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Abstract

It is well known that Empirical Risk Minimization (ERM) may attain minimax
suboptimal rates in terms of the mean squared error (Birgé and Massart, 1993). In
this paper, we prove that, under relatively mild assumptions, the suboptimality of
ERM must be due to its bias. Namely, the variance error term of ERM (in terms
of the bias and variance decomposition) enjoys the minimax rate. In the fixed
design setting, we provide an elementary proof of this result using the probabilistic
method. Then, we extend our proof to the random design setting for various
models. In addition, we provide a simple proof of Chatterjee’s admissibility
theorem (Chatterjee, 2014, Theorem 1.4), which states that in the fixed design
setting, ERM cannot be ruled out as an optimal method, and then we extend this
result to the random design setting. We also show that our estimates imply stability
of ERM, complementing the main result of Caponnetto and Rakhlin (2006) for non-
Donsker classes. Finally, we highlight the somewhat irregular nature of the loss
landscape of ERM in the non-Donsker regime, by showing that functions can be
close to ERM, in terms of L2 distance, while still being far from almost-minimizers
of the empirical loss.

1 Introduction

Maximum Likelihood and the method of Least Squares are fundamental procedures in statistics.
The study of the asymptotic consistency of Maximum Likelihood has been central to the field for
almost a century (Wald, 1949). Along with consistency, failures of Maximum Likelihood have been
thoroughly investigated for nearly as long (Neyman and Scott, 1948; Bahadur, 1958; Ferguson, 1982).
In the setting of non-parametric estimation, the seminal work of (Birgé and Massart, 1993) provided
sufficient conditions for minimax optimality (in a non-asymptotic sense) of Least Squares while also
presenting an example of a model class where this basic procedure is sub-optimal. Three decades
later, we still do not have necessary and sufficient conditions for minimax optimality of Least Squares
when the model class is large. While the present paper does not resolve this question, it makes
several steps towards understanding the behavior of Least Squares — equivalently, Empirical Risk
Minimization (ERM) with square loss — in large models.

Beyond intellectual curiosity, the question of minimax optimality of Least Squares is driven by the
desire to understand the current practice of fitting large or overparametrized models, such as neural
networks, to data (cf. (Belkin et al., 2019; Bartlett et al., 2020)). At the present moment, there is little
theoretical understanding of whether such unregularized data-fitting procedures are optimal, and the
study of their statistical properties may lead to new methods with improved performance.

In addition to minimax optimality, many other important properties of Least Squares on large models
are yet to be understood. For instance, little is known about its stability with respect to perturbations of
the data. It is also unclear whether approximate minimizers of empirical loss enjoy similar statistical
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properties as the exact solution. Conversely, one may ask whether in the landscape of possible
solutions, a small perturbation of the minimizer output by Least Squares itself is a near-optimizer of
empirical loss.

The contribution of this paper is to provide novel insights into the aforementioned questions for
convex classes of functions in a quite generic setting. In detail, we show the following:

1. We prove that in the fixed design setting, the variance term of ERM is upper bounded by
the minimax rate of estimation; thus, if the ERM is minimax suboptimal, this must be due
to the bias term in the bias-variance decomposition. Then, we extend this result to random
design, and provide an upper bound for the variance error term under a uniform boundedness
assumption on the class. This bound also implies that under classical assumptions in
empirical process theory, the variance error term is minimax optimal.

2. We show that under an isoperimetry assumption on the noise, the expected conditional
variance error term of ERM is upper bounded by the “lower isometry” remainder, a parameter
that was introduced in Bartlett et al. (2005); Mendelson (2014). Next, under an additional
isoperimetry assumption on the covariates, we prove that the variance of ERM is upper
bounded by the lower isometry remainder on any robust learning architecture (namely, a
class consisting of functions which are all O(1)-Lipschitz) which almost interpolates the
observations (cf. Bubeck and Sellke (2023)).

3. It is known that ERM is always admissible in the fixed design setting (Chatterjee, 2014;
Chen et al., 2017); that is, for any convex function class, there is no estimator having a lower
error than ERM (up to a multiplicative absolute constant) on every regression function. We
provide a short proof of this result for fixed design via a fixed-point theorem. Using the same
method, we also prove a somewhat weaker result in the random design case, generalizing
the main result of Chatterjee (2014).

4. We show that ERM is stable, in the sense that all almost-minimizers (up to the minimax
rate) of the squared loss are close in the space of functions. This result is a non-asymptotic
analogue of the asymptotic analysis in Caponnetto and Rakhlin (2006), and extends its scope
to non-Donsker classes.

