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ABSTRACT

Machine learning models are known to leak sensitive information, as they in-
evitably memorize (parts of) their training data. More alarmingly, large language
models (LLMs) are now trained on nearly all available data, which amplifies the
magnitude of information leakage and raises serious privacy risks. Hence, it is
more crucial than ever to quantify privacy risk before the release of LLMs. The
standard method to quantify privacy is via membership inference attacks, where
the state-of-the-art approach is the Robust Membership Inference Attack (RMIA).
In this paper, we present InfoRMIA, a principled information-theoretic formula-
tion of membership inference. Our method consistently outperforms RMIA across
benchmarks while also offering improved computational efficiency.

In the second part of the paper, we identify the limitations of treating sequence-
level membership inference as the gold standard for measuring leakage. We pro-
pose a new perspective for studying membership and memorization in LLMs:
token-level signals and analyses. We show that a simple token-based InfoRMIA
can pinpoint which tokens are memorized within generated outputs, thereby local-
izing leakage from the sequence level down to individual tokens, while achieving
stronger sequence-level inference power on LLMs. This new scope rethinks pri-
vacy in LLMs and can lead to more targeted mitigation, such as exact unlearning.

1 INTRODUCTION

In the past decade, researchers have shown that machine learning (ML) models inevitably memorize
parts of their training data (Feldman), 2020; |Feldman & Zhang} 2020). Memorized data, once identi-
fied and extracted, can pose a severe privacy risk. It is increasingly concerning as the contemporary,
easily accessible large language models (LLLMs) are trained on datasets so large that we are running
out of training data (Villalobos et al., 2024). These LLMs have seen nearly all data generated by
humans. Even limited memorization by them can translate into significant privacy risks.

The current standard for quantifying privacy is membership inference attacks (MIAs) (Shokri et al.}
2017), where the attacker or privacy auditor aims to determine if a given data sample was part of
the target model’s training set. A stronger attack means the attacker can more accurately distinguish
members (training data) from non-members, implying that the target model leaks more of its training
data. This ability to separate members from non-members not only signals privacy risk but also
raises the possibility of training data reconstruction. It is also closely linked to memorization, as
it is the root cause of successful MIAs. Hence, MIAs are widely regarded as the backbone of ML
privacy research. The state-of-the-art (SOTA) MIA is the Robust Membership Inference Attack
(RMIA) (Zarifzadeh et al., [2024), but its dependence on a separate population dataset, whose size
scales linearly with the training set, could be a potential concern, especially for LLMs.

In the first part of the paper, we thoroughly analyze RMIA, from its formulation to signal compu-
tation, and propose a more principled statistical test by casting RMIA’s setup as a composite hy-
pothesis testing problem. Our approach can also be interpreted through information theory, where
we quantify dominance over population data in bits rather than in sample counts. This transforms
the attack signal from discrete to continuous, eliminating the sensitivity on the population dataset
size. We observe that our new attack, InfoRMIA, consistently outperforms RMIA on tabular, image,



Under review as a conference paper at ICLR 2026

0.6+

Seq 345 (sample_index=23060, avg=0.451, avg_priv=0.243)

1989. With the garimanjaly10@hotmail.com as her communication channel,
shej s her P21WC0501915 like a badge of honor in this virtual world. Her
001 857 794-5305 is always at the ready for strategic discussions with fellow
gamers. Armed with the opZ37*, she fearlessly navigates through quests and
challenges, embodying strength and determination. Joining her on this

C gaming adventur

0.4
0.2

0.0 1 Seq 358 (sample_index=14422, avg=0.440, avg_priv=0.182)
813", "entry_date": "2049-11-21T00:00:00", "entry_time": "6 AM", "location":
"BS16 4EG", "behaviors": ["Practiced distress tolerance techniques", "Used
interpersonal effectiveness skills", "Reviewed diary cards"], "reactions":
® ["Felt empowered by distress|IIBHINGR practice”, "Successfully applied
_ interpersonal skills in a difficult situation", "Identified patterns in diary card
Pearson r = 0.497 review"]} {"entry_id": 3, "user_id": "oflwnqgujwluzlvx09", "passport_id": "97

—0.24

Average score (private tokens only)

T T T T T
0.0 0.1 0.2 0.3 0.4

Average score (all tokens) (b) Heatmaps of token-based membership scores on

the input. The two most memorized sequences, iden-
(a) The average membership scores of sequences and tified by sequence-level membership scores, mainly
their private tokens are not strongly correlated. memorize non-private tokens.

Figure 1: Sequence-level membership inference may not accurately identify private information
leakage, which is conveyed by private tokens only.

and text datasets, while requiring far fewer population samples. Thus, InfoRMIA is a lower-cost,
higher-power membership inference attack and establishes a new SOTA.

Although MIAs are the gold standard in quantifying privacy, they must follow a strict setup defined
by the membership inference game (Yeom et al., 2018} |Ye et al.| |2022; Zarifzadeh et al.| 2024),
which falls short in quantifying true information leakage (Tao & Shokri, 2025)), especially for LLMs.
The current privacy quantification setup for LLMs is almost identical to those designed for MLPs
and CNNs: perform MIA on a set of member and non-member sequences. However, transformers
are sequential models that generate predictions token by token. Assigning a single membership
label to an entire sequence, list of outputs rather than a single one, compresses rich token-based
information into a single bit, losing granularity and analogous to a lossy compression (Figure Ta).

To address this issue, in the second part, we propose a token-level MIA framework to better quan-
tify memorization and information leakage from LLMs with finer granularity and more meaningful
analysis. There are three main reasons for doing it on the token level instead of the sequence level.
First, since each token completion is one prediction step, analyzing leakage at the token level nat-
urally aligns with model behavior and the definition of MIA. Second, sequence-level metrics are
aggregated from token-level ones, making them less semantically meaningful for privacy assess-
ment. For example, memorized facts may yield high sequence-based membership scores despite not
leaking private information. Third, we argue that private information in a sentence is usually con-
tained in a few words/tokens. Measuring the average memorization of the entire sequence mainly
with common words leads to inaccurate privacy assessment (Figure [Tb). Token-level analysis can
narrow the focus to truly sensitive components, enabling more accurate privacy quantification. By
pinpointing the information leakage to individual tokens and words, we can potentially protect pri-
vacy more effectively by performing targeted machine unlearning, which would prevent unlearning
useful information from non-private texts, while surgically removing the memorization of private
information.

In summary, this paper makes two main contributions: (1) we propose InfoRMIA, a principled and
efficient improvement over RMIA that achieves new SOTA performance; and (2) we introduce a
token-level privacy assessment framework, which offers finer-grained insights into memorization
and leakage in LLMs, while achieving strong membership inference capabilities.

2 RELATED WORK

2.1 MEMBERSHIP INFERENCE

Membership inference (Shokri et al., 2017) is a class of inference attacks that aims to determine
if any given point query x is part of the training set of a machine learning model 6. Since its
inception, there has been significant progress in the inference strategies. |Shokri et al.|(2017) trained
shadow models to predict the membership label directly. [Yeom et al.| (2018)) proposed a simpler
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approach that uses the loss values as the membership signal. To achieve higher inference accuracy,
researchers have proposed multiple reference model-based membership inference tests to calibrate
the raw signal on the target query. |Ye et al.|(2022) trained a set of reference models on the population
dataset, and counted the number of them with lower probability on the target z. |Carlini et al.|(2022)
constructed reference models that train with or without the target point to simulate two distributions
of model outputs on the target x: the IN and OUT distributions. Assuming Gaussians, the attacker
computes the likelihood ratios under the two distributions as the membership signal. The state-of-
the-art attack, RMIA (Zarifzadeh et al., |2024])), improves further upon reference model-based attacks
by counting how many similar data points each test point dominates.

Membership inference techniques on CNNs and MLPs can be adapted to work on LLMs, where
the goal is to predict if any given text sequence is part of the training dataset. Due to the high
computation cost to train reference models, LLM-specific MIAs tend to be reference model-free.
Carlini et al.| (2021) used entropy, or more easily, zlib (Gailly & Adler, [2004) compression, to
calibrate sequence-based membership likelihood. Mattern et al.|(2023)) compared the perplexity gap
between the target and neighboring sequences, while (Shi et al.| 2024)) looked at the tokens with the
smallest probability. [Duan et al.| (2024) published a benchmark, MIMIR, to evaluate LLM MIAs
and found that all of these methods perform poorly on pretrained LLMs. [Zhang et al.[ (2024) and
Zhang et al.|(2025)) improved upon the methods in MIMIR by incorporating additionalx calibration.

2.2 MEMORIZATION

Memorization of machine learning models is defined in a leave-one-out fashion by |Feldman|(2020).
Due to its prohibitively high computation cost on LLMs, many alternative definitions have been
proposed. So far, verbatim memorization (Carlini et al.l [2021}; [2023)), which means the output se-
quence exactly matches one of the training sequences, is the most popular notion. If the sequence
is generated verbatim when conditioned on a given prompt, the memorization term is called dis-
coverable (Carlini et al.|, [2023; Nasr et al., [2023)) or extractable memorization (Nasr et al., [2023)),
depending on whether the prompt is crafted by an adversary. [Hayes et al.| (2025b) introduced their
probabilistic variations, considering the stochastic nature of LLMs. There are other memorization
notions such as k-eidetic (Carlini et al.}2021)) and counterfactual memorization (Zhang et al.;[2023).

3 IMPROVING RMIA WITH AN INFORMATION-THEORETIC INSPIRED TEST
STATISTIC

In this section, we first briefly explain the problem statement of membership inference under the
current SOTA attack, RMIA (Zarifzadeh et al.| [2024). We then introduce an improved version of
RMIA, which we call information-theoretic RMIA (InfoRMIA). This new attack is consistently
stronger than the original RMIA across all datasets and thus establishes a new state-of-the-art.

3.1 MEMBERSHIP INFERENCE IN RMIA’S SETTING

In membership inference, the adversary, or the attacker, aims to infer whether any given query z is
part of the training data of the target model 6. The adversary only has access to the model output,
which can be treated as p(x|6). The adversary is also assumed to be able to train reference models
O on datasets drawn from the training data distribution of #, and to have a population dataset Z,
which is also drawn from the same underlying data distribution. The formal definition is commonly
described as an inference game (Yeom et al., [2018} |Ye et al.l 2022} |Carlini1 et al.| 2022} [Zarifzadeh
et al.| 2024; [Tao & Shokri, [2025) (See Appendix E])

3.2 THE ORIGINAL ROBUST MEMBERSHIP INFERENCE ATTACKS (RMIA)

Carlini et al.| (2022) argue that the optimal way to tackle the membership inference problem is to
frame it as a hypothesis testing problem and then apply a likelihood ratio test (LRT). In RMIA,
Zarifzadeh et al.|(2024) formulate the hypothesis testing setup as:

Hy : The target model @ is trained with one of the data z € Z,

1
H; : The target model @ is trained with the given z. M
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The original test statistic of the LRT in RMIA can be written as
"0 ),
p(0]z)

where 6 is the target model, x is the target query, z is drawn from a population Z of the same data
distribution as the training data, and v > 1 is a hyperparameter that serves as a threshold.

