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Abstract
We study counterfactual identifiability in causal
models with bijective generation mechanisms
(BGM), a class that generalizes several widely-
used causal models in the literature. We establish
their counterfactual identifiability for three com-
mon causal structures with unobserved confound-
ing, and propose a practical learning method that
casts learning a BGM as structured generative
modeling. Learned BGMs enable efficient coun-
terfactual estimation and can be obtained using
a variety of deep conditional generative models.
We evaluate our techniques in a visual task and
demonstrate its application in a real-world video
streaming simulation task.

1. Introduction
Had Cleopatra’s nose been shorter, the whole face of
the world would have changed.2 (Blaise Pascal, 1669)

The ladder of causation presented by Pearl (2018) con-
sists of three distinct layers encoding different types of
concepts: associational (L1), interventional (L2), and coun-
terfactual (L3), roughly corresponding to seeing, doing, and
imagining, respectively. L1 deals with passively observed
factual information, for instance, the probability of recovery
in patients who take Aspirin. L2 deals with active interven-
tions or the effect of actions, for example, what percentage
of patients would recover if we give them Aspirin? L3 deals
with alternative ways the world could have been including
ways that might conflict with how the world currently is,
e.g., if the patient took Aspirin and was cured, would the
headache still be gone had they not taken Aspirin? The three
levels are distinct in the sense that it is generally not possible
to uniquely answer higher level queries from lower level in-
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2Taken from Pearl & Mackenzie (2018, Ch. 8)

formation (Bareinboim et al., 2022, Thm. 27). In particular,
although we can determine L2 information by conducting
experiments and actively intervening in the world, we can-
not answer L3 questions in general, even with experiments.
In other words, they may be non-identifiable (Ibeling &
Icard, 2020), or underspecified (D’Amour et al., 2020).

Nevertheless, counterfactual queries of the form “why–?”
and “what if–?” are useful in defining fundamental concepts
such as harm (Richens et al., 2022), fairness (Kusner et al.,
2017; Zhang & Bareinboim, 2018), credit (Mesnard et al.,
2021), regret, and blame. They also have applications in
engineering, e.g., root cause analysis (Gan et al., 2022; Bud-
hathoki et al., 2022), trace-driven simulation (Alomar et al.,
2023; Bothra et al., 2022), and sample efficient reinforce-
ment learning (Lu et al., 2020; Agarwal et al., 2021).

In this paper, we introduce a new class of causal models
called Bijective Generation Mechanisms (BGM). BGMs sub-
sume several model classes studied in the literature, e.g.,
Nonlinear Additive Noise Models (ANM) (Hoyer et al.,
2008), Location Scale Noise Models (LSNM) (Immer et al.,
2022), and post-nonlinear causal models (PNL) (Zhang &
Hyvärinen, 2009) (§4). We establish counterfactual identifi-
ability of BGMs for three meaningful causal structures (§5),
assuming a coarse knowledge of the underlying system in
the form of a causal diagram.

Our identifiability results specify tractable criteria for find-
ing the underlying BGM (up to equivalence, see Defini-
tion 6.1), enabling counterfactual estimation. We cast
the search for a BGM that satisfies the specified criteria
as density estimation with structured generative networks
(§6), which has been widely studied in the learning liter-
ature (Kingma & Welling, 2013; Goodfellow et al., 2014;
Dinh et al., 2016; Arjovsky et al., 2017; Song & Ermon,
2019; Ho et al., 2020).

Once the underlying BGM is learned, we use it for efficient
counterfactual estimation with guarantees (§7). This is in
contrast to symbolic counterfactual identification methods
(Shpitser & Pearl, 2007; Correa et al., 2021) which express
identifiable counterfactual queries in terms of interventional
and observational distributions, statements that may not be
computationally tractable. Furthermore, our work advances
the growing literature on applying machine learning meth-
ods for counterfactual estimation. Unlike most prior work in

1



Counterfactual Identifiability of Bijective Causal Models

this space that foregoes identifiability analysis (Pawlowski
et al., 2020; Sanchez & Tsaftaris, 2021), except in certain
restricted settings (e.g., discrete domains (Shalit et al., 2017;
Oberst & Sontag, 2019) or absence of unobserved con-
founders (Khemakhem et al., 2021; Sanchez-Martin et al.,
2021)), our results support continuous variables, allow un-
observed confounders, and extend to a more general class
of generation mechanisms.

We validate our techniques using a visual task (§8.1)
and demonstrate their application to a real-world sys-
tem simulation task (§8.2). Our code is available in
github.com/counterfactual-BGM/cf2. This work does not
raise any negative societal impacts.

2. Preliminaries
We provide a brief background on the (mostly) causal con-
cepts that we use in this work. Refer to Pearl (2009a), Pearl
(2009b), and Peters et al. (2017) for more details.

Notation: We refer to a random variable with a capital
letter, e.g., X , the value it obtains with a lowercase letter,
e.g., x, its Probability Density Function (PDF) with PX ,
and a set of random variables with boldface font, e.g., X =
{X1, . . . , Xn}. Jf(·) denotes the Jacobian of f(·).

SCM and Causal Diagram: We use the framework of
Structural Causal Models (SCMs) (Pearl, 2009a, Ch. 7). An
SCMM consists of endogenous variables V determined
by other variables in the model, exogenous (also called la-
tent or background) variables U with distribution PU (·)
determined by factors outside the model (one exogenous
variable corresponding to each endogenous variable), and
generation mechanisms F . F contains a function fi for
each variable Vi that maps endogenous parents Pa(Vi) and
exogenous variable Ui to Vi. The entire F defines a struc-
tured mapping from U to V . The prior distribution over
exogenous variables, PU (·), together with the generation
mechanisms (F) entail an observational (L1) distribution
over endogenous variables which we refer to as PM

V (·).
EachM induces a causal diagram G, where every Vi ∈ V
is a vertex, there is a directed arrow (Vj → Vi) for every
Vi ∈ V and Vj ∈ Pa(Vi), and there is a dashed-bidirected
arrow (Vj L9999K Vi) for every Vi, Vj ∈ V such that Ui

and Uj are not independent. The bidirected arrows represent
existence of unobserved confounders. A causal model satis-
fies the Markovian assumption if for every Vi, Vj ∈ V , the
corresponding Ui and Uj are independent. In other words,
no bidirected arrow exists in its induced causal diagram (G).

Interventions and the do-Operator: Given an SCMM,
and a set of endogenous variables X ⊆ V , an interven-
tion do(X := x) corresponds to replacing the generation
mechanisms F with Fx = {fi : Vi /∈ X} ∪ {X := x}.
In words, Fx is formed by deleting from F all functions

fi corresponding to members of set X and replacing them
with the set of constant functions {X := x}. We refer to the
altered SCM byMx, and the interventional (L2) distribu-
tion of endogenous variables by PMx

V (·) or in short PV x(·).
The interventional (or experimental) distribution helps us
analyze the effect of taking actions, i.e., what would happen
if we apply an intervention?

Counterfactuals: Given an SCMM, two sets of endoge-
nous variables X,E ⊆ V , observed realizations e (evi-
dence) for E, and an intervention do(X := x), the coun-
terfactual (L3) distribution PMx

V (·|E = e) or in short
PV x(·|E = e) corresponds to the distribution entailed by
Mx using the posterior distribution PU |E(·|e) over the ex-
ogenous variables. In case of deterministic counterfactuals
(δ-distribution), we refer to them as V x|E = e. Pearl
(2009a, Ch. 7) proposes the following three-step procedure
for counterfactual estimation. i) Abduction: Update PU

with e to obtain PU |E . ii) Action: Update the SCM M
to Mx. iii) Prediction: Use the updated distribution of
exogenous variables and the updated SCM to estimate the
counterfacual distribution. For generalizations of this defi-
nition, e.g., to nested counterfactuals, refer to Correa et al.
(2021). Counterfactual distributions allow us to imagine
hypothetical worlds where everything is fixed other than
interventions.

Identifiability: Evaluating causal queries given a partial
state of knowledge is a subtle problem. An Li query is
identifiable using Lj information if its answer can be ex-
pressed purely based on Lj distributions (i, j ∈ {1, 2, 3}).
Formally, let Q(M) be an Li query of an SCMM. In a
class M of SCMs, Q is identifiable if for any pair of SCMs
M1 andM2 from M, Q(M1) = Q(M2) wheneverM1

andM2 match in all Lj queries (Pearl, 2009a, def. 3.2.3).
This is always true if 1 ≤ i ≤ j ≤ 3. Characterizing condi-
tions where this holds for 1 ≤ j < i ≤ 3 has been subject
to extensive research efforts (Spirtes et al., 2001).

