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Abstract001

The recent introduction of OpenAI’s o1/o3002
model represents a significant milestone in de-003
veloping strong reasoning capabilities in Large004
Language Models (LLMs). By introducing005
more computational budget during test-time,006
LLMs have the potential to explore more ac-007
curate and higher-quality solutions. However,008
such paradigms are primarily verified in do-009
mains that have well-defined criteria for re-010
sponses, such as coding and mathematics. In-011
spired by the success of this paradigm, we aim012
to bridge it to more subtle open-domain ques-013
tion answering. Specifically, we utilize search014
mechanisms such as Monte Carlo Tree Search015
(MCTS) for both policy model improvement016
and reward model improvement that achieve017
better performance in test-time scaling strate-018
gies. Our contributions are summarized in two019
folds: For the training phase, we demonstrate020
that our approach surpasses previous SOTA au-021
tomatic data annotation methods and various022
public instruction-tuning datasets, with fewer023
data points. This offers a more data-efficient024
solution for training robust models. For the025
inference phase, we utilize the intermediate val-026
ues collected during training data construction027
to train a process reward model called PRM+.028
This model employs a novel two-stage train-029
ing method to provide finer-grained guidance030
across the generation trajectory. This intro-031
duces no additional overhead during training032
data collection and further enhances perfor-033
mance by scaling test-time computation. Ex-034
perimental results show that our method can035
effectively improve the performance of both036
the policy model and the reward model.037

1 Introduction038

Large Language Models (LLMs) have made re-039

markable progress in recent years, demonstrating040

strong reasoning capabilities across a wide range041

of tasks (Guo et al., 2025; Team et al., 2025; Jaech042

et al., 2024; OpenAI et al., 2025). A key develop-043

ment in this area is the ability of LLMs to generate044

long Chains of Thought (CoT) (Wei et al., 2022). 045

This enables them to iteratively refine their outputs 046

and improve response quality (Madaan et al., 2024; 047

Qi et al., 2024). The process can be viewed as a 048

search over the space of possible reasoning trajec- 049

tories, where increased computational resources 050

during inference allow LLMs to explore more ac- 051

curate and higher-quality solutions (Zeng et al., 052

2024). 053

In addition to sequential self-refinement of their 054

own outputs, parallel decoding is another effective 055

strategy for scaling test-time computation. Previ- 056

ous work suggests that by simply applying repeated 057

sampling to the same question (Brown et al., 2024), 058

models can achieve relatively high performance. 059

Moreover, when combined with a well-learned 060

value function (Chen et al., 2024; Feng et al., 2023) 061

that provides fine-grained step-level supervision, 062

LLMs can navigate higher-quality reasoning paths 063

to solve complex problems. 064

Although the above-mentioned methods have 065

already proven highly effective in structured do- 066

mains such as mathematical reasoning (Wang et al., 067

2024a; Guan et al., 2025; Wang et al., 2024b; Muen- 068

nighoff et al., 2025) and code generation (Zhang 069

et al., 2024b; Chen et al., 2021; Jaech et al., 2024; 070

Li et al., 2022) where there are well-defined ground 071

truths, their applicability in open-domain tasks re- 072

mains underexplored. Unlike structured problems, 073

open-domain Question Answering (QA) lacks ex- 074

plicit correctness criteria, making it challenging 075

to systematically guide the search process toward 076

optimal responses. 077

To address this gap, our work explores whether 078

search-based methods can enhance open-domain 079

QA in both training and inference phases. We hy- 080

pothesize that guiding LLMs through a structured 081

search process can help identify high-quality re- 082

sponses, leading to more robust model training 083

and better inference-time generation. Specifically, 084

we propose leveraging Monte Carlo Tree Search 085
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Figure 1: Our pipeline for utilizing MCTS to search for higher-quality responses.