5. While any almost-minimizer of the squared loss is close to the minimizer with respect to
the underlying population distribution, the converse is incorrect. We prove that for any
non-Donsker class of functions, there exists a target regression function such that, with high
probability, there exists a function with high empirical error near the ERM solution; this
means that the landscape of near-solutions is, in some sense, irregular.

Conclusions Our results show that the ERM enjoys an optimal variance error term in two distinct
regimes: the classical regime (van de Geer, 2000), where the function class is fixed and the number of
samples is increasing, and the “benign overfitting” setting (Belkin et al., 2019; Bartlett et al., 2020), in
which the “capacity” of the class is large compared to the number of samples. In both these settings,
our work implies that the minimax optimality of ERM is only determined by its bias error term
(or its implicit bias). For models with “few” parameters, computationally efficient bias correction
methods do exist and are commonly used in practice (cf. (Efron and Tibshirani, 1994)), however,
these methods fail over large function classes, in which the bias causes the statistical sub-optimality.
Our work reveals the importance of inventing computationally efficient debiasing methods for rich
function classes, including non-parametric models and high-dimensional models. The main message
of our work is that such methods, if discovered, may significantly improve the statistical performance
of ERM over large models in practice.

1.1 Prior Work
Stability of ERM The stability of learning procedures, which was an active area of research in
the early 2000’s, has recently seen a resurgence of interest because of its connections to differential
privacy and to robustness of learning methods with respect to adversarial perturbations. In the interest
of space, we only compare present results to those of Caponnetto and Rakhlin (2006). In the latter
paper, the authors showed that the L1-diameter of the set of almost-minimizers of empirical error
(with respect to any loss function) asymptotically shrinks to zero as long as the perturbation is
o(n−1/2) and the function class is Donsker. The analysis there relies on passing from the empirical
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process to the associated Gaussian process in the limit, and studying uniqueness of its maximum
using anti-concentration properties. While the result there holds without assuming that the class
is convex, it is limited by (a) its asymptotic nature and (b) the assumption that the class is not too
complex. In contrast, the present paper uses more refined non-asymptotic concentration results, at the
expense of additional assumptions such as convexity and minimax optimal lower and upper lower
isometry remainders. Crucially, the present result, unlike that of Caponnetto and Rakhlin (2006),
holds for non-Donsker classes — those for which the empirical process does not converge to the
Gaussian process.

Shape-constrained regression The term “shape-constrained regression” refers to function classes
consisting of functions with a certain “shape” property, such as convexity or monotonicity (Samworth
and Sen, 2018). In these problems, a common theme is that the statistical behavior of the class
exhibits a phase transition when the dimension d of the domain reaches a certain value. For instance,
in convex (Lipschitz) regression, the transition happens at d = 5: when d < 5, the ERM procedure
is minimax optimal (Seijo and Sen, 2011; Han and Wellner, 2016; Kim and Samworth, 2016; Seijo
and Sen, 2011; Guntuboyina, 2012), but in higher dimensions, it is known to be suboptimal (Kur
et al., 2020a,b). In other shape-constrained models, however, the ERM is minimax optimal even
in high dimensions, such as isotonic regression and log-concave density estimation (Han et al.,
2019; Kur et al., 2019; Carpenter et al., 2018). Our results show that the sub-optimality of ERM
in shape-constrained regression can only be due to the high bias of ERM. These results also align
with the empirical observation that for the problem of estimation of convex sets, the ERM has a bias
towards “smooth" convex sets (Soh and Chandrasekaran, 2019; Ghosh et al., 2021).

High-dimensional statistics In classical statistics, the Maximum Likelihood (MLE) typically has a
low bias compared to its variance, and the standard approach is to introduce bias into the procedure
in order to reduce the variance, overall achieving a better trade-off (see (Sur and Candès, 2019, §1)
and references therein). In contrast, in high-dimensional models, the MLE may suffer from high bias
even in tasks such as logistic regression and sparse linear regression (cf. Candès and Sur (2020);
Javanmard and Montanari (2018)). Our results align with this line of work, showing that the problem
of high bias may also arise in the task of regression over rich function classes.

2 Main Results
In §2.1, we present the setting of our model and the all required preliminaries, and in the remaining
sub-sections, we present our results. In details, in §2.2-2.3, we present our results on the variance
of ERM in fixed and random designs respectively, and in §3 we provide sketches of some of our
proofs. For lack of space, we presents our admissibility and our landscape results on ERM in the
supplementary material (§4.1-4.2).

2.1 Preliminaries
Let X be some fixed domain, F be a class of functions from X to R, and f∗ ∈ F an unknown target
regression function. We are given n ≥ 2 data points X1 . . . , Xn ∈ X and n noisy observations

Yi = f∗(Xi) + ξi, i = 1, . . . , n (1)

which we denote by D := {(Xi, Yi)}ni=1; ξ := (ξ1, . . . , ξn) is the random noise vector.