3. Related Work
Interventional (L2) Identification and Estimation: As-
suming a coarse knowledge of the underlying system in
the form of a causal DAG, identification of interventional
queries has been extensively studied in the literature (Pearl,
2009a, Ch. 3), including do-calculus (Pearl, 1995a) as a gen-
eral solution. In cases where the full causal diagram is not
accessible, another line of work focuses on its (partial) iden-
tification using observational data. Although this sounds
compelling and amenable to data-driven and ML research
practices, it is known that the causal diagram can be identi-
fied from observational data only up to its Markovian equiva-
lence class (Spirtes et al., 2001). Investigating identifiability
using only equivalence classes has thus received research
attention (Zhang, 2008; Perković et al., 2018; Jaber et al.,
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2019). Witty et al. (2021) investigates a simulation-based no-
tion of identifiability with probabilistic programs (Goodman
et al., 2008), using priors over parametric representations
of SCMs. Once identifability of the interventional query
is established, various methods exist for estimation of the
causal effect, including Propensity Score for the backdoor
case (Rubin, 1978; Kennedy, 2019), and other statistical
methods for more relaxed settings (Fulcher et al., 2020;
Jung et al., 2020). In cases where the interventional query
is non-identifiable, partial identification methods estimate
meaningful bounds (Manski, 1990; Balke & Pearl, 1997;
Zhang & Bareinboim, 2021; Li & Pearl, 2022a)

Counterfactual (L3) Identification: Using the counterfac-
tual graph, Shpitser & Pearl (2007) proposes an algorithm
that determines identifiability of counterfactual queries from
interventional data. This was extended in Correa et al.
(2021) by providing sufficient and necessary graphical con-
ditions for identification of (nested) counterfactuals from a
collection of observational and interventional distributions,
given the causal diagram. In identifiable cases, these algo-
rithms express the counterfactual query as a combination
of observational and interventional quantities. However,
estimating this expression may not be tractable. Shah et al.
(2022) proves identifiability of counterfactuals for a specific
causal diagram and provides an algorithm for their tractable
estimation, assuming the joint distribution of exogenous and
endogenous variables is an exponential family. In contrast,
we do not restrict the joint distribution of variables.

Similar to the interventional case, partial identification meth-
ods have been proposed for non-identifiable counterfactual
queries (Balke & Pearl, 1994; Tian & Pearl, 2000; Finkel-
stein & Shpitser, 2020; Zhang et al., 2022; Gresele et al.,
2022). Furthermore, identification of specific counterfactual
queries has been studied in isolation, e.g., the effect of treat-
ment on the treated (Shpitser & Pearl, 2009), path-specific
effects (Shpitser & Sherman, 2018; Zhang & Bareinboim,
2018), and probabilities of causation (Pearl, 1999).

Neural Methods for Causal Estimation3: There is a grow-
ing literature on applying neural methods for efficient es-
timation of causal queries. An extensive line of work fo-
cuses on estimating interventional (L2) queries including
Kocaoglu et al. (2018); Xia et al. (2021); Zečević et al.
(2021), to name a few. However, we focus on estimating
counterfactuals (L3).

On the counterfactual side, a line of work uses ML tech-
niques for estimation without any guarantees about the
identifiability of the counterfactual query (Pawlowski et al.,
2020; Khemakhem et al., 2021; Sanchez-Martin et al., 2021;
Sanchez & Tsaftaris, 2021; Geffner et al., 2022). In con-
trast, we prove identifiability for several causal structures in

3Appendix A provides a more detailed survey.

§5. Furthermore, most existing techniques make restrictive
assumptions about the causal structure or generation mech-
anisms. For example, Johansson et al. (2016); Shalit et al.
(2017); Yao et al. (2018); Oberst & Sontag (2019); Lorber-
bom et al. (2021); Xia et al. (2022) consider counterfactual
estimation in domains with discrete (finite-valued) endoge-
nous variables. Several others works assume a Markovian
causal structure (Pawlowski et al., 2020; Khemakhem et al.,
2021; Sanchez-Martin et al., 2021; Geffner et al., 2022), i.e.,
the absence of unobserved confounders (bidirected edges
in the causal diagram). Hartford et al. (2017); Khemakhem
et al. (2021); Geffner et al. (2022) restrict the class of gen-
eration mechanisms to Nonlinear Additive Noise Models
(ANM) (Hoyer et al., 2008) or Location Scale Noise Models
(LSNM) (Strobl & Lasko, 2022). The models we consider
are more general than these prior papers. They support
continuous endogenous variables, allow unobserved con-
founders, and bijective generation mechanisms that include
nonlinear ANM, LSNM, and post-nonlinear causal model
(PNL) (Zhang & Hyvärinen, 2009) as special cases.

Disentanglement: Independent Component Analysis
(ICA) (Hyvärinen & Oja, 2000) concerns the problem
of recovering statistically independent source signals
S = (S1, . . . , Sn) from their observed mixtures X =
(X1, . . . , Xn), where X = f(S), and the unknown f (mix-
ing function) is assumed to be invertible. Unlike linear
mixing functions that make this problem identifiable with
certain conditions, it is known to be non-identifiable for non-
linear mixing functions (Hyvärinen & Pajunen, 1999). Re-
cently, Hyvarinen et al. (2019) proved identifiability in the
presence of auxiliary variables, which make the sources con-
ditionally independent. This has been exploited for disentan-
gling semantically meaningful features of high-dimensional
data (Locatello et al., 2019; Khemakhem et al., 2020).

We took inspiration from the non-linear ICA framework, es-
pecially for our development in §5.3. However, the problem
we consider is fundamentally different: We are interested in
disentangling the total contribution of the unknown sources
of variation from known attributes, as opposed to disentan-
gling the effect of individual unknown sources. A recent
work (Shaham et al., 2022) considers disentangling latent
variables from observed attributes, and proves that the re-
constructed sources Ŝ have the same entropy as the true
sources, in distribution. However, we are interested in point-
wise guarantees, i.e., ŝ = g(s) for some invertible function
g(·), which are stronger than the distributional properties
likeH(Ŝ) = H(S).

4. Problem Formulation
We assume knowledge of the causal diagram G that might
include unobserved confounders (no Markovianity assump-
tion), and access to observational (L1) data distribution. We
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(a) Non-Markovian (b) Markovian

Figure 1. Causal diagram G’s sub-graph related to generation of V

are interested in learning the data generation mechanisms
F , which can be further used for counterfactual (L3) es-
timation. As demonstrated by Pearl’s Causal Hierarchy
Theorem (Bareinboim et al., 2022, Thm. 27), cross-layer
inference is not possible in general settings, and we need to
make further assumptions.

Bijective Generation Mechanism (BGM): As mentioned
in §2, each endogenous variable Vi is generated in the fol-
lowing way in the SCM framework:

Vi := fi

(
Pa(Vi), Ui

)
(1)

We assume that the function fi is a bijective mapping from
Ui to Vi, for each realization of Pa(Vi), hence the name
Bijective Generation Mechanism (BGM). In other words,
no information is lost in transformation from exogenous
to endogenous variables. We refer to the inverse of the
generation mechanism as f−1

i (Pa, ·), i.e.,

Ui = f−1
i

(
Pa(Vi), Vi

)
. (2)

Note that the nonlinear ANM (Peters et al., 2014),
LSNM (Immer et al., 2022), and PNL (Zhang & Hyvärinen,
2009) models from prior work are all special cases of BGMs.
Specifically, the nonlinear ANM model,

fi

(
Pa(Vi), Ui

)
= gi

(
Pa(Vi)

)
+ Ui (3)

LSNM (Immer et al., 2022) model,

fi

(
Pa(Vi), Ui

)
= l

(
Pa(Vi)

)
+ s

(
Pa(Vi)

)
Ui (4)

with s a strictly positive function on R, and PNL causal
models (Zhang & Hyvärinen, 2009),

fi

(
Pa(Vi), Ui

)
= hi

(
gi

(
Pa(Vi)

)
+ Ui

)
(5)

with hi an invertible function, are all bijective given Pa(Vi).