(MCTS) (Silver et al., 2016, 2017) to explore multi-086

ple generation paths and select those that maximize087

a reward model’s evaluation score. By treating088

generation as a search problem, we systematically089

improve the model’s ability to generate informative090

and well-grounded answers. Our approach com-091

prises two key phases: 1) the improvement of the092

policy model and 2) the improvement of the reward093

model.094

In the training phase, we employ MCTS to col-095

lect high-quality trajectories by selecting the best-096

scoring generation paths during searching. These097

paths are then used to construct a Supervised Fine-098

Tuning (SFT) dataset. Additionally, we create a099

Direct Preference Optimization (DPO) dataset by100

pairing the highest and lowest-scoring responses.101

This allows the model to learn preference-based102

refinements directly from the data. Compared to103

previous automatic data annotation methods and104

publicly available instruction-tuning datasets (Ding105

et al., 2023; Xu et al., 2024; Lambert et al., 2024),106

our approach identifies superior response trajecto-107

ries and achieves better downstream task perfor-108

mance using fewer data points. This leads to a109

more data-efficient training process overall.110

During the inference phase, we further enhance111

the policy model’s performance by introducing a112

Process Reward Model (PRM) to facilitate scalable113

test-time computation. Unlike conventional Out-114

come Reward Models (ORM), which evaluate only115

the final output, the PRM captures incremental im-116

provements in generation quality and provides a117

more structured mechanism for refining responses118

at each step. Notably, collecting data to train the119

PRM does not introduce additional computational120

overhead, as the intermediate values used as su-121

pervision signals are by-products of the training122

data collection process. Furthermore, we propose a123

two-stage training method to develop an enhanced124

version of the PRM, referred to as PRM+ in our 125

paper. Experimental results demonstrate that our 126

PRM+ outperforms various ORMs in scaled set- 127

tings, validating the effectiveness of process-based 128

supervision. 129

Our key contributions are as follows: 130

• We introduce a search-based data construc- 131

tion pipeline for open-domain QA, leveraging 132

MCTS to systematically explore and select 133

high-quality reasoning paths, which enhances 134

both the policy model and the reward model. 135

• We demonstrate that our search-guided SFT 136

and DPO data generation method outperforms 137

existing annotation approaches and other pub- 138

lic instruction-tuning datasets, while requiring 139

fewer data points. 140

• We propose a two-stage training strategy to 141

train our PRM+, which learns to provide 142

process-level rewards, and demonstrate its ef- 143

fectiveness compared to ORM and other pub- 144

lic PRM. 145

2 Related Work 146

Synthetic Data Generation The success of large 147

language models heavily relies on high-quality 148

data. Previous literature has demonstrated that 149

higher-quality data can significantly enhance the 150

performance of large language models (Zhou et al., 151

2023a; Ye et al., 2025). However, obtaining such 152

data often depends on human annotation, which 153

is costly and time-consuming. An alternative ap- 154

proach is synthetic data generation, which mim- 155

ics real-world applications and retains high qual- 156

ity (Liu et al., 2024b). For example, leverag- 157

ing language models to bootstrap and generate 158

more instructions and responses has proven effec- 159

tive (Wang et al., 2023; Sun et al., 2023; Ding 160
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et al., 2023). This success has been demonstrated161

across various domains, including coding (Luo162

et al., 2023b; Wei et al., 2024), mathematics (Luo163

et al., 2023a; Mitra et al., 2024), medical (Sun et al.,164

2024), and general domains (Xu et al., 2023; Taori165

et al., 2023). Our work falls into this category, uti-166

lizing search as a scalable and automatic method167

for synthetic data generation.168
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Figure 2: Illustration of data construction for training
policy and reward model.

Inference-Time Scaling Recent advancements169

such as OpenAI’s o1/o3 have sparked significant170

interest in scaling inference-time computation by171

generating more tokens before producing the fi-172

nal answer to enhance reasoning capabilities. This173

paradigm has inspired replication efforts within the174

community, including Deepseek R1 (Guo et al.,175

2025), Kimi 1.5 (Team et al., 2025), and oth-176

ers (Wang et al., 2024a; Zhang et al., 2024a).177

In contrast to sequential refinement strategies for178

scaling inference-time generation, another promis-179

ing approach is parallel decoding (Snell et al.,180

2024; Wu et al., 2024). By generating multiple181

sequences for additional attempts or incorporating182

value functions to guide the search, these methods183

also demonstrate strong potential for improving184

performance through increased generation budgets.185

However, most approaches have been validated186

in domains with well-defined supervision signals,187

leaving their effectiveness in open-domain settings188

unverified.189

Process Reward Model One of the key compo-190

nents for effectively scaling inference-time com-191

putation is the development of a reward model ca-192

pable of evaluating the quality of generated can-193

didates (Lee et al., 2023b; Ouyang et al., 2022).194

ORMs are widely adopted for this purpose. How-195

ever, a primary challenge with ORMs is their196

coarse-grained feedback, which can lead to situa-197

tions where, despite the final answer being correct,198

the solution paths may contain flaws. To address199

these limitations, process reward models have re-200

cently been developed. Currently, there are two201

primary annotation methods: 1) Human annotation, 202

which requires manually rating intermediate steps 203

of the solution paths, making it cost-intensive and 204

time-consuming (Lightman et al., 2023; Uesato 205

et al., 2022); and 2) Automatic annotation, which 206

includes methods such as Monte Carlo estimation 207

to construct stepwise supervision signals (Luo et al., 208

2024; Wang et al., 2024b), leveraging LLM-as-a- 209

Judge to generate signals (Zhang et al., 2025), or de- 210

riving signals from outcome-based feedback (Yuan 211

et al., 2024). Despite the significant progress and 212

potential of these methods, they have primarily 213

been validated in mathematical domains. In this 214

work, we aim to explore the effectiveness of this 215

paradigm in open-domain settings, which present 216

more subtle optimization challenges. 217

3 Methodology 218

In this section, we first present the problem for- 219

mulation, notation, and primary objective of our 220

paper in Section 3.1. Following this, we detail our 221

methodology for curating SFT datasets and DPO 222

datasets to optimize the policy model in Section 3.2. 223

Afterwards, we outline the data curation and train- 224

ing process for our PRM+, which is designed to 225

explore inference-time scaling, in Section 3.3. We 226

defer the details of the search algorithm employed 227

in our work to Appendix A. 228

3.1 Problem Formulation 229

Following Hao et al. (2023), we formulate natural 230

language generation as a Markov Decision Process 231

(MDP), where an LLM acts as a policy generating 232

responses step by step. The MDP consists of the 233

following. 234

• State Space (S): Each state st represents a 235

partially generated sequence. 236

• Action Space (A): The action at consists of 237

generating a phrase, defined as a sequence of 238

tokens that either (i) ends with the paragraph 239

delimiter (“\n\n”) or (ii) reaches the end of the 240

response. Each phrase is sampled from the 241

policy model πθ (an LLM), such that: 242

at ∼ πθ(st) (1) 243

where θ is the parameter of the policy model. 244

• Transition Function (T ): The transition is 245

deterministic, appending at to st. 246
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st+1 = T (st, at) = Append(st, at) (2)247

• Reward Function (R): An off-the-shelf re-248

ward model is used to assign a scalar score rf249

to the final sequence, such that:250

rf = R(sT ) = R(

sT︷ ︸︸ ︷
s1︷ ︸︸ ︷

[s0, a0, a1 · · · aT ]) ∈ R
(3)251

By formulating natural language generation as252

above, our objective can be summarized as two253

folds; 1) Optimizing the policy model πθ that earns254

the maximum expected reward across the policy255

model training dataset Dpolicy:256

argmax
θ

Ex∼Dpolicy,τ ′∼πθ(τ |x)rf
(
τ ′
)

(4)257

where θ is the parameter of the policy model.258

2) Optimizing the reward model (value function)259

Vϕ that can accurately estimate the expected reward260

at state st across the reward model training dataset261

Dreward. This can be written as follows.262

argmin
ϕ

Ex∼Dreward,τ
′∼πθ(τ |x)

[
T∑

t=0

(
Vϕ

(
τ ′
t

)
−Q

(
τ ′
t

))2]
(5)263

where ϕ is the parameter of the reward model264

and Q(τ ′t) is the actual expected reward of the in-265

termediate reward of trajectory τ at step t.266
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Figure 3: Architecture of our PRM+.