In the fixed design setting, the observations X1 = x1, . . . , Xn = xn are arbitrary and fixed, and we
denote the uniform measure on this set of points by P(n). In the random design setting, the data
points X := (X1, . . . , Xn) are drawn i.i.d. from a probability distribution over X , denoted by P, and
the noise vector ξ is drawn independently of X. Note that this model is general enough to cover the
high-dimensional setting, as both the function class F and the distributions of ξ and X are allowed
to depend on the number of samples n.

An estimator for the regression task is defined as a measurable function f̄n : D 7→ {X → R}, that
for any realization of the input D, outputs some real-valued measurable function on X . The risk of
f̄n is defined as

R(f̄n,F ,Q) := sup
f∗∈F

ED

∫
(f̄n − f∗)2dQ, (2)

where Q = P in the random design case, and Q = P(n) in the fixed design case. Note that in fixed
design, the expectation ED is taken over the noise ξ, while in random design the expectation ED is
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taken both over the random data points X and noise ξ. The minimax rate is defined via

M(n,F ,Q) := inf
f̄n

R(f̄n,F ,Q). (3)

In the fixed design setting, we also denote the minimax rate by M(F ,P(n)), as the dependence in n
is already present in P(n).

The most natural estimation procedure is the Least Squares (LS) or Empirical Risk Minimization
(ERM) with squared loss, defined as

f̂n ∈ argmin
f∈F

n∑
i=1

(f(Xi)− Yi)
2. (4)

When studying fixed design, we will abuse notation and treat f̂n as a vector in Rn. We emphasize that
many of our results hold for many other estimators, including various regularized ERM procedures
(see the relevant remarks below).

In both the fixed and random design settings, we shall assume the following:

Assumption 1. F is a closed convex subset of L2(Q), where Q ∈ {P(n),P}.

The convexity of F means that any f, g ∈ F and λ ∈ [0, 1]: λf + (1− λ)g ∈ F ; closedness means
that for any sequence {fn}∞n=1 ⊂ F converging to f with respect to the norm of L2(Q), the limit f
lies in F . The closedness ensures that f̂n is well-defined.

Assumption 1 is standard in studying the statistical performance of the ERM (cf. Lee et al. (1996);
Bartlett et al. (2005); Mendelson (2014)). In particular, under this assumption, the values of f̂n at the
observation points X1, . . . , Xn is uniquely determined for any ξ. Note that in general, the values of a
function f ∈ F at the points X1, . . . , Xn does not uniquely identify f among all functions in the
class.

In addition to f̂n, we analyze properties of the set of δ-approximate minimizers of empirical loss,
defined for δ > 0 via

Oδ :=

{
f ∈ F :

1

n

n∑
i=1

(Yi − f(Xi))
2 ≤ 1

n

n∑
i=1

(Yi − f̂n(Xi))
2 + δ

}
. (5)

Note that Oδ is a random set, in both fixed and random designs.

It is well-known that the squared error of any estimator, in particular that of LS, decomposes into
variance and bias components:

ED

∫
(f̂n − f∗)2dQ = ED

∫
(f̂n − EDf̂n)

2dQ︸ ︷︷ ︸
V (f̂n)

+

∫
(EDf̂n − f∗)2dQ︸ ︷︷ ︸

B2(f̂n)

, (6)

where Q = P(n) in the fixed design setting and Q = P in the random design setting. Also, for
simplicity of the presentation of our results, we denote the maximal variance error term of f̄n by
V(f̄n,F ,Q), i.e.

V(f̄n,F ,Q) := sup
f∗∈F

V (f̄n) = ED

∫
(f̄n − EDf̄n)

2dQ

In the random design setting, we also have the law of total variance:

V (f̂n) = EXEξ

[∫ (
f̂n − Eξ

[
f̂n|X

])2
dP
]

︸ ︷︷ ︸
EV (f̂n|X)

+EX

[∫ (
Eξ

[
f̂n|X

]
− EX,ξf̂n

)2
dP
]

︸ ︷︷ ︸
V (E(f̂n|X))

. (7)

We refer to the two terms as the expected conditional variance and the variance of the conditional
expectation, respectively. We conclude this introductory section with a bit of notation and a definition.
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Notation We use the notation of ≍,≳,≲ to denote equality/inequality up to an absolute constant.
We use ∥ · ∥ = ∥ · ∥L2(P) to denote the L2(P) norm, and ∥ · ∥n to denote the L2(P(n)) norm (that is
equal to the Euclidean norm scaled by 1/

√
n). Finally, given a function f : S → T between metric

spaces, we define its Lipschitz constant as ∥f∥Lip = supa,b∈T,a ̸=b
dT (f(a),f(b))

dS(a,b) , and we say “f is
L-Lipschitz” when its Lipschitz constant is at most L. Finally, we denote by diamQ(H) the L2(Q)
diameter of a set of functions H.