5. Identifiability
Without loss of generality, we focus on identifying the gen-
eration mechanism fi of a particular endogenous node Vi

shown in Equation (1). For ease of exposition, we drop

(a) Instrumental Variable (b) Backdoor Criterion

Figure 2. Instrumental Variable and Backdoor Criterion examples.

the subscript i, and refer to Pa(V ) as X . The sub-graph
of G which is related to the generation of V is depicted in
Figure 1a. The dashed-bidirected arrow indicates potential
existence of an unobserved confounder. All proofs are in
Appendix B.

We provide three sets of constraints on f and the underly-
ing causal structure that imply counterfactual identifiability
given an observed (L1) data distribution (D), i.e., given D,
each set of constraints identifies f up to indeterminacies
that do not affect counterfactual queries.

U and V can be single- or multi-dimensional in general.
Our results in §5.1 and §5.2 are for the scalar case, while
the result in §5.3 applies to multi-dimensional U and V .

5.1. The Markovian Case

If the exogenous variable U associated with V is indepen-
dent of its parents X , we end up with the causal diagram
shown in Figure 1b where X ⊥⊥ U .4

Theorem 5.1. BGM f is counterfactually identifiable given
PX,V if

1. (Markovian) U ⊥⊥X .

2. For all x, f(x, ·) is either a strictly increasing function
or a strictly decreasing function.

This theorem is similar to Lu et al. (2020, Thm. 1), and is
mentioned here for completeness. In this result, U,X, V
can be discrete or continuous. Note that independence of
U and X by itself is not sufficient for identifiability as
demonstrated with a counter-example in Appendix B.3.1
and an experiment in Appendix E.1.1. It is not clear how to
generalize the monotonicity condition to BGMs with multi-
dimensional V , which is a known issue in Markovain causal
structures (Nasr-Esfahany & Kiciman, 2023).

5.2. Instrumental Variable (IV)

Even with an unobserved confounder, we can establish coun-
terfactual identifiability from observational (L1) data if we
can find IVs relative to the pair (X, V ). We define an IV

4It is common practice to exclude the exogenous variable U
from the causal diagram.
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as a set of variables independent of U that affect V only
through X . Figure 2a shows an example in which I is an
IV with respect to (X, V ).5

The following theorem formalizes counterfactual identi-
fiability in this setting for discrete-valued X and I , i.e.,
X ∈ X ≜ {x1, . . . ,xn} and I ∈ I ≜ {i1, . . . , in}.6

Theorem 5.2. BGM f is counterfactually identifiable given
PX,V,I if

1. (IV) I ⊥⊥ U .

2. For all x ∈ X, f(x, ·) and f−1(x, ·) are either strictly
increasing or strictly decreasing, and two times differ-
entiable functions.

3. P (i,x, ·) is differentiable for every i ∈ I,x ∈ X.

4. (Positivity) ∀u,x ∈ X : PU,X(u,x) > 0.

5. (Variability) ∀u : |detM(u, I)| ≥ c > 0 , where

M(u, I) ≜

[
P (x1|u,i1) ... P (xn|u,i1)

...
. . .

...
P (x1|u,in) ... P (xn|u,in)

]

Besides the technical conditions required for the proof, the
variability condition in Theorem 5.2 has the following inter-
pretation: the IV must take a sufficient number of distinct
values (at least as many values as possible for X), and that
the IV must have a strong influence on X . Positivity implies
that the support of U is independent of X .

5.3. The Backdoor Criterion (BC)

The second setting in which we can establish counterfac-
tual identifiability from observational (L1) data in the pres-
ence of latent confounding is when there exists a set of
variables (Z) that satisfy the backdoor criterion (BC) with
respect to (X, V ), i.e., if Z blocks every path between
X and V that contains an arrow into X .7 Intuitively, we
want Z to be responsible for all the spurious correlation
(the dashed-bidirected edge) between X and U . Figure 2b
demonstrates an example where Z satisfies the BC with
respect to (X, V ).

In the following, assume U, V ∈ Rd.

Theorem 5.3. BGM f is counterfactually identifiable given
PX,V,Z if

5There are several other IV definitions in the causal literature
that capture the same concept, e.g., Bowden et al. (1990); Pearl
(1995b); Angrist et al. (1996); Heckman & Vytlacil (1999). See
Pearl (2009a, Sec. 7.4.5) for a discussion.

6If |I| > n, pick any subset with n members.
7Pearl (2009a, Def. 3.3.1) requires Z to be non-descendent of

X as well, but we do not need such a requirement as our goal is
not to use Z for adjustment.

1. (BC) U ⊥⊥X|Z.

2. ∀x : ∇x|detJf(x,·)| and∇x|detJf−1(x,·)| exist.

3. (Variability) ∀u : Instances z1, . . . ,zd+1 exist such
that |detM(u, z1, . . . ,zd+1)| > 0, where

M(u,z1, . . . , zd+1) ≜

 P (u|z1) ∇uP (u|z1)

...
...

P (u|zd+1) ∇uP (u|zd+1)


In the above theorem, Z can be both discrete or continuous.
The variability condition implies that Z must have a strong
enough influence on U .

6. Efficient Learning of the BGM
Given an observed data distribution (D), our goal in this
section is to find a BGM f̂ that is counterfactually equivalent
to the BGM f underlying the data. First, we formalize the
notion of equivalence:

Definition 6.1. (Equivalence) BGMs f1 and f2 are equiva-
lent iff there exists an invertible function g(·) such that

∀x, v :f−1
1 (x, v) = g

(
f−1
2 (x, v)

)
or alternatively (6)

∀x, u :f1(x, u) = f2

(
x, g−1(u)

)
. (7)

Proposition 6.2. BGMs f1 and f2 produce the same coun-
terfactuals iff they are equivalent.

If we find an f̂ which is equivalent to the BGM f underlying
the data, we can perform Abduction-Action-Prediction (§2)
using f̂ to estimate any counterfactual quantity, which is
guaranteed to produce the same counterfactuals as the true
BGM f via Proposition 6.2.

The theorems in §5 (see also the lemmas in Appendix B.2)
provide a tractable objective for learning a BGM that is
equivalent to the ground-truth BGM for counterfactual es-
timation. We now describe a recipe for efficiently solving
this learning problem.

To represent the search space for f̂ , we use parameterized
bijective transforms f̂θ(x, ·) from Û to V , conditioned on
X . This resembles transforms used in Conditional Gen-
erative Models (CGM). Furthermore, we require certain
constraints on f̂θ depending on the case, e.g., being strictly
monotonic or differentiable, which we take into account to
select an appropriate model family and parameterization.
For example, both the IV and BC cases require differen-
tiablity of the transform. Conditional Normalizing Flow
(CNF) (Papamakarios et al., 2021) models are a good candi-
date for learning such functions as they are typically built
using differentiable mappings with differentiable inverses
(diffeomorphisms). Although our approach is applicable to
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any CGM with the desired properties, we use CNFs in our
experiments. Appendix D discusses CNFs in more detail.

Each set of constraints has an important distributional re-
quirement (the first condition) in the form of (conditional)
independence among Û (Equation (2)) and other variables.
One way to guide the learning to attain such conditional
independence properties is to use adversarial learning for
distribution matching (Li et al., 2017). However, a more
elegant solution emerges from flipping the problem. Instead
of passing (X, V ) ∈ D samples through f̂−1

θ (Equation (2))
and optimizing the transform to satisfy the (conditional)
independence, we can sample Û in a way that satisfies the
(conditional) independence needed in each case, and opti-
mize f̂θ (Equation (1)) to produce the observed conditional
distribution PD(V |X). This has two benefits: i) (Con-
ditional) independence is guaranteed by construction. ii)
Training objective simply becomes density modeling, which
has been greatly studied in the literature.

The Markovian Case in §5.1 provides a simple example
to explain the learning method. We use a strictly increasing
conditional transformation as the search space for f̂θ. We
sample Û and X independently from a Gaussian distribu-
tion and the dataset D, respectively. This guarantees the
first condition of Theorem 5.1. We optimize the parame-
ters of f̂θ to match the conditional distribution PD(V |X).
In doing so, we are free to choose from a diverse set of
objectives provided by years of research in generative mod-
eling (Mohamed & Lakshminarayanan, 2016), for instance,
variational loss (Kingma & Welling, 2013), adversarial
loss (Goodfellow et al., 2014), likelihood maximization (Pa-
pamakarios et al., 2021), score matching (Song & Ermon,
2019) or denoising diffusion (Ho et al., 2020), etc.

