathbf{x} - \mathbf{c}_i\|, \quad (54)$$

and then apply a gaussian radial basis function

$$\varphi_i(\mathbf{x}) = \exp(-s_i(\mathbf{x})^2). \quad (55)$$

The final output is a linear combination of the basis activations:

$$y_j(\mathbf{x}) = \sum_{i=1}^M a_{ji} \cdot \varphi_i(\mathbf{x}), \quad j = 1, \dots, d_{\text{out}} \quad (56)$$

We use $M = 300$, and $d_{\text{out}} = 1$. During optimization, gradients $\nabla_{\theta} \mathcal{L}_{\text{total}}$ are computed for all parameters $\theta = (\{a_{ji}\}, \{\mathbf{c}_i\}, \{\varepsilon_i\})$.

G Optimisation

Our optimisation procedure described in the main text is summarised in Algorithm 1. It implements the training of the neural network Koopman eigenfunction using the ratio loss and balance regularisation, for multiple sampling distributions.

We minimise the total loss:

$$\mathcal{L}_{\text{total}} = \sum_{j=1}^J \mathcal{L}_{\text{ratio}}^j + \gamma_{\text{bal}} \mathcal{L}_{\text{bal}}^j, \quad (57)$$

where j corresponds to the j^{th} sampling distribution (see main text section 3.2). B N -dimensional points in the state space \mathcal{X} are sampled from each distribution $\mathbf{x}_i^j \sim p_j(\mathbf{x})$. The ratio loss is the Koopman PDE error, normalised by a sample-shuffled version:

$$\mathcal{L}_{\text{ratio}}^j = \frac{\sum_{i=1}^B (\text{LHS}_i^j - \text{RHS}_i^j)^2}{\sum_{i=1}^B (\text{LHS}_i^j - \text{RHS}_{\text{perm}(i)}^j)^2} \quad (58)$$

$$\text{LHS}_i^j = \nabla \psi(\mathbf{x}_i^j) \cdot f(\mathbf{x}_i^j) \quad \text{left-hand-side of the Koopman PDE (3)} \quad (59)$$

$$\text{RHS}_i^j = \lambda \psi(\mathbf{x}_i^j) \quad \text{right-hand-side of the Koopman PDE (3)} \quad (60)$$

where $\text{perm}(i)$ is a random permutation of the numbers $1, 2, \dots, B$ sampled during each training iteration.

The balance regularisation loss is the squared mean of the KEF values divided by their variance:

$$\mathcal{L}_{\text{bal}}^j = \frac{(\bar{\psi}^j)^2}{\frac{1}{B} \sum_{i=1}^B (\psi(\mathbf{x}_i^j) - \bar{\psi}_j)^2}, \quad (61)$$

$$\bar{\psi}^j = \frac{1}{B} \sum_{i=1}^B \psi(\mathbf{x}_i^j). \quad (62)$$

In general we set $\gamma_{\text{bal}} = 0.05$. For the limit cycles Figure 7 we set $\gamma_{\text{bal}} = 0$.

We compute $\nabla \psi(\mathbf{x})$ using Pytorch's `torch.autograd.grad`, specifying `create_graph=True`, since we differentiate through this a second time to compute the gradients $\nabla_{\theta} \mathcal{L}_{\text{total}}$ with respect to the neural network parameters θ .

We use the Adam optimiser [41] with learning rate 10^{-4} and l2 normalisation 10^{-5} . We use $B = 1000$ and train for 1000 iterations.

Only in the case of the 11D gLV, Figure 6 we use $B = 5000$ and train for 5000 iterations.

A summary of all hyperparameters is provided in Table 1.

Algorithm 1 Train Koopman Eigenfunction Network

Require: Sampling distributions $\{p_j(\mathbf{x})\}_{j=1}^J$; vector field f ; eigenvalue λ ; neural network architecture ψ_θ ; batch size B ; iterations T ; balance weight γ_{bal} ; learning rate η ; small $\varepsilon = 10^{-12}$