Test Statistic = p, < (2)

In simple terms, RMIA counts the proportion of “similar” data z that the target  dominates. In
practice, the test statistic is written as

. |0 z|0 1 |0 z|0
Test Statistic = p, (p( | )/p( 19) 27> = m;ﬂ(p;(l))/p( 19) 27), 3)

p(z) * p(z) p(2)
where I(+) is the identity function and the first equality follows directly from Bayes’” Theorem.

Note that the formulation in Eqn [3] makes the membership score a discrete value whose granularity
depends on the size of Z. Intuitively, the more z data RMIA uses, the finer the “bins” become,
and the more distinguishing and precise the signal gets. Empirically, |[Zarifzadeh et al.| (2024) also
reported this relationship between the size of Z and the attack performance. The empirical insight
was that using Z of about 10% of the training set size is sufficient. However, for LLMs, even 10%
represents an astronomical number of samples.

3.3 INFO-THEORETIC RMIA (INFORMIA)

Instead of counting how much population data the target point dominates, we measure how many
bits the target point saves in explaining the target model relative to the population data in expectation.

That is, we want to measure
E. [~logp(0]z)] — (—logp(f|x)) = log p(f|x) — E. log p(6]z) (4)

By applying the same Bayesian decomposition in Zarifzadeh et al.| (2024) and some basic manipu-
lations, we can obtain the following equivalent formulation of our new test statistic in Eqn 4}

Test Statistic = » _ p(z) log (p(9|x)) =" p(2)log <pEx|9)p(z))

(0] FEDTE
_ p(x|0) s p(2)

—1oe (%) + e (255 ©
1, (#al®) Aol

g (70 + D (9(2) 11 (610)

Note that the formulation is only valid when  __ p(z) = ID Hence, for an empirical or approximated
(in RMIA’s case) p(z), we need to normalize it to p(z) = p(z)/ >, p(z). Similarly, for the last step
to hold, we require that ) _ p(z|¢) = 1. For simplicity, we use p(z) and p(z|¢) in the rest of the
paper to denote the normalized distribution of population data z. As this new test statistic is inspired
by information theory, we refer to it as InfoRMIA. Its pseudocode can be found in Appendix [C]

Interpretation of the test statistic It is interesting that the test statistic has two parts:

1. log (”Ig'(r—x)) , which measures the amount of information gain in explaining x given a model
0. This can be seen as the memorization of = by model 6.

2. Dxi (p(2)||p(2]0)), which captures the distributional differences between the base proba-
bilistic distribution of z and that conditioned on model #. This is reminiscent of general-

ization analysis, as it reflects the changes in the model’s predictive performance on z’s.

! Actually, when attacking one single fixed model with a fixed population dataset, the attack performance is
unchanged even if ) p(z) # 1. This is because the test statistics would be reduced to > _ p(z) log p(6|x) =
Clogp(0|x), where C = Y~ _p(z) > 01is a constant. Hence, the test statistic would preserve the same total
order among all =’s log likelihood values.
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3.4 WHY IS INFORMIA BETTER

Both test statistics of the original and InfoRMIA are principled approaches to solve the same hy-
pothesis testing problem (Eqn|[T) derived from the same membership inference game (Appendix [A).

The original RMIA (Equation[3)) performs multiple pairwise tests between H; and each null hypoth-
esis. Each test requires a threshold . The final score is the proportion of null hypotheses rejected
in all the pairwise tests. As mentioned before, this score is inherently discrete, with granularity
determined by | Z| and increments of \%I

InfoRMIA does not perform multiple pairwise tests. Instead, it opts for a more systematic approach.
Similar to what Tao & Shokri| (2025) observed, the scenario described by Equation is a composite
hypothesis testing problem. One of the principled solutions is to use Bayes Factor (Tao & Shokril
2025} Jeffreys, |1939), where we compute the expected log likelihood of the composite null hypothe-
sis by E, [log p(0|z)]. Now it becomes clear that InfoRMIA’s test statistic (Equation ) corresponds
to the log of the likelihood ratio when using the Bayes Factor.

Apart from using a more accurate and established test, InfoRMIA also supersedes the original
RMIA by using a continuous test statistic (See Equation[d [5). This results in significantly higher
precision in the membership score and also eliminates the need for the hyperparameter . Since the
granularity of the score is no longer dictated by the size of Z, InfoRMIA is much less dependent on
alarge Z, significantly reducing computational overhead when | Z| is fixed and lowering complexity
by a constant factor. Experiment results in Section [6] validate these improvements.

Factors affecting the gap The performance gap between InfoRMIA and RMIA mainly depends
on the “niceness” of the distribution of population signals p(z|6)/p(z) in RMIA. As the population
signal distribution gets more even, the loss of precision in the discretization step (computing the
percentile) decreases, thereby narrowing its performance gap with InfoRMIA.

4 TOKEN-LEVEL INFORMIA FOR ATTACKING LLMS

We have now justified why InfoRMIA surpasses the original RMIA and becomes the new SOTA
attac We now propose our token-level framework where we can pinpoint information leakage
and more truthfully estimate privacy risks with token-level InfoRMIA.

4.1 FROM SEQUENCES TO TOKENS

So far, membership inference and privacy risks for LLMs have been defined on the sequence level,
i.e., whether a given sequence is a member. The majority of the LLM MIAs aim to compute a
score on each sequence (Carlini et al.} 2021} [Mattern et al., 2023)) based on its perplexity. However,
delving into the mechanisms of LLMs, we can quickly realize that a sequence is not one single
output, but an ordered list of outputs. For example, given a training sequence x = {x1xs ... 2}, the
LLM 6 optimizes the losses £(z2, 8(x1)), £(z3, O(z122)), ..., l(xk, 0(x1 ... xx—1)). Each sequence
is more than one training sample; it resembles a dataset containing £ — 1 training (subsequence,
label) pairs. To properly adapt existing MIAs to LLMs, we should treat each token generation
step, which “labels” each “prefixal” subsequence (subsequences from the start), as one prediction
and compute its membership likelihood. In this way, for any sequence of length k, the LLM goes
through k& — 1 prediction steps, and we should obtain k£ — 1 membership scores. In comparison, the
existing framework only computes a single membership signal for each sequence, which is a highly
compressed signal that loses rich information at each token position.

The token-level framework also provides a more realistic privacy notion for LLMs. Many re-
searchers have pointed out that the current privacy definition via membership inference is too
strict and not comprehensive enough, especially for language data, as it only considers exact
matches as privacy concerns (Tao & Shokri, [2025; |Duan et al., 2024). We believe that the pri-

2 Although [Hayes et al.| (2025a) found that LiRA (Carlini et al., 2022) performs better than RMIA with a
large number of reference models for LLMs, we found their implementation to be different from that in the
RMIA paper, which can affect the performance. But even in their setting, the two attacks are within standard
deviations with many reference models. With limited reference models, RMIA is shown to be better.
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vacy risk of a text sequence primarily resides in the tokens carrying the sensitive information. From
an information-theoretic point of view, the total private information in bits can be computed by
PrivBits = ervp,\m —logp(x) < >, —logp(x), where V,,.;, is the set of all privacy concerning
tokens in the data. From the inequality, it is obvious that the existing privacy notion is treating all
tokens in the member sequence as private, leading to inflated membership scores in evaluation. In
this process, the true information leakage can be diluted or overshadowed on the sequence level
(Figure[8), especially in long texts and documents. This masks the signals from the truly private to-
kens and leads to inaccurate auditing results (since we are evaluating the upper bounds). Moreover,
a sequence-based analysis framework also fails to pinpoint the source of true leakage. This affects
downstream tasks like unlearning: we cannot make the model forget the sensitive information, but
rather entire documents that may contain useful general semantic knowledge.

With a token-level framework, users can compute leakage via every token completion. They can
then easily visualize what tokens are memorized outputs and check if they are sensitive (Figure [Tb).
For auditors who know where the personally identifiable information (PII) is, they can also choose to
directly check the model’s memorization extent on the corresponding tokens. We build this interface
and will explain in detail in Section[5] We want to highlight that we assume that users of the interface
know what sensitive tokens are. This interface is not for automatically quantifying the privacy risk
of a system on a data distribution, but rather an inspection tool for knowledgeable users, such as data
owners and privacy auditors, to diagnose fine-grained information leakage.

4.2 TOKEN-LEVEL INFORMIA

Our token-level framework relies on an MIA that can operate on the token level. We propose to
conduct InfoRMIA (Equation [3)) at each token generation step, treating all tokens x as labels for
their respective prefixal substrings, and then compute a token-based score. Additionally, we no
longer have to curate a separate population dataset Z. Instead, we treat all possible tokens in the
vocabulary other than the ground-truth z as z. For example, if the ground-truth is 3, then Z = {z :
z € V. Az # 3}, where V is the vocabulary of the tokenizer. The pseudocode can be found in
Appendix [C| In this way, we have a data-dependent Z that removes the high cost of curating and
computing on an independent population dataset. This makes the attack more feasible, especially
for pretrained LLMs.

We want to emphasize that since p(z|0) + >, p(2]0) = > .oy p(2]0) = Land ) .\ p(2) =
Y .cv Avgy p(2]0ws) = Avgy > oy P(2|0rf) = 1, we can have an equivalent formulation of the
test statistic in Eqn ] that does not require normalization (full derivation in Equation [I0):

Test Statistic = » _ p(z) log (p(9|m)) ©
z2€Z pi\vlz

)
=Y p(z)log (pzw))p((z)) + p(z) log <p(xz)p(“’”)) 7

= log (2 2)lo p(z)
- S vteyos (555 + 2o vteros (1155 ®
~log (p;””'e’) + D (0(2) || p(216) ©)

Equation [9] serves as an alternative form of our test statistic in Equation [5 that works with already
normalized probabilities, where we can include = in our Z and compute the KL divergence on all
possible token choices, without removing the ground truth token and gathering the remaining logits.
But in our implementation, we reuse the equivalent form in the second last line of Equation 4]

4.3 FROM TOKEN-LEVEL TO SEQUENCE-LEVEL MIAS

The reigning privacy auditing and evaluation framework is on the sequence level. And for attackers
with no knowledge of what private tokens are, the sequence-level notion is still the only choice.
Here, we describe how to use token-level MIAs to perform sequence-level MIAs. We do not claim
that this is the optimal way to evaluate token-level MIAs; this is more like a proof of concept. But
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Figure 2: Two of the ten most memorized sequences contain no private tokens. These pose little
privacy risk, yet sequence-based frameworks overestimate their risk. See also Figurem

our results in Section [6.3] prove that token-level MIA is useful, powerful and versatile. To obtain
a sequence-based membership score, which is an aggregated notion as we argued, we inevitably
need to aggregate token-based scores. For each given sequence x = {zjx2 ...z}, our token-
based MIA produces k¥ — 1 membership scores {s1,...,Sx—1}, and the sequence-based score is
Aggregate(sy, ..., Sk—1).