In the IV (§5.2) and BC (§5.3) cases on the other hand,
training is not as simple at the first glance. We cannot
sample Û and X independently anymore, as they do not
need to be independent. Additionally, we need to satisfy the
conditional independence constraints of each case.

To efficiently encode the conditional independence con-
straints, we use directed graphical models (DGM) (Koller &
Friedman, 2009) for building structured generative networks
which consist of CGMs as their building blocks, and in-
herit all conditional independencies encoded in the DGM.8

Figure 3 demonstrates the DGMs used for satisfying the
conditional independencies of IV and BC cases, as well as
structured generative models built according to these DGMs.
Note that the shown DGMs and structured generative net-
works are not the only ones that satisfy the required condi-
tional independence properties. In the BC case, there are
several alternatives DGM that encode the same conditional

8Here, we treat DGMs as a pure statistical objects devoid of
any causal semantics.

(a) Instrumental Variable (b) Backdoor Criterion

(c) Instrumental Variable (d) Backdoor Criterion

Figure 3. Graphical models (top) encode desired (conditional) inde-
pendencies. Structured generative networks (bottom) for learning
BGMs are constructed according to the corresponding graphical
models. Blue variables are sampled independently from Gaussian
distributions while black variables are observed in the dataset.

independencies and each define a distinct structured genera-
tive network that could be used to learn f̂ (see Appendix C).
Also note that the CGM used for representing f̂θ (green one)
has requirements like monotonicity and differentiability, but
the others do not have these restrictions.

Training: We sample the root variables, ϵX , ϵÛ , I in Fig-
ure 3c, and ϵX , ϵÛ ,Z in Figure 3d, independently. The
epsilon variables (in blue) are sampled from independent
Gaussian distributions, and the others from the dataset D.
We train the whole structure end-to-end, with the goal of
matching the distribution of D. This process is akin to a
constrained search for f̂ where the constraints are embedded
in the search space by construction. The objective function
is determined by the choice of CGM. We can even mix
different types of CGMs, and combine different objective
functions for their end-to-end optimization.

The end goal of training is to learn the green CGM. As a
result, any CGM whose training does not affect the green
CGM can be removed from the network as a simplification.
The yellow CGM in Figure 3d is such an example, as it
is surrounded by black variables that are sampled directly
from D, which prevent its gradients from passing through
and influencing training of the other CGMs.

7. Efficient Counterfactual Estimation
Once we have learned a BGM using the techniques in §6,
estimating counterfactual queries is a straightforward appli-
cation of the Abduction-Action-Prediction procedure (§2).
We illustrate this using two examples.

Suppose we are interested in a counterfactual query
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Vx′ |{X = x, V = v}, which seeks to determine the neces-
sity of causation, e.g., given that a patient recovered (V = 1)
under a treatment X = 1, would she have also recovered
without the treatment (X = 0). This query is in general non-
identifiable from observational (L1) and interventional (L2)
data (Pearl, 1999; Tian & Pearl, 2000; Li & Pearl, 2022b).
However, if we can approximate the generation mechanism
of V as a BGM, and if one of the identifiability conditions
of §5 holds, there is hope. Specifically, we first learn the
BGM from observational data (§6). Then, we do the ab-
duction step by inverting the BGM, i.e., û = f̂−1(x, v),
and pass the counterfactual x′ through the BGM to get the
counterfactual estimate, i.e., v′ = f̂(x′, û).

As another example, consider P (Vx2
|X = x1) which ques-

tions the effect of treatment on the treated (Shpitser & Pearl,
2009). For the abduction step, we invert the learned BGM
(f̂ ) for all the observed samples (e.g., patients) assigned to
x1 to obtain samples of the exogenous posterior distribution
PÛ |x1

as û = f̂−1(x1, v), v ∼ P (V |x1). For the predic-
tion step, we pass the samples û through the BGM with
X = x2, to obtain samples of the counterfactual distribu-
tion of interest v′ = f̂(x2, û), û ∼ PÛ |x1

.

The examples above considered only the generation func-
tion of particular node V ∈ V in the causal diagram. If all
generation functions of an SCM (F ) are well-approximated
by BGMs, and can also be learned in the settings described
in §5, then we can answer every counterfactual query in a
similar way. However, not all generation mechanisms need
to be BGMs, or known, for answering a particular counter-
factual query of interest. For instance, there is no need to
learn BGMs for ancestors of the variables that we intervene
on, or the variables that do not appear in the evidence and
do not have dashed-bidirected edges to the evidence.

8. Experiments
We evaluate our techniques in two settings: (i) a simple
task that allows us to visualize our approach and prior base-
lines, and (ii) a real-world video streaming simulation task.
Appendix E has implementation details.

8.1. Counterfactual Ellipse Generation

A standard ellipse is determined by two parameters: a semi-
major and semi-minor axis (a, b). If we further specify
an angle, we get a single point on the ellipse. Let U ∈
R2 be the two parameters of an ellipse, X ∈ (0, 2π) an
angle that specifies a single point, V ∈ R2 the Cartesian
coordinates of this point, and f the function that calculates
these coordinates given U and X .

Suppose we are given data generated as follows. We sample
z ∼ PZ , u ∼ PU |Z=z and x ∼ PX|Z=z , and output the
data tuple (z, x, v := f(u, x)). Here, PZ , PU |Z , and PX|Z

Figure 4. BC (ours) is the only scheme that generates an ellipse.

Table 1. Counterfactual Ellipse Generation Accuracy
SCHEME BC BASELINE-X BASELINE-XZ
MAPE 1% 6607% 6582%

are three predefined distributions (see Appendix E.1 for
details). The important point is that conditioned on Z, the
ellipse parameters and angles are independent (U ⊥⊥ X|Z),
but U and X are not independent unconditionally. For a
specific pair (x, v) observed in the dataset (evidence), our
goal is to draw the entire ellipse that the point v belongs
to. This can be done by estimating counterfactual queries,
Vx′ |{X = x, V = v}, for x′ ∈ (0, 2π).

This task corresponds to our BC setting with Z as the back-
door variable. We evaluate our method for BC visually
(Figure 4) and quantitatively (Table 1). As you can see, it
achieves a high accuracy as opposed to the baselines, both of
which are single CGMs that do not take the causal structure
into account, which is common in prior work (Lample et al.,
2017; Zhu et al., 2017; He et al., 2019). Baseline-x models
P (V |X) and baseline-xz models P (V |X,Z).

8.2. Case Study: Video Streaming Simulation

Video streaming clients use Adaptive Bitrate (ABR) algo-
rithms to continually adapt the bitrate of a video stream
based on network conditions. ABR algorithms select a bi-
trate for each few-second chunk of video among a finite set
of available choices. These algorithms have a significant
impact on user experience (e.g., video quality and stalls)
and have been the subject of extensive research (Tian & Liu,
2012; Huang et al., 2014; Yin et al., 2015; Sun et al., 2016;
Mao et al., 2017; Akhtar et al., 2018; Spiteri et al., 2020).

Trace-driven simulation is a common approach to design and
evaluate ABR algorithms. Here, one collects traces from
real video streaming sessions, with each trace providing a
timeseries of observed network throughput (and possibly
other player metrics) for every video chunk. At simulation
time, the traces are replayed (to represent network behavior)
while simulating the dynamics of video clients under new
ABR algorithms. However, simply replaying a throughput
trace can bias simulation outcomes (Bartulovic et al., 2017;
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Table 2. Counterfactual estimation accuracy of different schemes
and their training time for video streaming simulation

SCHEME NORMALIZED MSE (%) TIME (s)

MARKOVIAN 4.1 ± 2.1 28 ± 0
IV 10.0 ± 0.7 127 ± 1
CAUSALSIM 9.3 ± 1.0 1091 ± 1
BC 10.4 ± 7.8 37 ± 8
IV+BC 6.4 ± 2.4 49 ± 1

Alomar et al., 2023), because changing the ABR algorithm
could effect the throughput that would have been achieved
for the same video streaming session.

