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Abstract

Many natural systems, including neural circuits involved in decision making, are
modeled as high-dimensional dynamical systems with multiple stable states. While
existing analytical tools primarily describe behavior near stable equilibria, charac-
terizing separatrices—the manifolds that delineate boundaries between different
basins of attraction—remains challenging, particularly in high-dimensional settings.
Here, we introduce a numerical framework leveraging Koopman Theory combined
with Deep Neural Networks to effectively characterize separatrices. Specifically,
we approximate Koopman Eigenfunctions (KEFs) associated with real positive
eigenvalues, which vanish precisely at the separatrices. Utilizing these scalar KEFs,
optimization methods efficiently locate separatrices even in complex systems. We
demonstrate our approach on synthetic benchmarks, ecological network models,
and high-dimensional recurrent neural networks trained on either neuroscience-
inspired tasks or fit to real neural data. Moreover, we illustrate the practical utility
of our method by designing optimal perturbations that can shift systems across
separatrices, enabling predictions relevant to optogenetic stimulation experiments
in neuroscience. Our code is available on GitHub and we share an interactive
description of the work and its extensions in a UniReps blog.

1 Introduction

Recurrent neural networks (RNNs) are widely used in neuroscience as models of computation
arising from the coordinated dynamics of many neurons, motivating efforts to reverse-engineer their
underlying dynamical mechanisms [1, 2]. In particular, many cognitive tasks such as decision-making
[3] and associative memory [4] can be modeled as multistable dynamical systems, where distinct
decisions or memories correspond to different stable attractor states in phase space. Transitions
between these attractors are governed by the geometry of the basins of attraction and, crucially, by
the separatrix: the manifold that delineates the boundary between basins (Figure 1A).

A reverse-engineering method that has yielded significant insights about RNN computations involves
finding approximate fixed points and linearising around them [5]. This involves minimizing a scalar
function—the kinetic energy q(x) = ∥f(x)∥2—to locate these points (Figure 1B). Once found, the
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linearisation of the dynamics at the fixed point can shed light on the mechanism of computations
[6–16].

However, fixed points alone do not capture the global organization of multistable dynamics. Since
inputs perturb the state in arbitrary directions, it is critical to know whether they cross the separatrix.
To predict the effects of perturbations or design targeted interventions, one must characterize the
separatrix itself.

Ideally, we would have a scalar function analogous to the kinetic energy—smooth, yet vanishing
precisely on the separatrix (Figure 1C). This would allow gradient-based optimization to locate the
decision boundary and enable the design of optimal decision-changing perturbations (Figure 1A).

In this work, we propose a novel method to characterize separatrices in high-dimensional black-box
dynamical systems by leveraging Koopman operator theory [17, 18]. Specifically, we approximate
scalar-valued Koopman eigenfunctions (KEFs) with positive real eigenvalues using deep neural
networks. These eigenfunctions vanish precisely on the separatrix.

We apply this framework to synthetic systems, ecological models, RNNs trained on neuroscience-
inspired tasks, and trained to reproduce neural recordings. In addition, we demonstrate that the learned
KEFs can be used to design minimal perturbations that push the system across separatrices—a setting
relevant to experimental protocols such as optogenetic stimulation.

Figure 1: (A) Phase-portrait of a 2D bistable system. The two attractors can signify different choices,
and therefore the direction between them is called the choice direction. External input pushes the
system across the separatrix letting it relax to the other attractor. The optimal perturbation has a
different direction. (B) The kinetic energy vanishes at the fixed points (green ‘o’ stable and ‘+’
unstable) but does not reveal the full separatrix. (C) We aim to learn a scalar function ψ(x) that
vanishes precisely on the separatrix. Gradient descent from random initial points yields a numerical
method to locate the respective minima of the scalar functions.

We summarise our main contributions:

• We develop a tool to locate separatrices, the surfaces between basins of attraction in black-
box multi-stable dynamical systems: a gap in the RNN reverse-engineering toolkit.

• We demonstrate that KEFs with positive eigenvalues vanish precisely on the separatrix and
can be trained using deep neural networks and a loss based on the Koopman PDE error.

• We identify two degeneracies of the Koopman PDE and propose effective regularization
strategies to resolve them.

• We show how the learned KEFs can be used to design minimal norm perturbations that shift
the system across separatrices.

• We demonstrate the method on systems ranging from low-dimensional models to a 668-
dimensional RNN fit to mouse neural data.
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2 Related Work

Our work builds on a growing body of literature at the intersection of Koopman operator theory, deep
learning, and the analysis of dynamical systems, particularly in neuroscience and machine learning.

Koopman theory has recently been used to evaluate similarity between dynamical systems, both
in neuroscience [19]—where it is applied to study the temporal structure of computation—and in
machine learning, where it has been used to compare training dynamics across models [20]. These
approaches typically analyze system-level behavior using dynamic mode decomposition [21–23], a
finite-dimensional approximation of the Koopman operator.

In parallel, deep learning methods have emerged as powerful tools for solving partial differential
equations (PDEs) in high-dimensions. Notably, the Deep Ritz Method [24] and Deep Galerkin
Method (DGM) [25] which eliminate the need for meshes of points. A related line of work uses
physics-informed neural networks (PINNs), which incorporate known physics (often PDEs in fluid
dynamics) as part of the loss function during DNN training [26].

Koopman-based embeddings have also been proposed as a tool for analyzing the internal dynamics
of RNNs. In [27], the authors show that eigenvectors of finite-dimensional approximations of the
Koopman operator can uncover task-relevant latent structure in RNNs. More generally, several works
explore DNN-based approximations of Koopman operators for learning meaningful embeddings of
nonlinear dynamics [28–30].

An alternative line of research for identifying Lagrangian Coherent Structures (LCS) employs the
Finite-Time Lyapunov Exponent (FTLE) [31–33], which quantifies sensitivity to initial conditions by
measuring the exponential rate of separation between nearby trajectories over a finite time horizon.
Ridges in the FTLE field reveal stable and unstable LCS, with the latter corresponding to separatrices
in our terminology. These methods are most often applied to two- or three-dimensional fluid flows,
where they delineate dynamically distinct regions in the velocity field.

