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Abstract

The recent introduction of OpenAI’s ol/03
model represents a significant milestone in de-
veloping strong reasoning capabilities in Large
Language Models (LLMs). By introducing
more computational budget during test-time,
LLMs have the potential to explore more ac-
curate and higher-quality solutions. However,
such paradigms are primarily verified in do-
mains that have well-defined criteria for re-
sponses, such as coding and mathematics. In-
spired by the success of this paradigm, we aim
to bridge it to more subtle open-domain ques-
tion answering. Specifically, we utilize search
mechanisms such as Monte Carlo Tree Search
(MCTS) for both policy model improvement
and reward model improvement that achieve
better performance in test-time scaling strate-
gies. Our contributions are summarized in two
folds: For the training phase, we demonstrate
that our approach surpasses previous SOTA au-
tomatic data annotation methods and various
public instruction-tuning datasets, with fewer
data points. This offers a more data-efficient
solution for training robust models. For the
inference phase, we utilize the intermediate val-
ues collected during training data construction
to train a process reward model called PRM+.
This model employs a novel two-stage train-
ing method to provide finer-grained guidance
across the generation trajectory. This intro-
duces no additional overhead during training
data collection and further enhances perfor-
mance by scaling test-time computation. Ex-
perimental results show that our method can
effectively improve the performance of both
the policy model and the reward model.

1 Introduction

Large Language Models (LLMs) have made re-
markable progress in recent years, demonstrating
strong reasoning capabilities across a wide range
of tasks (Guo et al., 2025; Team et al., 2025; Jaech
et al., 2024; OpenAl et al., 2025). A key develop-
ment in this area is the ability of LLMs to generate

long Chains of Thought (CoT) (Wei et al., 2022).
This enables them to iteratively refine their outputs
and improve response quality (Madaan et al., 2024;
Qi et al., 2024). The process can be viewed as a
search over the space of possible reasoning trajec-
tories, where increased computational resources
during inference allow LLMs to explore more ac-
curate and higher-quality solutions (Zeng et al.,
2024).

In addition to sequential self-refinement of their
own outputs, parallel decoding is another effective
strategy for scaling test-time computation. Previ-
ous work suggests that by simply applying repeated
sampling to the same question (Brown et al., 2024),
models can achieve relatively high performance.
Moreover, when combined with a well-learned
value function (Chen et al., 2024; Feng et al., 2023)
that provides fine-grained step-level supervision,
LLMs can navigate higher-quality reasoning paths
to solve complex problems.

Although the above-mentioned methods have
already proven highly effective in structured do-
mains such as mathematical reasoning (Wang et al.,
2024a; Guan et al., 2025; Wang et al., 2024b; Muen-
nighoff et al., 2025) and code generation (Zhang
et al., 2024b; Chen et al., 2021; Jaech et al., 2024,
Liet al., 2022) where there are well-defined ground
truths, their applicability in open-domain tasks re-
mains underexplored. Unlike structured problems,
open-domain Question Answering (QA) lacks ex-
plicit correctness criteria, making it challenging
to systematically guide the search process toward
optimal responses.

To address this gap, our work explores whether
search-based methods can enhance open-domain
QA in both training and inference phases. We hy-
pothesize that guiding LLMs through a structured
search process can help identify high-quality re-
sponses, leading to more robust model training
and better inference-time generation. Specifically,
we propose leveraging Monte Carlo Tree Search
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Figure 1: Our pipeline for utilizing MCTS to search for higher-quality responses.

(MCTS) (Silver et al., 2016, 2017) to explore multi-
ple generation paths and select those that maximize
a reward model’s evaluation score. By treating
generation as a search problem, we systematically
improve the model’s ability to generate informative
and well-grounded answers. Our approach com-
prises two key phases: 1) the improvement of the
policy model and 2) the improvement of the reward
model.

In the training phase, we employ MCTS to col-
lect high-quality trajectories by selecting the best-
scoring generation paths during searching. These
paths are then used to construct a Supervised Fine-
Tuning (SFT) dataset. Additionally, we create a
Direct Preference Optimization (DPO) dataset by
pairing the highest and lowest-scoring responses.
This allows the model to learn preference-based
refinements directly from the data. Compared to
previous automatic data annotation methods and
publicly available instruction-tuning datasets (Ding
et al., 2023; Xu et al., 2024; Lambert et al., 2024),
our approach identifies superior response trajecto-
ries and achieves better downstream task perfor-
mance using fewer data points. This leads to a
more data-efficient training process overall.

During the inference phase, we further enhance
the policy model’s performance by introducing a
Process Reward Model (PRM) to facilitate scalable
test-time computation. Unlike conventional Out-
come Reward Models (ORM), which evaluate only
the final output, the PRM captures incremental im-
provements in generation quality and provides a
more structured mechanism for refining responses
at each step. Notably, collecting data to train the
PRM does not introduce additional computational
overhead, as the intermediate values used as su-
pervision signals are by-products of the training
data collection process. Furthermore, we propose a
two-stage training method to develop an enhanced

version of the PRM, referred to as PRM+ in our
paper. Experimental results demonstrate that our
PRM+ outperforms various ORMs in scaled set-
tings, validating the effectiveness of process-based
supervision.