Alomar et al. (2023) formulated bias removal in this type
of simulation as a counterfactual estimation problem where
for download of each chunk, V is the achieved throughput,
X is the chosen bitrate, U is the unobserved bottleneck
link capacity, and V = f(U,X). Note that in this prob-
lem, f is strictly increasing for each value of X as higher
bottleneck link capacity (U ) increases the achieved through-
put (V ). They prove identifiability for this counterfactual
query assuming data collected in a Randomized Control
Trial (RCT) with sufficiently diverse ABR algorithms and
low-rank structure of the underlying BGM. They use a de-
terministic auto-encoder (Ghosh et al., 2019) equipped with
adversarial learning for distribution matching for counterfac-
tual estimation, and present experimental results (including
a real-world ABR design case study) that show it signifi-
cantly improves simulation accuracy compared to standard
(biased) trace-driven simulators.

Next, we demonstrate how each set of conditions for iden-
tifiability (§5) translates to this real-world problem along
with the efficacy of our practical algorithm (§6) using the
ABR simulator provided by Alomar et al. (2023). We use
the simulator to generate traces for each setting, which we
use to learn the BGM. The simulator gives us ground-truth
counterfactuals for error calculation. We normalize the
Mean Squared Error (MSE) of our method’s counterfactual
estimates by the MSE of a standard (biased) video stream-
ing simulator that assumes chosen bitrates do not affect the
achieved throughput. All results are in Table 2 with mean
and standard deviation calculated over ten random seeds
trained until training loss convergence.

The Markovian Case: The causal structure in this problem
is not Markovian because X (chosen bitrate) and V (ob-
served throughput) are both affected by underlying network
conditions (latent confounder). However, we can remove
the confounding effect if the ABR algorithm used for trace
collection chooses random bitrates from time to time, and
we only select the subset of traces with these random de-
cisions as D (Figure 1). This scheme achieves the lowest

error in Table 2 as it has access to the most pristine data
(perfect confounding removal by invasive randomization).

Instrumental Variable (IV): It is common for video service
providers to conduct RCTs over various ABR algorithms
for their comparison. If traces are collected from an RCT,
their causal structure naturally fits Figure 2a where IV (I)
is the algorithm identifier. This is the same setting that
CausalSim (2023) explores, so we use their adversarial
learning method as a baseline. We collect RCT data over
ten different provided algorithms. Our IV method achieves
almost the same accuracy as CausalSim (slight difference is
not statistically significant), but converges 8.6× faster since
it does not require bi-level (adversarial) optimization.

Backdoor Criterion (BC): Buffer based ABR algorithms
are those that only make use of the client’s current playback
buffer level to make bitrate decisions. They are strong ABR
algorithms despite their simplicity and are widely used in
practice (Yan et al., 2020). If a trace is collected using a
buffer based algorithm (and includes playback buffer obser-
vations), the causal structure follows Figure 2b where Z is
the buffer used for choosing the bitrate. Hence, it satisfies
the backdoor criterion. Table 2 shows that our BC method
applied to buffer-based traces is quite accurate even with-
out access to RCT data (although it is slightly worse than
CausalSim and IV).

IV + BC: It is possible to combine settings explored in §5 to
further improve accuracy provided the problem has the ap-
propriate causal structure. For example, in video streaming
simulation, if D is collected in an RCT over buffer based
algorithms, the BC and IV cases apply simultaneously. We
refer to this case as IV+BC. Similar to the IV case, the algo-
rithm identifier is the instrumental variable while the tuple
(algorithm identifier, buffer) satisfies the backdoor criterion.
Appendix E.2.1 describes the structured generative network
for this case. We apply it to traces collected using an RCT
over two buffer based algorithms. IV+BC decreases the
average error compared to the BC scheme by almost 38%.

9. Concluding Remarks
In this work, we defined Bijective Generation Mechanisms
(BGM), a class of models that contain several widely used
causal models in the literature (§4). We established their
counterfactual identifiability for three well-known causal
structures (§5) and proposed a practical learning method
that casts learning a BGM as structured generative modeling
(§6). We evaluated our methodology in a visual task and
demonstrated its application to a real-world video streaming
simulation task (§8). Finite sample analysis of our identifia-
bility theorems, extending the identifiable causal structures,
and applications of the proposed method to real-world prob-
lems in various field, e.g., econometrics, computer systems,
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causal ML, etc., are exciting directions for future work.
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Schölkopf, B., and Janzing, D. Causal inference through
the structural causal marginal problem. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 7793–7824. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/gresele22a.html.

Hartford, J., Lewis, G., Leyton-Brown, K., and Taddy, M.
Deep iv: A flexible approach for counterfactual predic-
tion. In International Conference on Machine Learning,
pp. 1414–1423. PMLR, 2017.

He, Z., Zuo, W., Kan, M., Shan, S., and Chen, X. Attgan:
Facial attribute editing by only changing what you want.
IEEE transactions on image processing, 28(11):5464–
5478, 2019.

Heckman, J. J. and Vytlacil, E. J. Local instrumental
variables and latent variable models for identifying and
bounding treatment effects. Proceedings of the national
Academy of Sciences, 96(8):4730–4734, 1999.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Hoyer, P., Janzing, D., Mooij, J. M., Peters, J., and
Schölkopf, B. Nonlinear causal discovery with additive
noise models. Advances in neural information processing
systems, 21, 2008.

Huang, T.-Y., Johari, R., McKeown, N., Trunnell, M., and
Watson, M. A buffer-based approach to rate adaptation:
Evidence from a large video streaming service. In Pro-
ceedings of the 2014 ACM conference on SIGCOMM, pp.
187–198, 2014.

Hyvärinen, A. and Oja, E. Independent component analysis:
algorithms and applications. Neural networks, 13:411–
430, 2000.

Hyvärinen, A. and Pajunen, P. Nonlinear independent com-
ponent analysis: Existence and uniqueness results. Neural
networks, 12(3):429–439, 1999.

Hyvarinen, A., Sasaki, H., and Turner, R. Nonlinear ica us-
ing auxiliary variables and generalized contrastive learn-
ing. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 859–868. PMLR, 2019.

Ibeling, D. and Icard, T. Probabilistic reasoning across the
causal hierarchy. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 10170–10177,
2020.

Immer, A., Schultheiss, C., Vogt, J. E., Schölkopf, B.,
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A. Neural Methods for Causal Estimation
Xia et al. (2021) uses Neural Causal Models (NCMs) learned from observational data for identification and estimation of
interventional (L2) queries, assuming knowledge of the underlying causal diagram (potentially non-Markovian) and discrete
endogenous variables.

Kocaoglu et al. (2018) and Zečević et al. (2021) use adversarial training and Graph Neural Networks (GNNs) (Wu et al.,
2020), respectively, to learn implicit SCMs from observational data, assuming knowledge of the causal diagram and the
Markovian assumption. Learned SCMs are then used for answering interventional queries (L2), which are known to be
identifiable given the Markovianity assumption (Bareinboim et al., 2022, Corol. 2).

Pawlowski et al. (2020) and Sanchez-Martin et al. (2021) use deep conditional generative models of various forms, structured
according to the known causal diagram, to learn the SCM from observational data assuming no unobserved confounding
(Markovain SCM). The learned SCMs are further used for interventional and counterfactual estimation. Sanchez & Tsaftaris
(2021) uses diffusion denoising probabilistic models to learn conditional distribution of images given labeled attributes,
which are further used for counterfactual image generation. However, they do not have any identifiability analysis. In fact
Nasr-Esfahany & Kiciman (2023) shows counterfactual non-identifiability of generation mechanisms of multi-dimensional
variables from observational data in Markovian settings. To assess the quality of non-identifiable image counterfactuals in
Markovian SCMs, Monteiro et al. (2023) revisits axiomatic definition of counterfactuals by measuring their composition,
reversibility, and effectiveness.

Xia et al. (2022) use Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) to learn proxy SCMs from
observational and interventional data, assuming knowledge of (non-Markovian) causal diagram, and discrete endogenous
variables. They utizile the proxy SCM for counterfactual (L3) identification and estimation. Gumbel-Max SCMs (Oberst &
Sontag, 2019) and their generalizations (Lorberbom et al., 2021) have been used for counterfactual estimation of categorical
variables from observational data. However, we focus mostly on continuous domains.