Definition 1. Let ϵ ≥ 0, F ⊆ {X → R} and d(·, ·) a pseudo-metric on F . We call a set S ⊂ F
an ϵ-net of F with respect to d if for any f ∈ F there exists g ∈ S with d(f, g) ≤ ϵ. We denote by
N (ϵ,F , d) the ϵ-covering number of F with respect to d, that is, the minimal positive integer N such
that F admits an ϵ-net of cardinality N .

2.2 Variance of ERM in fixed design setting
In this part, we consider some fixed (F ,P(n)) and assume that the noise is standard normal.

Assumption 2. The noise vector ξ is distributed as an isotropic Gaussian, i.e. ξ ∼ N(0, In×n).

Our first result provides an exact characterization of the variance (up to a multiplicative absolute
constant) under Assumptions 1-2. In order to state it, for a fixed f∗ ∈ F , we define the following set:

H∗ := {f ∈ F : ∥f − EDf̂n∥2n ≤ 4 · V (f̂n)}. (8)

In words, when the underlying function f∗ is fixed, we consider the ERM as a random vector
(depending on the noise), whose expectation we denote by EDf̂n. H∗ is then just a neighborhood
around the expected ERM with a radius of order the square root of the variance error term of f̂n,
when the underlying function is f∗ ∈ F .

We can now state our first result, which uses the notion of the set Oδ of δ-approximate minimizers
from (5).

Theorem 1. Under Assumptions 1-2, the following holds:

VD(f̂n) ≍ M(H∗,P(n)),

and in particular V(f̂n,F ,P(n)) ≲ M(F ,P(n)). Furthermore, for δ := δ(f∗, n) ≲ M(H∗,P(n)),
the event

sup
f∈Oδ

∫
(f − EDf̂n)

2dP(n) ≍ M(H∗,P(n)). (9)

holds with probability at least max{1 − 2 exp(−cn · M(H∗,P(n))), 0.9}, where c ∈ (0, 1) is an
absolute constant.

Theorem 1 establishes our first claim: the variance of ERM is bounded above (up to a multiplicative
absolute constant) by the minimax rate of estimation on H∗. Since H∗ is contained in F , its minimax
rate is at most that of F ; in particular, the variance of ERM is bounded by M(F ,P(n)), and hence,
any sub-optimality of ERM must arise from its bias. The theorem also incorporates a stability result:
not only is the ERM close to its expected value EDf̂n with high probability, but any approximate
minimizer (up to an excess error of δ2) is close to EDf̂n as well.

Our next result complements Theorem 1 above, providing a lower bound on V(f̂n,F ,P(n)):

Theorem 2. Under Assumptions 1-2, the following holds:

V(f̂n,F ,P(n)) ≳ M(F ,P(n))2.

Note that there is a multiplicative gap of order M(F ,P(n)) between the bounds of Theorems 1 and
2. We leave it as an open problem whether the bound of Theorem 2 can be improved under these
general assumptions.
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2.3 Variance of ERM in random design setting
We now turn our attention to the random design setting. Here, we establish similar results to the
previous sub-section, albeit under additional assumptions, and with significantly more effort. Unlike
the fixed design case, we cannot provide an exact characterization of the variance of ERM. We shall
use two different approaches to estimate the variance error term. In the first approach, we use classical
tools of empirical process theory together with assumptions that are commonly used in M-estimation
(van de Geer, 2000). The second approach, which is inspired by our fixed-design approach, relies
heavily on isoperimetry and concentration of measure (cf. Ledoux (2001)).

Throughout this part, we assume for simplicity of presentation that the L2(P)-diameter of the function
class is independent of n.

Assumption 3. There exist absolute constants C, c > 0 such that c ≤ diamP(F) ≤ C.

The classical work of Yang and Barron (1999) provides a characterization of the minimax rate
(n,F ,P) under appropriate assumptions (such as normal noise, and uniform boundedness of F , and
richness of F). They proved that the minimax rate is the square of the solution of the following
(asymptotic) equation

logN (ϵ,F ,P) ≍ nϵ2, (10)

where N (ϵ,F ,P) is the ϵ-covering number of F in terms of L2(P) metric (see Def. 1 above). We
denote this point by ϵ∗ = ϵ∗(n), and even under less restrictive assumptions, ϵ2∗ also lower bounds
the minimax rate, up to a multiplicative factor of O(log n). Also, we remark that it is well known that
ERM may not achieve this optimal rate (Birgé and Massart, 1993) for large (so-called non-Donsker)
function classes.

