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ABSTRACT

Meta-learning, transfer learning and multi-task learning have recently laid a path
towards more generally applicable reinforcement learning agents that are not lim-
ited to a single task. However, most existing approaches implicitly assume a
uniform similarity between tasks. We argue that this assumption is limiting in
settings where the relationship between tasks is unknown a-priori. In this work,
we propose a general approach to automatically cluster together similar tasks dur-
ing training. Our method, inspired by the expectation-maximization algorithm,
succeeds at finding clusters of related tasks and uses these to improve sample
complexity. We achieve this by designing an agent with multiple policies. In the
expectation step, we evaluate the performance of the policies on all tasks and as-
sign each task to the best performing policy. In the maximization step, each policy
trains by sampling tasks from its assigned set. This method is intuitive, simple to
implement and orthogonal to other multi-task learning algorithms. We show the
generality of our approach by evaluating on simple discrete and continuous con-
trol tasks, as well as complex bipedal walker tasks and Atari games. Results show
improvements in sample complexity as well as a more general applicability when
compared to other approaches.

1 INTRODUCTION

Figure 1: An agent (smiley)
should reach one of 12 goals
(stars) in a grid world. Learn-
ing to reach a goal in the top
right corner helps him to learn
about the other goals in that
corner. However, learning
to reach the green stars (bot-
tom left corner) at the same
time gives conflicting objec-
tives, hindering training. Task
clustering resolves the issue.

Imagine we are given an arbitrary set of tasks. We know that dis-
similarities and/or contradicting objectives can exist. However, in
most settings we can only guess these relationships and how they
might affect joint training. Many recent works rely on such hu-
man guesses and (implicitly or explicitly) limit the generality of
their approaches. This can lead to impressive results, either by
explicitly modeling the relationships between tasks as in transfer
learning (Zhu et al., 2020), or by meta learning implicit relations
(Hospedales et al., 2020). However, in some cases an incorrect sim-
ilarity assumption can hurt learning performance (Lazaric, 2012).
Our aim with this paper is to provide an easy, straightforward ap-
proach to avoid human assumptions on task similarities.

An obvious solution is to train a separate policy for each task. How-
ever, this leads to a large amount of experience being required to
learn the desired behaviors. Therefore, it is desirable to have a sin-
gle agent and allow the sharing of knowledge between tasks. This is
generally known as multi-task learning, a field which has received
a large amount of interest in both the supervised learning and re-
inforcement learning (RL) community (Zhang & Yang, 2017). If
tasks are sufficiently similar, a policy that is trained on one task
provides a good starting point for another task, and experience from
each task will help training in the other tasks. This is known as pos-
itive transfer (Lazaric, 2012). However, if the tasks are sufficiently
dissimilar, negative transfer occurs and reusing a pre-trained policy
is disadvantageous. It can even lead to a worse performance than simply starting with a random
initialization. Here using experience from the other tasks might slow training or even prevent con-
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vergence to a good policy. Most previous approaches to multi-task learning do not account for
problems caused by negative transfer directly and either accept its occurrence or limit their experi-
ments to sufficiently similar tasks. We present a hybrid approach that is helpful in a setting where
the task set contains clusters of related tasks, amongst which transfer is helpful. To illustrate the
intuition we provide a conceptualized example in Figure 1. The figure shows a grid world with 12
tasks that can be naturally clustered in 4 clusters. Note however that our approach goes beyond this
conceptual ideal and can be beneficial even if the clustering is not perceivable by humans a-priori.

Our approach is inspired by the expectation-maximization framework and uses a set of completely
separate policies within our agent. We iteratively evaluate the set of policies on all tasks, assign
tasks to policies based on their respective performance and train policies on their assigned tasks.
This leads to policies naturally specializing to clusters of related tasks, yielding an interpretable
decomposition of the full task set. Moreover, we show that our approach can improve the learning
speed and final reward in multi-task RL settings. To summarize our contributions:

• We propose a general approach inspired by Expectation-Maximization (EM) that can find
clusters of related tasks in an unsupervised manner during training.

• We provide an evaluation on a diverse set of multi-task RL problems that shows the im-
proved sample complexity and reduction in negative transfer in our approach.

• We show the importance of meaningful clustering and the sensitivity to the assumed num-
ber of clusters in an ablation study

2 RELATED WORK

Expectation-Maximization (EM) has previously been used in RL to directly learn a policy. By
reformulating RL as an inference problem with a latent variable, it is possible to use EM to find
the maximum likelihood solution, corresponding to the optimal policy. We direct the reader to
Deisenroth et al. (2013) for a survey on the topic. Our approach is different: We use an EM-inspired
approach to cluster tasks in a multi-task setting and rely on recent RL algorithms to learn the tasks.