3.2 Policy Model Data Curation and Training 267

Our data curation method for enhancing the policy 268

model’s capabilities consists of two parts: 1)SFT 269

data curation and 2) DPO data curation. As illus- 270

trated in Figure 1 and Figure 2, our full pipeline 271

for data collection begins with generating a batch 272

of initial rollouts given an instruction. Each rollout 273

is then scored using an existing reward model. Fol- 274

lowing this, an MCTS process is carried out until 275

a path with a reward greater than a threshold (By 276

default, 1.3×Initial Maximal Score), or the maxi- 277

mum iteration limit is reached. Upon completing 278

the search tree, we construct the SFT and DPO 279

datasets. Further details of the collection process 280

are provided in Algorithm 1. 281

3.3 Process Reward Model Data Curation and 282

Training 283

In this section, we detail the process of collecting 284

training data for the PRM and outline the train- 285

ing procedure. Previous approaches for automatic 286

annotation of the process-level supervision sig- 287

nal have used MC estimation as the training sig- 288

nal (Wang et al., 2024b). In MC estimation, the 289

reward is propagated backwards from the final re- 290

ward, providing an estimate of the expected future 291

reward. This reflects the likelihood of reaching a 292

high-quality solution from a given state. 293

While using MC estimation as a training signal 294

is a reasonable approach, we demonstrate in this 295

paper that relying solely on this future reward es- 296

timation introduces noisy signals, consistent with 297

the findings in Zhang et al. (2025). To mitigate 298

this issue, we propose a complementary training 299

signal, the cumulative reward, which offers a more 300

stable and intuitive signal. The cumulative reward 301

assigns a portion of the total reward to each step 302

by evenly distributing the total reward across all 303

steps. This ensures that the reward for each step 304

reflects the cumulative progress made toward the 305

final goal. 306

3.3.1 MC Estimation Synthetic 307

In order to construct the MC estimation dataset 308

DPRM-MC, we utilize the structure of the process 309

at each step of the trajectory.Specifically, for each 310

node that has children, we include the child with 311

the highest and lowest MC estimation, calculated 312

using Equation 11, along with its historical con- 313

text into DPRM-MC. Further details are provided in 314

Algorithm 2. 315
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Base LLM = Llama-3.1-8B-Base Generator Quantity
AlpacaEval 2 Arena-Hard Avg.

LC (%) WR (%) SD WR(%) WR(%)

SFT +Open Platypus (Lee et al., 2023a) Mixed 25K 3.33 3.35 0.53 4.1 2.2
+OpenHermes 2.5 (Teknium, 2023) Mixed 1M 7.20 5.37 0.69 5.0 5.2
+SlimOrca (Lian et al., 2023) GPT-4 518K 4.60 3.66 0.57 2.4 3.0
+UltraChat (Ding et al., 2023) GPT-3.5-Turbo 208K 6.69 4.49 0.66 2.6 3.5
+Tulu V3 Mix (Lambert et al., 2024) $ Mixed 940K 11.36 8.28 0.85 15.4 11.8

+ DPO +Tulu V3 Mix-DPO Mixed 273K 33.63 36.08 1.42 48.7 42.8
SFT +Magpie-Air (Xu et al., 2024) $ Llama-3-8B-Instruct 300K 22.66 23.99 1.24 14.9 19.4

+ DPO +Magpie-Air-DPO Llama-3-8B-Instruct 100K 45.48 50.43 1.48 35.9 43.2
SFT +Magpie-Pro (Xu et al., 2024) $ Llama-3-70B-Instruct 300K 25.08 29.47 1.35 18.9 24.2

+ DPO +Magpie-Pro-DPO Llama-3-70B-Instruct 100K 50.10 53.53 1.45 35.7 44.6

SFT +OURS-Greedy Llama-3.1-8B-Instruct 78K 19.53 17.81 1.18 18.1 18.0
+OURS-BON Llama-3.1-8B-Instruct 78K 21.93 20.49 1.21 22.9 21.7
+OURS-MCTS $ Llama-3.1-8B-Instruct 78K 23.05 25.03 1.28 25.9 25.5

+ DPO +OURS-DPO Llama-3.1-8B-Instruct 55K 49.70 54.52 1.45 40.4 47.5

Llama-3.1-8B-Instruct (SFT+DPO) - >10M 22.92 22.57 1.26 20.6 21.6
Llama-3.1-70B-Instruct (SFT+DPO) - >10M 38.10 39.10 1.39 55.7 47.4

Table 1: The table compares the policy model based on Llama-3.1-8B-base trained on our datasets against baseline
datasets. Mixed indicates that the dataset is annotated by more than one LLM (including human annotation).
Numbers in Bold signify that they surpass the previous state-of-the-art (SOTA) results shown in Underline, which
were achieved by a model of comparable size. Furthermore, by utilizing significantly fewer data points, our model
outperforms the officially aligned model Llama-3.1-8B-Instruct and even achieves results comparable to the much
larger Llama-3.1-70B-Instruct .