We also introduce the following additional notations and definitions: First, Pn denotes the (random)
uniform measure over X = (X1, . . . , Xn). Next, following Bartlett et al. (2005), we define the
lower and upper isometry remainders of (F ,P) for a given n. These remainders measure the
discrepancy between L2(P) and a “typical” L2(Pn), here “typical” means for most of realizations of
X. These remainders first emerged in the field of metric embeddings, specifically in the definition of
quasi-isometries (cf. Ostrovskii (2013)).

In order to introduce these isometry remainders, we first define for each realization of the input X,
the constants IL(X) and IU (X) as the minimal numbers AX , BX ≥ 0, respectively, such that the
following holds:

∀f, g ∈ F : 4−1

∫
(f − g)2dP−AX ≤

∫
(f − g)2dPn ≤ 4

∫
(f − g)2dP+BX .

Note that as AX and BX increase, the geometry of L2(Pn) and L2(P) over F becomes less similar.
For example, in the extreme case of AX = BX = 0, it implies the L2(P) and L2(Pn) induce the
same topology over F . In words, the lower isometry is the minimal threshold that satisfies the
following: all f, g ∈ F that are ω(IL(X)) far from each other in L2(P), must be at least Ω(∥f − g∥)
far in L2(Pn). The upper isometry remainder implies the converse. To provide further intuition on
these remainders, for instance, observe that IL(X) upper bounds on diameter in L2(P) of possible
solutions of ERM; namely, one has

sup
f∗∈F,ξ∈Rn

DiamP({f ∈ F : (f(X1), . . . , f(Xn)) = (f̂n(X1), . . . , f̂n(Xn))})2 ≤ 4 · IL(X).

Finally, the isometry remainders IL(n), IU (n) are defined as the “typical” values of IL(X), IU (X):

Definition 2. The lower and upper isometry remainders IL(n), IU (n) are defined as the minimal
constants An, Bn ≥ 0 (respectively) such that

Pr
X
(IL(X) ≤ An) ≥ 1− n−1 and Pr

X
(IU (X) ≤ Bn) ≥ 1− n−1.

In the classical regime (van de Geer, 2000), it is considered to be a standard assumption that
max{IL(n), IU (n)} ≲ ϵ2∗. However, in the high dimensional setting, it may happen that the lower
isometry remainder is significantly smaller than the upper isometry remainder, e.g., IL(n) ≲ ϵ2∗ and
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IU (n) ≫ ϵ2∗ (cf. Liang et al. (2020); Mendelson (2014)). We discuss these remainders further in
Remark 10 below.

Finally, we remind the reader that f̂n is uniquely defined on the data points X when F is a convex
closed function class, but it may not be unique over the entire X (as multiple functions in F may take
the same values at X1, . . . , Xn). In §2.3.1, the results hold for any possible solution of f̂n over X ,
whereas in §2.3.2, we (implicitly) assume that f̂n is equipped with a selection rule such that it is also
unique over the entire X (e.g., choosing the minimal norm solution (Hastie et al., 2022; Bartlett et al.,
2020)); i.e, f̂n : D → F .

2.3.1 The empirical processes approach
Here, we assume that the function class and the noise are uniformly bounded.

Assumption 4. There exist universal constants Γ1,Γ2 > 0 such that F is uniformly upper-bounded
by Γ1, i.e. supf∈F ∥f∥∞ ≤ Γ1; and the components of ξ = (ξ1, . . . , ξn) are i.i.d. zero mean with
variance one and are almost surely bounded by Γ2.

Remark 1. The uniform boundedness assumption on the noise is taken to simplify the proof (which
uses of Talagrand’s inequality). This can be relaxed to the assumption that the noise is i.i.d. sub-
Gaussian, at the a price of a multiplicative factor of O(log n) in the error term in Theorem 3 below.

Definition 3. Set ϵU := max{ϵ∗, ϵ̃}, where ϵ̃ is the solution of

IU (n) · logN (ϵ,F ,P) ≍ nϵ4. (11)

Note that when IU (n) ≲ ϵ2∗, ϵU ≍ ϵ∗, while if IU (n,P) ≫ ϵ2∗ then ϵU ≫ ϵ∗. The following is our
main result in this approach to the random design setting:

Theorem 3. Set ϵ2V := max{ϵ2U , IL(n)}, then under Assumptions 1,3,4 the following holds with
probability of at least 1− n−1:

sup
f∈Oδn

∫
(f − EDf̂n)

2dP ≲ ϵ2V ,

where δn = O(ϵ2V ); and in particular V(f̂n,F ,P) ≲ ϵ2V .