Assuming SCMs with additive noise (ANM) (Hoyer et al., 2008) and Markovianity, Geffner et al. (2022) learns both
the underlying causal structure G and SCM from observational data, and uses them for estimation of interventional and
counterfactual queries. However, their identifiability analysis is restricted to interventional queries only. Non-linear ANMs
are a special case of the class of SCMs we consider in this work. Furthermore, we allow existence of unobserved confounders,
and prove counterfactual identifiability of our models. Hartford et al. (2017) uses two-stage supervised learning methods
to estimate counterfactual queries using Instrumental Variables (IVs) (Angrist et al., 1996), assuming SCMs with ANMs.
Alomar et al. (2023) proves identifiability of counterfactual queries from Randomized Control Trial (RCT) data which is a
special IV case, assuming low-rank generation mechanisms. Furthermore, they utilize a deterministic auto-encoder (Ghosh
et al., 2019) equipped with adversarial learning for distribution matching to enable efficient counterfactual estimation. Our
treatment does not need any assumptions about the rank of generation mechanisms.

Khemakhem et al. (2021) uses Affine Causal Autoregressive Flows (Dinh et al., 2016) for learning the underlying causal
structure G from observational data, assuming absence of unobserved confounder. They prove identifiability of interventional
queries assuming Location Scale Noise Models (LSNM) (Strobl & Lasko, 2022). Additionally, they propose using the
learned SCM for counterfactual estimation, without any identifiability analysis. We allow unobserved confounders to exist,
do not restrict generation functions to LSNMs, and also prove counterfactual identifiability.

Louizos et al. (2017) uses Variational Auto-Encoders (VAE) (Kingma & Welling, 2013) to estimate counterfactual queries
in cases where sufficient proxy variables (Carroll et al., 2006; Kuroki & Pearl, 2014; Miao et al., 2018; Wang & Blei, 2019;
Lee & Bareinboim, 2021) of unobserved confounders are available for identifiability. Johansson et al. (2016); Shalit et al.
(2017); Yao et al. (2018) learn representations for estimating Individual Treatment Effect (ITE) assuming strong ignorability
and binary treatments. Our work is not limited to discrete domains, and is not limited to specific counterfactual quantities
like ITE.

B. Proofs
B.1. Proposition 6.2

BGMs f1, f2 produce the same counterfactuals ⇐⇒ f1, f2 are equivalent BGMs (8)
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Proof. First, we prove⇐. Consider an arbitrary counterfactual query Vx′ |X = x, V = v. In the abduction step, both
BGMs use the evidence X = x, V = v to infer the exogenous variable U . We refer to f1’s inferred exogenous variable as
u1 and f2’s inferred exogenous variable as u2. Using Equation (6) we have

u1 = g(u2). (9)

In the prediction step, f1 and f2 give f1(x
′, u1) = f1

(
x′, g(u2)

)
and f2(x

′, u2) as their counterfactual estimates,
respectively. Using Equation (7) we get

f1

(
x′, g(u2)

)
= f2(x

′, u2). (10)

Hence, estimated counterfactuals are equal.

Next, we prove⇒. Due to both f1 and f2 being BGMs, we can easily verify the following relationship holds between them:

∀x, u1 : f1(x, u1) = f2

(
x, g−1(x, u1)

)
(11)

where

∀x, u1 : g−1(x, u1) = f−1
2

(
x,

(
f1(x, u1)

))
. (12)

Now suppose we use both f1 and f2 for estimating the counterfactual query Vx′ |X = x, V = v. f1’s estimate would be
f1(x

′, u1). Using Equation (11), this estimate is equal to f2

(
x′, g−1(x′, u1)

)
. Using f2 for estimating the same query, it

infers the exogenous variable g−1(x, u1) in the abduction step. In the prediction step, its counterfactual estimate would be
f2

(
x′, g−1(x, u1)

)
. As both the counterfactual estimates are equal, we have

∀x′,x, u1 : f2

(
x′, g−1(x′, u1)

)
= f2

(
x′, g−1(x, u1)

)
. (13)

Using invertibility property of the BGM f2 we get

∀x′,x, u1 : g−1(x′, u1) = g−1(x, u1)→ ∀x′,x, u1 : g
(
x′, g−1(x, u1)

)
= u1. (14)

The only way the last equality could hold for all possible x,x′ is if g−1 does not depend on its first argument, i.e.,

g−1(x, u1) = g−1(u1), (15)

which means that f1 and f2 are equivalent.

Remark B.1. The reason why we have this indeterminacy g(·) is partly due to the fact that the prior distribution over
exogenous variables

(
P (U)

)
is unknown. Each choice of this prior distribution would result in a different g(·).

B.2. Counterfactual Equivalence Lemmas

In this section, we present three lemmas that are essential for the proof of counterfactual identifiability results in §5.

B.2.1. THE MARKOVIAN CASE

Lemma B.2. BGMs f and f̂ that produce the same distribution PD(X, V ) are equivalent if

1. (Markovian) U ⊥⊥X and Û ⊥⊥X .

2. for all x, f(x, ·) and f̂(x, ·) are either strictly increasing or strictly decreasing functions.

Proof. We will show that BGMs f and f̂ produce the same counterfactuals. Using Proposition 6.2, we conclude their
equivalence. Suppose we are interested in the counterfactual query Vx′ |X = x, V = v. Without loss of generality,
consider only x, v samples for which PX,V (x, v) > 0. Let F (x, v) := P (V ≤ v|X = x) be the conditional Cumulative
Distribution Function (CDF) and F−1(x, α) the quantile function, which exists where PX,V (x, v) > 0. In the abduction
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step of counterfactual estimation, both BGMs f and f̂ will return the F (x, v)th or
(
1 − F (x, v)th

)
quantile of their

corresponding exogenous distribution
(
P (U |X) and P (Û |X)

)
if they are both increasing, or decreasing, respectively.

These quantiles might in fact be two distinct values. As U, Û ⊥⊥X , the quantile function of U, Û given X is independent of
X , and equal to the quantile function of the marginal U, Û . Hence, the action step would not change the estimated quantile.
In the prediction step, both BGMs f and f̂ would estimate the same value F−1

(
x′, F (x, v)

)
if increasing, or other similar

quantile variations if decreasing.

B.2.2. INSTRUMENTAL VARIABLE (IV)

Lemma B.3. For X ∈ X ≜ {x1, . . . ,xn} and I ∈ I ≜ {i1, . . . , in}, BGMs f and f̂ that produce the same distribution
PD(X, V ) are equivalent if

1. (IV) I ⊥⊥ U and I ⊥⊥ Û .

2. for all x ∈ X, f−1(x, ·) and f̂(x, ·) are either strictly increasing or strictly decreasing, and two times differentiable.

3. PÛ (·) is differentiable.

4. PD(i,x, ·) is differentiable for every i,x.

5. (Positivity) ∀u, û,x ∈ X : PU,X(u,x) > 0 and PÛ,X(û,x) > 0.

6. (Variability) ∀u : |detMD(u, I)| ≥ c, where c is a positive constant and

MD(u, I) ≜

PD(x1|u, i1) . . . PD(xn|u, i1)
...

. . .
...

PD(x1|u, in) . . . PD(xn|u, in)

 (16)

Proof. Define Cumulative Distribution Functions (CDF) k(u) = P (U ≤ u), k̂(û) = P (Û ≤ û). We use the CDFs
to transform random variables into uniform distributions between 0 and 1. Define Z = k(U), Ẑ = k̂(Û). Due to
Probability Integral transform we have Z, Ẑ ∼ Unif(0, 1). Furthermore ∀x ∈ X : Z = s(x, Ẑ) where s(x, ·) =

k(·) ◦ f−1(x, ·) ◦ f̂(x, ·) ◦ k̂−1(·). Because U ⊥⊥ I (The first condition), and because Z is a deterministic function of U ,
we conclude Z ⊥⊥ I . Using a similar argument, Ẑ ⊥⊥ I .

∀ẑ, i : PẐ|I(ẑ|i) = 1 (17)

→ ∀ẑ, i :
n∑

ℓ=1

PẐ,X|I(ẑ,xℓ|i) = 1 (18)

→ ∀ẑ, i :
n∑

ℓ=1

PẐ|X,I(ẑ|xℓ, i)PX|I(xℓ|i) = 1 (19)

Using conditions 2, 3, 4, 6 we know that ∀x ∈ X : s(x, ·) is strictly increasing and two times differentiable. Hence, using
the change of variable formula we have:

→ ∀ẑ, i :
n∑

ℓ=1

PZ|X,I(s(xℓ, ẑ)|xℓ, i)PX|I(xℓ|i)
∂s(xℓ, ẑ)

∂ẑ
= 1 (20)

Using Z ⊥⊥ I we have:
PZ|X,I(z|x, i)PX|I(x|i) = PZ(z)PX|Z,I(x|z, i) (21)

Z ∼ Unif(0, 1) thus
→ PZ|X,I(z|x, i)PX|I(x|i) = PX|Z,I(x|z, i) (22)
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Now we combine Equation (20) and Equation (22):

→ ∀ẑ, i :
n∑

ℓ=1

PX|Z,I(xℓ|s(xℓ, ẑ), i)
∂s(xℓ, ẑ)

∂ẑ
= 1 (23)

We can write Equation (23) in vector product form as:

∀ẑ, i :
[
PX|Z,I(x1|s(x1, ẑ), i) . . . PX|Z,I(xn|s(xn, ẑ), i) −1

]


∂s(x1,ẑ)
∂ẑ
...