The simplest aggregation is averaging. A stronger aggregation could depend on the model or under-
lying data distribution. Such tailored aggregation typically needs to be optimized on additional hold-
out data. However, such a model and dataset specific aggregator that requires additional knowledge
and computation power is not always realistic. For practicality, we only evaluate generic aggregation
methods, such as averaging and min-k, in this paper.

5 TOKEN-LEVEL PRIVACY ASSESSMENT INTERFACE

In this section, we first demonstrate that our token-level framework can be used to visualize memo-
rization on the token level. With knowledge of the sensitive tokens, users can conduct more insight-
ful analyses of the privacy risks of the target model for given sequences, which can reveal much
more than AUCs. Otherwise, auditing according to the average (sequence-level) privacy notion is
recommended (See Section [6).

5.1 VISUALIZING INFORMATION LEAKAGE ON THE TOKEN LEVEL

With token-based membership scores, we build a simple HTML interface to visualize a heatmap of
token-level memorization over input text (Figures([Ib] 21 [7,[8), where the darkness of the highlight re-
flects the degree of memorization. This fine-grained view enables more accurate privacy assessment,
as auditors can directly inspect leakage on the actual private tokens.

We find empirical evidence supporting our intuition that sequence-level signals may not correspond
to true privacy risks. Specifically, we observe a low correlation between sequence-level and private-
token scores (Figure[Ta) and discover that many of the most “memorized” sequences either contain
disproportionately little private information (Figure [7) or no private information at all (Figure [2).
Conversely, we also find evidence that signals from private tokens are often diluted by the presence
of many common tokens in long texts (Figure [8).

This fine-grained analysis is only possible with our token-level framework and highlights the limita-
tions of existing sequence-based notions of privacy. We believe this tool can be highly valuable for
practitioners and auditors who need precise, interpretable privacy quantification.

5.2 TOKEN-LEVEL ANALYSIS REVEALS MORE THAN AUCS

Our token-level framework also reveals insights that aggregate metrics like AUC cannot capture. For
AG News (Appendix [FI), we hypothesize that sensitive information typically appears in personally
identifiable information (PII). We therefore use SpaCy (Honnibal & Montani, 2017) to classify en-
tities. Overall, token-level scores roughly follow a normal distribution (Figure [5). Tokens labeled
PERSON and WORK_OF_ART have the highest average membership scores (Figure EL Table H;g[),
indicating that names of people and artworks are more likely to be memorized. Examining the
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top 1% of the highest-scoring tokens, we find that these two types of tokens also have the highest
memorization rate (Table [I8)), reinforcing that PII is disproportionately more memorized.

Mean score by entity type (top)
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Figure 3: Histogram of the average token scores across the top entity groups on AG News. The
“None” type represents words that are not nouns.

For ai4privacy (Appendix [F.2), each sequence includes a “privacy mask™ that marks synthetic per-
sonal information. We divide tokens into private and non-private sets and find that the average
membership score of private tokens is slightly lower than that of non-private tokens (Table [I9] Fig-
ure fa). This suggests that the high AUCs reported by sequence-level MIAs may largely reflect
memorization of non-private content, which is less relevant for privacy. Hence, AUC alone is a poor
indicator of true privacy risk in LLMs.

9 o
8 0.6
8 g
6 - 3] =
8 0.4 ©
o
s 4]
o 0.2 4
c 2
[}
£ —
S 07 0.0
—24 o
o]
—4
o
T T T 1
Non-private Private All Tokens Private Tokens Only
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and larger variance in membership scores compared  each sequence. The higher max for private tokens
to private tokens. proves their signals get diluted at the sequence level.

Figure 4: Boxplots comparing token-level and sequence-level membership scores. More details are
provided in Table[I9|and Figure [}

6 EXPERIMENTS

In this section, we present the attack performances of InfoRMIA and token-level InfoRMIA. We
will describe the setup in Section [6.I] then show that InfoRMIA dominates RMIA and LiRA in
Section[6.2] We then demonstrate our token-level framework’s competitive performance in auditing
sequence-level privacy (described in Section4.3)) on fintuned and pretrained LLMs in Section [6.3]

6.1 EXPERIMENTAL SETUP

Setup For easy benchmarking, we use the new ML Privacy Metelﬂ, which is an open-source
Python library that audits privacy based on RMIA, released by the same lab behind the RMIA papeﬂ

*https://github.com/privacytrustlab/ml_privacy_meter
“There are incorrect RMIA implementations online. For, we opt for the library from the same lab/authors.
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We evaluate on all three default benchmarks in the Privacy Meter: Purchase100 (Shokri et al.,[2017)),
CIFAR-10 (Krizhevsky et al., 2009) and AG News (Zhang et al.,|2015)), which cover tabular, image
and text datasets. Note that the AG News dataset is used for text generation instead of classification.
The details of how we used the tool are in Appendix [E| For those who are unfamiliar, the Privacy
Meter takes in a configuration file that specifies meta information and hyperparameters. It will then
train a set of models of the given architecture for the specified epochs, each on a randomly selected
half of the dataset’s training split, identical to LiRA and RIMA. The target model will be chosen
randomly from the set, rendering the rest reference models. We also manually split the dataset and
train the models in the same way when experimenting on ai4privacy in Table 2] We then conduct
offline attacks on randomly sampled sets of target models’ members and non-members, computing
their membership scores under different attacks and evaluating the AUCs and TPR at small FPR
levels.

Model architectures We use GPT-2s (Radford et all 2019) for AG News and aidprivacy,
WideResNets-28-2 (Zagoruyko & Komodakis, [2016) for CIFAR10, and two two-layer MLPs for
Purchase100. We use 1 epoch on AG News, and 4 epochs on the other two for Table[I] and 4 epochs
on bothe datasets for Table[2] The other training details are in Appendix

6.2 INFORMIA DOMINATES THE ORIGINAL RMIA

In both Tables E] and El, InfoRMIA dominates RMIA and LiRA in all cases. Besides higher AUCs,
InfoRMIA greatly improves the TPR at very small FPR levels, indicating stronger member identifi-
cation power without making (many) mistakes. As|Carlini et al.[(2022)) argued, this metric is a better
indicator of the true membership inference power. More importantly, we notice that InfoRMIA is
less sensitiveE] to the size of the population data Z. This supports our theoretical derivation earlier,
and is extremely valuable in practice, as the attack can now be run more accurately without a large
pool of population data, reducing the computation overhead and real-life infeasibility.

Table 1: Comparison of AUC and TPR@0.1%FPR between RMIA, LiRA, and InfoRMIA, both with
4 reference models under different datasets and population sizes. For CIFAR-10, the Privacy Meter
does not include augmentations in training and attacking, hence the lower numbers compared to the
RMIA paper. For Purchase100, the Privacy Meter uses a much larger training set, a better evaluation
per [Suri et al.| (2024). Since LiRA does not use Z, we replicate its numbers across different | Z|.

AG News CIFAR-10 Purchase100
|Z] 100 1000 1000 10000 1000 10000
RMIA AUC 0.8574 0.8766 0.8229  0.8327 0.5311 0.5432
TPR@0.1%FPR 0.00% 1.60% 0.00%  0.00% 0.00%  0.00%
InfoRMIA AUC 0.8784 0.8784 0.8330 0.8330 0.5754 0.5754
TPR@0.1%FPR 12.0% 12.0% 5.82% 5.82% 0.32% 0.32%
LiRA AUC 0.8641 0.8641 0.8242  0.8242 0.5398  0.5398

TPR@0.1%FPR 1.80% 1.80% 0.12% 0.12% 0.12% 0.12%

6.3 SOLVING SEQUENCE-LEVEL MEMBERSHIP INFERENCE WITH TOKEN-LEVEL
MEMBERSHIP SIGNALS

Finetuned LLMs We also demonstrate that token-level membership inference can be used to
conduct sequence-based membership inference with competitive performance, despite not being
designed for it. We show in Table [2] that token-level membership inference with simple averaging
yields competitive performance in sequence-level membership inference evaluation.

>We audit the privacy risk of individual target models in this table. This makes the second term in In-
foRMIA’s test statistic (Equation [4) identical for all test queries «’s, keeping the order of test statistics among
test queries, and ultimately the attack performance, unchanged by the varying | Z]|.
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Table 2: Comparison of AUC and TPR@1%FPR between the sequence-based and token-based
InfoRMIA, and the original RMIA and LiRA when attacking finetuned LLMs. The epochs column
refers to the finetuning epochs. We use one reference model throughout the evaluation.

Datasets Epochs RMIA InfoRMIA InfoRMIA (token) LiRA
AUC TRP@FPR AUC TRP@FPR AUC TRP@FPR AUC TRP@FPR
AG News 1 0.839 0.00% 0.843 23.0% 0.836 20.2% 0.795 3.6%
4 0.945 0.00% 0.945 16.2% 0.942 20.6% 0.882 9.00%
aidprivac 1 0.643 6.6% 0.644 10.6 % 0.620 9.0% 0.630 3.8%
P Y 4 0.821 26.0% 0.822 27.2% 0.804 23.2% 0.782 10.4%

Pretrained LLMs Besides finetuned models, we also evaluate our newly proposed method on
pretrained models (Table on the most popular benchmark, MIMIR (Duan et al., 2024). As
Duan et al.| (2024) pointed out, reference-based MIAs do not perform well on MIMIR due to the
lack of quality reference models. Ideally, the reference models should have the same model archi-
tecture and be trained on the same data distribution as the target LLM, but with (partially) disjoint
datasets (which effectively makes them OUT models in RMIA’s terminology). However, for pre-
trained LLMs, it is not possible to find such perfect reference models. In our experiments, we find
that using an earlier snapshot of the LLM is more useful, so we use the step-1 Pythia-160M
checkpoint as our sole reference modeﬂ This is a very practical solution, as this checkpoint can be
easily trained with lower-end hardware within a short period of time, even if it is not available. Be-
cause it is very OUT, it gives better results than using later checkpoints as the reference models (See
Appendix [G.3). Since no in-distributional population data can be easily obtained, we only evaluate
the token-level InfoRMIA in our experiments, which has a similar computational complexity as
the Ref method (Carlini et al., 2021) in MIMIR. The explanation of each method in the table is in
Appendix [F3.1]

We observe that our token-level InfoRMIA, although not specifically designed for sequence-level
membership inference, achieves one of the strongest membership inference performances (Table 3]
M) even when using only a single, less ideal reference model. In Tables [6H8] we report results
obtained by using the step-1 checkpoint of the target model as the reference and observe mini-
mal change in utility. We further show that our method is the strongest reference-based MIA for
pretrained LLMs, outperforming prior reference-model approaches (Ref). We also find that sim-
ple averaging outperforms the min-k aggregation when targeting high true-positive rates at low
false-positive rates (TPR at small FPR). This is expected, as min-k aggregation essentially acts as a
non-member detector: non-members tend to contain more low-probability tokens (Shi et al., [2024).
Consequently, min-k is less suitable for high-precision member detection with minimal errors. How-
ever, when evaluating using AUC (Table [5), the ordering reverses. This aligns with the argument
by |Carlini et al.| (2022) that AUC can be misleading as a privacy metric. Nonetheless, many re-
cent works evaluating on MIMIR still report only AUC in their main text, which may encourage a
suboptimal trend for future development of LLM MIAs.