Finally, our approach is conceptually connected to work on the geometry of Koopman eigenfunctions
themselves. In particular, [34] studies the level sets of KEFs and their relationship to isostables
and isochrons in systems with stable fixed points. In the setting of linear systems, and nonlinear
systems topologically conjugate to them, [35, 36] establish theoretical links between KEF level sets
and separatrices (stable manifolds). Together, these studies motivate our approach of deep-learning
KEFs, as a method for identifying separatrices in general high-dimensional, multi-stable systems.

3 Results

3.1 KEFs as Scalar Separatrix Indicators

Figure 2: Mapping the high-dimensional dynamics
of x with an unstable manifold – the separatrix –
to the one dimensional linear dynamics of ψ with
instability at ψ = 0, i.e., λ > 0. We approximate
the mapping ψ(x) with a DNN.

We consider autonomous dynamical systems of
the form:

ẋ = f(x), x ∈ X (1)

where the □̇ is shorthand for the time derivative
d
dt□ and f : X → X defines the dynamics on
an N dimensional state space X .

Our goal is to construct a smooth scalar func-
tion ψ that vanishes precisely on the separatrix
between basins of attraction. Consider two such
basins (Figure 2). All we care about is the exis-
tence of the separatrix manifold, with dynamics
moving away from it. The simplest such dynam-
ics is a one-dimensional linear system ψ̇ = λψ,
with λ > 0. This motivates a mapping that
projects x ∈ X to ψ(x) ∈ R, and induces these
dynamics. Such a mapping needs to satisfy:

d

dt

(
ψ
(
x(t)

))
= λψ

(
x(t)

)
(2)
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along any trajectory x(t) in X . See Appendix J for a formal link between ψ and the separatrix.

This is precisely the behavior of a Koopman eigenfunction (KEF) with eigenvalue λ > 0. Note that
Koopman eigenfunctions are usually introduced in a different manner, and Appendix C shows the
connection to our description.

Equation (2) can be re-written as:

∇ψ(x) · f(x) = λψ(x). (3)

by employing the chain-rule of differentiation and requiring it to hold at all x ∈ X . This is the
Koopman partial differential equation (PDE). λ relates to the timescale of ψ and is an important
hyperparameter of our method (Appendix I).

We approximate ψ using a deep neural network (Appendix F) and train it by minimizing the Koopman
PDE residual. Specifically, we define the loss:

LPDE = Ex∼p(x) [∇ψ(x) · f(x)− λψ(x)]
2
, (4)

where p(x) is a sampling distribution over the phase space [24, 25]. As with any eigenvalue problem,
this loss admits the trivial solution ψ ≡ 0. To discourage such solutions, we introduce a shuffle-
normalization loss where the two terms are sampled independently from the same distribution:

Lshuffle = Ex∼p(x),x̃∼p(x) [∇ψ(x) · f(x)− λψ(x̃)]
2
, (5)

and optimize the ratio:

Lratio =
LPDE

Lshuffle
. (6)

We train using stochastic gradient descent, where expectations are approximated by a batch of samples
drawn from p(x) and the shuffle corresponds to a random permutation of the samples in the batch
(see Appendix G for details).

To illustrate the method, we start with an analytically solvable system in 1D (Figure 3A):

ẋ = x− x3 (7)

The system has three fixed points, corresponding to minima of q(x) (Figure 3B). A λ = 1 KEF can
be derived analytically (Appendix A):

ψ(x) =
x√
|1− x2|

(8)

And the zero of this function corresponds to the unstable point, which serves as a separatrix in this
1D case. Figure 3C shows that the DNN approximates this function well, with the location of the
zero (separatrix) being captured precisely.

We also apply the method to two 2D bistable systems: a 2D damped Duffing oscillator (Figure 3DEF),
and a 2-unit GRU RNN trained on a one-bit flip-flop task (Figure 3GHI). In both cases, the system
has two stable fixed points (green circles) and one unstable saddle (green crosses). Kinetic energy
functions, shown for comparison, are minimized at the fixed points. In contrast, the learned λ = 1
KEFs are zero on the separatrix (green contours).

3.2 Challenges and Solutions

While the examples above show cases where simple optimization leads to the separatrix, there
are several crucial implementation details of our proposed methods. In particular, even a ψ(x)
that satisfies the Koopman PDE may fail to identify the true separatrix. This arises from known
degeneracies in Koopman eigenfunctions, particularly in multistable or high-dimensional systems. To
enable utilization of our tool, we describe two key failure modes and our strategies to resolve them,
as summarized in Figure 4.
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Figure 3: Our method to approximate KEFs in three bistable systems. (A) A 1D system ẋ = x− x3.
The curve shows f(x), and its fixed points in light green – ‘o’s stable and ‘x’s unstable. (B) The
kinetic energy q(x) of this system. (C) the true KEF (8) and its DNN approximation obtained by our
method. (D,E,F) Damped Duffing Oscillator in 2D (G,H,I) 2-unit GRU [37] RNN trained on 1-bit
flip flop (1BFF) [5] and our KEFs.

Degeneracy across basins. A central issue stems from the compositional properties of Koopman
eigenfunctions. Let ψ1(x) and ψ2(x) be eigenfunctions with eigenvalues λ1 and λ2. Then, their
product is also a KEF:

∇[ψ1(x)ψ2(x)] · f(x) = (λ1 + λ2)ψ1(x)ψ2(x). (9)

In particular, consider a smooth KEF ψ1 with λ = 1 that vanishes only on the separatrix (e.g., as in
Figure 3). Now, consider a piecewise-constant function ψ0 with λ = 0 that takes constant values
within each basin and may be discontinuous at the separatrix. The product ψ1ψ0 remains a valid KEF
with λ = 1, but it can now be zero across entire basins—thereby destroying the separatrix structure
we aim to capture (Figure 4 top).

We observe this behavior empirically in Appendix D, where independently initialized networks
converge to different spurious solutions. To mitigate this, we introduce a balance regularization
term that biases ψ to have nonzero values in opposing basins, encouraging sign changes across the
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Figure 4: Top: In the presence of multiple basins, a KEF can collapse to zero within a single basin.
This degeneracy is realised by multiplying the KEF with a piecewise constant KEF with λ = 0
and invoking (9). This example corresponds to ẋ = x − x3. We introduce a regularisation term
(10) to encourage the mean value ⟨ψ⟩ ≈ 0. This encourages solutions with sign changes across
basins. Bottom: In higher dimensions, degeneracy arises from directional ambiguity in solutions. We
visualise the analytical solution (12) for ẋ = x− x3; ẏ = y − y3. We address this by sampling from
multiple local distributions around separatrix points and training an ensemble of KEFs.

separatrix. Specifically, we define:

Lbal =
(E[ψ(x)])2

Var[ψ(x)]
, (10)

and train using the combined loss Lratio + γbalLbal, where γbal is a scalar hyperparameter.