3.3.2 Cumulative Reward Synthetic316

For the construction of the cumulative reward317

dataset DPRM-CR, we aim to assign a portion of318

the total reward to each step in the trajectory. For-319

mally, we define the cumulative reward at step t in320

a trajectory as:321

rcumulative
t =

rf

T
(6)322

where T represents the total number of steps323

in the trajectory, and t denotes the current step.324

This reward is uniformly assigned to each step.325

It is worth noting that other potential distribution326

methods exist, and we aim to explore these further327

in future work.328

3.3.3 Synergy of Two Intermediate Signals329

For each response, both values are predicted at330

each step. However, these dual-dimensional out-331

puts need to be aggregated into a single scalar for332

comparing test examples. A straightforward ap-333

proach is to manually design coefficients for the334

two values. However, this method is rigid and335

lacks generalization. In our paper, we instead train336

a gating network to synergize the two intermediate337

signals, inspired by the Mixture of Experts (MoE)338

architecture (Guo et al., 2025). The gating network339

takes as input the features extracted from the model340

πθ and outputs a set of gating coefficients, which341

are then multiplied by the respective reward sig-342

nals. This results in a composite reward, which343

is further used to calculate the final scalar score344

RPRM for a given response. The combined reward 345

is represented as: 346

RPRM =
T∑
t=0

2∑
i=1

gΨ,i (πθ(xt)) · r′i,t (7) 347

where r′i,t is the intermediate signal in step t, and 348

gψ denotes the gating function that determines the 349

weighting of each signal. 350

In this stage, we optimize our system using the 351

Bradley-Terry loss. This loss function is well- 352

suited for pairwise comparisons and allows the 353

model to learn the optimal combination of the two 354

reward signals. The objective is to minimize the 355

following: 356

min
ϕ,ψ

E
[
− log σ

(
RPRM_Chosen −RPRM_Rejected

)]
(8) 357

where RPRM_Chosen and RPRM_Rejected are the 358

preference scores for the chosen and rejected re- 359

sponses in each pairwise comparison. This training 360

procedure enables the model to effectively combine 361

the two reward signals and optimize for distinguish- 362

ing the most superior response. 363

4 Experiments 364

4.1 Policy Model Training Setup 365

Data Curation for Policy Model During the 366

MCTS process, we employ LLaMA-3.1-8B- 367

Instruct as the policy model to generate responses 368
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Figure 4: Scaling inference-time experiments based on ours-Llama-3.1-8B. Left: Comparison of PRM+ with
existing ORM. Right: Comparison of PRM+ with PRM (only MC estimation) and PRM (only cumulative reward).

and utilize Skywork-Gemma-2-27B (Liu et al.,369

2024a) as the reward model to score the final ter-370

minated response. We set the default parameters371

as follows: temperature at 1.0, top-k at 30, branch372

factor at 16, and a maximum iteration limit of 20373

during the search. For the SFT dataset construction,374

we randomly sample instructions from Infinity In-375

struct (BAAI, 2024) to form the initial pool. It is376

important to note that we do not use the original an-377

swers provided in the dataset. Detailed information378

on data statistics can be found in Appendix B. For379

the DPO dataset construction, we randomly sample380

instructions from Magpie-Pro (Xu et al., 2024) and381

follow Algorithm 1 to create the paired data. In382

total, this process results in 78K data points for383

SFT and 55K data points for DPO.384

Training Details for Policy Model Our default385

training hyperparameters is as follows: for SFT, we386

set the learning rate as 2e-5; for DPO, we set the387

learning rate as 1e-6 and β as 0.01. Details for the388

implementation are shown in Appendix C.389

Policy Evaluation We primarily evaluate the per-390

formance of our trained models using two widely391

adopted instruction-following benchmarks: Al-392

pacaEval2 and Arena-Hard. The main metric for393

these benchmarks is the win rate (WR), which cal-394

culates the fraction of responses favored by the395

GPT evaluator. Additionally, AlpacaEval2 employs396

a Length-Controlled win rate (LC) to mitigate the397

influence of response length. Furthermore, we com-398

pare our model’s performance on a broader range399

of benchmarks, including those focused on code400

and math. For detailed descriptions of the bench-401

marks and additional experimental results, please402

refer to Appendix E and Appendix D.403

Baseline Comparison It is intuitive to compare 404

models trained on our dataset with those trained 405

on open-source instruction datasets. Competitors 406

include Open Platypus (Lee et al., 2023a), Open- 407

Hermes 2.5 (Teknium, 2023), SlimOrca (Lian 408

et al., 2023) and Tulu V3 Mix (Lambert et al., 409

2024). Additionally, since our dataset is generated 410

by searching over responses produced by Llama- 411

3.1-8B-Instruct, we also include comparisons with 412

two strong baselines: 1) model trained on the 413

greedy decoding response, referred to as Ours- 414

Greedy, and 2) model trained on the response with 415

the highest reward from the initial rollout (as de- 416

scribed in Algorithm 1), which we call OURS-BoN. 417

For preference optimization, we compare our re- 418

sults with various open-source paired instruction 419

datasets, including Magpie-Air, Magpie-Pro (Xu 420

et al., 2024), and Tulu V3 Mix-DPO (Lambert 421

et al., 2024). 422

4.2 Process Reward Model Training Setup 423

Experimental Details For training the process 424

reward model, we employ a two-stage training 425

method as outlined in Section 3.3. In the first stage, 426

we use the same proportion of Infinity Instruct data 427

that was utilized for SFT of the model. For each 428

instruction in this dataset, we collect training data 429

that includes step-wise responses along with their 430

corresponding MC estimation and cumulative re- 431

ward, as detailed in Algorithm 2. To model the 432

dual intermediate values, we attach a linear regres- 433

sion layer ω ∈ Rd×2 on top of a pretrained LLM. 434

This layer takes as input a d-dimensional feature at 435

the position of each delimiter (“\n\n”) for different 436

steps and uses the mean squared error (MSE) loss 437

to fit both values. The learning rate is set to 2e-5 438

during this stage. For the second stage of train- 439

ing, we attach a shallow Multi-Layer Perceptron 440
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Figure 5: Inference-time scaling experiments based on different policy models. Left for Llama-3.2-1B. Left
Middle for Llama-3.2-3B. Right Middle for Qwen-2.5-3B. Right for Qwen-2.5-7B.The results demonstrated the
generalizability of our PRM+.