- 1: Initialize θ
- 2: **for** $t = 1 \rightarrow T$ **do**
- 3: $L_{\text{total}} \leftarrow 0$
- 4: **for** $j = 1 \rightarrow J$ **do**
- 5: $\{\mathbf{x}_i^j, \psi_i^j, \nabla \psi_i^j\} \leftarrow \text{SAMPLEANDEVALUATE}(p_j, \psi_\theta, B)$
- 6: $L_{\text{ratio}}^j \leftarrow \text{COMPUTERATIOLOSS}(\{\psi_i^j, \nabla \psi_i^j, f(\mathbf{x}_i^j), \lambda\})$
- 7: $L_{\text{bal}}^j \leftarrow \text{COMPUTEBALANCELOSS}(\{\psi_i^j\})$
- 8: $L_{\text{total}} \leftarrow L_{\text{total}} + L_{\text{ratio}}^j + \gamma_{\text{bal}} L_{\text{bal}}^j$
- 9: **end for**
- 10: Compute gradients of L_{total} w.r.t. θ
- 11: Update weights θ using gradients and learning rate η
- 12: **end for**
- 13: **return** trained parameters θ
- 14: **procedure** SAMPLEANDEVALUATE(p_j, ψ_θ, B)
- 15: Sample $\{\mathbf{x}_i^j\}_{i=1}^B \sim p_j(\mathbf{x})$
- 16: Compute $\psi_i^j \leftarrow \psi_\theta(\mathbf{x}_i^j)$
- 17: Compute $\nabla \psi_i^j \leftarrow \nabla_{\mathbf{x}} \psi_\theta(\mathbf{x}_i^j)$
- 18: **return** $\{\mathbf{x}_i^j, \psi_i^j, \nabla \psi_i^j\}$
- 19: **end procedure**
- 20: **procedure** COMPUTERATIOLOSS($\{\psi_i^j, \nabla \psi_i^j, f(\mathbf{x}_i^j), \lambda\}$)
- 21: Compute $\text{LHS}_i^j = \nabla \psi_i^j \cdot f(\mathbf{x}_i^j)$
- 22: Compute $\text{RHS}_i^j = \lambda \psi_i^j$
- 23: Draw random permutation π of $\{1, \dots, B\}$
- 24: $n_j \leftarrow \sum_i (\text{LHS}_i^j - \text{RHS}_i^j)^2$
- 25: $d_j \leftarrow \sum_i (\text{LHS}_{\pi(i)}^j - \text{RHS}_{\pi(i)}^j)^2$
- 26: **return** $L_{\text{ratio}}^j = n_j / (d_j + \varepsilon)$
- 27: **end procedure**
- 28: **procedure** COMPUTEBALANCELOSS($\{\psi_i^j\}$)
- 29: $\bar{\psi}^j = \frac{1}{B} \sum_i \psi_i^j$
- 30: $v^j = \frac{1}{B} \sum_i (\psi_i^j - \bar{\psi}^j)^2$
- 31: **return** $L_{\text{bal}}^j = (\bar{\psi}^j)^2 / (v^j + \varepsilon)$
- 32: **end procedure**

Table 1: Algorithm details and hyperparameters for various systems. System dimensionality N , Koopman eigenvalue λ , balance regularisation weight γ_{bal} , batch-size B , training iterations T , learning rate η , ResNet depth L and width d_{hid} , number of Radial Basis Functions M .

Dynamical System	N	λ	γ_{bal}	B	T	η	L	d_{hid}	M
Bistable 1D	1	1	0.05	1000	1000	10^{-4}	20	400	–
Damped Duffing oscillator	2	1	0.05	1000	1000	10^{-4}	20	400	–
1BFF, 2D GRU	2	1	0.05	1000	1000	10^{-4}	20	400	–
2BFF, 3D GRU	3	0.2	0.05	1000	1000	10^{-4}	20	400	–
1BFF, 64D	64	0.1	0.05	1000	1000	10^{-4}	20	400	–
Two Limit Cycles	2	1	0	1000	1000	10^{-4}	–	–	300
Ecology gLV	11	0.1	0.05	5000	5000	10^{-4}	25	1000	–
Data-trained RNN [9]	668	0.02	0.05	1000	1000	10^{-4}	7	1200	–

G.1 Choice of Training Distributions

Choosing suitable training distributions $p_j(\mathbf{x})$ is an important step in applying our method. The distributions are selected to satisfy the following criteria:

1. They are approximately bisected by the separatrix, ensuring roughly equal sampling from both basins and enabling the balance loss to be satisfied.
2. They sample sufficiently near the attractors to capture the global bistable dynamics.
3. They are approximately forward-invariant, i.e., trajectories initialized from the distribution remain within its support when evolved forward in time. This avoids loss of mass due to transient amplification along unstable directions.
4. In systems with multiple spurious attractors, they avoid sampling from basins outside the domain of interest.

Below we list the specific distributions used for each system.

1D bistable system (Fig. 3C): $[\mathcal{N}(0, 1), \mathcal{N}(0, 3)]$.