In higher-dimensional systems, the Koopman PDE admits a family of valid KEFs that differ in their
directional dependence. Consider a separable 2D system:

ẋ = f1(x), ẏ = f2(y). (11)

Solving the PDE for this system (appendix B) yields a family of KEFs parameterised by µ ∈ R:

ψ(x, y) = A(x)µB(y)1−µ, (12)

where A(x) and B(y) are KEFs to the respective 1D problems. For example, when µ = 1, the
eigenfunction depends only on x and ignores y – therefore unable to capture y-dependent separatrices.
Figure 4 (bottom) illustrates this effect: different values of µ yield KEFs aligned with different
separatrices.

Even in non-separable systems, this degeneracy can arise. Optimizing Ltotal can lead to a KEF that
identifies some separatrices and ignores others (Appendix D). To address this, we train multiple KEFs
{ψi(x)}ki=1, while using their input distributions to bias each one to capture a different separatrix. For
ψi(x), we choose two points in different basins of attraction, and then use a binary search on the line
connecting them to find a point on the separatrix. Note that the KEF is still needed to obtain the full
separatrix, and not just a point. Around each such point βi, we define a local distributionN (βi, σ

2
ijI),

using a range of scales {σij}Jj=1 to span both fine and global structure. For each distribution, we
minimize the sum

∑J
j=1 L

j
total. We then consider the union of the separatrices obtained from each of

the KEFs to complete the picture (see 2-bit flip flop demonstration below).

3.3 Demonstrations

We demonstrate the applicability of the method on several qualitative examples.
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Figure 5: Two-bit flip flop task in a 3-unit GRU. The system has 4 stable fixed points (light-green
points). (A,B) Two KEFs obtained by our method. They complement each other as they each
captures a separatrix along one direction. (C) Use of KEF to design minimal perturbations that push
trajectories across the separatrix.

3D GRU RNN Performing Two-Bit Flip Flop

We first demonstrate our method on a low-dimensional recurrent neural network trained to perform a
two-bit flip flop (2BFF) task. Specifically, we use a 3-unit gated recurrent unit (GRU) network [37].
The trained network exhibits four stable fixed points (Figure 5), corresponding to different memory
states of the task.

To overcome the degeneracies described in Figure 4, we adopt a targeted sampling strategy. We first
identify points on the separatrix by interpolating between pairs of fixed points and performing binary
search: at each step, we simulate the dynamics to determine basin membership and refine the search.
Around these discovered separatrix points, we construct concentric isotropic Gaussian distributions,
and sample from them to train on the loss Ltotal (Appendix G).

Two resulting KEF are shown in Figure 5 A,B). As expected, the KEFs vanish precisely along the
separatrices. This result validates the ability of our method to recover boundary manifolds in neural
dynamical systems, even in the presence of degeneracy. Once we know the separatrices, we can
determine optimal perturbation directions (Figure 5C). Starting from a given initial condition (red
star), we see that the same amplitude perturbation is sufficient to reach a different attractor when
using the separatrix information, and insufficient when directed at the desired attractor. A more
quantitative depiction of this effect is shown below in a higher-dimensional system.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
KEF Values in 2D Reduced Space

Figure 6: KEF approximation in a fitted 11D gLV
model of CDI [38, 39]. Zero level set of the KEF
aligns with the separatrix in a 2D projection plane.

11D Ecological Dynamics

We next apply our method (Appendix G) to a
high-dimensional ecological model: a general-
ized Lotka–Volterra (gLV) system fit to genus-
level abundance data from a mouse model of
antibiotic-induced Clostridioides difficile infec-
tion (CDI) [38]. The system has five stable fixed
points. Following [39] we focus our analysis to
two of these fixed points representing healthy
and diseased microbial states.

We optimize the KEF in the full 11-dimensional
state space. For interpretability, we follow the
projection approach of [39], visualizing the dy-
namics in the 2D plane spanned by the two cho-
sen stable fixed points and the origin (see Fig-
ure 6). Although the KEF is trained entirely in
the original 11-dimensional space, its zero level
set (light green curve) aligns well with the true separatrix (orange line) computed using a grid of
initial conditions in the 2D slice [39].
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Figure 7: Applying our method to a system of stable and unstable limit cycles, a system without
any fixed points on the separatrix. (A) system equations. (B) kinetic energy, with dashed line for
separatrix. (C) KEF from our method with zero level highlighted.

This result demonstrates that our technique can be applied directly to real-world fitted models, without
dimensionality reduction at training time.

Limit cycle separatrix

We test our method in a setting where there are no fixed points along the separatrix. We construct a
system which oscillates at a fixed frequency (θ̇ = 1), but converges to one of two preferred amplitudes
(ṙ = (r − 2)− (r − 2)3). The system has three limit-cycles, two of them stable (r = 1, 3) and one
unstable (r = 2). In Figure 7B we visualise the flow, its kinetic energy and the limit cycles. The
system has no fixed points, and thus fixed point analysis is futile. We utilize Radial basis function
neural network [40] to parameterise the KEF (Appendix F).

We show that our approximation of the KEF recovers the separatrix at r = 2 (Figure 7C).

668D RNN fit to mouse neural activity

To demonstrate our method in a high-dimensional (see Appendix H for scaling results) and neurosci-
entifically relevant setting, we applied it to a recurrent neural network (RNN) trained to reproduce
mouse neural activity from Finkelstein et al. [9]. The trained RNN exhibits bistability between
two memory states. As in lower-dimensional systems, we first located a point on the separatrix
by performing a binary search along the line connecting the fixed-point attractors, simulating the
dynamics at each step to determine basin membership.

In the original experiment, mice were trained to respond to optogenetic stimulation of their sensory
cortices, and the RNN was fit to the peristimulus time histogram of recorded neural activity. The
network undergoes a bifurcation from monostability to bistability as a function of an external
ramping input uext. For analysis, we fixed uext = 0.9 within the bistable regime and trained the
Koopman eigenfunction (KEF) network (Appendix G) using samples drawn from isotropic Gaussian
distributions centered at the separatrix point.