(MLP) with three fully-connected layers on top of441

the same pretrained LLM. This MLP takes as input442

a d-dimensional feature at the position of each de-443

limiter (“\n\n”) for different steps and outputs the444

coefficients as shown in Equation 7. During this445

stage, we use UltraFeedback (Cui et al., 2023) as446

the training dataset, with a learning rate of 2e-5 and447

train for one epoch. A brief illustration of the im-448

plementation architecture is provided in Figure 3.449

By default, we use Qwen-2.5-7B-Instruct as the450

backbone model.451

Base LLM
AlpacaEval 2 Arena-Hard

LC (%) WR (%) SD WR(%)

Llama-3.2-3B-Base 32.10 41.59 1.44 22.2
Llama-3.2-1B-Base 8.26 13.69 0.99 5.5

Llama-3.2-3B-instruct 19.75 20.46 1.20 14.9
Llama-3.2-1B-instruct 8.18 9.34 0.88 5.1

Qwen-2.5-7B-Base 48.69 52.99 1.45 45.7
Qwen-2.5-3B-Base 38.31 43.70 1.46 33.7

Qwen-2.5-7B-instruct 29.74 30.06 1.37 52.0
Qwen-2.5-3B-instruct 18.15 19.97 1.20 27.3

Table 2: The table demonstrates that our curated datasets
also achieve significant improvements across mod-
els of different sizes and series, outperforming their
officially instruction-tuned version .

PRM Evaluation We primarily evaluate our452

PRM+ in two scaling scenarios: 1) Best-of-N453

(BoN) Verification and 2) Guided Decoding. For454

the BoN scenario, we set the temperature to 0.7455

and top-k to 30 to generate diverse responses. We456

then use either a PRM or an ORM to assign a score457

to each response, selecting the highest-scoring re-458

sponse as the final answer. In this setting, we com-459

pare our trained PRM+ with ORM trained on var-460

ious datasets, including Infinity Instruct, Magpie,461

and UltraFeedback. For the guided decoding sce-462

nario, we adopt a beam search decoding approach.463

At each step, we generate Beamwidth candidate464

partial responses and use a PRM to score these465

candidates, retaining the top-k candidates for fur- 466

ther generation. Since ORM cannot score partial 467

responses, we compare our PRM+ with the open- 468

source Skywork-o1-PRM1 and vanilla beam search, 469

where the score of each candidate is determined by 470

prior probability rather than a reward model. 471

4.3 Policy Model Results 472

Models Trained on Our Curated Datasets Show 473

Superior Performance In Table 1, we compare 474

the performance of the LLaMA-3.1-8B Base model 475

trained on our dataset and on other public instruc- 476

tion tuning datasets. The results show that our 477

method shows drastic improvement compared with 478

other datasets in both AlpacaEval2 and Arena- 479

Hard benchmarks by utilizing far fewer data points, 480

showing the superiority of our curated dataset. An- 481

other highlight is that our dataset is generated 482

by a relatively small size model LLaMA-3.1-8B- 483

Instruct, set apart it from other instruction tuning 484

data like Tulu V3 Mix that gather instances that 485

come from much larger generation models such as 486

gpt4 or even human-annotated responses. Addition- 487

ally, with DPO techniques, our models’ capability 488

can be further enhanced, and even surpass the in- 489

struction versions of Llama-3.1-8B and Llama-3.1- 490

70B that are trained by using millions of instruction 491

tuning datasets. We also show additional results 492

on more benchmark in Appendix D demonstrat- 493

ing that our method does not only surpass baseline 494

models on subjective evaluation but also on various 495

tasks such as expertise knowledge, mathematics, 496

and code domain. 497

MCTS Searched Response is of Higher Qual- 498

ity than BoN and Greedy Another observation 499

is that responses generated through MCTS-based 500

searching are of higher quality compared to those 501

1https://huggingface.co/Skywork/
Skywork-o1-Open-PRM-Qwen-2.5-7B
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Figure 6: Beam search experiments. Left: Comparison of ours PRM+ with public PRM and vanilla beam search.
Middle: Distribution of average cosine similarity across all instances. Right: Instances-wise average cosine
similarity (PRM+ (BW4) vs Vanilla (BW4)) .