In supervised learning, the idea of subdividing tasks into related clusters was proposed by Thrun
& O’Sullivan (1996). They use a distance metric based on generalization accuracy to cluster tasks.
Another popular idea related to our approach that emerged from supervised learning is the use of a
mixture of experts (Jacobs et al., 1991). Here, multiple sub-networks are trained together with an
input dependent gating network. Jordan & Jacobs (1993) also proposed an EM algorithm to learn
the mixture of experts. While those approaches have been extended to the control setting (Jacobs
& Jordan, 1990; 1993; Meila & Jordan, 1995; Cacciatore & Nowlan, 1993; Tang & Hauser, 2019),
they rely on an explicit supervision signal. It is not clear how such an approach would work in an
RL setting. A variety of other methods have been proposed in the supervised learning literature, for
brevity we direct the reader to the survey by Zhang & Yang (2017), which provides a good overview
of the topic. Our work differs in that we focus on RL, where no labeled data set exists.

In RL, task clustering has in the past received attention in works on transfer learning. Carroll &
Seppi (2005) proposed to cluster tasks based on a distance function. They propose distances based
on Q-values, reward functions, optimal policies or transfer performance. They propose to use the
clustering to guide transfer. Similarly, Mahmud et al. (2013) propose a method for clustering Markov
Decision Processes (MDPs) for source task selection. They design a cost function for their chosen
transfer method and derive an algorithm to find a clustering that minimizes this cost function. Our
approach differs from both in that we do not assume knowledge of the underlying MDPs and cor-
responding optimal policies. Furthermore, the general nature of our approach allows it to scale to
complex tasks, where comparing properties of the full underlying MDPs is not feasible. An earlier
approach by Wilson et al. (2007) developed a hierarchical Bayesian approach for multi-task RL.
Their approach uses a Dirichlet process to cluster the distributions from which they sample full
MDPs in the hope that the sampled MDP aligns with the task at hand. They then solve the sampled
MDP and use the resulting policy to gather data from the environment and refine the posterior distri-
butions for a next iteration. While their method is therefore limited to simple MDPs, our approach
can be combined with function approximation and therefore has the potential to scale to MDPs with
large or infinite state spaces which cannot be solved in closed form. Lazaric & Ghavamzadeh (2010)
use a hierarchical Bayesian approach to infer the parameters of a linear value function and utilize
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EM to infer a policy. However, as this approach requires the value function to be a linear function of
some state representation, this approach is also difficult to scale to larger problems which we look
at. Li et al. (2009) note that believe states in partially observable MDPs can be grouped according
to the decision they require. Their model infers the parameters of the corresponding decision state
MDP. Their approach scales quadratically with the number of decision states and at least linearly
with the number of collected transitions, making it as well difficult to apply it to complex tasks.

More recent related research on multi-task RL can be split into two categories: works that focus
on very similar tasks with small differences in dynamics and reward, and works that focus on very
dissimilar tasks. In the first setting, approaches have been proposed that condition the policy on
task characteristics identified during execution. Lee et al. (2020) use model-based RL and a learned
embedding over the local dynamics as additional input to their model. Yang et al. (2020) train two
policies, one that behaves in a way that allows the easy identification of the environment dynamics
and another policy that uses an embedding over the transitions generated by the first as additional
input. Zintgraf et al. (2020) train an embedding over the dynamics that accounts for uncertainty over
the current task during execution and condition their policy on it. Our approach is more general than
these methods as our assumption on task similarity is weaker. In the second group of papers, the set
of tasks is more diverse. Most approaches here are searching for a way to reuse representations from
one task in the others. Riemer et al. (2018) present an approach to learn hierarchical options, and use
it to train an agent on 21 Atari tasks. They use the common NatureDQN network (Mnih et al., 2015)
with separate final layers for option selection policies, as well as separate output layers for each task
to account for the different action spaces. Eramo et al. (2020) show how a shared representation
can speed up training. They then use a network strucuture with separate heads for each task, but
shared hidden layers. Our multi-head baseline is based on these works. Bräm et al. (2019) propose a
method that addresses negative transfer between multiple tasks by learning an attention mechanism
over multiple sub-networks, similar to a mixture of expert. However, as all tasks yield experience
for one overarching network, their approach still suffers from interference between tasks. We limit
this interference by completely separating policies. Wang et al. (2020) address the problem of open-
ended learning in RL by iteratively generating new environments. Similar to us, they use policy
rankings as a measure of difference between tasks. However, they use this ranking as a measure of
novelty to find new tasks, addressing a very different problem. Hessel et al. (2019) present PopArt
for multi-task deep RL. They address the issue that different tasks may have significantly different
reward scales. Sharma et al. (2018) look into active learning for multi-task RL on Atari tasks. They
show that uniformly sampling new tasks is suboptimal and propose different sampling techniques.
Yu et al. (2020) propose Gradient Surgery, a way of projecting the gradients from different tasks to
avoid interference. These last three approaches are orthogonal to our work and can be combined
with EM-clustering. We see this as an interesting direction for future work.