Because of the high-dimensionality, direct visualization of the learned KEF and dynamics is not
feasible. Instead, we validated the model using a curve-based evaluation approach. We construct
multiple Hermite polynomial curves that interpolate between the two stable fixed points. The
curvature of each curve is parameterized by a random vector, and each is defined by a parameter
α ∈ [0, 1], where α = 0 corresponds to one attractor and α = 1 to the other (see appendix E).
Because each curve continuously connects the fixed points, it must cross the separatrix. Figure 8A
shows a 2D PCA projection of several such Hermite curves. Crucially, the actual curves span the
entire 668D space. We simulate dynamics from 100 points along each curve and determine their final
basin to infer where each curve crosses the separatrix, forming a ground-truth reference.
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Figure 8: Validation of KEF approximation in a 668D RNN fit to mouse neural activity [9]. (A)
PCA projection of Hermite curves between fixed points coloured by true basin labels and separatrix
points along the curves (red crosses). (B) KEF values along three Hermite curves versus curve
parameter α, as well the true separatrix point along the curve. (C) Comparison between true and
predicted separatrix positions along curves. (D) Perturbation amplitudes ∥∆∥, i.e., distance from
xbase to perturbation targets. The KEF-guided solution yields the smallest perturbation crossing the
separatrix.

Next, we evaluate the learned KEF along these same curves. Figure 8B shows KEF values along
sample Hermite curves as a function of α, with the zero crossing indicating our predicted separatrix.
Figure 8C compares the α-locations of the ground truth and the KEF-predicted separatrix points.
We observe strong agreement, indicating that the learned KEF reliably tracks the separatrix in this
high-dimensional system.

Finally, we demonstrate how the KEF can be used to design minimal perturbations that shift the
state across the separatrix (similar to Figure 1A, Figure 5C). In general, this involves an input-driven
dynamics ẋ = f̃(x,u), with time-varying inputs u(t). To demonstrate the utility of the method
we study a specific, simplified scenario in which the input is a strong instantaneous perturbation
u(t) := ∆δ(t), which moves the state x(0+) = x(0−) + ∆, after which the dynamics evolves
according to f(x) := f̃(x, 0).

Given a base point x(0−) := xbase, just before perturbation, we aim to solve:

∆∗ = argmin
∆

∥∆∥22 subject to |ψ(xbase +∆)| = 0. (13)

Taking advantage of the differentiable nature of ψ in our method, we use the Adam optimizer [41]
to find ∆∗ from random initialization. Figure 8D shows that indeed the optimised perturbation ∆∗

is smaller, compared to simply aiming the perturbation towards the target fixed point, or towards
random points on the separatrix.
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4 Discussion

We presented a novel framework for identifying separatrices in high-dimensional, black-box dynami-
cal systems using Koopman eigenfunctions (KEFs). This method is particularly useful for analyzing
recurrent neural networks (RNNs), which are commonly used to model neural computations involving
multiple stable states.

Prior efforts in reverse-engineering RNNs relied heavily on locating fixed points and linearizing
dynamics locally [6–16]. While powerful, these methods cannot directly capture global structures or
predict system responses to large perturbations that cross basin boundaries. By directly approximating
scalar-valued KEFs that vanish precisely on separatrices, our method complements and extends
existing local linearization approaches. Practitioners can use our KEFs alongside fixed-point analysis
to achieve a comprehensive understanding of the dynamical system’s landscape.

While FTLE methods [31–33] also identify separatrices as ridges of finite-time trajectory divergence,
they may change sharply near separatrices while providing little gradient elsewhere. We speculate
that this could limit their usefulness in high-dimensional systems, where gradient-based localization
is needed. Moreover, differentiating FTLE requires differentiating through the dynamical function,
which may be computationally expensive or even infeasible due to vanishing/exploding gradients. In
contrast, our Koopman eigenfunction framework, by integrating globally, provides a smooth scalar
field whose zero level set identifies the separatrix, enabling efficient gradient-based searches without
repeated forward simulations of the target system.

Our work also advances the application of Koopman operator theory to dynamical systems. Previous
studies primarily utilized Koopman eigenfunctions to predict or control dynamics within a single
basin of attraction [28, 42–45]. Likewise, methods comparing dynamical systems to one another
use the dynamic mode decomposition which does not always discern between different basins
[19, 20, 46]. Such studies usually involve KEFs associated with negative eigenvalues (λ<0), which
exhibit opposite behavior to ours: they explode at separatrices and approach zero at attractors. In
contrast, we specifically targeted eigenfunctions associated with positive eigenvalues, ensuring their
zeros correspond exactly to separatrices.

To help practitioners use our method, we highlight inherent challenges, such as degeneracy in the
Koopman PDE. To overcome these, we introduced a specific regularization–a balance term ensuring
eigenfunctions change sign across different basins and show how to choose distributions for the
Koopman PDE. These ideas build on existing work on KEF approximation [30, 29, 47], enabling
reliable identification of separatrices in diverse and high-dimensional systems.

Our method provides an alternative to more direct approaches for locating separatrices, such as
grid searches or bisection methods that repeatedly simulate the ODE from many initial conditions
[39]. While learning a KEF involves iteratively solving a PDE over phase space, trajectory-based
approaches scale with simulation time and often revisit the same regions of phase space. In contrast,
solving the PDE resembles dynamic programming and can be made more efficient (Appendix H), par-
ticularly near separatrices where critical slowing down makes ODE-based methods computationally
demanding.

While we demonstrated the applicability of our method to diverse scenarios, we do not provide
theoretical guarantees linking the accuracy of the KEF approximation and that of the separatrix
location. Furthermore, like techniques for finding fixed points [5, 48], our method requires knowing
the dynamics in the entire phase space. Extending this to trajectory-based methods [49, 50, 19] can
facilitate separatrix inference directly from neural data.

An interesting extension of our work is to stochastic dynamical systems [51, 52]. While one can
approximate separatrices using only the deterministic component of the dynamics, a full treatment
of stochasticity and its effect on basin boundaries remains open. Likewise, data-driven models with
uncertainty in the inferred flow [53] raise questions about how this uncertainty propagates to the
separatrix. Since separatrices often occupy sparsely sampled or unstable regions of phase space, this
motivates active sampling—potentially through targeted optogenetic stimulations—to improve model
accuracy along these boundaries [54].