from BoN and greedy decoding. This is evi-502

denced by the second row of Table 1, which shows503

that models trained on MCTS-searched responses504

achieve superior performance. Additionally, fur-505

ther analysis in Appendix B suggests that MCTS-506

searched responses exhibit 1) higher quality and 2)507

greater diversity.508

Our Curated Dataset Shows Positive Effect on509

Different Models Table 2 demonstrates that our510

dataset also exhibits significant effectiveness when511

applied to models of different sizes and families.512

For instance, on AlpacaEval2, when trained on513

Llama-3.2-3B, it achieves a 12% absolute improve-514

ment compared to its instruction-version counter-515

part, while training on Qwen-2.5-7B results in an516

18% absolute improvement over its instruction-517

version counterpart.518

4.4 Inference-Time Scaling519

In this section, we move forward to test the model’s520

inference-time scaling ability under two scenario521

as introduced in Section 4.2. We summarize our522

findings as follows.523

Best-of-N Verification As illustrated in the left524

panel of Figure 4, we increase the generation bud-525

get from 1 (20) to 16 (24) and use both PRM and526

ORM to score the candidates. We demonstrate that527

our PRM+ shows a clear scaling trend as the gen-528

eration budget increases, while ORM struggles to529

exhibit a similar trend. Additionally, compared to530

ORMs trained on various datasets, our PRM+ con-531

sistently outperforms them across different budgets,532

highlighting the effectiveness of PRM+. Moreover,533

we show the necessity of incorporating both the534

MC estimation head and the cumulative reward535

head in our model. The right panel of Figure 4536

indicates that neither single head’s prediction can537

surpass PRM+. This suggests that combining both538

heads is essential for achieving optimal perfor- 539

mance, thereby validating the effectiveness of our 540

architectural design. The combination of PRM+ 541

verification results across different models is de- 542

picted in Figure 5. We observe a similar trend, 543

with PRM+ consistently demonstrating superior 544

performance. 545

Guided Decoding In Figure 6, we compare the 546

scaling effects of our PRM+, the publicly available 547

Skywork-o1-PRM, and the vanilla beam decoding 548

strategy. Our results show that domain-specific 549

PRMs, such as Skywork-o1-PRM, underperform 550

compared to our PRM+ due to the domain gap. 551

This highlights the necessity of developing effec- 552

tive PRMs for open-domain tasks, which are rarely 553

addressed in the current literature. Another key 554

finding is that vanilla beam search, which relies 555

on prior probability to select candidates, fails to 556

exhibit scaling performance as the beam width 557

increases. We attribute this to the lack of diver- 558

sity among the selected candidates. This is sup- 559

ported by the middle and right panels of Figure 6, 560

where we plot the average cosine similarity and 561

per-instance cosine similarity, respectively. The 562

results indicate that vanilla beam search leads to 563

more homogeneous candidates, thereby reducing 564

performance in scaled settings. This aligns with 565

the findings in Chen et al. (2024). 566

5 Conclusion 567

In this paper, we introduce a search-based method 568

to enhance both policy and reward models for open- 569

domain QA. Our approach achieves data-efficient 570

training, outperforming previous SOTA data syn- 571

thetic methods while requiring fewer data points. 572

Additionally, we propose a two-stage training strat- 573

egy to build PRM+ which demonstrates a superior 574

scaling trend as computation increases during in- 575

ference. 576
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6 Limitations577

Although we conduct extensive experiments to578

demonstrate the effectiveness of search-based meth-579

ods in enhancing both policy models and reward580

models, our work has several limitations. First, due581

to the additional computational burden introduced582

by the search process, we do not scale our construc-583

tion to a massive dataset. Even though our method584

outperforms various counterparts that use signifi-585

cantly more data points, there remains a trade-off586

between quality and quantity that needs to be ex-587

plored in future work. Second, our approach lacks588

interpretability in intermediate annotations. While589

our work pioneers a novel method for improving590

the training of process reward models, resulting591

in the PRM+ presented in this paper (especially592

in the open-domain scenario), the automatically593

generated annotations, similar to those in previous594

literature (Wang et al., 2024b), are inevitably noisy595

and lack interpretability. Future work could focus596

on incorporating human annotations with automatic597

annotations to address this issue.598
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A Search Algorithm: Monte Carlo Tree931

Search932

To refine response generation, we apply Monte933

Carlo Tree Search (MCTS), iteratively improving934

candidate solutions. MCTS consists of:935

Selection At each step, we select the action that936

maximizes the UCT score (Kocsis et al., 2006):937

U(s, a) = Q(s, a) + c

√
lnN(s)

N(s, a)
(9)938

where Q(s, a) is the estimated reward for taking939

action a in state s. N(s) is the total count of visits940

to state s. N(s, a) is the count of visits for action941

a at state s. c is an exploration constant.942

Expansion If an action a has not been explored,943

we expand a new node s′ by sampling the next944

action using the policy model πθ, where the cur-945

rent state s serves as input to the policy. The pol-946

icy model then generates the next action a, which947

is terminated when the sequence reaches a para-948

graph delimiter (‘\n\n‘) or the end-of-sequence to-949

ken ‘<eos>‘.950

Simulation From the newly expanded state s′,951

the policy model generates the complete response952

by continuing to the sample actions. The pro-953

cess continues until the model generates the954

‘<eos>‘ token, indicating the end of the se-955

quence. The complete sequence’s reward Q(sT ) =956

Q(T (sT-1, aT-1)) = rf is then scored using the957

Equation 3.958

Backpropagation Once the simulation is com-959

pleted and a final reward is obtained, the estimated960

reward Q(s, a) and the visit count N(s, a) for the961

current state action pair are updated with the re-962

ward from the simulated sequence. Afterwards, an963

update will propagated upward through the tree964

utill reaching the root node as follows.965

N(s, a)← N(s, a) + 1 (10)966

Q(s, a) =
1

|C(s, a)|
∑

s′∈C(s,a)