Our key contributions are as follows:

* We introduce a search-based data construc-
tion pipeline for open-domain QA, leveraging
MCTS to systematically explore and select
high-quality reasoning paths, which enhances
both the policy model and the reward model.

* We demonstrate that our search-guided SFT
and DPO data generation method outperforms
existing annotation approaches and other pub-
lic instruction-tuning datasets, while requiring
fewer data points.

* We propose a two-stage training strategy to
train our PRM+, which learns to provide
process-level rewards, and demonstrate its ef-
fectiveness compared to ORM and other pub-
lic PRM.

2 Related Work

Synthetic Data Generation The success of large
language models heavily relies on high-quality
data. Previous literature has demonstrated that
higher-quality data can significantly enhance the
performance of large language models (Zhou et al.,
2023a; Ye et al., 2025). However, obtaining such
data often depends on human annotation, which
is costly and time-consuming. An alternative ap-
proach is synthetic data generation, which mim-
ics real-world applications and retains high qual-
ity (Liu et al., 2024b). For example, leverag-
ing language models to bootstrap and generate
more instructions and responses has proven effec-
tive (Wang et al., 2023; Sun et al., 2023; Ding



et al., 2023). This success has been demonstrated
across various domains, including coding (Luo
et al., 2023b; Wei et al., 2024), mathematics (Luo
etal., 2023a; Mitra et al., 2024), medical (Sun et al.,
2024), and general domains (Xu et al., 2023; Taori
et al., 2023). Our work falls into this category, uti-
lizing search as a scalable and automatic method
for synthetic data generation.
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Figure 2: Illustration of data construction for training
policy and reward model.
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Inference-Time Scaling Recent advancements
such as OpenAlI’s 01/03 have sparked significant
interest in scaling inference-time computation by
generating more tokens before producing the fi-
nal answer to enhance reasoning capabilities. This
paradigm has inspired replication efforts within the
community, including Deepseek R1 (Guo et al.,
2025), Kimi 1.5 (Team et al., 2025), and oth-
ers (Wang et al., 2024a; Zhang et al., 2024a).
In contrast to sequential refinement strategies for
scaling inference-time generation, another promis-
ing approach is parallel decoding (Snell et al.,
2024; Wu et al., 2024). By generating multiple
sequences for additional attempts or incorporating
value functions to guide the search, these methods
also demonstrate strong potential for improving
performance through increased generation budgets.
However, most approaches have been validated
in domains with well-defined supervision signals,
leaving their effectiveness in open-domain settings
unverified.

Process Reward Model One of the key compo-
nents for effectively scaling inference-time com-
putation is the development of a reward model ca-
pable of evaluating the quality of generated can-
didates (Lee et al., 2023b; Ouyang et al., 2022).
ORMs are widely adopted for this purpose. How-
ever, a primary challenge with ORMs is their
coarse-grained feedback, which can lead to situa-
tions where, despite the final answer being correct,
the solution paths may contain flaws. To address
these limitations, process reward models have re-
cently been developed. Currently, there are two

primary annotation methods: 1) Human annotation,
which requires manually rating intermediate steps
of the solution paths, making it cost-intensive and
time-consuming (Lightman et al., 2023; Uesato
et al., 2022); and 2) Automatic annotation, which
includes methods such as Monte Carlo estimation
to construct stepwise supervision signals (Luo et al.,
2024; Wang et al., 2024b), leveraging LL.M-as-a-
Judge to generate signals (Zhang et al., 2025), or de-
riving signals from outcome-based feedback (Yuan
et al., 2024). Despite the significant progress and
potential of these methods, they have primarily
been validated in mathematical domains. In this
work, we aim to explore the effectiveness of this
paradigm in open-domain settings, which present
more subtle optimization challenges.

3 Methodology

In this section, we first present the problem for-
mulation, notation, and primary objective of our
paper in Section 3.1. Following this, we detail our
methodology for curating SFT datasets and DPO
datasets to optimize the policy model in Section 3.2.
Afterwards, we outline the data curation and train-
ing process for our PRM+, which is designed to
explore inference-time scaling, in Section 3.3. We
defer the details of the search algorithm employed
in our work to Appendix A.

3.1 Problem Formulation

Following Hao et al. (2023), we formulate natural
language generation as a Markov Decision Process
(MDP), where an LLM acts as a policy generating
responses step by step. The MDP consists of the
following.

* State Space (S): Each state s; represents a
partially generated sequence.

» Action Space (A): The action a; consists of
generating a phrase, defined as a sequence of
tokens that either (i) ends with the paragraph
delimiter (“\n\n”") or (ii) reaches the end of the
response. Each phrase is sampled from the
policy model my (an LLM), such that:

a ~ mp(st) (1
where 6 is the parameter of the policy model.

 Transition Function (7"): The transition is
deterministic, appending a; to s;.