Quality-Diversity (QD) algorithms (Pugh et al., 2016; Cully & Demiris, 2018) in genetic algorithms
research aim to find a diverse set of good solutions for a given problem. One proposed benefit of
QD is that it can overcome local optima by using the solutions as ”stepping stones” towards a global
optimum. Relatedly in RL, Eysenbach et al. (2018) and Achiam et al. (2018) also first identify
diverse skills and then use the learned skills to solve a given task. While we do not explicitly
encourage diversity in our approach, our approach is related in that our training leads to multiple
good performing, distinct policies trained on distinct tasks. This can lead to a policy trained on one
task becoming the best on a task that it was not trained on, similar to the ”stepping stones” in QD.
However, in our work this is more a side-effect than the proposed functionality.

3 BACKGROUND AND NOTATION

In RL (Sutton & Barto, 2017) tasks are specified by a Markov Decision Process (MDP), defined
as tuple (S,A, P,R, γ), with state space S, action space A, transition function P (·|s, a), reward
function R(s, a) and decay factor γ. As we are interested in reusing policies for different tasks, we
require a shared state-space S and action-space A across tasks. Note however that this requirement
can be omitted by allowing for task specific layers. Following prior work, we do allow for a task
specific final layer in our Atari experiments to account for the different action spaces. In all other
experiments however, tasks only differ in their transition function and reward function. We therefore
describe a task as τ = (Pτ , Rτ ) and refer to the set of given tasks as T . For each task τ ∈ T we
aim to maximize the discounted return Gτ =

∑t=L
t=0 γ

trτt , where rτt ∼ Rτ (st, at) is the reward at
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time step t and L is the episode length. Given a set of policies {π1, ..., πn}, we denote the return
obtained by policy πi on task τ as Gτ (πi).

4 CLUSTERED MULTI-TASK LEARNING

Algorithm 1: EM-Task-Clustering
Initialize n policies {π1, ..., πn}
while not converged do

. E-Step
Ti ← ∅ for i ∈ {1, . . . , n}
for τ ∈ T do

k ← argmaxiGτ (πi)
Tk ← Tk ∪ τ

Ti ← T where Ti = ∅
. M-Step
for πi ∈ {π1, ..., πn} do

t← 0
while t < TM do

τ ∼ Ti
Train πi on τ for an

episode of L steps
t← t+ L

As the growing body of literature on meta-, transfer- and
multi-task learning suggests, we can expect a gain through
positive transfer if we train a single policy πi on a set of
related tasks Tk ⊂ T . On the flip side, the policy πi might
perform poorly on tasks τ /∈ Tk. Moreover, training pol-
icy πi on a task τ /∈ Tk might even lead to a decrease
in performance on the task set Tk through negative trans-
fer. We incorporate these insights into our algorithm by
modeling the task set T as a union of K disjoint task clus-
ters T1, . . . , TK , i.e., T =

⋃K
k=1 Tk with Ti ∩ Tj = ∅ for

i 6= j. Tasks within a cluster allow for positive transfer
while we do not assume any relationship between tasks of
different clusters. Tasks in different clusters may therefore
even have conflicting objectives. Note that the assignment
of tasks to clusters is not given to us and therefore needs
to be inferred by the algorithm. Note also that this formu-
lation only relies on minimalistic assumptions. That is, we
do not assume a shared transition function or a shared re-
ward structure. Neither do we assume the underlying MDP
to be finite and/or solvable in closed form. Our approach
is therefore applicable to a much broader range of settings
than many sophisticated models with stronger assumptions. As generality is one of our main objec-
tives, we see the minimalistic nature of the model as a strength rather than a weakness.

Given this problem formulation we note that it reflects a clustering problem, in which we have to
assign each task τ ∈ T to one of the clusters Tk, k ∈ {1, . . . ,K}. At the same time, we want
to train a set of policies {π1, ..., πn} to solve the given tasks. Put differently, we wish to infer a
hidden latent variable (cluster assignment of the tasks) while optimizing our model parameters (set
of policies). An Expectation-Maximization (EM) (Dempster et al., 1977) inspired algorithm allows
us to do exactly that. On a high level, in the expectation step (E-step) we assign each of the tasks
τ ∈ T to a policy πi representing cluster Ti. We then train the policies in the maximization step
(M-step) on the tasks they got assigned, specializing the policies to their clusters. These steps are
alternatingly repeated — one benefiting from the improvement of the other in the preceding step —
until convergence. Given this general framework we are left with filling in the details. Specifically,
how to assign tasks to which policies (E-step) and how to allocate training time from policies to
assigned tasks (M-step).