In conclusion, we hope that by focusing on separatrices, our method could inform intervention
strategies in neuroscience, ecological or engineering systems, providing a general-purpose tool to
predict and control transitions between stable states in complex dynamical landscapes.
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A Analytical KEF derivation in 1D bistable system

We would like to find an analytical Koopman eigenfunction for the scalar dynamical system:

ẋ = x− x3 (14)

In the 1D case, the Koopman PDE (3) reduces to a first-order ordinary differential equation

dψ

dx
f(x) = λψ(x). (15)

With f(x) = x− x3 and λ = 1 we have:

ψ′(x)(x− x3) = ψ(x) (16)

⇒ ψ′(x)
ψ(x)

=
1

x− x3
(17)

To solve this integral we first simplify the integrand.

x− x3 = x(1− x2) = x(1− x)(1 + x) (18)

So,

1

x(1− x)(1 + x)
=
A

x
+

B

1− x
+

C

1 + x
(19)

Solving for A, B, C yields A = 1, B = 1
2 , C = − 1

2 .

Now we can integrate,∫
1

x− x3
dx =

∫ (
1

x
+

1

2(1− x)
− 1

2(1 + x)

)
dx (20)

= log |x| − 1

2
log |1− x| − 1

2
log |1 + x|+ C (21)

logψ(x) = log |x| − 1

2
log |1− x| − 1

2
log |1 + x|+ C (22)

⇒ ψ(x) = C ′ · |x|√
|1− x2|

(23)

To bring it into the form in the main text we use the product composition rule (9). We can multiply
our solution by the sign(x) function which is a λ = 0 eigenfunction because it remains constant
in each basin (see Figure 4A). In other words, we flip the sign of our solution ψ(x) → −ψ(x) for
x < 0.

ψ(x) = C ′ x√
|1− x2|

(24)

and this remains a KEF with λ = 1.

B Eigenfunction Degeneracy in higher dimensions

Consider a separable 2D dynamical system:

ẋ = fx(x), (25)
ẏ = fy(y), (26)
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which we write compactly as:

ẋ = f(x, y) =

[
fx(x)
fy(y)

]
. (27)

We seek a Koopman eigenfunction ψ(x, y) satisfying:

∇ψ · f(x, y) = λψ(x, y). (28)

Assume λ = 1 and a separable form ψ(x, y) = X(x)Y (y). Then:

∂ψ

∂x
= X ′(x)Y (y), (29)

∂ψ

∂y
= X(x)Y ′(y), (30)

∇ψ · f = X ′(x)Y (y)fx(x) +X(x)Y ′(y)fy(y) = X(x)Y (y). (31)

Dividing both sides by X(x)Y (y) gives:

X ′(x)
X(x)

fx(x) +
Y ′(y)
Y (y)

fy(y) = 1. (32)

The above equation requires that the sum of the above two terms, which each depend on different
variables must be 1 for all x, y. It follows that each term is also a constant function.

X ′(x)
X(x)

fx(x) = µ, (33)

Y ′(y)
Y (y)

fy(y) = 1− µ, (34)

for an arbitrary constant µ ∈ R.

Define the antiderivatives:

A(x) =

∫
1

fx(x)
dx, (35)

B(y) =

∫
1

fy(y)
dy. (36)

Then the logarithms of the separated components are:

logX(x) = µA(x) ⇒ X(x) =
(
eA(x)

)µ

, (37)

log Y (y) = (1− µ)B(y) ⇒ Y (y) =
(
eB(y)

)1−µ

. (38)

Thus, the general separable Koopman eigenfunction is:

ψ(x, y) =
(
eA(x)

)µ

·
(
eB(y)

)1−µ

. (39)

C Relation of our definition to the Koopman Operator

In the main text, we introduced Koopman eigenfunctions as scalar functions ψ : X → R that evolve
exponentially along trajectories x(t) ∈ X of a dynamical system ẋ = f(x):

d

dt
ψ(x(t)) = λψ(x(t)). (40)

Here, we clarify the origin of this equation by defining the Koopman operator, linking our approach
to the broader theory.
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Let g : X → R be a real-valued function of the system state—commonly referred to as an observable.
The collection of such observables forms an infinite-dimensional function space, typically a Hilbert
space once equipped with an inner product ⟨g, g′⟩. The Koopman operator acts linearly on this space.

Remark. When studying nonlinear dynamical systems with multiple basins of attraction, as we do,
the corresponding Koopman eigenfunctions are generally not square-integrable, and therefore fall
outside the Hilbert space defined by the standard inner product. We are aware of this theoretical
limitation and continue to employ the Koopman framework regardless. In practice, neural networks
learn finite, smooth approximations to these otherwise singular structures.

For a continuous-time system, the Koopman operator Kτ evolves observables according to the flow
map Fτ : X → X , which advances the state forward by time τ :

(Kτg)
(
x(t)

)
= g

(
Fτ

(
x(t)

))
= g

(
x(t+ τ)

)
. (41)

The infinitesimal generator of the Koopman semigroup {Kτ}τ≥0, often denoted simply as K, is
defined as:

Kg := lim
τ→0

Kτg − g
τ

= lim
τ→0

g
(
Fτ

(
x
))
− g

(
x
)

τ
. (42)

When evaluated along a trajectory x(t), this yields:

Kg
(
x(t)

)
= lim

τ→0

g
(
x(t+ τ)

)
− g

(
x(t)

)
τ

(43)

=
d

dt
g
(
x(t)

)
= ∇g

(
x(t)

)
· ẋ(t) = ∇g

(
x(t)

)
· f

(
x(t)

)
. (44)

This operator is also known as the Lie derivative of g along the vector field f .

Thus, an eigenfunction ψ of K satisfying

Kψ = λψ (45)

recovers the Koopman eigenfunction equation (3) used in the main text.

D KEF degeneracy in randomly initialised DNN solutions

Main text Figure 4 illustrates challenges arising due to the degeneracy of the Koopman PDE (3). In
Figure 9, we train several DNNs on a 2-unit GRU trained on the 2BFF. Each DNN is independently
initialised and trained on a single distribution without the balance regularisation term Lbal, i.e.,
γbal = 0. The resulting KEF approximations exhibit the same modes of degeneracy - zero on certain
basins as well as vertical and horizontal variants.