7 CONCLUSION

In this paper, we propose a new information-theoretic formulation of the membership inference test.
The resulting attack, InfoRMIA, consistently outperforms the prior state-of-the-art RMIA across
tabular, image, and text datasets, while eliminating RMIA’s reliance on a large population set. Its
superior performance stems from a more principled statistical test and the use of a continuous score
rather than a discrete one.

We then introduce a new perspective for analyzing privacy risks in LLMs through a token-level
analysis framework. It can reveal which tokens are memorized within each sequence, while achiev-
ing higher membership inference power. By uncovering fine-grained memorization patterns, our
token-level framework enables more precise privacy risk estimation, and opens the door to down-
stream applications such as targeted machine unlearning and token-guided data reconstruction and
extraction. We leave the systematic exploration of these applications to future work.

5We use the non-deduped version as it sees fewer unique training sequences and hence more OUT.
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REPRODUCIBILITY STATEMENT

We have described the training details, including model architectures, dataset splits, and essential
hyperparameters in the paper. We will release the code and submit pull requests to the benchmarks
(ML-Privacy-Meter and MIMIR) upon acceptance to facilitate the reproduction of the results pre-
sented in the paper.

DISCLOSURE ON THE USE OF LLMSs

LLMs have only been used in polishing writing and non creative part of coding, such as refactoring,
annotating the code, and standardizing the format.
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A THE MEMBERSHIP INFERENCE GAME

Membership inference is often formulated as an inference game. According to the auditing modes
(privacy of a fixed model/data record/training algorithm), the game formulation also varies (Ye et al.,
2022). Here, we provide the game formulation when auditing the privacy of a fixed model.

Definition 1 (Membership Inference Game (Yeom et al., 2018; \Ye et al.||2022; |Carlini et al.| 2022}
Zarifzadeh et al.| 2024} [Tao & Shokril [2025)) Let  be the data distribution, and let T be the training
algorithm.

1. The challenger samples a training dataset D +— 7, and trains a model 0 +— T (D).

2. The challenger samples a data record zy <— 7 from the data distribution, and a training
data record z1 +— D.

3. The challenger flips a fair coin to get the bit b € {0,1}, and sends the target model 0 and
data record zy, to the adversary.

4. The adversary gets access to the data distribution T and access to the target model, and
outputs a bit b «— A(0, zp).

5.0 b=, output 1 (success). Otherwise, output 0.

B DERIVATION OF INFORMIA SCORES

Test Statistic = Z p(2) log (p(9|x)>
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- S weres (B

=S i) s Gmr)
- Yo ()

=2 ) (e ) + 2 p)log ()

“log (p;(fﬁ)) + Dy (p(2) || p(216))


https://openreview.net/forum?id=ZGkfoufDaU

Under review as a conference paper at ICLR 2026

C PSEUDOCODE OF RMIA AND INFORMIA

In this section, we outline the consolidated pseudocode (Alg 1)) of RMIA, InfoRMIA, and token-
level InfoRMIA for an easy comparison of the attacks. Lines 5 to 9 clearly show that the token-level
InfoRMIA has the smallest computation overhead due to the absence of the additional population
dataset. Its p(z|@) terms are also directly obtainable from the calculation of P(z|f) since each
prediction step computes the softmax scores over the entire vocabulary. Note that for LLMs, the
hyperparameter o is optimal at a = 1 (Hayes et al. 2025a). When using token-level InfoRMIA,
each z is a prefixal subsequence instead of a full sequence (See Section ..

Algorithm 1 MIA Score Computation with Offline RMIA, InfoRMIA or Token-Level InfoRMIA,
modified from |Zarifzadeh et al.| (2024)).

Input: Target model 0, a set of k reference models ©, target query x, hyperparameters +, a, popu-
lation dataset Z (only for RMIA and InfoRMIA)
Output: Membership score Scorenra (z; 0) of « given the target model 0
1: Compute p(x|6) and p(z|0,) for all 0, € ©

2: p(z)out + % Z&e@ p(x|0:)

1
3 p(x) B (1 +a)p(z)our + (1 — a))
0
4: Ratio, < p(l0)
p(x)
5: if Token-Level InfoRMIA then
6: Take all other tokens except the ground-truth as z > See Section 4.2
7: else
8: Take population data from the population dataset Z as z
9: end if
10: for each z do
11: Compute p(z|#) and p(z|6,.) for all 0, € ©
1
12: p(z) + — Ee co Pr(2]0,)
2|0
13: Ratio, < &
p(2)
14: end for
15: if RMIA then
1 Ratio
16: S 10) «— — If{—=>
corentia («; 0) |Z| 2izez (Ratioz -
17: else > InfoRMIA and Token-Level InfoRMIA
18: Scorewmia (3 0) < logRatio, — >, p(2) log Ratio, > See Equation [3|
19: end if

D DEFENDING INFORMIA

Similar to all other MIA techniques, InfoRMIA relies on a model’s memorization for successful
attacks. It does not use additional information or require higher levels of access to the target models.
Therefore, differentially private training algorithms that reduce memorization of training data are
still effective in defending against InfoRMIA.

E IMPLEMENTATION DETAILS

E.1 RMIA REFERENCE MODEL TRAINING

We use the default hyperparameters in ML Privacy Meter to train target and reference models
when comparing the original and InfoRMIA, except for the number of epochs. For each dataset,
the hyperparameter choices can be found in https://github.com/privacytrustlab/
ml_privacy_meter/tree/master/configs. For CIFAR-10 and Purchase-100, we
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use 100 epochs, while for AG News, we use 1 epoch. We use the one-liner command
python run_mia.py —--cf configs/xxx.yaml to run all the experiments, where the
yaml files correspond to the respective default configs in the GitHub repo.

For aidprivacy experiments, we train target and reference models, which are initiated from GPT-2
models, on randomly selected halves of the training set, identical to the setup of LiRA and RMIA.

E.2 SOFTWARE AND HARDWARE

For all transformer models and language datasets, we use the libraries from Huggingface. The
training process also uses Huggingface’s Trainer class. All computations are done on two NVIDIA
RTX-3090 and two H100 GPUs.

E.3 OTHER DETAILS

When computing the InfoRMIA test statistics, we use the second last line in Equation ] because it
is easier and more similar to the computation of RMIA’s test statistics.

F DATASETS

F.1 AG NEWS

AG News (Zhang et al.| [2015)) is a news dataset that contains four categories of news articles. Its
training set size is 120,000. In our experiment, we ignore the labels column and train autoregressive
models on it.

F.2 AI4PRIVACY

The aidprivacy dataset we used is the pii-masking-300k variant, that can be access at https:
//huggingface.co/datasets/aidprivacy/pii—masking—-300k. It is divided into
two parts: OpenPII-220k and FinPII-80k. The FinPII has additional classes that are specific to the
Finance and Insurance domains. In this dataset, there is a “privacy_mask” column that marks the
beginning and end location for each piece of private information. Thus, we can use this information
to categorize each token as private or non-private. It also assigns a type to private substrings, such
as last names or email addresses, enabling us to do more interesting analysis.

F.3 THE MIMIR BENCHMARK

MIMIR is a benchmark based on the Pile (Gao et al.| 2020) dataset, where non-members highly
overlapped with any member sequence are removed from the evaluation. Since the members and
non-members are randomly shuffled before being split, MIMIR avoids the error of having a large dis-
tributional shift between the two sets (Maini et al., 2024} Das et al.| 2025)). It is also one of the most
active benchmarks with official implementations of recent methods such as the MinK++ (Zhang
et al.,[2025), ReCaLL (Xie et al.,[2024), and DC-PDD (Zhang et al.| 2024).

F.3.1 EXPLANATIONS OF ALL ATTACK METHODS

We will briefly explain the score formulation of each attacking method in the MIMIR benchmark.
The full details of each attack can be found at the respective papers. Note that in this benchmark,
the higher the score is, the less likely it is a member.

* LOSS (Yeom et al.| 2018)): the average loss values of the sequence

* Zlib (Carlini et al.,2021)): the calibrated loss values by the entropy, estimated by the length
after zlib compression

* Min-K % (Shi et al.,[2024): the average of the bottom-%% of token probabilities, and taking
the negative (to align the score’s sign with MIMIR’s standard)
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e Min-K%++ Zhang et al. (2025): the average of the bottom-k% of token probabilities
calibrated by the mean and variance of each token position’s softmax output distributions,
and taking the negative

* DC-PDD (Zhang et al.,2024)): the average token probabilities calibrated by token frequen-
cies calculated on a reference dataset, and take the negative

* Ref (Carlini et al., 2021): the average token loss gap between a reference model and the
target model

F.3.2 WHY RECALL WAS EXCLUDED IN OUR TABLE

The ReCaLL attack pushed to the MIMIR benchmark is a simplified version (according to the au-
thor) and very problematic. There is an implicit information leakage about the membership labels
in crafting the attack signals, making the result unreliable and unfair. By right, the attacker should
not be able to distinguish any non-member from any member, which means the attacker has no in-
formation that can be used to tell non-members apart from members before the attack. However, the
ReCaLL attack in MIMIR explicitly uses non-members in the evaluation set as its ‘“non-member”
prefix to be prepended to all sequences, making the attacker aware of the membership label of certain
non-members. Although the label information is not explicitly used in the attack, it is an implicit
information leak that can be used to tell apart the two sets. Hence, the current implementation of the
ReCaLL attack in MIMIR is incorrect. We will include it once the official implementation is fixed.

G ADDITIONAL RESULTS

G.1 MIMIR RESULTS

We provide more results on the MIMIR benchmark here. In particular, we use the ngram<0. 8
split. Table [3] and [] show the results on TPR @1% FPR and TPR@0.1%FPR respectively, while
Table [5] shows the AUCs. The results show that our method has strongest inference power (highest
TPR at small FPRs), while achieving very competitive results on AUCs. It is also stronger than the
prior reference-based MIA, Ref (Carlini et al., 2021)).

G.2 MIMIR RESULTS WHEN USING THE FIRST STEP CHECKPOINT OF THE TARGET MODEL
AS THE REFERENCE

Instead of using the first step checkpoint of Pythia—160m, we use the checkpoint correspond-
ing to the target model, e.g., we use the Pythia-1.4b:stepl as the reference when attacking
Pythia-1.4b-deduped. We found in Table[6] [7]and [§]that the difference in utility is minimal.
Therefore, it might be better to stick to snapshots of smaller models as reference models for cost-
sensitive auditors. Moreover, using the first step checkpoint of the small LLM as the reference has
another benefit: if the checkpoint is not publicly available, training the small LLM for one step is
computationally cheap. Normal users can obtain the checkpoint and run the attack with low end
computes and short training period.