Q(s′, a′) (11)967

where C(s, a) represents the set of child nodes968

of node s.969

B Dataset Statistics 970

B.1 Category Analysis 971

In this section, we present statistics for the curated 972

datasets used in this study. Our dataset is designed 973

to cover a wide range of cognitive and technical 974

abilities, comprising a comprehensive collection of 975

data points that reflect various categories, including 976

problem-solving, logical reasoning, programming 977

ability, and more. The overall distribution of these 978

categories is shown in Figure 7a. 979

While the coarse categories provide a useful 980

high-level perspective, the fine-grained ability anal- 981

ysis offers a deeper dive into specific skills and 982

knowledge areas. This detailed analysis enables a 983

more nuanced understanding of individual abilities 984

and their contributions to the broader categories. 985

For instance, within the Problem Solving category, 986

the fine-grained analysis reveals distinct abilities 987

such as Logical Reasoning (13.8%) and Analytical 988

Reasoning (1.46%), each contributing uniquely to 989

the overall problem-solving capability. The fine- 990

grained ability analysis is depicted in Figure 7b. 991

B.2 Quality Analysis 992

In this section, we evaluate the quality of our gen- 993

erated dataset and compare it with the baseline 994

datasets introduced in Section 4.1. Specifically, we 995

assess the performance of three variants: Ours- 996

MCTS, Ours-BoN, and Ours-Greedy. The re- 997

ward scores are computed using Skywork-Gemma- 998

2-27B. The results are shown in Figure 8. 999

The reward distributions for all three datasets 1000

follow a normal distribution, with the majority of 1001

instances receiving mid-range rewards. The reward 1002

values are generally scattered between -10 and 20. 1003

An obvious distribution shift is observed, indicating 1004

that the quality of the datasets follows the order: 1005

MCTS > BoN > Greedy, as expected. 1006

B.3 Diversity Analysis 1007

In this section, we analyze the diversity of our three 1008

datasets using 2-gram statistics as our primary tool. 1009

Specifically, we sample 5,000 instances from each 1010

dataset and compute their 2-gram statistics. The 1011

absolute and relative frequencies are plotted in Fig- 1012

ure 9. 1013

We observe that the MCTS dataset has the most 1014

uniform 2-gram distribution, followed by BoN and 1015

then Greedy. A more uniform distribution implies 1016

greater diversity, as answers are less concentrated 1017
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(a) Category analysis of our dataset. (b) Ability analysis of our dataset.

in specific patterns, resulting in a longer tail distri-1018

bution.1019

Additionally, we conduct quantitative analysis1020

by calculating the entropy (Shannon, 1948) and1021

Gini coefficient (Dorfman, 1979), as shown in1022

Equations 12 and 13, respectively.1023

• Entropy: Higher entropy indicates a more1024

uniform distribution, meaning probabilities1025

are spread more evenly across different cate-1026

gories (e.g., n-grams in responses), suggesting1027

greater diversity.1028

• Gini Coefficient: Lower Gini coefficient in-1029

dicates a more equal distribution, meaning1030

no single category dominates, also suggesting1031

greater diversity.1032

Thus, a combination of higher entropy and lower1033

Gini coefficient indicates a more diverse distribu-1034

tion. The results are summarized in Table 3, show-1035

ing that the diversity ranking is MCTS > BoN >1036

Greedy.1037
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Figure 8: Reward distribution of three SFT datasets.

Entropy = −
N∑
i=1

pi log2 pi (12) 1038

Gini =

∑n
i=1

∑n
j=1 |pi − pj |

2n
∑n

i=1 pi
(13) 1039

where pi is the frequency of the ith 2-gram and 1040

n is the total number of the 2-gram. 1041

Dataset Config Entropy (↑) Gini (↓)

MCTS 0.19 0.28
BoN 0.17 0.29

Greedy 0.17 0.32

Table 3: Entropy and Gini of the three datasets.

C More Implementation Details 1042

We implement our policy model training 1043

using the default trainer from Hugging 1044

Face’s Transformers toolkit (Wolf et al., 1045

2020). For reward model training, we use 1046

the RewardTrainer and load the model from 1047

AutoCausalLMwithValueHEAD in Hugging Face’s 1048

trl toolkit (Wolf et al., 2020). We modify the 1049

code to add an additional value head and a gating 1050

network to support training our PRM+. All models 1051

are trained on an 8× 80GB NVIDIA H800 server. 1052

We employ full-parameter fine-tuning with the 1053

DeepSpeed ZeRO-2 configuration (Rasley et al., 1054

2020) to optimize GPU memory utilization. A 1055

cosine learning rate scheduler is enabled, along 1056

with a default warmup period of 0.01 of the total 1057

training steps. All instances are truncated to a 1058

maximum length of 2048 tokens. For training, we 1059

set the per-device batch size to 2 and the gradient 1060
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accumulation steps to 4, resulting in a total batch1061