St+1 = T(St, at) = Append(st, at) (2)

¢ Reward Function (R): An off-the-shelf re-
ward model is used to assign a scalar score 7
to the final sequence, such that:
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By formulating natural language generation as
above, our objective can be summarized as two
folds; 1) Optimizing the policy model 7y that earns
the maximum expected reward across the policy
model training dataset Dpoicy:

argglaXEINDpolicy 7 o (7)) T f (7—’) “)

where 6 is the parameter of the policy model.

2) Optimizing the reward model (value function)
Vi that can accurately estimate the expected reward
at state s; across the reward model training dataset
Direward- This can be written as follows.

T
ATEMINE D 7y () > Ve (r) -Q (=)’
t=0
(&)
where ¢ is the parameter of the reward model
and Q(7/) is the actual expected reward of the in-
termediate reward of trajectory T at step t.
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Figure 3: Architecture of our PRM+.

3.2 Policy Model Data Curation and Training

Our data curation method for enhancing the policy
model’s capabilities consists of two parts: 1)SFT
data curation and 2) DPO data curation. As illus-
trated in Figure 1 and Figure 2, our full pipeline
for data collection begins with generating a batch
of initial rollouts given an instruction. Each rollout
is then scored using an existing reward model. Fol-
lowing this, an MCTS process is carried out until
a path with a reward greater than a threshold (By
default, 1.3 xInitial Maximal Score), or the maxi-
mum iteration limit is reached. Upon completing
the search tree, we construct the SFT and DPO
datasets. Further details of the collection process
are provided in Algorithm 1.

3.3 Process Reward Model Data Curation and
Training

In this section, we detail the process of collecting
training data for the PRM and outline the train-
ing procedure. Previous approaches for automatic
annotation of the process-level supervision sig-
nal have used MC estimation as the training sig-
nal (Wang et al., 2024b). In MC estimation, the
reward is propagated backwards from the final re-
ward, providing an estimate of the expected future
reward. This reflects the likelihood of reaching a
high-quality solution from a given state.

While using MC estimation as a training signal
is a reasonable approach, we demonstrate in this
paper that relying solely on this future reward es-
timation introduces noisy signals, consistent with
the findings in Zhang et al. (2025). To mitigate
this issue, we propose a complementary training
signal, the cumulative reward, which offers a more
stable and intuitive signal. The cumulative reward
assigns a portion of the total reward to each step
by evenly distributing the total reward across all
steps. This ensures that the reward for each step
reflects the cumulative progress made toward the
final goal.

3.3.1

In order to construct the MC estimation dataset
DprMoMmc, We utilize the structure of the process
at each step of the trajectory.Specifically, for each
node that has children, we include the child with
the highest and lowest MC estimation, calculated
using Equation 11, along with its historical con-
text into Dpry-mc. Further details are provided in
Algorithm 2.

MC Estimation Synthetic



AlpacaEval 2 Arena-Hard  Avg.

Base LLM = Llama-3.1-8B-Base Generator Quantity LC(%) WR(%) SD WR(%) WR(%)
SFT  +Open Platypus (Lee et al., 2023a) Mixed 25K 333 3.35 0.53 4.1 22
+OpenHermes 2.5 (Teknium, 2023) Mixed IM 7.20 5.37 0.69 5.0 5.2
+SlimOrca (Lian et al., 2023) GPT-4 518K 4.60 3.66 0.57 2.4 3.0
+UltraChat (Ding et al., 2023) GPT-3.5-Turbo 208K 6.69 4.49 0.66 2.6 35
+Tulu V3 Mix (Lambert et al., 2024) N Mixed 940K 11.36 8.28 0.85 154 11.8
+ DPO +Tulu V3 Mix-DPO Mixed 273K 33.63 36.08 142 48.7 42.8
SFT  +Magpie-Air (Xu et al., 2024) N Llama-3-8B-Instruct 300K 22.66 2399 124 149 194
+ DPO +Magpie-Air-DPO Llama-3-8B-Instruct 100K 45.48 5043 1.48 359 432
SFT  +Magpie-Pro (Xu et al., 2024) N Llama-3-70B-Instruct 300K 25.08 29.47 1.35 18.9 24.2
+DPO +Magpie-Pro-DPO Llama-3-70B-Instruct 100K 50.10 53.53 145 35.7 44.6
SFT  +OURS-Greedy Llama-3.1-8B-Instruct 78K 19.53 17.81 1.18 18.1 18.0
+OURS-BON Llama-3.1-8B-Instruct 78K 21.93 2049 121 229 21.7
+OURS-MCTS N Llama-3.1-8B-Instruct 78K 23.05 25.03 1.28 259 25.5
+DPO +OURS-DPO Llama-3.1-8B-Instruct 55K 49.70 5452 145 404 47.5
Llama-3.1-8B-Instruct (SFT+DPO) >10M 22.92 2257 126 20.6 21.6
Llama-3.1-70B-Instruct (SFT+DPO) >10M 38.10 39.10 1.39 55.7 474

Table 1: The table compares the policy model based on Llama-3.1-8B-base trained on our datasets against baseline
datasets. Mixed indicates that the dataset is annotated by more than one LLM (including human annotation).
Numbers in Bold signify that they surpass the previous state-of-the-art (SOTA) results shown in Underline, which
were achieved by a model of comparable size. Furthermore, by utilizing significantly fewer data points, our model
outperforms the officially aligned model Llama-3.1-8B-Instruct and even achieves results comparable to the much

larger Llama-3.1-70B-Instruct .