For the assignment in the E-step we want the resulting clusters to represent clusters with positive
transfer. Given that policy πi is trained on a set of tasks Ti in a preceding M-step, we can base our
assignment of tasks to πi on the performance of πi: Tasks on which πi performs well likely benefited
from the preceding training and therefore should be assigned to the cluster of πi. Specifically, we
can evaluate each policy πi ∈ {π1, . . . , πn} on all tasks τ ∈ T to get an estimate ofGτ (πi) and base
the assignment on this performance evaluation. To get to an implementable algorithm we state two
additional desiderata for our assignment: (1) We do not want to constrain cluster sizes in any way as
clusters can be of unknown, non-uniform sizes. (2) We do not want to constrain the diversity of the
tasks. This implies that the assignment has to be independent of the reward scales of the tasks, which
in turn limits us to assignments based on the relative performances of the policies π1, ..., πn. We
found a greedy assignment — assigning each task to the policy that performs best — to work well.
That is, a task τk is assigned to the policy π = argmaxπi Gτk(πi). A soft assignment based on the
full ranking of policies might be worth exploring in future work. Given the greedy assignment, our
method can also be seen as related to k-means (MacQueen, 1967), a special case of EM.

In the M-step, we take advantage of the fact that clusters reflect positive transfer, i.e., training on
some of the assigned tasks should improve performance on the whole cluster. We can therefore
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Figure 2: Left: Mean reward and 95% confidence interval (shaded area) from 10 trials when training
on the chain environment. Right: Task assignment (dots) and task specific reward (color) over the
course of training the two policies in our approach. Each plot shows one of the policies/estimated
clusters. The assignments converge to the natural clustering reflected by the goal location.

randomly sample a task from the assigned tasks and train on it for one episode before sampling
the next task. Overall we train each policy for a fixed number of updates TM in each M-step with
TM independent of the cluster size. This independence allows us to save environment interactions
as larger clusters benefit from positive transfer and do not need training time proportional to the
number of assigned tasks.

Note that the greedy assignment (and more generally any assignment fulfilling desiderata 1 above)
comes with a caveat: Some policies might not be assigned any tasks. In this case we sample the tasks
to train these policies from all tasks τ ∈ T , which can be seen as a random exploration of possible
task clusters. This also ensures that, early on in training, every policy gets a similar amount of initial
experience. For reference, we provide a simplified pseudo code of our approach in Algorithm 1.
Note that we start by performing an E-Step, i.e., the first assignment to clusters is based on the
performance of the randomly initialized policies. Note also that our approach is independent of
the RL algorithm used to train the policies in the M-step and can therefore be combined with any
state-of-the-art RL algorithm.

5 EXPERIMENTS

As a proof of concept we start the evaluation of our approach on two discrete tasks. The first
environment consists of a chain of discrete states in which the agent can either move to the left or
to the right. The goal of the agent is placed either on the left end or the right end of the chain. This
gives rise to two task clusters, where tasks within a cluster differ in the frequency with which the
agent is rewarded on its way to the goal. The second environment reflects the 2-dimensional grid-
world presented in Figure 1. Actions correspond to the cardinal directions in which the agent can
move and the 12 tasks in the task set T are defined by their respective goal. We refer an interested
reader to Appendix A.1 for a detailed description of the environments.1

We train policies with tabular Q-learning (Watkins, 1989) and compare our approach to two base-
lines: In the first we train a single policy on all tasks. We refer to this as SP (Single Policy). In the
other we train a separate policy per task and evaluate each policy on the task it was trained on. This is
referred to as PPT (Policy per Task). Our approach is referred to as EM (Expectation-Maximization).

The learning curves as well as the task assignment over the course of training are shown in Figure 2
and Figure 3. Looking at the assignments, we see that in both environments our approach converges
to the natural clustering, leading to a higher reward after finding these assignments. Both our EM-
approach and PPT converge to an optimal reward in the chain environment, and a close to optimal
reward in the corner-grid-world. However, PPT requires a significantly higher amount of environ-
ment steps to reach this performance, as it does not share information between tasks and therefore

1The implementation of all our experiments is also available in the supplementary material
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Figure 3: Left: Mean reward and 95% confidence interval (shaded area) from 10 trials when training
on the grid-world environment depicted in Figure 1. Right: Task assignment (dots) and task specific
reward (color) over the course of training for the n = 4 policies (estimated clusters) in our approach.
The assignment naturally clusters the tasks of each corner together.
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Figure 4: Left: Mean reward and 95% confidence interval (shaded area) from 10 trials when training
on the pendulum environment. The curves are smoothed by a rolling average to dampen the noise
of the random starting positions. For (Yu et al., 2020) we used 12 trials out of which 3 failed to
converge and were excluded. Right: Task assignment (dots) and task specific reward (color) from a
sample run. Two policies focus on long and short, while the others focus on medium lengths.

has to do exploration for each task separately. SP fails to achieve a high reward due to the different
tasks providing contradicting objectives.

5.1 PENDULUM

Next we consider a simple continuous control environment where tasks differ in their dynamics.
We use the pendulum gym task (Brockman et al., 2016), in which a torque has to be applied to a
pendulum to keep it upright. Here the environment is the same in all tasks, except for the length of
the pendulum, which is varied in the range {0.7, 0.8, ..., 1.3}, giving a total of 7 tasks. Note that
there is no clear cluster boundary here.