∂s(xn,ẑ)
∂ẑ
1

 = 0 (24)

Now we combine all n equations of this form for i ∈ I in matrix format:

∀ẑ :

pX|Z,I(x1|s(x1, ẑ), i1) . . . pX|Z,I(xn|s(xn, ẑ), i1) −1
...

...
...

...
pX|Z,I(x1|s(x1, ẑ), in) . . . pX|Z,I(xn|s(xn, ẑ), in) −1




∂s(x1,ẑ)
∂ẑ
...

∂s(xn,ẑ)
∂ẑ
1

 =

0...
0

 (25)

As argued above, ∀x ∈ X : s(x, ·) is strictly increasing and two times differentiable. Combining this with the positivity
assumption we have

∀x ∈ X : s(x, 0) = 0 (26)

Consider Equation (25) in ẑ = 0. The first matrix’s rank is n because of the variability condition, and has n+ 1 columns.
So its nullspace has the form k

[
1 · · · 1

]⊺
. This implies that

∀x ∈ X :
∂s(x, ẑ)

ẑ
|ẑ=0 = 1. (27)

Next, we divide [0, 1] into N pieces. We prove by induction on m that for large enough N

∀m ∈ {1, . . . , N},x ∈ X : |s(x, m
N

)− m

N
| ≤ m

2N2
B (28)

where B = max
x,ẑ

∂2s(ẑ,x)
∂ẑ .

For m = 1, using Taylor’s theorem we have

∃ξ ∈ [0,
1

N
] : s(x,

1

N
) = s(x, 0) +

1

N

∂s(x, ẑ)

∂ẑ
|ẑ=0 +

1

2N2

∂2s(x, ẑ)

∂ẑ
|ẑ=ξ (29)

Using Equations (26) and (27)

→ ∃ξ ∈ [0,
1

N
] : s(

1

N
,x) =

1

N
+

1

2N2

∂2s(x, ẑ)

∂ẑ
|ẑ=ξ (30)

→ |s(x, 1

N
)− 1

N
| ≤ B

2N2
(31)

Now suppose that Equation (28) holds for m, we will show that it holds for m+1 too. We know that s(x, ·) is differentiable.
Combining it with assumption 6 implies that each element of matrix M is differentiable with respect to ẑ. Furthermore,
determinant is a polynomial function of all elements of M which is differentiable with respect to every element. Thus
determinant of M is differentiable with respect to ẑ. This means that if we perturb ẑ in each element of M by a sufficiently
small amount, M will remain full rank. As a result, for a large enough N the left matrix in Equation (25)’s rank is still n,
and its null space is still one-dimensional. This means that

∀x ∈ X :
∂s(x, ẑ)

ẑ
|ẑ=m

N
= 1. (32)
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using Taylor’s theorem we have

∃ξ ∈ [
m

N
,
m+ 1

N
] : s(x,

m+ 1

N
) = s(x,

m

N
) +

1

N

∂s(x, ẑ)

∂ẑ
|ẑ=m

N
+

1

2N2

∂2s(x, ẑ)

∂ẑ
|ẑ=ξ (33)

Using Equation (28) for m and Equation (32) we conclude that

|s(x, m+ 1

N
)− m+ 1

N
| ≤ m+ 1

2N2
B (34)

This concludes the proof of Equation (28) by induction for all values of m ∈ {1, · · · , N}. In other words, function s(x, ·)
can get as close as wanted to identity in all points m

N . Using this and the fact that ∀x ∈ X : s(x, ·) is differentiable implies
that ∀x ∈ X : s(x, ẑ) = ẑ. This concludes the proof with g(·) = k(·) ◦ k̂−1(·).

B.2.3. BACKDOOR CRITERION (BC)

Lemma B.4. BGMs f and f̂ that produce the same distribution PD(X, V ) are equivalent if

1. (BC) U ⊥⊥X|Z and Û ⊥⊥X|Z.

2. For every x : ∇x|detJf−1(x,·)| and ∇x|detJ f̂(x,·)| both exist.

3. (Variability) ∀u : Instances z1, . . . ,zd+1 exist such that |detMD(u, z1, . . . ,zd+1)| > 0, where

MD(u, z1, . . . ,zd+1) ≜

 PD(u|z1) ∇uPD(u|z1)
...

...
PD(u|zd+1) ∇uPD(u|zd+1)

 (35)

Proof. Define g(x, ·) ≜ f−1(x, ·) ◦ f̂(x, ·). Using the change of variable formula, we get

∀x, û, z : PÛ |Z,X(û|z,x) = PU |Z,X

(
g(x, û)|z,x

)
|detJg(x,·)| (36)

(BC)⇒∀x, û, z : PÛ |Z(û|z) = PU |Z

(
g(x, û)|z

)
|detJg(x,·)| (37)

Using chain rule of derivatives, we know that |detJg(x,·)| = |detJf−1(x,·)||detJ f̂(x,·)| which is differentiable with
respect to x according to condition 2. By differentiating Equation (37) with respect to the ith element in x (xi) we get

∇uPU |Z

(
g(x, ·)|z

)
g1(x,û)
∂xi

...
gd(x,û)

∂xi

 |detJg(x,·)|+ PU |Z

(
g(x, û)|z

)∂|detJg(x,·)|
∂xi

= 0 (38)

⇒
[
∇uPU |Z

(
g(x, ·)|z

)
PU |Z

(
g(x, û)|z

)]


g1(x,û)
∂xi

...
gd(x,û)

∂xi
∂| detJg(x,·)|

∂xi

 = 0 (39)

Stacking the equations for z1, . . . ,zd+1 we get

MD(u, z1, . . . ,zd+1)


∂| detJg(x,·)|

∂xi
g1(x,û)
∂xi

...
gd(x,û)

∂xi

 =

0...
0

 (40)

Since the square matrix is full-rank due to variability condition, all elements of the vector must be zero. This means that
g(x, û) does not depend on xi. Iterating the same argument for all i ∈ {1, . . . , d} we conclude that g(x, û) does not depend
on x which concludes the proof.
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B.3. Theorem 5.1

BGM f is counterfactually identifiable given PX,V if

1. (Markovian) U ⊥⊥X .

2. for all x, f(x, ·) is either a strictly increasing or a strictly decreasing function.

Proof. Let F be the class of BGMs that satisfy theorem’s conditions. Consider any two BGMs f̂ , f ∈ F that produce
the same distribution PD(X, V ). Using Lemma B.2 we conclude their equivalence. As a result, they produce the same
counterfactuals (Proposition 6.2), which establishes identifiability according to its definition in §2.

B.3.1. INDEPENDENCE ASSUMPTION IS NOT SUFFICIENT BY ITSELF FOR COUNTERFACTUAL IDENTIFIABILITY

In this section, we use a simple example to demonstrate that the independence assumption alone (without the monotonicity
assumption) is not enough for BGM identification. This example is taken from Nasr-Esfahany & Kiciman (2023, Sec. 3)
Consider the following two simple BGMs f and f̂ :

X ∼ Bernoulli(0.5), U ∼ Unif(0, 1), X ⊥⊥ U, f =

{
U, X = 1

U − 1, X = 0
, f̂ =

{
U, X = 1

−U, X = 0
(41)

Note that f and f̂ generate the same distribution PD(X, V ), and they satisfy the first (independence) constraint. However,
they give different answers to counterfactual queries. Consider the following counterfactual query: V1|X = 0, V = v. f
and f̂ give v + 1 and −v as answers, respectively.

B.4. Theorem 5.2

For X ∈ X ≜ {x1, . . . ,xn} and I ∈ I ≜ {i1, . . . , in}, BGM f is counterfactually identifiable given PX,V,I if

1. (IV) I ⊥⊥ U .