G.3 USING LATER CHECKPOINTS AS THE REFERENCE MODEL

In this section, we provide experiment results on MIMIR when we use a later checkpoint of the
Pythia-160m. Given that the pretraining takes 143000 steps, we experimented with steps 10000
and 100000. Tables [9]to[I4]are the respective results. Compared to Tables [3|to[5] the numbers show
that using later checkpoints yields weaker attack performance. This aligns with our argument that
we need the reference model to be as OUT as possible. Therefore, the earlier the checkpoint, the
fewer training sequences it has seen, the better the attack performance is.

G.4 MIMIR RESULTS WITH THE GPT-NEO FAMILY
The MIMIR benchmark also supports testing with models from the GPT-Neo family. However,

since no intermediate checkpoints of GPT-Neos are released, we instead use the smallest pretrained
model in the family, which is the GPT-Neo-125m, as the reference model, to attack the 1.3b and
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Table 3: TPR @1% FPR on MIMIR with deduped Pythia models. on MIMIR benchmark with
deduped Pythia models. The Neighbor method is not included due to its computational complexity
and relatively inferior performance reported in prior works. ReCaLL is not included for reasons in
Appendix Ref method is evaluated using the checkpoint of Pythia-160m after the first step
as the reference model. Our method (InfoRMIA) is the token-based InfoRMIA that does not require
additional population data. InfoRMIA1 uses averaging to aggregate, while InfoRMIA?2 uses min-
k%, using the same hyperparameter k as Min-K% and Min-K%-++. Bold numbers are the best, and
the underlined are the best reference-based.

Wikipedia Github Pile CC PubMed Central

Method 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B

Loss 09 06 06 06 131 133 219 132 04 07 08 09 07 04 06 04
Zlib 13 07 08 06 143 169 240 155 07 07 09 15 03 04 05 04
Min-K% 14 09 06 05 120 131 218 130 05 06 07 10 06 02 06 04
Min-K%++ 12 07 06 10 112 128 181 128 1.1 11 12 15 06 04 05 06
DC-PDD 09 04 12 14 108 113 98 107 04 11 06 1.1 15 08 13 13
Ref 09 08 07 06 134 139 203 147 06 07 08 10 08 06 05 04
InfoRMIAI 08 09 06 09 147 177 212 155 12 09 07 06 1.0 05 03 04
InfoRMIA2 1.1 12 09 07 130 141 183 145 04 05 07 05 12 14 13 16

ArXiv DM Mathematics HackerNews Average

Method 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B

Loss 07 07 04 08 05 05 11 L1 09 07 06 08 25 24 37 25
Zlib 05 02 04 07 11 09 09 06 06 10 10 10 27 30 41 29
Min-K% 03 03 04 07 08 06 02 04 07 09 07 L1 23 24 36 24
MinK%++ 11 19 12 14 10 10 12 10 07 05 1.1 07 24 26 34 27
DC-PDD 05 10 09 05 05 04 02 01 13 10 05 12 23 23 21 23
Ref 08 05 05 06 12 10 12 07 14 07 07 07 27 26 35 27
InfoRMIAl 03 05 04 06 07 13 10 L1 15 12 17 13 29 33 37 29

InfoRMIA2 0.1 03 03 04 12 08 11 07 17 12 10 18 27 28 34 29

2.7b models. Note that we have mentioned in the previous section that using a fully pretrained
model as the reference model is bad, as the reference model is completely IN, instead of being OUT.
Hence, the numbers in Tables[I5|to[T7]are just for curious readers.

H TOKEN-BASED ANALYSIS

In this section, we provide some analytical results on the token-based interface on finetuned mod-
els on AG News and aidprivacy, when conducting offline token-level InfoRMIA with 4 reference
models.

Token Info-RMIA score distribution
1

--- Q99=1.305

0 T T T
-4 -2 0 2 4 6
score

Figure 5: Distribution of token InfoRMIA scores on AG News dataset.
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Table 4: TPR @0.1% FPR on MIMIR with deduped Pythia models.

Wikipedia Github Pile CC PubMed Central
Method 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B
Loss 00 01 02 01 57 48 79 52 00 02 01 02 00 00 00 0.0
Zlib 01 01 01 01 84 57 86 69 00 02 02 03 00 00 00 0.0
Min-K% 00 01 02 01 57 48 80 49 00 02 01 02 00 00 00 0.0
Min-K%++ 00 00 01 00 61 35 46 21 01 02 01 03 00 00 00 0.0
DC-PDD 00 00 00 00 37 03 03 11 00 00 03 02 00 00 01 O0.1
Ref 00 00 00 00 43 43 22 35 01 02 03 03 00 01 0.0 0.0
InfoRMIAI 01 02 02 02 00 00 06 10 01 01 01 01 00 01 03 03
InfoRMIA2 00 00 0.1 01 48 00 09 02 01 01 01 02 00 00 00 0.0
ArXiv DM Mathematics HackerNews Average
Method 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B
Loss 01 00 00 01 00 00 02 00 01 00 00 00 08 07 12 08
Zlib 00 00 00 00 00 00 00 00 01 02 02 02 12 09 13 1.1
Min-K% 00 00 00 00 00 00 00 00 02 01 01 01 08 07 12 038
Min-K%++ 00 00 00 00 01 00 05 02 02 00 01 00 09 05 08 04
DC-PDD 00 00 02 00 00 00 00 00 00 02 01 00 05 01 01 02
Ref 02 01 00 00 02 00 01 01 01 00 00 02 07 07 04 0.6
InfoRMIAI 0.1 00 00 00 O01 03 03 06 00 00 00 00 01 01 02 03
InfoRMIA2 00 00 00 00 00 00 00 00 01 03 03 03 07 01 02 0.1
Table 5: AUC results on MIMIR benchmark with deduped Pythia models.
Wikipedia Github Pile CC PubMed Central
Method 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B
Loss 50.2 51.0 51.7 51.6 63.7 658 71.2 67.6 49.5 50.1 50.1 51.3 49.9 49.8 499 50.5
Zlib 51.0 51.8 524 523 65.6 67.2 72.2 68.8 49.6 502 503 512 50.0 50.0 50.0 50.6
Min-K% 48.6 50.6 51.6 514 63.6 659 714 68.0 50.0 51.0 50.5 51.9 504 50.2 504 51.0
Min-K%++ 47.7 52.3 53.7 524 614 657 70.7 69.1 49.8 51.1 499 51.7 509 50.6 51.2 52.3
DC-PDD 49.0 50.6 524 51.8 649 662 714 69.0 49.6 51.1 51.2 519 50.5 51.0 50.6 51.1
Ref 50.0 50.8 51.6 514 639 66.0 714 67.9 494 50.0 50.0 51.2 49.8 49.7 49.8 504
InfoRMIAL 50.9 50.8 51.0 51.2 65.0 66.1 70.8 67.0 49.4 49.6 49.8 50.5 50.2 49.7 49.5 49.8
InfoRMIA2 50.0 50.3 51.1 51.1 63.5 653 70.6 669 50.6 51.1 50.8 51.7 514 504 50.2 50.7
ArXiv DM Mathematics HackerNews Average
Method 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 1.4B 2.8B 6.9B
Loss 50.7 514 519 525 49.0 48.6 483 484 492 504 512 51.7 51.8 524 535 534
Zlib 50.0 50.8 51.3 51.8 48.2 48.1 48.0 48.1 49.6 502 509 51.0 52.0 52.6 53.6 534
Min-K% 50.0 51.2 522 527 494 493 49.1 493 50.2 513 524 53.0 51.7 52.8 539 539
Min-K%++ 487 512 53.1 528 49.9 50.0 50.3 50.2 509 51.1 523 53.7 51.3 53.1 544 54.6
DC-PDD 50.4 52.0 529 529 49.0 49.3 49.8 49.7 50.7 51.8 53.0 539 52.0 53.1 54.5 543
Ref 50.3 51.0 51.5 52.1 48.8 48.5 483 483 49.1 504 512 51.7 51.6 523 534 533
InfoRMIA1 50.3 51.1 51.1 51.5 48.0 47.6 479 479 504 50.7 51.0 51.3 52.0 522 53.0 52.7
InfoRMIA2 50.8 51.2 51.6 52.3 49.0 49.1 49.0 489 504 519 524 53.1 522 52.7 53.7 53.5
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Table 6: TPR @1% FPR on MIMIR benchmark with deduped Pythia models when using the first
step checkpoint of the target model as the reference.

Wikipedia Github Pile CC PubMed Central

Method 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B

Loss 09 06 06 06 131 133 219 132 04 07 08 09 07 04 06 04
Zlib 13 07 08 06 143 169 240 155 07 07 09 15 03 04 05 04
Min-K% 14 09 06 05 120 131 21.8 130 05 06 07 10 06 02 06 04
Min-K%++ 12 07 06 10 112 128 181 128 11 11 12 15 06 04 05 0.6
DC-PDD 09 04 12 14 108 113 98 107 04 11 06 1.1 15 08 13 1.3
Ref 09 08 07 09 134 109 179 47 06 05 07 12 08 09 02 05
InfoRMIAI 08 1.0 07 1.0 147 175 21.0 149 12 09 07 07 10 07 05 07
InfoRMIA2 1.1 13 09 1.0 130 138 187 145 04 05 05 06 12 12 13 08

ArXiv DM Mathematics HackerNews Average

Method 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 14B 2.8B 6.9B 160M 14B 2.8B 6.9B

Loss 07 07 04 08 05 05 11 1.1 09 07 06 08 25 24 37 25
Zlib 05 02 04 07 11 09 09 06 06 10 1.0 1.0 27 30 41 29
MinK% 03 03 04 07 08 06 02 04 07 09 07 11 23 24 36 24
MinK%++ 11 19 12 14 10 10 12 10 07 05 1.1 07 24 26 34 27
DC-PDD 05 10 09 05 05 04 02 01 13 10 05 12 23 23 21 23
Ref 08 03 06 05 12 09 10 03 14 10 08 10 27 22 31 13
InfoRMIAI 03 04 03 04 07 14 11 12 15 18 12 13 29 34 36 29
InfoRMIA2 0.1 03 03 03 12 09 12 10 L7 13 10 17 27 28 34 28

Table 7: TPR @0.1% FPR on MIMIR benchmark with deduped Pythia models when using the first
step checkpoint of the target model as the reference.