3.3.2 Cumulative Reward Synthetic

For the construction of the cumulative reward
dataset Dpry.cr, W€ aim to assign a portion of
the total reward to each step in the trajectory. For-
mally, we define the cumulative reward at step ¢ in
a trajectory as:

Tt
=7 (6)

where 1" represents the total number of steps
in the trajectory, and ¢ denotes the current step.
This reward is uniformly assigned to each step.
It is worth noting that other potential distribution
methods exist, and we aim to explore these further
in future work.

cumulative

3.3.3 Synergy of Two Intermediate Signals

For each response, both values are predicted at
each step. However, these dual-dimensional out-
puts need to be aggregated into a single scalar for
comparing test examples. A straightforward ap-
proach is to manually design coefficients for the
two values. However, this method is rigid and
lacks generalization. In our paper, we instead train
a gating network to synergize the two intermediate
signals, inspired by the Mixture of Experts (MoE)
architecture (Guo et al., 2025). The gating network
takes as input the features extracted from the model
g and outputs a set of gating coefficients, which
are then multiplied by the respective reward sig-
nals. This results in a composite reward, which
is further used to calculate the final scalar score

RprwM for a given response. The combined reward
is represented as:

T 2

Rprm = Z

gvi (mo(xe)) -7y ()
t=0 1=1

where 77 ; is the intermediate signal in step ¢, and
gy denotes the gating function that determines the
weighting of each signal.

In this stage, we optimize our system using the
Bradley-Terry loss. This loss function is well-
suited for pairwise comparisons and allows the
model to learn the optimal combination of the two
reward signals. The objective is to minimize the
following:

I;}IJIE [—log o (RprM_Chosen — FRPRM_Rejected ) |

®)

where IprM_Chosen and IZpRM_Rejected are the

preference scores for the chosen and rejected re-

sponses in each pairwise comparison. This training

procedure enables the model to effectively combine

the two reward signals and optimize for distinguish-
ing the most superior response.

4 Experiments

4.1 Policy Model Training Setup

Data Curation for Policy Model During the
MCTS process, we employ LLaMA-3.1-8B-
Instruct as the policy model to generate responses
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existing ORM. Right: Comparison of PRM+ with PRM (only MC estimation) and PRM (only cumulative reward).

and utilize Skywork-Gemma-2-27B (Liu et al.,
2024a) as the reward model to score the final ter-
minated response. We set the default parameters
as follows: temperature at 1.0, top-k at 30, branch
factor at 16, and a maximum iteration limit of 20
during the search. For the SFT dataset construction,
we randomly sample instructions from Infinity In-
struct (BAAI 2024) to form the initial pool. It is
important to note that we do not use the original an-
swers provided in the dataset. Detailed information
on data statistics can be found in Appendix B. For
the DPO dataset construction, we randomly sample
instructions from Magpie-Pro (Xu et al., 2024) and
follow Algorithm 1 to create the paired data. In
total, this process results in 78K data points for
SFT and 55K data points for DPO.

Training Details for Policy Model Our default
training hyperparameters is as follows: for SFT, we
set the learning rate as 2e-5; for DPO, we set the
learning rate as le-6 and 3 as 0.01. Details for the
implementation are shown in Appendix C.

Policy Evaluation We primarily evaluate the per-
formance of our trained models using two widely
adopted instruction-following benchmarks: Al-
pacaEval2 and Arena-Hard. The main metric for
these benchmarks is the win rate (WR), which cal-
culates the fraction of responses favored by the
GPT evaluator. Additionally, AlpacaEval2 employs
a Length-Controlled win rate (LC) to mitigate the
influence of response length. Furthermore, we com-
pare our model’s performance on a broader range
of benchmarks, including those focused on code
and math. For detailed descriptions of the bench-
marks and additional experimental results, please
refer to Appendix E and Appendix D.

Baseline Comparison It is intuitive to compare
models trained on our dataset with those trained
on open-source instruction datasets. Competitors
include Open Platypus (Lee et al., 2023a), Open-
Hermes 2.5 (Teknium, 2023), SlimOrca (Lian
et al., 2023) and Tulu V3 Mix (Lambert et al.,
2024). Additionally, since our dataset is generated
by searching over responses produced by Llama-
3.1-8B-Instruct, we also include comparisons with
two strong baselines: 1) model trained on the
greedy decoding response, referred to as Ours-
Greedy, and 2) model trained on the response with
the highest reward from the initial rollout (as de-
scribed in Algorithm 1), which we call OURS-BoN.
For preference optimization, we compare our re-
sults with various open-source paired instruction
datasets, including Magpie-Air, Magpie-Pro (Xu
et al., 2024), and Tulu V3 Mix-DPO (Lambert
et al., 2024).