We use Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) with hy-
perparameters optimized as discussed in Appendix A.2. We use n = 4 policies in all experiments
(except for the ablation studies) and did not tune this hyperparameter. This was done to give a fair
comparison to baseline approaches which do not have this extra degree of freedom. For application
purposes the number of clusters can be treated as a hyperparameter and included in the hyperparam-
eter optimization. We compare against a SP, PPT, gradient surgery Yu et al. (2020) and a multi-head
network structure similar to the approach used by Eramo et al. (2020). Each policy in our approach
uses a separate replay buffer. The multi-head network has a separate replay-buffer and a separate
input and output layer per task. We adjust the network size of the multi-head baseline and SP to
avoid an advantage of our method due to a higher parameter count, see Appendix A.2 for details.
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Figure 5: Evaluation of the BipedalWalker experiments. The shaded areas show the 95% confidence
interval on the mean task reward. Left: Track and field task set; 6 tasks with varying objectives.
Results reflect 20 trials of each approach. Right: Task set with varying leg lengths and obstacles; 9
tasks with the same reward function. Results reflect 10 trials of each approach.

The results are shown in Figure 4. In the figure we excluded 3 from the 12 runs of the gradient
surgery baseline as those did not converge to a performance better than random. Still, the results
show a worse sample complexity and higher variance compared to our approach. We also again
observe that our approach clusters similar tasks together, leading to a better performance than with a
SP agent, and a faster convergence than with PPT. Also the multi-head approach needs more experi-
ence to converge than our approach in this setup, even more than the PPT approach. We believe this
is due to the inherent interference of learning signals in the shared layers. The cluster assignment in
our approach is also intuitive, with two clusters focusing on the extremes (cf. Figure 4).

5.2 BIPEDAL WALKER

As a more complex continuous control environment we focus on BipedalWalker from the OpenAI
Gym (Brockman et al., 2016), which has previously been used in multi-task and generalization
literature (Portelas et al., 2019; Wang et al., 2019; 2020). It consists of a bipedal robot in a two-
dimensional world, where the default task is to move to the right with a high velocity. The action
space consists of continuous torques for the hip and knee joints of the legs and the state space consists
of joint angles and velocities, as well as hull angle and velocity and 10 lidar distance measurements.

To test our approach, we designed 6 tasks inspired by track and field sports: Jumping up at the
starting position, jumping forward as far as possible, a short, medium and long run and a hurdle run.
As a second experiment, we create a set of 9 tasks by varying the leg length of the robot as well as
the number of obstacles in its way. This task set is inspired by task sets in previous work (Portelas
et al., 2019). Note that we keep the objective — move forward as fast as possible — constant here.
We again use TD3 and tune the hyperparameters of the multi-head baseline and our approach (with
n = 4 fixed) with grid-search. Experiment details and hyperparameters are given in Appendix A.3.

The results in Figure 5 (left) on the track and field tasks show a significant advantage in using our
approach over multi-head TD3 or SP and a slightly better initial performance than PPT, with similar
final performance. SP fails to learn a successful policy altogether due to the conflicting reward
functions. In contrast, the results in Figure 5 (right) from the second task set show that SP can
learn a policy that is close to optimal on all tasks here. The multi-head and PPT approaches suffer
in this setup as each head/policy only gets the experience from its task and therefore needs more
time to converge. Our approach can take advantage of the similarity of the tasks. We note that the
experiments presented here reflect two distinct cases: One in which it is advantageous to separate
learning, reflected by PPT outperforming SP, and one where it is better to share experience between
tasks, reflected by SP outperforming PPT. Our approach demonstrates general applicability as it is
the only one performing competitively in both. We provide an insight into the assignment of tasks
to policies in Appendix B.1.

5.3 ATARI

To test the performance of our approach on a more diverse set of tasks, we evaluate on a subset of the
Arcade Learning Environment (ALE) tasks (Machado et al., 2018). Our choice of tasks is similar to
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Figure 6: The results of our experiments on a subset of the Atari Learning Environment games. The
reward is averaged across 3 trials and the shaded region shows the standard deviation of the mean.

those used by Riemer et al. (2018), but we exclude tasks containing significant partial-observability.
This is done to reduce the computational burden as those tasks usually require significantly more
training data. We built our approach on top of the Implicit Quantile Network (IQN) implementation
in the Dopamine framework (Dabney et al., 2018; Castro et al., 2018). We chose IQN due to its
sample efficiency and the availability of an easily modifiable implementation. As the different ALE
games have different discrete action spaces, we use a separate final layer and a separate replay buffer
for each game in all approaches. We use the hyperparameters recommended by Castro et al. (2018),
except for a smaller replay buffer size to reduce memory requirements. As in the Bipedal Walker
experiments we fix the number of policies in our approach without tuning to n = 4. We choose the
size of the network such that each approach has the same number of total tunable parameters. We
provide the details in Appendix A.4.