Wikipedia Github Pile CC PubMed Central

Method 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B

Loss 00 01 02 01 57 48 79 52 00 02 01 02 00 00 00 00
Zlib 01 01 01 01 84 57 86 69 00 02 02 03 00 00 00 00
Min-K% 00 01 02 01 57 48 80 49 00 02 01 02 00 00 00 00
Min-K%++ 00 00 01 00 61 35 46 21 01 02 01 03 00 00 00 00
DC-PDD 00 00 00 00 37 03 03 I1I 00 00 03 02 00 00 01 0.1
Ref 00 01 00 01 43 00 06 01 01 01 01 02 00 00 00 00
InfoRMIAI 0.1 01 02 03 00 00 04 01 01 01 01 01 00 01 03 03
InfoRMIA2 00 00 01 00 48 00 08 02 01 01 01 01 00 00 00 00

ArXiv DM Mathematics HackerNews Average

Method 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B

Loss 01 00 00 01 00 00 02 00 01 00 00 00 08 07 12 08
Zlib 00 00 00 00 00 00 00 00 01 02 02 02 12 09 13 11
Min-K% 00 00 00 00 00 00 00 00 02 01 01 01 08 07 12 08
Min-K%++ 00 00 00 00 01 00 05 02 02 00 01 00 09 05 08 04
DC-PDD 00 00 02 00 00 00 00 00 00 02 01 00 05 01 01 02
Ref 02 01 00 01 02 00 03 00 01 00 00 03 07 00 01 0.1

InfoRMIAI 0.1 00 00 00 01 01 03 05 00 00 00 00 01 01 02 02

InfoRMIA2 00 00 0.0 00 00 00 00 00 01 02 02 04 07 00 02 0.1
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Table 8: AUC results on MIMIR benchmark with deduped Pythia models when using the first step
checkpoint of the target model as the reference.

Wikipedia Github Pile CC PubMed Central

Method 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B

Loss 502 51.0 517 51.6 63.7 658 712 67.6 49.5 50.1 50.1 513 49.9 498 49.9 50.5
Zlib 510 51.8 524 523 65.6 67.2 722 688 49.6 502 503 512 50.0 50.0 50.0 50.6
Min-K% 486 506 51.6 514 636 659 714 680 500 51.0 50.5 519 504 502 504 51.0
Min-K%++ 477 523 53.7 524 614 657 707 69.1 498 51.1 499 51.7 509 50.6 51.2 52.3
DC-PDD  49.0 50.6 524 518 649 662 714 69.0 49.6 511 512 519 50.5 510 50.6 51.1
Ref 500 509 51.6 52.1 639 654 714 669 494 500 502 51.3 49.8 50.0 49.5 50.5
InfoRMIAI 509 508 51.1 51.5 65.0 66.0 70.9 669 49.4 495 498 50.5 502 49.8 49.4 49.8
InfoRMIA2 50.0 504 51.7 51.6 635 653 705 669 50.6 50.9 51.0 514 514 503 50.1 50.2

ArXiv DM Mathematics HackerNews Average

Method 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B 160M 14B 2.8B 6.9B 160M 1.4B 2.8B 6.9B

Loss 50.7 514 519 52.5 49.0 48.6 48.3 484 492 504 512 51.7 518 524 535 534
Zlib 50.0 50.8 51.3 51.8 482 48.1 48.0 48.1 49.6 502 509 51.0 52.0 52.6 53.6 53.4
Min-K% 500 512 522 527 494 493 49.1 493 502 513 524 530 517 528 539 539
Min-K%++ 487 512 53.1 528 49.9 50.0 50.3 502 50.9 51.1 523 537 51.3 53.1 544 54.6
DC-PDD 504 52.0 529 529 49.0 493 49.8 49.7 50.7 51.8 53.0 53.9 52.0 53.1 54.5 54.3
Ref 503 51.3 51.8 52.3 48.8 49.0 487 482 49.1 50.5 514 51.5 51.6 52.5 53.5 53.3
InfoRMIAI 503 512 512 51.6 48.0 47.7 47.8 47.8 504 50.7 51.1 512 520 52.3 53.0 52.8
InfoRMIA2 50.8 51.0 51.6 52.2 49.0 49.1 49.0 48.8 504 520 523 52.3 522 52.7 53.7 53.3

Table 9: AUC results on MIMIR benchmark for deduped Pythia models using the step 10k check-
point of the 160m model. Note that the performance of InfoRMIA deteriorates as the reference
model becomes less OUT when using a later checkpoint.

Wikipedia Github Pile CC PubMed Central
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 50.2 51.0 51.7 63.7 65.8 71.2 49.5 50.1 50.1 49.9 49.8 49.9
Zlib 51.0 51.8 52.4 65.6 67.2 72.2 49.6 50.2 50.3 50.0 50.0 50.0
Min-K% 48.6 50.6 51.6 63.6 65.9 71.4 50.0 51.0 50.5 50.4 50.2 50.4
Min-K%++ 471 52.3 53.7 61.4 65.7 70.7 49.8 51.1 49.9 50.9 50.6 51.2
DC-PDD 49.0 50.6 52.4 64.9 66.2 714 49.6 51.1 51.2 50.5 51.0 50.6
Ref 49.9 514 53.0 36.6 40.7 47.5 50.5 52.1 52.0 50.3 49.8 50.1
Info-RMIA1  48.8 50.4 515 41.9 43.3 51.0 48.5 51.1 51.0 49.7 49.0 49.0
ArXiv DM Mathematics HackerNews Average
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 50.7 51.4 51.9 49.0 48.6 48.3 49.2 50.4 51.2 51.8 524 535
Zlib 50.0 50.8 51.3 48.2 48.1 48.0 49.6 50.2 50.9 52.0 52.6 53.6
Min-K% 50.0 51.2 522 494 49.3 49.1 50.2 51.3 524 51.7 52.8 53.9
Min-K%++ 48.7 51.2 53.1 49.9 50.0 50.3 50.9 51.1 523 51.3 53.1 54.4
DC-PDD 50.4 52.0 52.9 49.0 49.3 49.8 50.7 51.8 53.0 52.0 53.1 54.5
Ref 50.3 52.0 53.1 49.3 48.6 48.5 50.4 529 54.8 48.2 49.6 513

Info-RMIA1  50.5 51.2 51.7 482 47.8 47.7 50.8 52.5 534 48.3 49.3 50.8
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Table 10: TPR @0.1% FPR on MIMIR benchmark for deduped Pythia models using the step 10k
checkpoint of the 160m model. Note that the performance of InfoRMIA deteriorates as the reference
model becomes less OUT when using a later checkpoint.

Wikipedia Github Pile CC PubMed Central
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 0.0 0.1 0.2 5.7 4.8 79 0.0 0.2 0.1 0.0 0.0 0.0
Zlib 0.1 0.1 0.1 8.4 5.7 8.6 0.0 0.2 0.2 0.0 0.0 0.0
Min-K% 0.0 0.1 0.2 5.7 4.8 8.0 0.0 0.2 0.1 0.0 0.0 0.0
Min-K%++ 0.0 0.0 0.1 6.1 35 4.6 0.1 0.2 0.1 0.0 0.0 0.0
DC-PDD 0.0 0.0 0.0 3.7 0.3 0.3 0.0 0.0 0.3 0.0 0.0 0.1
Ref 0.0 0.2 0.3 0.2 0.0 0.8 0.2 0.3 04 0.2 0.0 0.0
Info-RMIALI 0.1 0.1 0.2 0.1 0.1 0.5 0.2 0.2 0.3 0.2 0.0 0.0
ArXiv DM Mathematics HackerNews Average
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.8 0.7 1.2
Zlib 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 1.2 0.9 1.3
Min-K% 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.8 0.7 1.2
Min-K%++ 0.0 0.0 0.0 0.1 0.0 0.5 0.2 0.0 0.1 0.9 0.5 0.8
DC-PDD 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.1 0.5 0.1 0.1
Ref 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2
Info-RMIA 1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1

Table 11: TPR @1% FPR on MIMIR benchmark for deduped Pythia models using the step 10k
checkpoint of the 160m model. Note that the performance of InfoRMIA deteriorates as the reference
model becomes less OUT when using a later checkpoint.

Wikipedia Github Pile CC PubMed Central
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 0.9 0.6 0.6 13.1 133 21.9 0.4 0.7 0.8 0.7 0.4 0.6
Zlib 1.3 0.7 0.8 14.3 16.9 24.0 0.7 0.7 0.9 0.3 0.4 0.5
Min-K% 14 0.9 0.6 12.0 13.1 21.8 0.5 0.6 0.7 0.6 0.2 0.6
Min-K%++ 1.2 0.7 0.6 11.2 12.8 18.1 1.1 1.1 1.2 0.6 0.4 0.5
DC-PDD 0.9 0.4 1.2 10.8 11.3 9.8 0.4 1.1 0.6 1.5 0.8 1.3
Ref 1.0 0.9 1.1 1.1 0.7 3.0 0.9 11 12 2.0 14 14
Info-RMIA 1 0.7 1.2 0.9 14 0.8 39 0.6 0.9 0.7 1.1 14 1.0
ArXiv DM Mathematics HackerNews Average
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 0.7 0.7 0.4 0.5 0.5 1.1 0.9 0.7 0.6 2.5 2.4 3.7
Zlib 0.5 0.2 0.4 1.1 0.9 0.9 0.6 1.0 1.0 2.7 3.0 4.1
Min-K% 0.3 0.3 0.4 0.8 0.6 0.2 0.7 0.9 0.7 2.3 2.4 3.6
Min-K%++ 1.1 1.9 1.2 1.0 1.0 1.2 0.7 0.5 1.1 24 2.6 34
DC-PDD 0.5 1.0 0.9 0.5 0.4 0.2 1.3 1.0 0.5 2.3 2.3 2.1
Ref 12 1.5 1.6 0.6 1.0 1.1 0.5 15 1.6 1.0 12 1.6
Info-RMIA1 19 1.2 1.2 0.8 1.6 1.1 1.1 1.5 1.5 1.1 1.2 1.5
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Table 12: AUC results on MIMIR benchmark for deduped Pythia models using the step 100k check-
point of the 160m model. Note that the performance of InfoRMIA deteriorates as the reference
model becomes less OUT when using a later checkpoint.

Wikipedia Github Pile CC PubMed Central
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 50.2 51.0 51.7 63.7 65.8 71.2 49.5 50.1 50.1 49.9 49.8 49.9
Zlib 51.0 51.8 524 65.6 67.2 72.2 49.6 50.2 50.3 50.0 50.0 50.0
Min-K% 48.6 50.6 51.6 63.6 65.9 71.4 50.0 51.0 50.5 50.4 50.2 50.4
Min-K%++ 47.7 52.3 53.7 61.4 65.7 70.7 49.8 51.1 49.9 50.9 50.6 51.2
DC-PDD 49.0 50.6 52.4 64.9 66.2 714 49.6 51.1 51.2 50.5 51.0 50.6
Ref 49.3 51.3 53.2 37.9 38.8 46.8 49.6 52.7 52.7 51.2 50.2 50.4
Info-RMIA1  49.2 50.5 51.7 40.5 40.9 49.3 49.4 51.6 51.5 50.6 49.7 49.5
ArXiv DM Mathematics HackerNews Average
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 50.7 514 51.9 49.0 48.6 48.3 49.2 50.4 51.2 51.8 52.4 53.5
Zlib 50.0 50.8 51.3 48.2 48.1 48.0 49.6 50.2 50.9 52.0 52.6 53.6
Min-K% 50.0 51.2 522 494 49.3 49.1 50.2 51.3 524 51.7 52.8 53.9
Min-K%++ 48.7 51.2 53.1 49.9 50.0 50.3 50.9 51.1 52.3 51.3 53.1 54.4
DC-PDD 50.4 52.0 529 49.0 49.3 49.8 50.7 51.8 53.0 52.0 53.1 54.5
Ref 48.2 51.9 53.0 50.2 48.9 48.8 50.2 52.9 55.3 48.1 49.5 51.5

Info-RMIA1  49.3 51.0 51.7 49.2 48.0 47.8 51.6 52.5 53.6 48.5 49.2 50.7

Table 13: TPR @0.1% FPR on MIMIR benchmark for deduped Pythia models using the step 100k
checkpoint of the 160m model. Note that the performance of InfoRMIA deteriorates as the reference
model becomes less OUT when using a later checkpoint.