4.2 Process Reward Model Training Setup

Experimental Details For training the process
reward model, we employ a two-stage training
method as outlined in Section 3.3. In the first stage,
we use the same proportion of Infinity Instruct data
that was utilized for SFT of the model. For each
instruction in this dataset, we collect training data
that includes step-wise responses along with their
corresponding MC estimation and cumulative re-
ward, as detailed in Algorithm 2. To model the
dual intermediate values, we attach a linear regres-
sion layer w € R4*? on top of a pretrained LLM.
This layer takes as input a d-dimensional feature at
the position of each delimiter (“\n\n”) for different
steps and uses the mean squared error (MSE) loss
to fit both values. The learning rate is set to 2e-5
during this stage. For the second stage of train-
ing, we attach a shallow Multi-Layer Perceptron
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(MLP) with three fully-connected layers on top of
the same pretrained LLM. This MLP takes as input
a d-dimensional feature at the position of each de-
limiter (“\n\n”) for different steps and outputs the
coefficients as shown in Equation 7. During this
stage, we use UltraFeedback (Cui et al., 2023) as
the training dataset, with a learning rate of 2e-5 and
train for one epoch. A brief illustration of the im-
plementation architecture is provided in Figure 3.
By default, we use Qwen-2.5-7B-Instruct as the
backbone model.

) AlpacaEval 2 Arena-Hard
Base LLM LC(%) WR(%) SD  WR(%)
Llama-3.2-3B-Base 32.10 41.59 144 222
Llama-3.2-1B-Base 8.26 13.69  0.99 5.5
Llama-3.2-3B-instruct ~ 19.75 20.46  1.20 14.9
Llama-3.2-1B-instruct ~ 8.18 9.34 0.88 5.1
Qwen-2.5-7B-Base 48.69 5299 145 457
Qwen-2.5-3B-Base 38.31 4370 146 33.7
Qwen-2.5-7B-instruct  29.74 30.06 1.37 52.0
Qwen-2.5-3B-instruct ~ 18.15 1997  1.20 27.3

Table 2: The table demonstrates that our curated datasets
also achieve significant improvements across mod-
els of different sizes and series, outperforming their
officially instruction-tuned version .

PRM Evaluation We primarily evaluate our
PRM+ in two scaling scenarios: 1) Best-of-N
(BoN) Verification and 2) Guided Decoding. For
the BoN scenario, we set the temperature to 0.7
and top-k to 30 to generate diverse responses. We
then use either a PRM or an ORM to assign a score
to each response, selecting the highest-scoring re-
sponse as the final answer. In this setting, we com-
pare our trained PRM+ with ORM trained on var-
ious datasets, including Infinity Instruct, Magpie,
and UltraFeedback. For the guided decoding sce-
nario, we adopt a beam search decoding approach.
At each step, we generate Beam,,;q;, candidate
partial responses and use a PRM to score these

candidates, retaining the top-k candidates for fur-
ther generation. Since ORM cannot score partial
responses, we compare our PRM+ with the open-
source Skywork-01-PRM! and vanilla beam search,
where the score of each candidate is determined by
prior probability rather than a reward model.

4.3 Policy Model Results

Models Trained on Our Curated Datasets Show
Superior Performance In Table 1, we compare
the performance of the LLaMA-3.1-8B Base model
trained on our dataset and on other public instruc-
tion tuning datasets. The results show that our
method shows drastic improvement compared with
other datasets in both AlpacaEval2 and Arena-
Hard benchmarks by utilizing far fewer data points,
showing the superiority of our curated dataset. An-
other highlight is that our dataset is generated
by a relatively small size model LLaMA-3.1-8B-
Instruct, set apart it from other instruction tuning
data like Tulu V3 Mix that gather instances that
come from much larger generation models such as
gpt4 or even human-annotated responses. Addition-
ally, with DPO techniques, our models’ capability
can be further enhanced, and even surpass the in-
struction versions of Llama-3.1-8B and Llama-3.1-
70B that are trained by using millions of instruction
tuning datasets. We also show additional results
on more benchmark in Appendix D demonstrat-
ing that our method does not only surpass baseline
models on subjective evaluation but also on various
tasks such as expertise knowledge, mathematics,
and code domain.

MCTS Searched Response is of Higher Qual-
ity than BoN and Greedy Another observation
is that responses generated through MCTS-based
searching are of higher quality compared to those

1https: //huggingface.co/Skywork/
Skywork-o01-0Open-PRM-Qwen-2.5-7B
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from BoN and greedy decoding. This is evi-
denced by the second row of Table 1, which shows
that models trained on MCTS-searched responses
achieve superior performance. Additionally, fur-
ther analysis in Appendix B suggests that MCTS-
searched responses exhibit 1) higher quality and 2)
greater diversity.

Our Curated Dataset Shows Positive Effect on
Different Models Table 2 demonstrates that our
dataset also exhibits significant effectiveness when
applied to models of different sizes and families.
For instance, on AlpacaEval2, when trained on
Llama-3.2-3B, it achieves a 12% absolute improve-
ment compared to its instruction-version counter-
part, while training on Qwen-2.5-7B results in an
18% absolute improvement over its instruction-
version counterpart.

4.4 Inference-Time Scaling

In this section, we move forward to test the model’s
inference-time scaling ability under two scenario
as introduced in Section 4.2. We summarize our
findings as follows.