Theorem 3 is a generalization of Theorem 1 to the random design case, and its proof uses the strong
convexity of the loss and Talagrand’s inequality. In §5.1 below, we discuss this bound in the context
of “distribution unaware” estimators. We remark that this Theorem extends the scope of Caponnetto
and Rakhlin (2006) to non-Donsker classes.

An immediate and useful corollary of this result is that if we have sufficient control of the upper and
lower isometry remainders, the variance will be minimax optimal:

Corollary 1. Under Assumptions 1,3,4 and max{IL(n), IU (n)} ≲ ϵ2∗, the following holds:

V(f̂n,F ,P) ≲ ϵ2∗.

In the classical regime, the assumption that max{IL(n), IU (n)} ≲ ϵ2∗ is considered to be standard in
the empirical process and shape constraints literature (cf. van de Geer (2000) and references therein);
it holds for many classical models (see Remark 11 below).

Remark 2. Note that Corollary 1 may also be derived directly from Theorem 1 if the noise is assumed
to be standard Gaussian. Yet, this corollary holds for any isotropic sub-Gaussian noise – which is
significantly more general.

2.3.2 The isoperimetry approach
In order to motivate this part, we point out that just requiring that IL(n) ≲ ϵ2∗ is considered to be a
mild assumption (see Remark 10 below). However, the upper bound of Theorem 3 depends on the
upper isometry remainder as well; we would like to find some conditions under which this dependency
can be removed. Moreover, note that the isometry remainders are connected to the geometry of
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(F ,P) and not directly to the stability properties of the estimator. Using a different approach, based
on isoperimetry, we will upper-bound the variance of ERM based on some “interpretable” stability
parameters of the estimator itself. These stability parameters will be data-dependent relatives of the
lower isometry remainder. Differently from the previous part, we do not assume that the function
class F is uniformly bounded by a constant independent of the sample size n.

First, we introduce the definition of Lipschitz Concentration Property (LCP):

Definition 4. Let Z = (Z1, . . . , Zm) be a random vector taking values in Z⊗m. Z satisfies the LCP
with constant cL > 0, with respect to a metric d : (Z⊗m,Z⊗m) → R+, if for all F : Zm → R is
1-Lipschitz, the following holds:

Pr(|F (Z)− EF (Z)| ≥ t) ≤ 2 exp(−cLt
2). (12)

The LCP property is also known as the isoperimetry condition (cf. (Bubeck and Sellke, 2023, §1.3)),
and it is stronger than being sub-Gaussian (Boucheron et al., 2013), and yet it is significantly less
restrictive than requiring normal noise (in which case cL = 1/2 (Ledoux, 2001)); for further details
see Remark 9 below. Now, we state our first assumption:

Assumption 5. ξ is an isotropic random vector satisfying (12) with constant cL = Θ(1), with respect
to the Euclidean norm in Rn.

Recall that ϵ∗ is defined as the stationary point of nϵ2 ≍ logN (ϵ,F ,P), and that the conditional
variance of f̂n, which is a function of the realization X of the input, is defined as

V (f̂n|X) := Eξ[∥f̂n − Eξ[f̂n|X]∥2];
that is, we fix the data points X and take expectation over the noise.

The formulation of the following definition involves a yet-to-be-defined (large) absolute constant
M > 0, which will be specified in the proof of Theorem 4 (see §3.2 below).

Definition 5. For each realization X and f∗ ∈ F , let ρS(X, f∗) be defined as the minimal constant
δ(n) such that

Pr
ξ

{
ξ ∈ Rn : ∀ξ′ ∈ Bn(ξ,Mϵ∗) : ∥f̂n(X, ξ′)− f̂n(X, ξ)∥2 ≤ δ(n)

}
≥ exp(−c2nϵ

2
∗). (13)

where Bn(ξ, r) = {ξ′ ∈ Rn : ∥ξ − ξ′∥n ≤ r}, and c2 > 0 is an absolute constant.

We also set ρS(X) := supf∗∈F ρS(X, f∗). ρS(X) measures the optimal radius of stability (or
“robustness”) of f̂n to perturbations of the noise when the underlying function and data points X
are fixed. This is a weaker notion than the lower isometry remainder; in fact, one can verify that
ρS(X) ≲ max{IL(X), ϵ2∗} for every realization X (see Lemma 12 for completeness). Now, we are
ready to present our first theorem:

Theorem 4. Under Assumptions 1,3,5, the following holds for every realization X of the data:

VD(f̂n|X) ≲ max{ρS(X, f∗), ϵ2∗},

and in particular supf∗∈F EXVD(f̂n|X) ≲ max{IL(n), ϵ2∗}.