Wikipedia Github Pile CC PubMed Central
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 0.0 0.1 0.2 5.7 4.8 7.9 0.0 0.2 0.1 0.0 0.0 0.0
Zlib 0.1 0.1 0.1 8.4 5.7 8.6 0.0 0.2 0.2 0.0 0.0 0.0
Min-K% 0.0 0.1 0.2 5.7 4.8 8.0 0.0 0.2 0.1 0.0 0.0 0.0
Min-K%++ 0.0 0.0 0.1 6.1 35 4.6 0.1 0.2 0.1 0.0 0.0 0.0
DC-PDD 0.0 0.0 0.0 3.7 0.3 0.3 0.0 0.0 0.3 0.0 0.0 0.1
Ref 0.1 0.2 0.3 0.1 0.0 0.5 0.2 04 05 0.0 0.0 0.0
Info-RMIA 1 0.1 0.2 0.1 0.0 0.0 0.2 0.1 0.3 0.3 0.1 0.0 0.0
ArXiv DM Mathematics HackerNews Average
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.8 0.7 1.2
Zlib 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 1.2 0.9 1.3
Min-K% 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.8 0.7 1.2
Min-K%++ 0.0 0.0 0.0 0.1 0.0 0.5 0.2 0.0 0.1 0.9 0.5 0.8
DC-PDD 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.1 0.5 0.1 0.1
Ref 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.2
Info-RMIA1 0.0 0.1 0.0 0.3 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1
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Table 14: TPR @1% FPR on MIMIR benchmark for deduped Pythia models using the step 100k
checkpoint of the 160m model. Note that the performance of InfoRMIA deteriorates as the reference
model becomes less OUT when using a later checkpoint.

Wikipedia Github Pile CC PubMed Central
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 0.9 0.6 0.6 13.1 133 21.9 0.4 0.7 0.8 0.7 0.4 0.6
Zlib 1.3 0.7 0.8 14.3 16.9 24.0 0.7 0.7 0.9 0.3 0.4 0.5
Min-K% 14 0.9 0.6 12.0 13.1 21.8 0.5 0.6 0.7 0.6 0.2 0.6
Min-K%++ 1.2 0.7 0.6 11.2 12.8 18.1 1.1 1.1 1.2 0.6 0.4 0.5
DC-PDD 0.9 0.4 1.2 10.8 11.3 9.8 0.4 1.1 0.6 1.5 0.8 1.3
Ref 0.5 14 13 1.0 0.7 33 0.8 13 1.1 1.2 0.8 0.8
Info-RMIAL 0.9 1.0 1.0 1.0 0.9 4.6 1.6 1.1 0.9 13 0.9 0.6
ArXiv DM Mathematics HackerNews Average
Method 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B 160M 1.4B 2.8B
Loss 0.7 0.7 0.4 0.5 0.5 1.1 0.9 0.7 0.6 2.5 2.4 3.7
Zlib 0.5 0.2 0.4 1.1 0.9 0.9 0.6 1.0 1.0 2.7 3.0 4.1
Min-K% 0.3 0.3 0.4 0.8 0.6 0.2 0.7 0.9 0.7 2.3 2.4 3.6
Min-K%++ 1.1 1.9 1.2 1.0 1.0 1.2 0.7 0.5 1.1 2.4 2.6 34
DC-PDD 0.5 1.0 0.9 0.5 0.4 0.2 1.3 1.0 0.5 23 2.3 2.1
Ref 0.8 13 1.2 1.0 1.0 0.6 0.4 0.9 1.1 0.8 1.1 1.3
Info-RMIA1 1.3 1.1 1.0 13 1.0 0.7 0.9 1.0 2.0 1.2 1.0 1.5

Table 15: AUC results on MIMIR benchmark for GPT-Neo models. Note that the results here are
only for curious readers, because the reference model is completely IN, breaking the offline attack
assumption.

Wikipedia Github Pile CC PubMed Central
Method 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B
Loss 51.0 51.3 68.1 69.9 50.0 50.4 49.6 49.8
Zlib 51.7 51.9 69.6 71.3 50.0 50.5 49.7 49.9
Min-K% 50.6 51.2 68.2 70.1 50.3 50.7 50.0 50.1
Min-K%++ 51.5 53.4 68.2 70.2 49.7 50.4 51.1 51.4
DC-PDD 50.7 51.2 69.8 71.5 50.6 50.7 50.7 50.3
Ref 513 51.7 46.9 48.0 52.5 529 49.3 50.0
Info-RMIAL1 50.9 50.8 48.4 49.8 51.5 51.8 48.6 49.1
Info-RMIA2 52.1 53.2 69.9 71.3 524 52.0 51.2 51.2
ArXiv DM Mathematics HackerNews Average
Method 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B
Loss 51.1 51.5 48.6 48.5 49.9 50.2 52.6 53.1
Zlib 50.6 51.0 48.1 48.1 50.1 50.2 52.8 533
Min-K% 51.2 51.7 49.2 49.2 514 51.7 53.0 53.5
Min-K%++ 52.1 52.1 49.6 49.7 50.8 51.5 533 54.1
DC-PDD 51.6 51.9 49.1 49.6 52.6 51.8 53.6 53.9
Ref 52.0 53.0 477 48.2 53.2 54.1 50.4 51.1
Info-RMIAL1 50.9 51.4 472 47.5 52.7 533 50.0 50.5
Info-RMIA2 52.6 52.9 49.2 48.9 50.9 50.5 54.0 54.3
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Table 16: TPR @0.1% FPR on MIMIR benchmark for GPT-Neo models. Note that the results here
are only for curious readers, because the reference model is completely IN, breaking the offline
attack assumption.

Wikipedia Github Pile CC PubMed Central
Method 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B
Loss 0.1 0.1 4.7 6.0 0.1 0.2 0.0 0.0
Zlib 0.1 0.1 13.7 13.3 0.2 0.2 0.0 0.0
Min-K% 0.1 0.1 4.8 6.0 0.2 0.2 0.0 0.0
Min-K%++ 0.1 0.1 9.0 11.0 0.2 0.2 0.0 0.0
DC-PDD 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.1
Ref 0.2 0.3 0.1 0.4 0.2 04 0.0 0.0
Info-RMIALI 0.2 0.2 0.2 0.3 0.2 0.3 0.0 0.0
Info-RMIA2 0.0 0.0 0.4 1.1 0.2 0.4 0.0 0.0

ArXiv DM Mathematics HackerNews Average

Method 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B
Loss 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.9
Zlib 0.0 0.0 0.0 0.1 0.0 0.0 2.0 2.0
Min-K% 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.9
Min-K%++ 0.0 0.0 0.5 0.0 0.2 0.0 1.4 1.6
DC-PDD 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1
Ref 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.2
Info-RMIA 1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1
Info-RMIA2 0.0 0.0 0.0 0.1 0.7 0.0 0.2 0.2

Table 17: TPR @1% FPR on MIMIR benchmark for GPT-Neo models. Note that the results here are
only for curious readers, because the reference model is completely IN, breaking the offline attack
assumption.

Wikipedia Github Pile CC PubMed Central
Method 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B
Loss 0.6 0.6 18.7 22.0 0.7 0.7 0.2 0.3
Zlib 0.5 0.6 20.1 222 0.7 0.8 0.3 0.3
Min-K% 0.6 0.5 18.9 22.3 0.7 0.5 0.3 0.6
Min-K%++ 0.6 0.5 19.0 21.9 0.8 0.9 0.5 0.5
DC-PDD 0.5 0.7 16.1 20.0 0.8 0.9 1.1 0.9
Ref 0.9 1.1 2.0 2.6 1.0 1.2 1.0 13
Info-RMIA 1 0.8 0.9 2.8 3.0 1.0 0.9 1.0 0.7
Info-RMIA2 1.2 0.9 12.5 84 0.9 14 0.5 0.6

ArXiv DM Mathematics HackerNews Average

Method 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B 1.3B 2.7B
Loss 0.9 0.6 0.5 0.4 0.7 0.9 32 3.6
Zlib 0.4 0.5 0.5 0.5 0.5 0.5 33 3.6
Min-K% 0.7 0.5 0.2 0.2 0.7 0.8 32 3.6
Min-K%++ 1.2 1.4 1.1 1.1 0.8 0.8 34 39
DC-PDD 1.2 0.7 0.3 0.3 1.1 1.6 3.0 3.6
Ref 19 1.9 0.6 0.5 1.4 0.8 1.3 1.3
Info-RMIA1 1.1 1.5 0.8 1.0 1.8 13 1.3 1.3
Info-RMIA2 0.8 1.3 1.2 21 1.0 1.1 2.6 23
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Table 18: Summary statistics of token membership scores grouped by entity type on AG News,
sorted by mean scores. Top-1% scoring tokens are called “high” tokens. ”n_high” is the number of
high tokens, and high_rate” is the proportion of the tokens in each entity being high scoring. "None”
entities are not nouns, which are unsurprisingly the majority.

entity count mean score median_score p95 n_high high_ rate
PERSON 2225 0.156000 0.103894 0.847365 50 0.022472
WORK_OF_ART 107 0.135550 0.056464 0.695698 3 0.028037
PRODUCT 75 0.122673 0.068920 0.854701 0 0.000000
FAC 136 0.119761 0.067262 0.894820 1 0.007353
LOC 161 0.117694 0.078282 0.729102 1 0.006211
TIME 159 0.115637 0.080404 0.621918 1 0.006289
ORG 4624 0.113697 0.073791 0.729737 74 0.016003
GPE 1587 0.107486 0.064042 0.634189 20 0.012602
QUANTITY 79 0.107218 0.076787 0.625024 1 0.012658
MONEY 1139 0.103070 0.081028 0.464732 5 0.004390
None 36188  0.094550 0.056949 0.646802 327 0.009036
EVENT 188 0.094198 0.051614 0.684139 2 0.010638
NORP 391 0.086809 0.063955 0.619991 4 0.010230
ORDINAL 134 0.081780 0.039014 0.571259 0 0.000000
CARDINAL 720 0.072828 0.051281 0.558225 4 0.005556
PERCENT 123 0.052848 0.037016 0.407925 0 0.000000
DATE 1798 0.048768 0.031457 0.501247 6 0.003337
LAW 5 0.005115 -0.096963 0.653592 0 0.000000
LANGUAGE 3 -0.149360 -0.130233 0.017094 0 0.000000

Table 19: Summary statistics of token membership scores grouped by their private/non-private status
in the ai4privacy dataset.

token count mean std min 10% 50% 90 % max
Non-private  147411.0  0.090224 0.303371 -4.658639 -0.088854 0.056127 0.304669 8.894643
Private 36340.0 0.076426 0.320213 -4.478451 -0.164783 0.048231 0.340272 7.925481
104
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Figure 6: Distribution of high scoring tokens according to their types in aidprivacy dataset. The
y-axis is the number of tokens in log scale.