2D damped Duffing oscillator (Fig. 3F): $\mathcal{N}(\mathbf{0}, \sigma_j^2 \mathbf{I}_2)$, with $\sigma_j = [0.1, 0.5, 1.0, 2.0]$, where \mathbf{I}_2 is the 2×2 identity matrix.

2D 1-bit flip-flop GRU (Fig. 3I): $\mathcal{N}(\mathbf{0}, \sigma_j^2 \mathbf{I}_2)$, with $\sigma_j = [0.01, 0.1, 0.5, 1.0, 2.0, 4.0]$.

3D GRU 2-bit flip-flop (Fig. 5): $\mathcal{N}(\boldsymbol{\mu}, \sigma_j^2 \mathbf{I}_3)$, with $\sigma_j = [0.01, 0.05, 0.2, 1.0, 5.0]$. The mean $\boldsymbol{\mu}$ is chosen as a point on the separatrix found by interpolating between two attractors and performing iterative binary search with ODE (1). A second $\boldsymbol{\mu}$ is obtained by interpolating a different attractor pair for training the second KEF.

11D ecological dynamics (Fig. 6): We similarly identify a single separatrix point $\boldsymbol{\mu}$. Each coordinate $x[i]$ is sampled independently from a Gamma distribution $x[i] \sim \Gamma(\alpha[i], \beta[i])$, where $\alpha[i]$ and $\beta[i]$ are chosen such that the mode of $x[i]$ equals $\mu[i]$ and the variance equals σ_j^2 , with $\sigma_j = [0.01, 0.1, 0.3, 1.0]$.

Data-trained RNN [9] (Fig. 8): $\mathcal{N}(\boldsymbol{\mu}, \sigma_j^2 \tilde{\Sigma})$, where we first construct a distribution which is oblongated along the direction of the attractors and isotropic along the remaining directions:

$$\Sigma = \sigma_B^2 \mathbf{I}_N + (\sigma_A^2 - \sigma_B^2) \mathbf{u} \mathbf{u}^\top,$$

with

- $\mathbf{u} \in \mathbb{R}^N$ a unit vector along the attractor axis, i.e. $\mathbf{u} = (\mathbf{a} - \mathbf{b})/\|\mathbf{a} - \mathbf{b}\|$, where \mathbf{a} and \mathbf{b} are the two attractors,
- $\sigma_A > 0$ the standard deviation along \mathbf{u} ,
- $\sigma_B > 0$ the standard deviation along all orthogonal directions, and
- \mathbf{I}_N the $N \times N$ identity matrix.

As before $\boldsymbol{\mu}$ is the point on the separatrix along the line joining the attractors.

We set σ_A to include both attractors, and choose σ_B as large as possible while avoiding spurious basins. For 300 samples drawn from $\mathcal{N}(\boldsymbol{\mu}, \Sigma)$, we evolve the dynamics forward for 3.0 s and estimate the covariance of the resulting approximately forward-invariant distribution, denoted $\tilde{\Sigma}$.

H Scaling of compute with Dimensionality

We ran all experiments on a system with four GeForce GTX 1080 GPUs with 10 Gbps of memory each.

All the 2D systems take 1-5 minutes to train the KEFs. The 11D gLV takes up to 20 minutes. The 668D data-trained RNN [9] takes 5 minutes to train the KEF.

Scalability to high-dimensions is a key strength of our approach. We evaluated the scaling behavior of our method on vanilla RNNs of varying sizes, each trained on the 1-bit flip-flop task. In table 2,

we report the wall-clock training time and curve-based validation performance for learning a single Koopman eigenfunction:

Table 2: Training time and performance across dimensionalities. Vanilla RNNs with N units were trained on the 1-bit flip-flop task. We then applied our method to each resulting dynamical system f to approximate its corresponding Koopman eigenfunction.

Dimension N	Wall-clock time (s)	Curve R^2
32	529	0.997
64	527	0.995
128	572	0.867
256	611	0.996
512	718	0.996

For each case, we verified good agreement with the ground truth using the curve-based validation metric (Fig. 8A–C). All models used a fixed DNN architecture with depth 20 and width 550. For larger N , we expect that the network width must scale with dimensionality. Since our method involves solving an N -dimensional PDE, its scaling behavior is expected to resemble that of Physics-Informed Neural Networks (PINNs) [26] and other PDE-solving neural methods [24]. In particular, Lu et al. [56] proved N -independent generalization error bounds for the Deep Ritz Method within a class of PDEs. Addressing the curse of dimensionality remains an active area of research [57, 58], and we anticipate that advances from this literature can be integrated into our framework.