The results are given in Figure 6. The good performance of PPT shows that the diversity of this task
set is best addressed with a policy per task. Note that we did not expect our approach to outperform
PPT here as our approach can only outperform PPT if there are similar tasks that can be clustered
together. The diverse set of Atari games seems to violate this assumption. We note also that the
multi-head approach is unable to learn any useful policy here due to negative transfer between tasks.
This is in line with experiments in other research (Hessel et al., 2019). Our approach manages to
overcome most of this negative interference, even with just 4 clusters. Task assignments in our
approach are given in Appendix B.2.

5.4 ABLATIONS

To gain additional insight into our approach, we perform two ablation studies on the discrete corner-
grid-world environment and the pendulum environment.

First, we investigate the performance of our approach for different numbers of policies n. The results
in Figure 7 show that using too few policies can lead to a worse performance, as the clusters cannot
distinguish the contradicting objectives. On the other hand, using more policies than necessary
increases the number of environment interactions required to achieve a good performance in the
pendulum task, but does not significantly affect the final performance.

As a second ablation, we are interested in the effectiveness of the clustering. It might be possible
that simply having fewer tasks per policy is giving our approach an advantage compared to SP or
multi-head TD3. We therefore provide an ablation in which task-policy assignments are determined
randomly at the start and kept constant during the training. Results from this experiment can be
seen in Figure 8, with additional results in Appendix C. The results show that using random clusters
performs significantly worse than using the learned clusters. This highlights the importance of
clustering tasks meaningfully.
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Figure 7: Ablations for different number of policies n. Shaded areas show the 95% confidence
interval of the mean reward from 10 trials each. Left: Corner-grid-world tasks. Right: Pendulum
tasks, learning curves smoothed.
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Figure 8: Comparison of our approach against randomly assigning tasks to policies at the start of
training. Shaded areas show the 95% confidence interval of the mean reward. Left: Corner-grid-
world tasks, 10 trials each. Right: Pendulum tasks, 10 trials each, learning curves smoothed.

6 CONCLUSION

We present an approach for multi-task learning in reinforcement learning (RL) that automatically
clusters tasks into related subsets. Our approach uses a set of policies and alternatingly evaluates
the policies on all tasks, assigning each task to the best policy and then trains policies on their
assigned tasks. Since our approach can be combined with any underlying RL method, we evaluate
it on a varied set of environments. We show its performance on sets of simple discrete tasks, simple
continuous control tasks, two complex continuous control task sets and a set of Arcade Learning
Environment tasks. We show that our approach is able to identify clusters of related tasks and use
this structure to achieve a competitive or superior performance. We further provide an ablation
over the number of policies in our approach, showing that too many policies can lead to slower
convergence while too few policies can hurt performance. In another ablation we also highlight the
need to cluster tasks meaningfully.

Our approach offers many possibilities for future extensions. One interesting direction would be
hierarchical clustering. This could prove helpful for complicated tasks like the Atari games. It would
also be interesting to see how our approach can be applied to multi-task learning in a supervised
setting. Further, different assignment strategies with soft assignments could be investigated. Overall,
we see our work as a good stepping stone for future work on structured multi-task learning.
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APPENDIX

A EXPERIMENT DETAILS

In addition to the details provided here, the implementation of all experiments can be found in the
supplementary material.

A.1 GRID WORLD EXPERIMENTS

In the first discrete task set we use a one-dimensional state-chain with 51 states, in which the agent
starts in the middle and receives a reward for moving toward either the left or right end. As a reward
we use r = 1

|xag−xgoal| where xag is the position of the agent and xgoal is the goal position (either the
left or right end of the chain). We give a reward of r = 20 if the goal position is reached. Depending
on the task, the reward is given every 2, 4, 8 or 16 steps, or only at the goal position, and otherwise
replaced by r = 0.

For our corner grid-world task set we use a 2D-grid-world with edge length 7 and three goal positions
per corner (as depicted in Figure 1). The agent always starts in the center and receives a reward based
on the distance to the target r = 1

||xag−xgoal||2 , with || · ||2 being the Euclidean norm. A reward of
r = 10 is given when the agent reaches the goal position.

In both tasks we use tabular Q-Learning with ε-greedy exploration. We start with ε0 = 0.2 and
decay the value as εt = ε

γtε
0 with γε = 1 − 1 × 10−6. We use a learning rate of α = 0.2 to update

the value estimates, as from the perspective of a single agent the environment can be regarded as
stochastic. Further, we use a discount factor of γ = 0.9 and TM = 500 training steps per policy in
each M-step and evaluate each policy on each task for three episodes during the E-step, using the
greedy policy without exploration.