25



Under review as a conference paper at ICLR 2026

Seq 345 (sample_index=23060, avg=0.451, avg_priv=0.243)
1989. With the garimanjaly10@hotmail.com as her communication channel, she-s her P21WC0501915 like a badge of honor in this virtual

world. Her 001 857 794-5305 is always at the ready for strategic discussions with fellow gamers. Armed with the opZ377, she fearlessly
navigates through quests and challenges, embodying strength and determination. Joining her on this gaming adventur

Seq 358 (sample_index=14422, avg=0.440, avg_priv=0.182)

813", "entry_date": "2049-11-21T00:00:00", "entry_time": "6 AM", "location": "BS16 4EG", "behaviors": ["Practiced distress tolerance
techniques”, "Used interpersonal effectiveness skills", "Reviewed diary cards"], "reactions": ["Felt empowered by distress|[IEIENgE practice",
"Successfully applied interpersonal skills in a difficult situation", "Identified patterns in diary card review"]} {"entry_id": 3, "user_id":
"oflwngqgujwluzlvx09", "passport_id": "97

Seq 234 (sample_index=8324, avg=0.367, avg_priv=0.228)

palasingam will present a case study highlighting the successful implementation of sustainable water management practices in the region.
During the seminar, we will also delve into the challenges faced by water resource authorities, as illustrated by rodi.sprugasci's research on the
impact of water_ on rural communities. gmmnodttjo66 will offer valuable insights into the legal implications of transbound

Seq 113 (sample_index=17332, avg=0.353, avg_priv=0.180)

onet Comment: "Although uniforms restrict personal expression to some extent, they also create a sense of belonging and school- that
can positively impact the overall school atmosphere." 6. Username: Malou Comment: "l support school uniforms for their role in creating a level
playing field for students from diverse socioeconomic backgrounds. It helps prevent discrimination based on clothing brands." 7. Username:
Poulaillon Comment: "From a teacher's perspect

Seq 233 (sample_index=15283, avg=0.334, avg_priv=0.132)

knowledge sharing sessions led by **Bogajo** to enhance curriculum coherence. **Professional Development Activities:** 1. **Pope** to lead a
workshop on integrating technology into curriculum design. 2. Organize a conference on culturally_ teaching strategies guided by
**Lebada**. 3. Establish peer observation groups to promote best practices in **Denison** and **Clarkton** schools. 4. Implement a feedback
mechanism utilizing **iyxmpwxbq

Seq 491 (sample_index=81892, avg=0.331, avg_priv=nan)

Business Plan de e-commerce **Introduction** Le commerce électronique est en constante évolution, et pour réussl dans ce marché
dynamique, il est essentiel d'avoir une stratégie solide et des objectifs clairs. Notre business plan pour notre entreprise e-commerce vise a
définir nos actions et nos objectifs pour prospérer dans le secteur du commerce en ligne. **Stratégies clés** 1. **Segmentation du Marché**:
Nous utiliserons les informations de nos clients pour diviser le marché en segments spécif

Seq 434 (sample_index=20020, avg=0.330, avg_priv=nan)

Team Collaboration Platforms for Enhanced Pediatric Care Dear Team, In our continuous efforts to improve pediatric care services, we are
excited to introduce a new team collaboration platform that will streamline our communication and enhance patient care outcomes. This
platform aims to leverage technology to ensure efficient coordination among healthcare professionals and- the overall quality of care
provided to our young patients. Key Features of

Seq 38 (sample_index=130241, avg=0.326, avg_priv=0.129)

4.23/03/1982 - Esperto legale sulle questioni dello spazio 5. 02/02/1965 - Esperta tecnica in comunicazioni satellitari 6. 18° febbraio 1972 -
Rappresentante del settore degli investimenti spaziali 7. agosto/02 - Consulente di sicurezza spaziale -ITTI E RESPONSABILITAA Le parti
concordano sulle seguenti clausole: - Le parti siimpegnano a rispettare le normative spaziali nazionali e internazionali. - L'uso dello spettro
satellitare sara regola

Seq 44 (sample_index=7758, avg=0.326, avg_priv=0.198)

ion Date": "21st November 2022", "Sever[iiili Pay": "$10,000", "Working Notice Period": "2 weeks", "Vacation Pay Owed": "$1,500", "Lump
Sum Payment": "$5,000", "Return of Company Property Deadline": "7 days", "Confidentiality Clause": "Employee shall not disclose any
confidential information after termination." } }}

Seq 307 (sample_index=13138, avg=0.314, avg_priv=0.148)

CK] 2. **Communication with therapist:** Q6457998 - Female: [CLIENT FEEDBACK] 3. **ComfortjJlll during the session:** Q6457998 -
Female: [CLIENT FEEDBACK] 4. **Impact of the therapy on your well-being:** Q6457998 - Female: [CLIENT FEEDBACK] 5. **Suggestions for
improvement:** Q6457998 - Female: [CLIENT FEEDBACK] --- *(Please repeat the above format for all remaining clients)*

Figure 7: Top-10 memorized sequences in the ai4privacy dataset, ranked by sequence-based mem-
bership scores. Some of them do not even have any private tokens. Others have disproportionately
small private token average scores.
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Top 10 sequences by average private-token score

Seq 76 (sample_index=131097, avg=0.207, avg_priv=0.667)

is": "Autismo moderato", "Specific_Behaviors": "Aggressione fisica, difficolta nell'espressione verbale" } } }, { "SKARL.507225.SM.496": {
"Skarl-": { "Murteza": { "Diagnosis": "Disturbi dello spettro autistico non specificati", "Specific_Behaviors": "Rumore eccessivo, scarsa
interazione sociale" } } } }, {

Seq 377 (sample_index=1578, avg=0.212, avg_priv=0.537)

reness:</b> Utilize resources and programs to educate residents on the risks of alcohol abuse.</li> <li><b>Support Services:</b> Ensure
access to counseling and support for individuals struggling with alcohol dependency.</li> <li><b>Regulation:</b> Implement policies to control
alcohol| and availability in the community.</li> </ul> <h2>Individual Responsibilities</h2> <p>Each member of the community,
including [[Loélie]], [[Hatice]] and [[Jamrat]]

Seq 216 (sample_index=99385, avg=0.172, avg_priv=0.510)

Betreff: Anfrage zur Riickmeldung - Appellationspraxis Sehr geehrte Damen und Herren, ich hoffe, diese Nachricht erreicht Sie im besten
Wohlbefinden. Gerne wiirde ich Ihr wertvolles Feedback zu meiner juristischen Angelegenheit erhalten. Meine Kontaktdaten und weitere
Informationen finden Sie unten. Datum der Anfrage: Mai 11., 2065 **Details des Antragstellers:** 1. Antragsteller: S SIIMEEberhan
Geschlecht: A

Seq 223 (sample_index=127813, avg=0.154, avg_priv=0.479)

nta e contribuisce a plasmare il futuro della nostra comunita. Le chiedo cortesemente di portare con sé il suo 465345506 come documento
d'identita valido per partecipare alle elezioni. La sua presenza alle urne éé& fondamentale per garantire una rappresentanza democratica e
inclusiva. Resto a disposizione per qualsiasi domanda o chiar-o. Grazie per il suo coinvolgimento e impegno civico. Cordialmente, [Il tuo
Nome] [Il tuo Ruolo]

Seq 257 (sample_index=169404, avg=0.176, avg_priv=0.463)

Management", "CompletionDate": "2023-01-25", "CertificatelD": "170—R- de la Costa Vasca-Berriatua" }, { "EmployeeName": "ALICE",
"EmployeelD": "24887", "TrainingProgram": "Strategic Planning in Healthcare", "CompletionDate": "2023-03-05", "CertificatelD": "418-Calle
Valle-Valderrueda Renedo de Valdetuéjar" } 1}

Seq 583 (sample_index=95225, avg=0.099, avg_priv=0.435)

genden finden Sie die Protokolle sowie die detaillierten Aufzeichnungen der heutigen Vorlesung: 1. Teilnehmer STUDENT_J: - Benutzername:
1991M32 - Perspektive: Zweite Person Plural 2. Teilnehmer STUDENT_H: - Benutzername:.ares - Perspektive: Formale dritte Person Plural 3.
Teilnehmer STUDENT_C: - Benutzername: 94kerrin - Perspektive: Formale zweite Person Plural 4.

Seq 171 (sample_index=144775, avg=0.167, avg_priv=0.421)

"question_content": "In che modo gestisce i diritti di licenza per i contenuti digitali?" }, { "question_number": 2, "question_content": "Quali
sono le tendenze emergenti che impattano la gestione dei diritti digitali?" } ] }, "applicant_7": { "title": "Infante", "designation": "Avvocato
BBEBE". "country": "Switzerland", "specialty": "Online Privacy Law", "questions": [ {

Seq 447 (sample_index=78987, avg=0.152, avg_priv=0.407)

Commentaires du suivi du projet - Service d'oncologie pédiatrique, Hopital de Genéve Chers collégues, Nous souhaitons partager avec vous
les derniers commentaires concernant le suivi du projet en oncologie pédiatrique. Veuillez trouver ci-dessous un résumé détaillé des
contributions de chaque membre de I'équipe : 1. Nom :-ch Adresse IP : 230.233.131.185 Commentaire : Nous avons besoin de plus de
données pour évaluer la progression du tra

Seq 480 (sample_index=59655, avg=0.113, avg_priv=0.402)

**‘yaml health_promotion_campaigns: campaign1: id: "Campafia de Promocién de la Salud para Todos" id: "Involucra a la comunidad en
habitos saludables y prevencién de enfermedades." . "Todos los miembros de la comunidad" id: "Fomentar la adopcién de un estilo de vida
saludable y conciencia sobre salud preventiva" id: "Talleres educativos, sesiones informativas, actividades al aire libre" id: "15-07-2023" id:
"15-08-2023" id: "9:55" id: "Espafia" """

Seq 417 (sample_index=165879, avg=0.201, avg_priv=0.400)

Buen dia, me gustaria participar en el estudio de investigacién que han mencionado en clase. Quedo atento a cualquier requerimiento
adicional. --- ‘*Correol** Asunto: Horario de Clases Remitente: Masculino N° Documento: V27969571 Mensaje: Hola, desearia conocer si es
posible modificar mi horario de clases, ya que se me han presentado conflictos con una actividad extracurricular. Quedo a la espera de su
pronta respuesta. --- **Cor

Figure 8: Top-10 sequences that have the highest average scores of private tokens. Note that their
sequence averages are much smaller compared to those in Figure[7] and the average private token
scores. This is aligned with our intuition that signals from private tokens can get diluted in long
texts.
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