Note that if IL(n) ≲ ϵ2∗ – a very mild assumption – then we obtain that the expected conditional
variance is minimax optimal. However, we believe that it is impossible to bound the total variance
via the lower isometry remainder alone. Intuitively, f̂n only observes a given realization X, and in
general, the geometry of F may “look different” under different realizations if IL(n) is large (see the
discussion in §5.1 for further details).

In our next result, we identify a model under which we can bound the total variance of f̂n by the
lower isometry remainder. To state the next assumption, we fix a metric d : X ×X → R+ on X , and
denote by dn the metric on Xn given by dn(X,X′)2 =

∑
d(Xi, X

′
i)

2.

Assumption 6. X ∼ P⊗n satisfies (12) with respect to the metric dn(·, ·), and with constant cX that
only depends on P
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Note that it is insufficient to assume that X ∼ P satisfies an LCP, since this does not imply that X
satisfies an LCP with a constant independent of n (w.r.t. to dn(·, ·)). However, if X ∼ P satisfies a
concentration inequality which tensorizes “nicely,” such as a log-Sobolev or W2-transportation cost
inequality (cf. (Ledoux, 2001, §5.2, §6.2)), then X ∼ P⊗n does satisfy this LCP property.

Next, we assume that with high probability, f̂n is close to interpolating the observations:

Assumption 7. There exist absolute constants cI , CI > 0, such that the following holds:

PrD

(∑n
i=1(f̂n(Xi)− Yi)

2 ≤ CIϵ
2
∗ · n

)
≥ 1− exp(−cInϵ

2
∗).

This assumption is quite common in the study of “rich” high dimensional models (i.e. when the
function class F depends on n; see, e.g., Belkin et al. (2019); Liang and Rakhlin (2020)) which are
prominent in the recent benign overfitting literature.

Finally, we introduce another stability notion. Recall the random set Oδ ⊂ F of almost-minimizers of
the empirical loss, as defined in (5) above; note that, in the random design setting, Oδ depends on both
X and ξ. The random variable diamP(Oδ) can be thought of as measuring the stability of the ERM
with respect to imprecision in the minimization algorithm (cf. (Caponnetto and Rakhlin, 2006)). The
formulation of the following definition involves another yet-to-be-defined (large) absolute constant
M ′ > 0, which will be specified in the proof of Theorem 5 (see §6.6 below), as well as the constant
cI from Assumption 7.

Definition 6. ρO(n,P, f∗) is defined as the smallest δ(n) ≥ 0 such that

Pr
D
(diamP(OM ′ϵ2∗

) ≤
√
δ(n)) ≥ 2 exp(−cInϵ

2
∗), (14)

where cI ≥ 0 is the same absolute constant defined in Assumption 7.

In order to understand the relation between this and the previous stability notions, note that under
Assumption 7 and the event E of Definition 6, we have that on an event of nonnegligible probability,
ρS(X, f∗) ≤ ρO(n,P, f∗); in addition, ρO(n,P, f∗) ≲ max{IL(n), ϵ2∗} (see Lemma 13 below).
Under these additional two assumptions and the last definition, we state our bound for the total
variance of f̂n:

Theorem 5. Under Assumptions 1,3,5-7, the following holds:

VD(f̂n) ≲ c−1
X · sup

f∗∈F
∥f∗∥Lip ·max{ϵ2∗, ρO(n,P, f∗)},

and in particular one has V(f̂n,F ,P) ≲ c−1
X · supf∗∈F ∥f∗∥Lip ·max{ϵ2∗, IL(n)}.

Note that when F is a robust learning architecture (i.e. F ⊂ {X → R : ∥f∥Lip = O(1)}), our bound
is optimal. Interestingly, the assumptions of Theorem 5 coincide with those of the model considered
in the recent paper of Bubeck and Sellke (2023). Also note that the last theorem connects the total
variance of f̂n to a “probabilistic” threshold for the L2(P)-diameter of the data-dependent set of
Θ(ϵ2∗)−approximating solutions of f̂n – two parameters which at first sight are unrelated.

Remark 3. One may suspect that the assumptions of almost interpolation and robustness are in-
compatible, which would render our theorem vacuous. However, perhaps counter-intuitively, in
the high-dimensional setting these assumptions can coexist. For example, interpolation with O(1)-
Lipschitz functions may be possible when the “intrinsic” dimension of X is Ω(log(n)) (depending on
the richness of F), though it is generally impossible when the dimension is o(log(n)) (this follows
from the behaviour of the entropy numbers of the class of Lipschitz functions; cf. Dudley (1999)).