A.2 PENDULUM

In our pendulum tasks we use a modified version of the Pendulum environment provided in OpenAI
gym (Brockman et al., 2016). This environment consists of a single pendulum and the goal is to
balance it in an upright position. The observation consists of the current angle θ, measured from
the upright position, and current angular velocity represented as (sin θ, cos θ, θ̇). The reward for
each time step is rt = −(θ2 + 0.1θ̇2 + 0.001a2), with a being the torque used as action. Every
episode starts with a random position and velocity. To provide a set of tasks we vary the length of
the pendulum in {0.7, 0.8, ..., 1.3}.

A.2.1 HYPERPARAMETERS

Hyperparameters for our EM-TD3 and multi-head TD3 were tuned on the pendulum task set by grid
search over learning rate α = {1×10−2, 3×10−3, 1×10−3}, batch-size b = {64, 128} and update-
rate u = {1, 3, 5}, specifying the number of collected time-steps after which the value-function is
updated. We increased the network size for multi-head TD3, so that it overall had more parameters
than EM-TD3. This is done to eliminate a potential advantage of our approach stemming from a
higher representational capacity. The tuned hyperparameters are given in Table 1. To represent
the value functions and policies we use fully connected multi-layer perceptrons (MLPs) with two
hidden layers with 64 units each. As activations we use ReLU on all intermediate layers, and tanh
activations on the output. The values are then scaled to the torque limits per dimension. In EM, SP
and PPT we use a separate network for each policy. For our multi-head baseline we share the hidden
layers between tasks, but use separate input and output layers per task. Additionally, we increase the
size of the first hidden layer to 96 in the multi-head approach, such that it has a similar total number
of parameters as our EM approach. For SP and PPT we reuse the hyper-parameters from our EM
approach. During the M-step, we train the agent for 5 × 104 steps per policy and during the E-step
we evaluate each agent on each task by running 20 episodes without added exploration noise.
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Table 1: Hyperparamters for pendulum experiments.

Hyperparameter EM-TD3 Multi-head TD3
learning-rate α 3× 10−3 3× 10−3

batch-size b 128 128
update-rate u 1 1
policy-update-frequency 3 3
n - EM 4 -
network size 4 · (64, 64, 1) (9 · 96, 64, 9 · 1)
exploration noise σ 0.05 0.05
exploration noise clipping [−0.5, 0.5] [−0.5, 0.5]
target policy smoothing noise σ 0.1 0.1
buffer-size 2e6 per policy 2e6 per task
decay γ 0.99 0.99
TM 5× 104 -

A.3 BIPEDALWALKER

For the BipedalWalker tasks we look at two different sets of tasks. The first set of tasks consists of
different reward functions with mostly similar environments, inspired by track and field events. The
tasks are jumping up, jumping a long distance, runs for different distances and a run with obstacles.
In all tasks a reward of −ε||a||1 is given to minimize the used energy. The position of the hull of the
bipedal walker is denoted as (x, y). In the jump up task a reward of y − |x| is given upon landing,
and ε = 3.5× 10−4. For the long jump task a reward of x−x0 is given upon landing, with x0 being
the hull position during the last ground contact, ε = 3.5 × 10−4. The three runs consist of a sprint
over a length of 67 units, with ε = 3.5×10−4, a run over 100 units, with ε = 3.5×10−4, and a long
run over 200 units with ε = 6.5 × 10−4. The hurdles task is identical to the long run, but every 4
units there is an obstacle with a height of 1. Additionally, a reward of 0.1ẋ — a reward proportional
to the velocity of the agent in the x-direction — is given during the run and hurdle tasks, to reward
movement to the right.

The second set of tasks consists of varying obstacles and robot parameters. We vary the length
of the legs in {25, 35, 45} and either use no obstacles, or obstacles with a spacing of 2 or 4 units
apart and height of 1. This results in a total of 9 tasks. Here we use the standard reward for the
BipedalWalker task r = 4.3ẋ−5|θ|− ||a||1 with θ being the angle of the walker head. Additionally,
in all experiments r = −100 is given if the robot falls over or moves to far to the left.

A.3.1 HYPERPARAMETERS

Hyperparameters for our EM-TD3 and multi-head TD3 approaches were tuned on the track and field
task set by grid search over α = {1× 10−3, 3× 10−4, 1× 10−4}, batch-size b = {100, 1000} and
update-rate u = {1, 3, 5}, u specifying the number of collected time-steps after which the value-
function is updated. We reuse the optimal parameters found here on the task set with varying leg
lengths and obstacles. For the SP and PPT baselines we reused the parameters from EM-TD3. We
increased the network size for multi-head TD3, so that it overall had more parameters than EM-TD3.
All hyperparameters are given in Table 2. During the M-step, we train the EM agent with 2 × 105

steps per policy and during the E-step we evaluate each agent on each task by running 20 episodes
without added exploration noise.