Best-of-N Verification As illustrated in the left
panel of Figure 4, we increase the generation bud-
get from 1 (2°) to 16 (2%) and use both PRM and
ORM to score the candidates. We demonstrate that
our PRM+ shows a clear scaling trend as the gen-
eration budget increases, while ORM struggles to
exhibit a similar trend. Additionally, compared to
ORMs trained on various datasets, our PRM+ con-
sistently outperforms them across different budgets,
highlighting the effectiveness of PRM+. Moreover,
we show the necessity of incorporating both the
MC estimation head and the cumulative reward
head in our model. The right panel of Figure 4
indicates that neither single head’s prediction can
surpass PRM+. This suggests that combining both

heads is essential for achieving optimal perfor-
mance, thereby validating the effectiveness of our
architectural design. The combination of PRM+
verification results across different models is de-
picted in Figure 5. We observe a similar trend,
with PRM+ consistently demonstrating superior
performance.

Guided Decoding In Figure 6, we compare the
scaling effects of our PRM+, the publicly available
Skywork-01-PRM, and the vanilla beam decoding
strategy. Our results show that domain-specific
PRMs, such as Skywork-01-PRM, underperform
compared to our PRM+ due to the domain gap.
This highlights the necessity of developing effec-
tive PRMs for open-domain tasks, which are rarely
addressed in the current literature. Another key
finding is that vanilla beam search, which relies
on prior probability to select candidates, fails to
exhibit scaling performance as the beam width
increases. We attribute this to the lack of diver-
sity among the selected candidates. This is sup-
ported by the middle and right panels of Figure 6,
where we plot the average cosine similarity and
per-instance cosine similarity, respectively. The
results indicate that vanilla beam search leads to
more homogeneous candidates, thereby reducing
performance in scaled settings. This aligns with
the findings in Chen et al. (2024).

5 Conclusion

In this paper, we introduce a search-based method
to enhance both policy and reward models for open-
domain QA. Our approach achieves data-efficient
training, outperforming previous SOTA data syn-
thetic methods while requiring fewer data points.
Additionally, we propose a two-stage training strat-
egy to build PRM+ which demonstrates a superior
scaling trend as computation increases during in-
ference.



6 Limitations

Although we conduct extensive experiments to
demonstrate the effectiveness of search-based meth-
ods in enhancing both policy models and reward
models, our work has several limitations. First, due
to the additional computational burden introduced
by the search process, we do not scale our construc-
tion to a massive dataset. Even though our method
outperforms various counterparts that use signifi-
cantly more data points, there remains a trade-off
between quality and quantity that needs to be ex-
plored in future work. Second, our approach lacks
interpretability in intermediate annotations. While
our work pioneers a novel method for improving
the training of process reward models, resulting
in the PRM+ presented in this paper (especially
in the open-domain scenario), the automatically
generated annotations, similar to those in previous
literature (Wang et al., 2024b), are inevitably noisy
and lack interpretability. Future work could focus
on incorporating human annotations with automatic
annotations to address this issue.
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A Search Algorithm: Monte Carlo Tree
Search

To refine response generation, we apply Monte
Carlo Tree Search (MCTY), iteratively improving
candidate solutions. MCTS consists of:

Selection At each step, we select the action that
maximizes the UCT score (Kocsis et al., 2006):

In N(s)
N(s,a)

U(s,a) =Q(s,a)+c ()

where (s, a) is the estimated reward for taking
action a in state s. N (s) is the total count of visits
to state s. N (s, a) is the count of visits for action
a at state s. c is an exploration constant.

Expansion If an action a has not been explored,
we expand a new node s’ by sampling the next
action using the policy model mg, where the cur-
rent state s serves as input to the policy. The pol-
icy model then generates the next action a, which
is terminated when the sequence reaches a para-
graph delimiter (\n\n‘) or the end-of-sequence to-
ken ‘<eos>°.

Simulation From the newly expanded state s/,
the policy model generates the complete response
by continuing to the sample actions. The pro-
cess continues until the model generates the
‘<eos>‘ token, indicating the end of the se-
quence. The complete sequence’s reward Q(sp) =
Q(T (st1,a11)) = 7y is then scored using the
Equation 3.

Backpropagation Once the simulation is com-
pleted and a final reward is obtained, the estimated
reward (s, a) and the visit count N (s, a) for the
current state action pair are updated with the re-
ward from the simulated sequence. Afterwards, an
update will propagated upward through the tree
utill reaching the root node as follows.

N(s,a) + N(s,a)+1 (10)

Qs.0)= o > QL) an

IC(s,a
s'eC(s,a)

where C(s, a) represents the set of child nodes
of node s.
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B Dataset Statistics

B.1 Category Analysis

In this section, we present statistics for the curated
datasets used in this study. Our dataset is designed
to cover a wide range of cognitive and technical
abilities, comprising a comprehensive collection of
data points that reflect various categories, including
problem-solving, logical reasoning, programming
ability, and more. The overall distribution of these
categories is shown in Figure 7a.