E Curve-based validation approach

In high-dimension, we cannot visualize the entire phase space to check whether zeros of the KEF
coincide with the separatrix. Instead, we generate a family of smooth curves that connect two
attractors, and hence must pass through a separatrix. In the 64D GRU flip flop example, the two
attractors are the two stable fixed points x, y ∈ RN . We use cubic Hermite interpolation with
randomized tangent vectors at the endpoints. Each curve is defined by:

H(α) = h00(α)x+ h10(α)mx + h01(α) y + h11(α)my, α ∈ [0, 1] (46)

where the Hermite basis functions are:

h00(α) = 2α3 − 3α2 + 1, (47)

h01(α) = −2α3 + 3α2, (48)

h10(α) = α3 − 2α2 + α, (49)

h11(α) = α3 − α2. (50)
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Figure 9: Many KEFs of to for 2 bit flip flop in 2D

Notice that H(0) = x and H(1) = y.

The tangent vectors mx and my are initialized as y − x and perturbed with Gaussian noise:

mx = (y − x) + ϵx, my = (y − x) + ϵy, ϵx, ϵy ∼ N (0, σ2I). (51)

We sample multiple such curves with independently drawn perturbations. This produces a family of
curves that interpolate between x and y, while varying in geometry, enabling randomized exploration
of intermediate regions in state space. Crucially, the curves are not limited to the manifold spanned by
the attractors, but extend to all dimensions (controlled by σ. Optional constraints (e.g., non-negativity)
can be imposed by rejecting any curve that violates them. For each such curve, we both evaluate the
KEF and simulate the ODE to determine the position of the separatrix.

F Neural network architectures

In most of the demonstrations we use a ResNet architecture [55] with a tanh activation function.

Let the input to the network be xin ∈ Rdin , and let the hidden activations be x(ℓ) ∈ Rdhid , with output
xout ∈ Rdout and L layers.

The network receives inputs at the first layer as x(0) = Pad(axin), where Pad appends zeros to the
input (we always choose dhid > din), and a ∈ R+ is a scalar chosen so that the elements of x(0) are
O(1). The network then updates the hidden state at each layer ℓ as

x(ℓ+1) = x(ℓ) + tanh
(
W (ℓ)x(ℓ) + b(ℓ)

)
, ℓ = 0, . . . , L− 1, (52)

where W (ℓ) ∈ Rdhid×dhid and b(ℓ) ∈ Rdhid .

The output is obtained by applying a final linear layer:

xout =W outx(L) + bout, (53)

where W out ∈ Rdout×dhid and bout ∈ Rdout . During optimization, gradients ∇θLtotal are computed
for all parameters θ = (W (0:L−1),b(0:L−1),W out,bout).

Choices for each system

For the results in Figures 3, 5, 8, we use L = 20, dhid = 400. dout = 1 and din = N the dimension of
the dynamical system. For the gLV system in Figure 6 we use L = 25 and dhid = 1000.

Radial Basis Function (RBF) Layer

For the limit cycles example in Figure 7 we use a single Radial Basis Function layer [40].
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Given an input x ∈ Rdin , the RBF layer maps it to an output y ∈ Rdout through a set of M radial basis
functions, each centered at ci ∈ Rdin , with a shape parameter εi > 0 and linear combination weights
aij ∈ R.

To compute RBF activations for i = 1, . . . ,M , we define the scaled radial distance:

si(x) = εi · ∥x− ci∥ , (54)

and then apply a gaussian radial basis function

φi(x) = exp(−si(x)2). (55)

The final output is a linear combination of the basis activations:

yj(x) =

M∑
i=1

aji · φi(x), j = 1, . . . , dout (56)

We use M = 300, and dout = 1. During optimization, gradients ∇θLtotal are computed for all
parameters θ = ({aji}, {ci}, {εi}).

G Optimisation

Our optimisation procedure described in the main text is summarised in Algorithm 1. It imple-
ments the training of the neural network Koopman eigenfunction using the ratio loss and balance
regularisation, for multiple sampling distributions.

We minimise the total loss:

Ltotal =

J∑
j=1

Lj
ratio + γbalLj

bal. (57)

where j corresponds to the jth sampling distribution (see main text section 3.2). B N -dimensional
points in the state space X are sampled from each distribution xj

i ∼ pj(x). The ratio loss is the
Koopman PDE error, normalised by a sample-shuffled version:

Lj
ratio =

∑B
i=1(LHSj

i − RHSj
i )

2∑B
i=1(LHSj

i − RHSj
perm(i))

2
(58)

LHSj
i = ∇ψ(x

j
i ) · f(x

j
i ) left-hand-side of the Koopman PDE (3) (59)

RHSj
i = λψ(xj

i ) right-hand-side of the Koopman PDE (3) (60)

where perm(i) is a random permutation of the numbers 1, 2, . . . , B sampled during each training
iteration.

The balance regularisation loss is the squared mean of the KEF values divided by their variance:

Lj
bal =

(ψ̄j)2

1
B

∑B
i=1(ψ(x

j
i )− ψ̄j)2

, (61)

ψ̄j =
1

B

B∑
i=1

ψ(xj
i ). (62)

In general we set γbal = 0.05. For the limit cycles Figure 7 we set γbal = 0.

We compute ∇ψ(x) using Pytorch’s torch.autograd.grad, specifying create_graph=True,
since we differentiate through this a second time to compute the gradients ∇θLtotal with respect to
the neural network parameters θ.

We use the Adam optimiser [41] with learning rate 10−4 and l2 normalisation 10−5. We use
B = 1000 and train for 1000 iterations.

Only in the case of the 11D gLV, Figure 6 we use B = 5000 and train for 5000 iterations.