A.4 ATARI

To test our approach on a more complex task, we evaluate it on a subset of the Atari games. The set
of chosen games consists of Alien, Assault, BankHeist, ChopperCommand, DemonAttack, James-
Bond, MsPacman, Phoenix, RiverRaid, SpaceInvaders, WizardOfWor and Zaxxon. As stated above,
this task set is similar to the set of games used in Riemer et al. (2018), but without tasks requiring a
large amount of exploration to save computation time.
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Table 2: Hyperparameters for BipedalWalker experiments.

Hyperparameter EM-TD3 Multi-head TD3
learning-rate 1× 10−3 1× 10−3

batch-size 1000 1000
update-rate 3 5
policy-update-frequency 3 3
n - EM 4 -
network size 4 · (400, 300, 1) (6 · 400, 400, 6 · 1)
exploration noise σ 0.1 0.1
exploration noise clipping [−0.5, 0.5] [−0.5, 0.5]
target policy smoothing noise σ 0.2 0.2
buffer-size 5e6 per policy 5e6 per task
decay γ 0.99 0.99
TM 2× 105 -

Our implementation is based on the IQN implementation in the Dopamine framework (Dabney
et al., 2018; Castro et al., 2018). As hyperparameters we use the default values recommended by
Dopamine for Atari games, except the changes listed below: Due to the different action spaces, we
use a separate replay buffer for each game, as well as a separate output layer, both for our EM, multi-
head and PPT approaches. We reduce the size of the replay buffer to 3 × 105 compared to 1 × 106

in the original paper, to reduce the memory demand. We use the normal NatureDQN network, but
scale the size of the layers to ensure that each approach has a similar number of parameters. For
our EM approach, we use TM = 2.5 × 105 trainings steps per M-step, and evaluate all policies
on all tasks for 27000 steps in the E-step, using the greedy policy without random exploration. In
both EM and the multi-head approach, we record how many transitions were performed in each
M-Step and sample the task with the least transitions as next training task. This is done to ensure
a similar amount of transitions and training steps per game, as episode lengths vary. This approach
was proposed in Riemer et al. (2018).

B ADDITIONAL RESULTS

B.1 BIPEDAL WALKER

In Figure 9 the assignments for 4 randomly chosen trials on the track and field task set are shown.
We can see that in all trials the runs over different distances are grouped together with the long jump
task. This is likely due to these tasks aligning well, as they both favor movements to the right. It
is possible to learn the hurdles task with the same policy as the runs, due to the available LIDAR
inputs. The hurdle task therefore sometimes switches between policies, but usually is learned by a
separate policy. The jump up task is very different from the other tasks, as it is the only one not to
involve movement to the right, and is therefore assigned to a separate policy.

In Figure 10 the assignments for 4 randomly chosen trials on the leg-length and obstacle task set are
shown. As illustrated by the good performance of the SP approach shown in Figure 5, it is possible
to learn a nearly optimal behavior with a single policy here. This makes learning a meaningful
clustering significantly harder and sometimes leads to a single policy becoming close to optimal on
all tasks, as in Trial 2. In most other trials the task set is separated into two or three different clusters
based on the different leg lengths.

B.2 ATARI

In Figure 11 the assignments of all three trials of our approach on the Atari task set are shown.
While we see a consistency in assignments, we cannot identify a clearly repeated clustering across
trial. We assume this is due to the high diversity of tasks preventing the identification of clearly
distinguishable clusters. This lack of clearly distinguishable clusters might also be the reason for
failing to reach the performance of PPT. Yet, the specialization of policies in our approach helps to
avoid negative transfer as seen in Figure 6.
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Figure 9: Shown are the assignments from 4 randomly picked trials on the track and field Bipedal-
Walker task set.
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Figure 10: Shown are the assignments from 4 randomly picked trials on the first BipedalWalker task
set. l refers to the lenghts of the legs, o refers to the frequency of obstacles.
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Figure 11: Shown are the assignments of all three trial that were run on the set of Atari games. The
color represents the human-normalized score per game.
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Figure 12: Show is the difference between using random assignments or our EM approach for
different numbers of policies. On the left the development during training is shown, on the right the
average performance gap over the last 10% of the training is visualised.

C PERFORMANCE GAP TO RANDOM CLUSTERS

In Figure 8 we investigated the importance of the E-Step in our approach, by comparing to an
ablation which randomly assigns tasks to policies at the start. These results showed that using
random assignments performs worse, highlighting the importance of using related clusters of tasks.
Here we will investigate how the difference between the return when using our EM method GEM or
random assignments Grand changes depending on the number of tasks. When using a single policy
or a policy for each task our method becomes identical to the baselines. We hypothesize that the
difference should be maximal when using as many policies as there are true underlying clusters in
the task set.

To test this hypothesis we perform experiments on our grid-world task set with 12 goals distributed
to the four corners and show the return gap GEM − Grand in Figure 12. The experiments confirm
our hypothesis, showing that the return gap increases with the number of policies before reaching a
maximum when it matches the true clusters at n = 4. Afterwards it starts to decrease.
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