2. for all x ∈ X, f(x, ·) and f−1(x, ·) are either strictly increasing or strictly decreasing, and two times differentiable.

3. P (i,x, ·) is differentiable for every i ∈ I,x ∈ X.

4. (Positivity) ∀u,x ∈ X : PU,X(u,x) > 0.

5. (Variability) ∀u : |detM(u, I)| ≥ c > 0 , where

M(u, I) ≜

[
P (x1|u,i1) ... P (xn|u,i1)

...
. . .

...
P (x1|u,in) ... P (xn|u,in)

]

Proof. Let F be the class of BGMs that satisfy theorem’s conditions. Consider any two BGMs f̂ , f ∈ F that produce
the same distribution PD(X, V ). Using Lemma B.3 we conclude their equivalence. As a result, they produce the same
counterfactuals (Proposition 6.2), which establishes identifiability according to its definition in §2.

B.5. Theorem 5.3

BGM f is counterfactually identifiable given PX,V,Z if

1. (BC) U ⊥⊥X|Z.

2. ∀x : ∇x|detJf(x,·)| and∇x|detJf−1(x,·)| exist.
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(a) (b) (c)

Figure 5. Markovian equivalence class of directed graphical models for the backdoor criterion (BC) case

3. (Variability) ∀u : Instances z1, . . . ,zd+1 exist such that |detM(u, z1, . . . ,zd+1)| > 0, where

M(u,z1, . . . , zd+1) ≜

 P (u|z1) ∇uP (u|z1)

...
...

P (u|zd+1) ∇uP (u|zd+1)



Proof. Let F be the class of BGMs that satisfy theorem’s conditions. Consider any two BGMs f̂ , f ∈ F that produce
the same distribution PD(X, V ). Using Lemma B.4 we conclude their equivalence. As a result, they produce the same
counterfactuals (Proposition 6.2), which establishes identifiability according to its definition in §2.

C. Directed Graphical Models
We can determine (Conditional) independencies of a joint distribution from its directed graphical model using d-seperation.

C.1. Backdoor Criterion (BC)

The distributional requirement we have in this case (§5.3) is that X ⊥⊥ U |Z. The structured generative network we build
for this case (Figure 3d) resembles the structure of the directed graphical model shown in Figure 3b. As a result, it inherits
all the conditional independence properties read off the graphical model using the d-separation test (Pearl, 1988; Koller &
Friedman, 2009). There are two paths between U and X , X ← Z → U which is blocked when we condition on Z, and
X → V ← U which is blocked due to the v-structure at V , thus X ⊥⊥ U |Z.

Alternative viable graphical models: It is worth emphasizing that the directed graphical model used for constructing the
structured generative network is purely a statistical object as opposed to a causal DAG, and its goal is solely to equip the
structured generative network with the corresponding distributional constraint in each case. As a result, all directed graphical
models in the Markovian equivalence class (directed graphical models that encode the same conditional independencies) of
Figure 3b are valid and can be used for constructing alternative structured generative network.

To create the Markovian equivalence class, we should keep the graph’s skeleton fixed, and flip the edges without creating
new or removing existing v-structures. Figure 5 shows the three possible options, each of which we can use to construct a
valid structured generative network.

C.2. Instrumental Variable (IV)

The structured generative network in this case is depicted in Figure 3c. It is designed to follow the directed graphical
model in Figure 3a in which the two paths between I and U , I →X ← U and I →X → V ← U are blocked by open
v-structures (unconditioned X and V , respectively) which implies independence of I and V As a result, the distribution
produced by the structured generative network is guaranteed to satisfy the distributional constraint U ⊥⊥ V (the first
condition in Theorem 5.2), by construction.

In this setting, the graphical model shown in Figure 3a is the only member of its Markovian equivalence class, as flipping

20



Counterfactual Identifiability of Bijective Causal Models

any edges would change the set of (conditional) independencies.

D. Normalizing Flows (NF)
Normalizing Flows (NF) are a class of generative models with tractable distributions where both sampling and density
estimation are efficient and exact. They model the data (V ) as a transformation (T ) of some noise variable (U) sampled
from a simple base distribution (PU ), e.g., Gaussian distribution, where T is a diffeomorphism.9 This allows for the density
of V to be obtained via a change of variables:

PV (v) = PU

(
T−1(v)

)
|detJT−1(v)| (42)

The transform T can be tractably optimized to fit the observed distribution of V . Designing expressive transformation
families with efficient inverse and Jacobin has thus been subject to research (Kingma & Dhariwal, 2018; Chen et al., 2019;
Meng et al., 2022). This idea can be easily extended for modeling conditional distributions (Trippe & Turner, 2018; Winkler
et al., 2019; Lu & Huang, 2020), e.g., PV |X with conditional normalizing flows (CNF), by parameterizing the transform T
as a function of the condition (x). Refer to Kobyzev et al. (2020); Papamakarios et al. (2021) for an extensive survey of NFs.

E. Experiments
Implementation Details: We build all CGMs using NFs with linear rational splines (Dolatabadi et al., 2020) and train them
with likelihood maximization using their implementation in Pyro (Bingham et al., 2018). All splines we use have 16 bins
for mapping (−3,+3) to (−3,+3). We use affine transforms at input and output layers to calibrate the range. Condition
networks are all MLPs with two hidden layers, each with 64 units. We use batch size of 220 and run all experiments using
A100 GPUs. We train all models using the default implementation of Adam (Kingma & Ba, 2015) in Pytorch (Paszke et al.,
2019).

Empirical Relaxation of Theoretical Assumptions: Linear rational splines, although differentiable, are not necessarily
two times differentiable. Two times differentiability is required in the IV case (§5.2) by the second assumption of
Theorem 5.2. Furthermore, the condition network we use to condition the spline parameters based on x uses ReLU
activation function (Agarap, 2018) which implies non-differentiability of our CGMs with respect to x, which is required
in the IV case (§5.3) by the second assumption of Theorem 5.3. We can satisfy both of these assumptions, e.g., by using
quadratic splines (Durkan et al., 2019) or GElU activations (Hendrycks & Gimpel, 2016). However, good performance in §8
suggests that these technical assumptions might not be tight, and can be relaxed. We leave their relaxation to future work.

E.1. Counterfactual Ellipse Generation

We use the following SCM for generation of the ellipse dataset:

Z := ϵz, ϵz ∼ Unif(−0.5, 0.5) (43)
X := (1.44254843z + 0.59701923 + ϵx) % (2π), ϵx ∼ Normal(0, 1) (44)

U0 := e1.64985274z+0.2656131 + ϵu0
, ϵu0

∼ Beta(1, 1) (45)

U1 := U0(1 + ϵu1e
1.61323358z−0.18070237), ϵu1 ∼ Exponential(1) (46)

V0 := U0

(
2 + sin(X)

)
(47)

V1 := U1

(
2 + cos(X)

)
(48)

(49)

We use a sequence of three Spline transforms with coupling for all schemes.

E.1.1. FAILURE IN THE MARKOVIAN CASE

In the ellipse generation taks, both U and V are two dimensional. To empirically evaluate whether or not we can lean
multi-dimensional BGMs in the Markovian case, we generated a second dataset by randomly shuffling X in the previous

9A differentiable transform with a differentiable inverse.
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(a) Structured Generative Network (b) Directed Graphical Model

Figure 6. Simultaneous Exploitation of Instrumental Variable (IV) and Backdoor Criterion (BC)

dataset. We trained a single CGM (similar to the Markovian case in §6), and used it for counterfactual estimation where it
failed (MAPE = 607).

E.2. Video Streaming Simulation

We got the simulator and the ABR algorithms’ implementations from Alomar et al. (2023). Appendix. D in this work
explains the details. We use a single conditional spline for every CGM.

E.2.1. SIMULTANEOUS EXPLOITATION OF INSTRUMENTAL VARIABLE (IV) AND BACKDOOR CRITERION (BC)

Figure 6b depicts the directed graphical model we use to represent the necessary (conditional) independencies in this case.
In this graphical model, all paths between I and Û are blocked so I ⊥⊥ Û which is the distributional objective of the IV
case (§5.2). Furthermore, conditioning on (Z, I) blocks all paths between X and U hence X ⊥⊥ U |(I,Z). This is the
distributional objective in the BC case (§5.3), where the pair (I,Z) satisfies the backdoor criterion.
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