size of 2× 4× 8 (devices) = 64. During inference,1062

we utilize vLLM (Kwon et al., 2023) to accelerate1063

text generation.1064

D Additional Experiment Results1065

In this section, we present the additional perfor-1066

mance of models fine-tuned on our dataset, as1067

well as various instruction tuning datasets based1068

on Llama-3.1-Base. The additional results cover1069

a wide range of capabilities, including expertise1070

knowledge, mathematics, and coding. The results1071

are shown in Table 4. Notably, our model per-1072

forms well across these benchmarks, surpassing1073

OpenHermes 2.5, which contains 1 million data1074

points—nearly 13 times the size of our dataset. Ad-1075

ditionally, our model outperforms the Mapie series1076

in several tasks. These results demonstrate the ef-1077

fectiveness, generalizability, and adaptability of our1078

dataset curation method.1079

E Details About Evaluations1080

Below is a brief introduction to each task.1081

• AlpacaEval 2 (Li et al., 2023) is an evaluation1082

system for LLMs that includes 805 represen-1083

tative instructions derived from real user in-1084

teractions. It features a leaderboard that uses1085

GPT-4-1106-preview as a judge to automati-1086

cally evaluate and compare model responses.1087

• Arena-Hard (Li et al., 2024) is a high-quality1088

benchmark, consisting of 500 challenging1089

prompts, designed for evaluating LLMs. It has1090

key features that robustly differentiate model1091

capabilities and reflect human preferences in1092

real-world use cases.1093

• GPQA (Rein et al., 2024) is a dataset of 4481094

difficult multiple-choice questions in biology,1095

physics, and chemistry, created by experts.1096

PhD-level experts have 65% accuracy, while1097

skilled non-experts score 34%, even with web1098

access.1099

• IFEval (Zhou et al., 2023b) offers 541 verified1100

instructions tailored for code-based evaluation.1101

These instructions encompass 25 distinct veri-1102

fiable types, featuring tasks such as Keyword1103

Frequency and Word Count.1104

• GSM8K (Cobbe et al., 2021) provides 8,7901105

(Train: 7,470; Test: 1,320) high-quality, lin-1106

guistically diverse grade school math word1107

problems to diagnose the shortcomings of cur- 1108

rent language models in multi-step mathemat- 1109

ical reasoning. 1110

• Math (Hendrycks et al., 2021) consists 12,500 1111

(Train: 7500; Test: 5000) tough competition 1112

math problems. A subject’s problems can vary 1113

in difficulty levels, ranging from ‘1’ to ‘5’. 1114

Each problem includes a step-by-step solu- 1115

tion. 1116

• HumanEval (Chen et al., 2021) is a dataset 1117

designed to evaluate the code generation abili- 1118

ties of LLMs. Its purpose is to assess the func- 1119

tional accuracy of programs generated from 1120

docstrings. The dataset includes 164 unique 1121

programming challenges that test language 1122

understanding, algorithms, and fundamental 1123

mathematics. 1124

• MBPP (Austin et al., 2021) is composed of 1125

974 Python programming challenges sourced 1126

from the community, crafted to be achievable 1127

by beginner programmers and covering essen- 1128

tials such as programming fundamentals and 1129

standard library functions. Each challenge in- 1130

cludes a task description, a code solution, and 1131

three automated test cases. 1132
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Base LLM = Llama-3.1-8B-Base GPQA IFEval GSM8K Math HumanEval+ MBPP+ Avg.

Open Platypus 27.2 45.0 35.2 15.5 18.9 36.0 29.6
OpenHermes 2.5 29.7 53.0 69.5 18.6 35.4 36.8 40.5
SlimOrca 27.9 37.1 57.2 9.8 22.6 24.1 29.8
UltraChat 27.9 49.6 46.9 13.9 25.6 32.3 32.7
Tulu V3 Mix (subsampled 78K) 27.2 68.7 54.1 18.6 34.8 39.9 40.6
Magpie-Pro-SFT 27.0 52.0 34.3 4.2 36.0 36.8 31.7
Magpie-Air-SFT 25.6 57.1 28.2 8.8 33.5 38.6 32.0

OURS-MCTS 28.8 65.1 59.1 20.4 40.9 42.1 42.7

Table 4: The comparisons between our model and the baselines on different tasks.
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Figure 9: We sample 5,000 instructions in our SFT datasets (MCTS, BoN, Greedy) and compare the diverse 2-gram
(Top-100). A more uniform distribution means that the dataset is more diverse and not concentrate to a specific
pattern.
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Algorithm 1 MCTS-Based Data Curation for SFT and DPO
Require: Dataset D, Reward Model R, Max Iterations T , Score Threshold Sthresh
Ensure: SFT Dataset DSFT, DPO Dataset DDPO Set t← 0, DSFT ← ∅, DDPO ← ∅

1: for each di ∈ D do
2: Initialize search tree T
3: Rollout: Generate initial candidate answers {ai} for di
4: Evaluate each answer: si ← R(ai)
5: Set a∗ ← argmaxai si and Sbest ← max si
6: Store lowest-scoring answer aworst ← argminai si
7: while t < T and Sbest < Sthresh do
8: Selection: Traverse T using a selection policy (e.g., UCT)
9: Expansion: Expand a new node by adding a set of new candidate answers

10: Simulation: Generate and evaluate answer a′ with reward s′ = R(a′)
11: if s′ > Sbest then
12: Sbest ← s′, a∗ ← a′

13: end if
14: Backpropagation: Update MC estimations along the path
15: t← t+ 1
16: end while
17: DDPO ← DDPO ∪ {(di, a∗, aworst)}
18: DSFT ← DSFT ∪ {(di, a∗)}
19: end for
20: return DSFT,DDPO

Algorithm 2 PRM Data Collection from MCTS Searched Trees Tall

Require: All Searched trees Tall in Dataset D
Ensure: PRM(MC estimation) Dataset DPRM-MC, PRM(Cumulative Reward) Dataset DPRM-CR

1: Initialize DPRM-MC ← ∅, DPRM-CR ← ∅
2: for each Ti in Tall do
3: for each node n ∈ T do
4: Let C(n) be the set of child nodes of n
5: if C(n) ̸= ∅ then
6: Identify child with highest MC estimation: amax ← argmaxa∈C(n) MC(a)
7: Identify child with lowest MC estimation: amin ← argmina∈C(n) MC(a)
8: DPRM-MC ← DPRM-MC ∪ {(amax,MC(amax))} ∪ {(amin,MC(amin))} ▷ DPRM-MC

collection
9: end if

10: Identify trajectory τmax and τmin with their corresponding cumulative reward calculated by
Equation 6

11: DPRM-CR ← DPRM-CR ∪ {(τmax,CR(τmax))} ∪ {(τmin,CR(τmin))} ▷ DPRM-CR collection
12: end for
13: end for
14: return DPRM-MC, DPRM-CR
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