A summary of all hyperparameters is provided in Table 1.
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Algorithm 1 Train Koopman Eigenfunction Network
Require: Sampling distributions {pj(x)}Jj=1; vector field f ; eigenvalue λ; neural network architec-

ture ψθ; batch size B; iterations T ; balance weight γbal; learning rate η; small ε = 10−12

1: Initialize θ
2: for t = 1→ T do
3: Ltotal ← 0
4: for j = 1→ J do
5: {xj

i , ψ
j
i ,∇ψ

j
i } ← SAMPLEANDEVALUATE(pj , ψθ, B)

6: Lj
ratio ← COMPUTERATIOLOSS({ψj

i ,∇ψ
j
i , f(x

j
i ), λ})

7: Lj
bal ← COMPUTEBALANCELOSS({ψj

i })
8: Ltotal ← Ltotal + Lj

ratio + γbal L
j
bal

9: end for
10: Compute gradients of Ltotal w.r.t. θ
11: Update weights θ using gradients and learning rate η
12: end for
13: return trained parameters θ
14: procedure SAMPLEANDEVALUATE(pj , ψθ, B)
15: Sample {xj

i}Bi=1 ∼ pj(x)
16: Compute ψj

i ← ψθ(x
j
i )

17: Compute ∇ψj
i ← ∇xψθ(x

j
i )

18: return {xj
i , ψ

j
i ,∇ψ

j
i }

19: end procedure
20: procedure COMPUTERATIOLOSS({ψj

i ,∇ψ
j
i , f(x

j
i ), λ})

21: Compute LHSji = ∇ψ
j
i · f(x

j
i )

22: Compute RHSji = λψj
i

23: Draw random permutation π of {1, . . . , B}
24: nj ←

∑
i(LHSji − RHSji )

2

25: dj ←
∑

i(LHSji − RHSjπ(i))
2

26: return Lj
ratio = nj/(dj + ε)

27: end procedure
28: procedure COMPUTEBALANCELOSS({ψj

i })
29: ψ̄j = 1

B

∑
i ψ

j
i

30: vj = 1
B

∑
i(ψ

j
i − ψ̄j)2

31: return Lj
bal = (ψ̄j)2/(vj + ε)

32: end procedure

Table 1: Algorithm details and hyperparameters for various systems. System dimensionality N ,
Koopman eigenvalue λ, balance regularisation weight γbal, batch-size B, training iterations T ,
learning rate η, ResNet depth L and width dhid, number of Radial Basis Functions M .

Dynamical System N λ γbal B T η L dhid M

Bistable 1D 1 1 0.05 1000 1000 10−4 20 400 –
Damped Duffing oscillator 2 1 0.05 1000 1000 10−4 20 400 –
1BFF, 2D GRU 2 1 0.05 1000 1000 10−4 20 400 –
2BFF, 3D GRU 3 0.2 0.05 1000 1000 10−4 20 400 –
1BFF, 64D 64 0.1 0.05 1000 1000 10−4 20 400 –
Two Limit Cycles 2 1 0 1000 1000 10−4 – – 300
Ecology gLV 11 0.1 0.05 5000 5000 10−4 25 1000 –
Data-trained RNN [9] 668 0.02 0.05 1000 1000 10−4 7 1200 –
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G.1 Choice of Training Distributions

Choosing suitable training distributions pj(x) is an important step in applying our method. The
distributions are selected to satisfy the following criteria:

1. They are approximately bisected by the separatrix, ensuring roughly equal sampling from
both basins and enabling the balance loss to be satisfied.

2. They sample sufficiently near the attractors to capture the global bistable dynamics.
3. They are approximately forward-invariant, i.e., trajectories initialized from the distribution

remain within its support when evolved forward in time. This avoids loss of mass due to
transient amplification along unstable directions.

4. In systems with multiple spurious attractors, they avoid sampling from basins outside the
domain of interest.

Below we list the specific distributions used for each system.

1D bistable system (Fig. 3C): [N (0, 1), N (0, 3)].

2D damped Duffing oscillator (Fig. 3F):N (0, σ2
j I2), with σj = [0.1, 0.5, 1.0, 2.0], where I2 is the

2× 2 identity matrix.

2D 1-bit flip-flop GRU (Fig. 3I): N (0, σ2
j I2), with σj = [0.01, 0.1, 0.5, 1.0, 2.0, 4.0].

3D GRU 2-bit flip-flop (Fig. 5): N (µ, σ2
j I3), with σj = [0.01, 0.05, 0.2, 1.0, 5.0]. The mean µ is

chosen as a point on the separatrix found by interpolating between two attractors and performing
iterative binary search with ODE (1). A second µ is obtained by interpolating a different attractor
pair for training the second KEF.

11D ecological dynamics (Fig. 6): We similarly identify a single separatrix point µ. Each coordinate
x[i] is sampled independently from a Gamma distribution x[i] ∼ Γ(α[i], β[i]), where α[i] and
β[i] are chosen such that the mode of x[i] equals µ[i] and the variance equals σ2

j , with σj =
[0.01, 0.1, 0.3, 1.0].

Data-trained RNN [9] (Fig. 8): N
(
µ, σ2

j Σ̃
)

, where we first construct a distribution which is
oblongated along the direction of the attractors and isotropic along the remaining directions:

Σ = σ2
BIN + (σ2

A − σ2
B)uu

⊤,

with

• u ∈ RN a unit vector along the attractor axis, i.e. u = (a− b)/∥a− b∥, where a and b
are the two attractors,

• σA > 0 the standard deviation along u,
• σB > 0 the standard deviation along all orthogonal directions, and
• IN the N ×N identity matrix.

As before µ is the point on the separatrix along the line joining the attractors.

We set σA to include both attractors, and choose σB as large as possible while avoiding spurious
basins. For 300 samples drawn fromN (µ,Σ), we evolve the dynamics forward for 3.0 s and estimate
the covariance of the resulting approximately forward-invariant distribution, denoted Σ̃.

H Scaling of compute with Dimensionality

We ran all experiments on a system with four GeForce GTX 1080 GPUs with 10 Gbps of memory
each.

All the 2D systems take 1-5 minutes to train the KEFs. The 11D gLV takes up to 20 minutes. The
668D data-trained RNN [9] takes 5 minutes to train the KEF.

Scalability to high-dimensions is a key strength of our approach. We evaluated the scaling behavior
of our method on vanilla RNNs of varying sizes, each trained on the 1-bit flip-flop task. In table 2,
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we report the wall-clock training time and curve-based validation performance for learning a single
Koopman eigenfunction:

Table 2: Training time and performance across dimensionalities. Vanilla RNNs with N units were
trained on the 1-bit flip-flop task. We then applied our method to each resulting dynamical system f
to approximate its corresponding Koopman eigenfunction.