I Choice of eigenvalue for numerics

In the main text we look for approximations to the Koopman PDE (3) for a real positive eigenvalue λ . What should the value of λ be? It is known that products of KEFs are KEFs themselves with different eigenvalues. In particular, for a KEF ψ with eigenvalue λ , we see that:

$$\nabla [\psi(x)^\alpha] \cdot f(x) = \alpha \psi(x)^{\alpha-1} \nabla \psi(x) \cdot f(x) \quad (63)$$

$$= \alpha \lambda \psi(x)^\alpha \quad (64)$$

Therefore, $\psi(x)^\alpha$ is also a Koopman eigenfunction, with eigenvalue $\alpha\lambda$. This translates to changes in the shape of the KEF, i.e., the sharpness of the peaks, while maintaining the position of the zeroes.

In practice the choice of λ affects training convergence, and it is therefore an important hyperparameter in the optimisation procedure (see Figure 10). We attribute this to the time scale of interest in the system $\dot{\mathbf{x}} = f(\mathbf{x})$, and differences in the propagation of gradients for different λ .

J Linking Koopman Eigenfunctions and separatrices: Formal Derivations

Setting. Let (\mathcal{X}, d) be a smooth manifold with metric d and flow $\{\Phi^t\}_{t \in \mathbb{R}}$ generated by the autonomous ODE $\dot{\mathbf{x}} = f(\mathbf{x})$. Thus $\Phi^0 = \text{id}$, $\Phi^{t+s} = \Phi^t \circ \Phi^s$, and $(t, \mathbf{x}) \mapsto \Phi^t(\mathbf{x})$ is continuous.

Invariant set. An invariant set of a flow Φ^t is a subset $S \subset \mathcal{X}$ such that

$$\Phi^t(\mathbf{x}) \in S \text{ for all } \mathbf{x} \in S \text{ for all } t \in \mathbb{R}.$$

Attracting set. A nonempty closed set $A \subset \mathcal{X}$ is an *attracting set* if it is invariant and there exists an open neighbourhood U of A such that

$$\lim_{t \rightarrow \infty} \text{dist}(\Phi^t(\mathbf{x}), A) = 0 \quad \text{for all } \mathbf{x} \in U,$$

where for $\mathbf{y} \in \mathcal{X}$ and $A \subset \mathcal{X}$,

$$\text{dist}(\mathbf{y}, A) := \inf_{\mathbf{a} \in A} d(\mathbf{y}, \mathbf{a}).$$

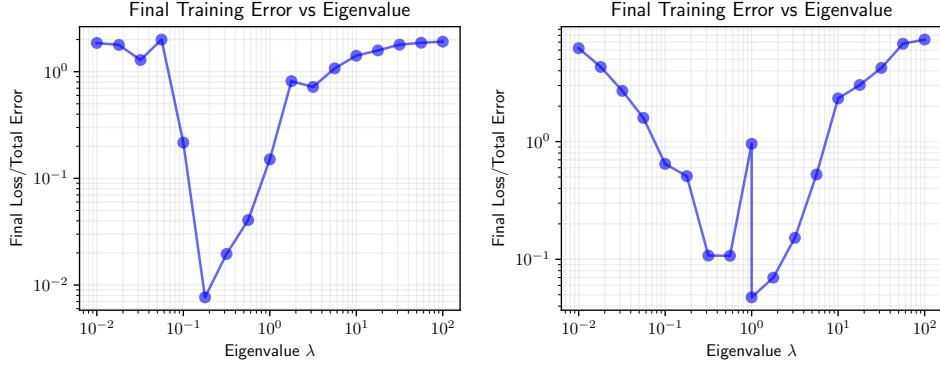


Figure 10: Training convergence as a function of eigenvalue λ , evaluated by normalised PDE error $\mathcal{L}_{\text{ratio}}/6$ for two systems: LEFT, 1D bistable system $\dot{x} = x - x^3$ (see Figure 3) and 2BFF GRU 3D (see Figure 5).

Attractor. An attracting set A is an *attractor* if there is no proper subset of A that is also an attracting set.

Basins of attraction. The basin of an attractor A is

$$B(A) := \{x \in \mathcal{X} : \lim_{t \rightarrow \infty} \text{dist}(\Phi^t(x), A) = 0\}.$$

Each $B(A)$ is forward invariant and open.