While the coarse categories provide a useful
high-level perspective, the fine-grained ability anal-
ysis offers a deeper dive into specific skills and
knowledge areas. This detailed analysis enables a
more nuanced understanding of individual abilities
and their contributions to the broader categories.
For instance, within the Problem Solving category,
the fine-grained analysis reveals distinct abilities
such as Logical Reasoning (13.8%) and Analytical
Reasoning (1.46%), each contributing uniquely to
the overall problem-solving capability. The fine-
grained ability analysis is depicted in Figure 7b.

B.2 Quality Analysis

In this section, we evaluate the quality of our gen-
erated dataset and compare it with the baseline
datasets introduced in Section 4.1. Specifically, we
assess the performance of three variants: Ours-
MCTS, Ours-BoN, and Ours-Greedy. The re-
ward scores are computed using Skywork-Gemma-
2-27B. The results are shown in Figure 8.

The reward distributions for all three datasets
follow a normal distribution, with the majority of
instances receiving mid-range rewards. The reward
values are generally scattered between -10 and 20.
An obvious distribution shift is observed, indicating
that the quality of the datasets follows the order:
MCTS > BoN > Greedy, as expected.

B.3 Diversity Analysis

In this section, we analyze the diversity of our three
datasets using 2-gram statistics as our primary tool.
Specifically, we sample 5,000 instances from each
dataset and compute their 2-gram statistics. The
absolute and relative frequencies are plotted in Fig-
ure 9.

We observe that the MCTS dataset has the most
uniform 2-gram distribution, followed by BoN and
then Greedy. A more uniform distribution implies
greater diversity, as answers are less concentrated
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(a) Category analysis of our dataset.

in specific patterns, resulting in a longer tail distri-
bution.

Additionally, we conduct quantitative analysis
by calculating the entropy (Shannon, 1948) and
Gini coefficient (Dorfman, 1979), as shown in
Equations 12 and 13, respectively.

* Entropy: Higher entropy indicates a more
uniform distribution, meaning probabilities
are spread more evenly across different cate-
gories (e.g., n-grams in responses), suggesting
greater diversity.

* Gini Coefficient: Lower Gini coefficient in-
dicates a more equal distribution, meaning
no single category dominates, also suggesting
greater diversity.

Thus, a combination of higher entropy and lower
Gini coefficient indicates a more diverse distribu-
tion. The results are summarized in Table 3, show-
ing that the diversity ranking is MCTS > BoN >
Greedy.

16000
3 MCTs
1 BoN

14000 =3 Greedy

12000

10000
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Figure 8: Reward distribution of three SFT datasets.
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(b) Ability analysis of our dataset.

N
Entropy = — Z p; logy p;

(12)
i=1
Glimi — >ic1 Zj:T} lpi — pj (13)
2n) i pi

where p; is the frequency of the iy, 2-gram and
n is the total number of the 2-gram.

Dataset Config  Entropy (1) Gini ()

MCTS 0.19 0.28
BoN 0.17 0.29
Greedy 0.17 0.32

Table 3: Entropy and Gini of the three datasets.

C More Implementation Details

We
using

implement our policy model training

the default trainer from Hugging
Face’s Transformers toolkit (Wolf et al.,
2020). For reward model training, we use
the RewardTrainer and load the model from
AutoCausallMwithValueHEAD in Hugging Face’s
trl toolkit (Wolf et al., 2020). We modify the
code to add an additional value head and a gating
network to support training our PRM+. All models
are trained on an 8 X 80GB NVIDIA HS800 server.
We employ full-parameter fine-tuning with the
DeepSpeed ZeRO-2 configuration (Rasley et al.,
2020) to optimize GPU memory utilization. A
cosine learning rate scheduler is enabled, along
with a default warmup period of 0.01 of the total
training steps. All instances are truncated to a
maximum length of 2048 tokens. For training, we
set the per-device batch size to 2 and the gradient



accumulation steps to 4, resulting in a total batch
size of 2 x 4 x 8 (devices) = 64. During inference,
we utilize vLLM (Kwon et al., 2023) to accelerate
text generation.

D Additional Experiment Results

In this section, we present the additional perfor-
mance of models fine-tuned on our dataset, as
well as various instruction tuning datasets based
on Llama-3.1-Base. The additional results cover
a wide range of capabilities, including expertise
knowledge, mathematics, and coding. The results
are shown in Table 4. Notably, our model per-
forms well across these benchmarks, surpassing
OpenHermes 2.5, which contains 1 million data
points—nearly 13 times the size of our dataset. Ad-
ditionally, our model outperforms the Mapie series
in several tasks. These results demonstrate the ef-
fectiveness, generalizability, and adaptability of our
dataset curation method.