Remark 4. Using Assumptions 1,3,5-6, one may prove the same bound as in Theorem 3, i.e. that
V(f̂n,F ,P) ≲ ϵ2V , without requiring the noise or the function class to be uniformly bounded. The
idea is to obtain the crucial concentration bounds in the proof of Theorem 3 by using the LCP
properties of ξ and X ∼ P along with the robustness of F , rather than via Talagrand’s inequality.
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3 Proof sketches
In this section, we sketch the proofs of less-technical results to give the reader a flavor of our methods.
The full proofs are given in the next section. For the proofs we introduce some additional notations.
For m ∈ N, we set [m] := {1, . . . ,m}. The inner products in L2(P), L2(P(n)) are denoted by
⟨·, ·⟩, ⟨·, ·⟩n, respectively.

3.1 Sketch of proof of Theorem 1
Here, we sketch a simple proof of a weaker version of our result, namely VD(f̂n) ≲ M(F ,P(n)),
under the stronger assumption that

M(F ,P(n)) ≍ ϵ2∗, (15)
where ϵ∗ solves logN (ϵ,F ,P(n)) ≍ nϵ2. (This holds under reasonable assumptions on F , but can
be dispensed with; see Lemma 1 for the exact characterization.) In §6.1.1, we fill in the details of this
sketch, and in §6.1.2, we give the full proof of Theorem 1.

The proof uses the probabilistic method (Alon and Spencer, 2016). Let f1, . . . , fN be centers of a
minimal ϵ∗-cover of F with respect to L2(P(n)), per Definition 1. First, since for any i ∈ [N ], the
map ξ 7→

√
n∥f̂n(ξ)− fi∥n is 1-Lipschitz, (12) and a union bound ensure that with probability at

least 1− 1
2N , for all i ∈ [N ],

Eξ∥f̂n − fi∥n − ∥f̂n − fi∥n ≲

√
logN

n
.

On the other hand, by the pigeonhole principle, there exists at least one i∗ ∈ [N ] such that with
probability at least 1/N , ∥f̂n − fi∗∥n ≤ ϵ∗. Hence, there exists at least one realization of ξ ∈ Rn for
which both bounds hold, and thus, deterministically,

Eξ∥f̂n − fi∗∥n ≲ ϵ∗ +

√
logN

n
≲ ϵ∗

where we used the balancing equation (10). Another application of (12) and integration of tails yields

V (f̂n) = ED∥f̂n − EDf̂n∥2n ≤ ED∥f̂n − fi∗∥2n ≲ ϵ2∗,

implying that the variance of ERM is minimax optimal.

3.2 Sketch of proof of Theorem 4
As is well-known, the Lipschitz concentration condition (12) is equivalent to an isoperimetric
phenomenon: for any set A ⊂ Rn with Prξ(A) ≥ 1/2, its t-neighborhood At = {ξ ∈ Rn :
infx∈A ∥x− ξ∥n ≤ t} satisfies

Pr
ξ
(At) ≥ 1− 2 exp(−nt2/2). (16)

One sees quickly that this implies that if A has measure at least 2 exp(−nt2/2), then A2t has measure
1− 2 exp(−nt2/2).

Let E be the event of Definition 5. As in §3.1 above, one obtains via the pigeonhole principle and the
definition of ϵ∗ that there exists some fc ∈ F such that

Pr
ξ
({f̂n ∈ B(fc, ϵ∗)} ∩ E︸ ︷︷ ︸

A

|X) ≥ Prξ(E)
N (ϵ∗,F ,P)

≥ exp(−C3nϵ
2
∗).

By isoperimetry, Prξ(A2t) ≥ 1 − 2 exp(−nt2/2), where t = Mϵ∗/2 and M is chosen such that
(M/2)2 ≥ 2C3; this fixes the value of the absolute constant M used in (13).

Applying (13) yields that if ξ ∈ A ⊂ E and ∥ξ′− ξ∥n ≤ Mϵ∗ = 2t, ∥f̂n(ξ)− f̂n(ξ
′)∥ ≤ ρS(X, f∗)

and so ∥f̂n(ξ′)− fc∥ ≤ ϵ∗ + ρS(X, f∗). This implies

Pr
ξ
({f̂n ∈ B(fc, ϵ∗ + ρS(X, f∗))}|X) ≥ Pr

ξ
(A2t|X) ≥ 1− 2 exp(−nt2/2),

which implies via conditional expectation that V (f̂n|X) ≲ max{ρS(X), ϵ2∗}, as desired (where we
used that ϵ2∗ ≳ log(n)/n (see Lemma 3 below), and therefore exp(−nt2) = O(ϵ2∗)).
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