Separatrix. Let $\{A_k\}_{k \in K}$ be the set of all the attractors of Φ^t in \mathcal{X} . Define the separatrix as the complement of all basins:

$$\Sigma := \mathcal{X} \setminus \bigcup_{k \in K} B(A_k).$$

Koopman eigenfunction. Let $\psi : \mathcal{X} \setminus (\bigcup_k A_k) \rightarrow \mathbb{R}$ be continuous and satisfy

$$\psi(\Phi^t(x)) = e^{\lambda t} \psi(x) \quad \forall x \in \mathcal{X} \setminus \bigcup_k A_k, \forall t \geq 0,$$

for some eigenvalue $\lambda > 0$. Then the sets $\{\psi > 0\}$, $\{\psi < 0\}$, and $\{\psi = 0\}$ are forward invariant.

Constant sign near attractor (CS). Let $\psi : \mathcal{X} \setminus (\bigcup_k A_k) \rightarrow \mathbb{R}$ be a continuous function. We say it has constant sign near an attractor A_k if there exists an open neighbourhood U_k with $A_k \subset U_k \subset B(A_k)$ such that ψ has a constant sign on $U_k \setminus A_k$.

Proposition 1 (Sign change at a zero \Rightarrow separatrix point). *Let $\psi : \mathcal{X} \setminus (\bigcup_k A_k) \rightarrow \mathbb{R}$ be a continuous Koopman eigenfunction with positive eigenvalue $\lambda > 0$:*

$$\psi(\Phi^t(x)) = e^{\lambda t} \psi(x), \quad t \geq 0,$$

and have constant sign near all the attractors A_k . Suppose $x \in \mathcal{X} \setminus (\bigcup_k A_k)$ satisfies $\psi(x) = 0$ and, for every $\varepsilon > 0$, the ball $B_d(x, \varepsilon)$ contains points y^+, y^- with $\psi(y^+) > 0$ and $\psi(y^-) < 0$. Then $x \in \Sigma$.

Proof. Assume for contradiction that $x \in B(A_{k^*})$. Since $B(A_{k^*})$ is open, there exists $\varepsilon_0 > 0$ such that $B(x, \varepsilon_0) \subset B(A_{k^*})$.

By (CS), ψ has a constant sign on $U_{k^*} \setminus A_{k^*}$ for an open neighborhood U_{k^*} . By attractivity, for any $y \in B(x, \varepsilon_0)$ the trajectory $\Phi^t(y)$ eventually enters U_{k^*} and remains there for all large t .

Since $\psi(\Phi^t(y)) = e^{\lambda t} \psi(y)$, the sign of $\psi(y)$ is preserved along the trajectory (forward invariance of $\{\psi > 0\}$ and $\{\psi < 0\}$), so $\psi(y)$ must already share that constant sign. Thus all points in $B(x, \varepsilon_0)$ have the same sign, contradicting the assumption of sign change in every neighbourhood. Therefore $x \notin \bigcup_k B(A_k)$, i.e. $x \in \Sigma$. \square

Remark. The condition $\psi(\mathbf{x}) = 0$ with a sign change in every neighbourhood means that \mathbf{x} is a boundary point of $\{\psi > 0\}$ and $\{\psi < 0\}$. Proposition 1 shows such points lie precisely on the separatrix.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: We develop a numerical method to locate separatrices of multistable dynamical systems. We utilise the fact that Koopman eigenfunctions identify separatrices and we demonstrating with numerical experiments on several dynamical systems, that we find their separatrices.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: Limitations mentioned in the discussion. Mainly lack of theoretical guarantees.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: We don't have any rigorous proofs, just simple examples to give an intuition of the behavior of Koopman eigenfunctions.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code is provided in supplementary zip file. All the systems studied are contained in the code. Architectures and hyperparameters are provided in the Appendix F.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: Code attached in supplementary zip file. No datasets used in this work. Parameters of the 11D system included in the code. Code is also provided to train the RNNs used for reverse-engineering.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: Yes. See Appendix G.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: Many of our validations in 2D systems are qualitative. We provide in quantitative validation in Figure 8C where we report the R^2 coefficient of determination between predicted and true transition points.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: **[Yes]**

Justification: See Appendix H.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: **[Yes]**

Justification: We reviewed the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: **[NA]**

Justification: The paper proposes a method developed for understanding RNN models of the brain and other dynamical systems. It has no clear societal impact.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite all the code and models from other works.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [\[Yes\]](#)

Justification: We provide commentary in the code ensuring it's readability.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [\[NA\]](#)

Justification: no crowd sourcing or human subjects was involved.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [\[NA\]](#)

Justification: the paper did not involve crowdsourcing nor research with hum subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: no non-standard involvement of LLMs

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.