E Details About Evaluations
Below is a brief introduction to each task.

e AlpacaEval 2 (Li et al., 2023) is an evaluation
system for LLMs that includes 805 represen-
tative instructions derived from real user in-
teractions. It features a leaderboard that uses
GPT-4-1106-preview as a judge to automati-
cally evaluate and compare model responses.

e Arena-Hard (Li et al., 2024) is a high-quality
benchmark, consisting of 500 challenging
prompts, designed for evaluating LLMs. It has
key features that robustly differentiate model
capabilities and reflect human preferences in
real-world use cases.

o GPQA (Rein et al., 2024) is a dataset of 448
difficult multiple-choice questions in biology,
physics, and chemistry, created by experts.
PhD-level experts have 65% accuracy, while
skilled non-experts score 34%, even with web
access.

e [FEval (Zhou et al., 2023b) offers 541 verified
instructions tailored for code-based evaluation.
These instructions encompass 25 distinct veri-
fiable types, featuring tasks such as Keyword
Frequency and Word Count.

e GSMSK (Cobbe et al., 2021) provides 8,790
(Train: 7,470; Test: 1,320) high-quality, lin-
guistically diverse grade school math word
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problems to diagnose the shortcomings of cur-
rent language models in multi-step mathemat-
ical reasoning.

Math (Hendrycks et al., 2021) consists 12,500
(Train: 7500; Test: 5000) tough competition
math problems. A subject’s problems can vary
in difficulty levels, ranging from ‘1’ to ‘5°.
Each problem includes a step-by-step solu-
tion.

HumanEval (Chen et al., 2021) is a dataset
designed to evaluate the code generation abili-
ties of LLMs. Its purpose is to assess the func-
tional accuracy of programs generated from
docstrings. The dataset includes 164 unique
programming challenges that test language
understanding, algorithms, and fundamental
mathematics.

MBPP (Austin et al., 2021) is composed of
974 Python programming challenges sourced
from the community, crafted to be achievable
by beginner programmers and covering essen-
tials such as programming fundamentals and
standard library functions. Each challenge in-
cludes a task description, a code solution, and
three automated test cases.



Base LLM = Llama-3.1-8B-Base ‘ GPQA IFEval GSM8K Math HumanEval+ MBPP+ Avg.

Open Platypus 27.2 45.0 35.2 15.5 18.9 36.0 29.6
OpenHermes 2.5 29.7 53.0 69.5 18.6 354 36.8 40.5
SlimOrca 27.9 37.1 57.2 9.8 22.6 24.1 29.8
UltraChat 27.9 49.6 46.9 13.9 25.6 323 32.7
Tulu V3 Mix (subsampled 78K) 27.2 68.7 54.1 18.6 34.8 39.9 40.6
Magpie-Pro-SFT 27.0 52.0 343 4.2 36.0 36.8 31.7
Magpie-Air-SFT 25.6 57.1 28.2 8.8 335 38.6 32.0
OURS-MCTS 28.8 65.1 59.1 204 40.9 42.1 42.7

Table 4: The comparisons between our model and the baselines on different tasks.
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Figure 9: We sample 5,000 instructions in our SFT datasets (MCTS, BoN, Greedy) and compare the diverse 2-gram
(Top-100). A more uniform distribution means that the dataset is more diverse and not concentrate to a specific
pattern.
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Algorithm 1 MCTS-Based Data Curation for SFT and DPO

Require: Dataset D, Reward Model R, Max Iterations 7', Score Threshold Siyresh
Ensure: SFT Dataset Dgrr, DPO Dataset Dppo Set t < 0, Dspr < 0, Dppo +— 0

1: for each d; € D do

2: Initialize search tree T

3 Rollout: Generate initial candidate answers {a; } for d;

4 Evaluate each answer: s; < R(a;)

5 Set a* <— argmax,, 5; and Spest «— Max s;

6: Store lowest-scoring answer Qyorst <— arg ming; s;

7

8

9

while ¢t < T and Spest < Sthresh dO
Selection: Traverse 7 using a selection policy (e.g., UCT)
Expansion: Expand a new node by adding a set of new candidate answers

10: Simulation: Generate and evaluate answer o’ with reward s’ = R(a’)
11: if s’ > Spest then

12: Spest < 8, a* +— a

13: end if

14: Backpropagation: Update MC estimations along the path

15: t+—t+1

16: end while

17 Dppo < Dppo U {(d;, a*, aworst) }

18: Dskr + Dspr U {(dz, a*)}

19: end for

20: return Dspr, Dppo

Algorithm 2 PRM Data Collection from MCTS Searched Trees T

Require: All Searched trees 7T, in Dataset D
Ensure: PRM(MC estimation) Dataset Dpryi-mc, PRM(Cumulative Reward) Dataset Dpryv.cr
1: Initialize DPRM—MC — Q), DPRM—CR — @

2: for each 7; in T do
3: for each node n € T do
4: Let C(n) be the set of child nodes of n
5: if C(n) # () then
6: Identify child with highest MC estimation: apax < arg max,cc(n) MC(a)
7: Identify child with lowest MC estimation: amin < arg min,ec(,y MC(a)
8: Dprm-Mc < Dprv-Mc U { (@max; MC(@max)) } U {(@min, MC(@min)) } > DprM-MC
collection
9: end if
10: Identify trajectory Tmax and Tmin With their corresponding cumulative reward calculated by
Equation 6
11: DprM-cR < DprM-CR U {(Tmam CR(Tmax))} U {(Tmina CR(Tmin) )} > DprM-cr collection
12: end for
13: end for

14: return Dpryvmcs DprM-CR
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