Dimension N Wall-clock time (s) Curve R2

32 529 0.997
64 527 0.995

128 572 0.867
256 611 0.996
512 718 0.996

For each case, we verified good agreement with the ground truth using the curve-based validation
metric (Fig. 8A–C). All models used a fixed DNN architecture with depth 20 and width 550. For
largerN , we expect that the network width must scale with dimensionality. Since our method involves
solving an N -dimensional PDE, its scaling behavior is expected to resemble that of Physics-Informed
Neural Networks (PINNs) [26] and other PDE-solving neural methods [24]. In particular, Lu et al.
[56] proved N -independent generalization error bounds for the Deep Ritz Method within a class of
PDEs. Addressing the curse of dimensionality remains an active area of research [57, 58], and we
anticipate that advances from this literature can be integrated into our framework.

I Choice of eigenvalue for numerics

In the main text we look for approximations to the Koopman PDE (3) for a real positive eigenvalue λ.
What should the value of λ be? It is known that products of KEFs are KEFs themselves with different
eigenvalues. In particular, for a KEF ψ with eigenvalue λ, we see that:

∇ [ψ(x)α] · f(x) = αψ(x)α−1∇ψ(x) · f(x) (63)
= αλψ(x)α (64)

Therefore, ψ(x)α is also a Koopman eigenfunction, with eigenvalue αλ. This translates to changes
in the shape of the KEF, i.e., the sharpness of the peaks, while maintaining the position of the zeroes.

In practice the choice of λ affects training convergence, and it is therefore an important hyperparameter
in the optimisation procedure (see Figure 10). We attribute this to the time scale of interest in the
system ẋ = f(x), and differences in the propagation of gradients for different λ.

J Linking Koopman Eigenfunctions and separatrices: Formal Derivations

Setting. Let (X , d) be a smooth manifold with metric d and flow {Φt}t∈R generated by the
autonomous ODE ẋ = f(x). Thus Φ0 = id, Φt+s = Φt ◦ Φs, and (t,x) 7→ Φt(x) is continuous.

Invariant set. An invariant set of a flow Φt is a subset S ⊂ X such that

Φt(x) ∈ S for all x ∈ S for all t ∈ R.

Attracting set. A nonempty closed set A ⊂ X is an attracting set if it is invariant and there exists
an open neighbourhood U of A such that

lim
t→∞

dist(Φt(x), A) = 0 for all x ∈ U,

where for y ∈ X and A ⊂ X ,
dist(y, A) := inf

a∈A
d(y,a).
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Figure 10: Training convergence as a function of eigenvalue λ, evaluated by normalised PDE error
Lratio 6 for two systems: LEFT, 1D bistable system ẋ = x− x3 (see Figure 3) and 2BFF GRU 3D
(see Figure 5).

Attractor. An attracting set A is an attractor if there is no proper subset of A that is also an
attracting set.

Basins of attraction. The basin of an attractor A is

B(A) := {x ∈ X : lim
t→∞

dist(Φt(x), A) = 0}.

Each B(A) is forward invariant and open.

Separatrix. Let {Ak}k∈K be the set of all the attractors of Φt in X . Define the separatrix as the
complement of all basins:

Σ := X \
⋃
k∈K

B(Ak).

Koopman eigenfunction. Let ψ : X \
(
∪kAk

)
→ R be continuous and satisfy

ψ
(
Φt(x)

)
= eλt ψ(x) ∀x ∈ X \

⋃
k Ak, ∀ t ≥ 0,

for some eigenvalue λ > 0. Then the sets {ψ > 0}, {ψ < 0}, and {ψ = 0} are forward invariant.

Constant sign near attractor (CS). Let ψ : X \ (∪kAk)→ R be a continuous function. We say it
has constant sign near an attractor Ak if there exists an open neighbourhood Uk with Ak ⊂ Uk ⊂
B(Ak) such that ψ has a constant sign on Uk \Ak.

Proposition 1 (Sign change at a zero⇒ separatrix point). Let ψ : X \
(
∪kAk

)
→ R be a continuous

Koopman eigenfunction with positive eigenvalue λ > 0:

ψ(Φt(x)) = eλtψ(x), t ≥ 0,

and have constant sign near all the attractors Ak. Suppose x ∈ X \
(
∪kAk

)
satisfies ψ(x) = 0 and,

for every ε > 0, the ball Bd(x, ε) contains points y+,y− with ψ(y+) > 0 and ψ(y−) < 0. Then
x ∈ Σ.

Proof. Assume for contradiction that x ∈ B(Ak∗). Since B(Ak∗) is open, there exists ε0 > 0 such
that B(x, ε0) ⊂ B(Ak∗).

By (CS), ψ has a constant sign on Uk∗ \Ak∗ for an open neighborhood Uk∗ . By attractivity, for any
y ∈ B(x, ε0) the trajectory Φt(y) eventually enters Uk∗ and remains there for all large t.

Since ψ(Φt(y)) = eλtψ(y), the sign of ψ(y) is preserved along the trajectory (forward invariance of
{ψ > 0} and {ψ < 0}), so ψ(y) must already share that constant sign. Thus all points in B(x, ε0)
have the same sign, contradicting the assumption of sign change in every neighbourhood. Therefore
x /∈

⋃
k B(Ak), i.e. x ∈ Σ.
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Remark. The condition ψ(x) = 0 with a sign change in every neighbourhood means that x is
a boundary point of {ψ > 0} and {ψ < 0}. Proposition 1 shows such points lie precisely on the
separatrix.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations mentioned in the discussion. Mainly lack of theoretical guarantees.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We don’t have any rigorous proofs, just simple examples to give an intuition
of the behavior of Koopman eigenfunctions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Code is provided in supplementary zip file. All the systems studied are
contained in the code. Architectures and hyperparameters are provided in the Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code attached in supplementary zip file. No datasets used in this work.
Parameters of the 11D system included in the code. Code is also provided to train the RNNs
used for reverse-engineering.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes. See Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Many of our validations in 2D systems are qualitative. We provide in quantita-
tive validation in Figure 8C where we report the R2 coefficient of determination between
predicted and true transition points.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper proposes a method developed for understanding RNN models of the
brain and other dynamical systems. It has no clear societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the code and models from other works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide commentary in the code ensuring it’s readability.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: no crowd sourcing or human subjects was involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper did not involve crowdsourcing nor research with hum subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: no non-standard involvement of LLMs
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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