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Abstract

Self-improving agents aim to continuously ac-
quire new capabilities with minimal supervision.
However, current approaches face two key limita-
tions: their self-improvement processes are often
rigid, fail to generalize across tasks domains, and
struggle to scale with increasing agent capabil-
ities. We argue that effective self-improvement
requires intrinsic metacognitive learning, defined
as an agent’s intrinsic ability to actively evalu-
ate, reflect on, and adapt its own learning pro-
cesses. Drawing inspiration from human metacog-
nition, we introduce a formal framework com-
prising three components: metacognitive knowl-
edge (self-assessment of capabilities, tasks, and
learning strategies), metacognitive planning (de-
ciding what and how to learn), and metacogni-
tive evaluation (reflecting on learning experiences
to improve future learning). Analyzing existing
self-improving agents, we find they rely predom-
inantly on extrinsic metacognitive mechanisms,
which are fixed, human-designed loops that limit
scalability and adaptability. Examining each com-
ponent, we contend that many ingredients for
intrinsic metacognition are already present. Fi-
nally, we explore how to optimally distribute
metacognitive responsibilities between humans
and agents, and robustly evaluate and improve
intrinsic metacognitive learning, key challenges
that must be addressed to enable truly sustained,
generalized, and aligned self-improvement.

1. Introduction
Metacognition, colloquially known as “thinking about think-
ing” or “learning about learning”, is a fundamental human
ability that enables us to monitor and control our learn-
ing processes (Flavell, 1979). At its essence, metacognition

1DAMTP, University of Cambridge, Cambridge, UK. Corre-
spondence to: Tennison Liu <tl522@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

involves applying metacognitive knowledge: our understand-
ing of our capabilities, the demands of learning tasks, and
the relative merit of different learning strategies. Through
this knowledge, we evaluate our learning experiences and
refine future plans to optimize learning outcomes.

Metacognition is central to human intelligence and our abil-
ity to continuously improve and adapt across diverse envi-
ronments (Brown, 1987). Consider an athlete learning a new
sport: they begin by assessing their current abilities (e.g.,
strong endurance but limited agility), analyzing the skills
required (e.g., ball handling), and identifying transferable
training strategies from their previous sport (e.g., master-
ing fundamentals before advanced techniques). Drawing
on this metacognitive knowledge, they develop a structured
training plan that progresses from basic to complex drills.
As they practice, they monitor performance metrics (e.g.,
pass success rates) and recognize when to seek coaching
as self-practice reaches its limits. Throughout this process,
metacognition continuously finetunes learning plans to opti-
mize progress, functioning as an intrinsic process that can
operate without external supervision (Cox, 2005).

Large Language Model (LLM)-based agents have achieved
impressive performance across various domains (Gur et al.,
2024; Lu et al., 2024; Wu et al., 2024). These agents are au-
tonomous systems that leverage LLMs as their core decision-
making engine, augmented with memory systems and tools
for real-world interaction. However, current agents rely
on human supervision and environmental feedback that are
costly to scale, creating a bottleneck that limits the diversity
and depth of their capabilities. This challenge has moti-
vated growing research in self-improvement paradigms (Tao
et al., 2024), where agents autonomously acquire and learn
from experiences with minimal supervision. While self-
improvement promises to transcend the limitations of static,
data-bound models and mark a shift toward more adaptive
learning systems, current approaches face significant con-
straints. They rely on fixed, human-designed meta-processes
that are ill-suited for sustained self-improvement (Zelikman
et al., 2022; Song et al., 2024), or constrain learning to
narrow domains (Park et al., 2023; Wang et al., 2023a).

In this position paper, we argue that sustainable, gen-
eralized self-improvement requires agents to develop
intrinsic metacognitive learning abilities. This intrinsic
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capacity allows agents to autonomously and adaptively re-
fine their learning strategies in response to shifting tasks
and domains, reducing dependence on human-programmed
meta-processes. Drawing from models of human metacogni-
tion, we formally introduce a framework for metacognitive
learning (Section 3), defined as a meta-level process that
monitors, evaluates, and regulates a lower-level learning pro-
cess. Our framework consists of three core components: (1)
metacognitive knowledge: the ability to assess one’s capabil-
ities, understand task demands, and evaluate learning strate-
gies; (2) metacognitive planning: the strategic planning of
what and how to learn; and (3) metacognitive evaluation:
ongoing monitoring and reflection on learning progress. In-
trinsic metacognitive learning, then, occurs when agents
independently assess their learning, update metacognitive
knowledge, and adapt learning plans to optimize long-term
performance without relying on external mechanisms.

Through this framework, we reinterpret current self-
improvement methods as metacognitive processes, where
human supervisors assume various metacognitive respon-
sibilities (which we term extrinsic metacognition). These
responsibilities include determining what to learn (by de-
signing task spaces and acquisition metrics), how to learn
(by specifying mechanisms for exploration and experien-
tial learning), and metrics for evaluating self-improvement
progress. We identify two scenarios where this fixed, extrin-
sic design can hamper sustained self-improvement: domain/-
task distribution shift, where prescribed self-improvement
processes may fall short in efficacy, requiring recurring hu-
man intervention for continual self-improvement in shifting
tasks and domains; capability-mechanism mismatch, where
fixed metacognitive mechanisms can become increasingly
ineffective and misaligned as agent’s capabilities evolve.

Through case studies, we explore diverse forms of intrinsic
and extrinsic metacognitive learning, observing that self-
improvement potential increases when metacognitive func-
tions are more intrinsic yet thoughtfully shared between
humans and agents. By analyzing the intrinsic capabilities
required for each metacognitive learning component in de-
tail, we show that many essential ingredients are already
present in today’s LLM agents (Section 5). We conclude
by identifying key gaps and open questions for advancing
intrinsic metacognitive learning (Section 6). One challenge
is developing models of shared metacognition, shifting from
human-driven extrinsic approaches toward paradigms where
metacognitive functions are optimally distributed. Another
is evaluating and finetuning intrinsic metacognitive abili-
ties to improve the efficiency and effectiveness of agent
self-improvement. Finally, we underscore the need for scal-
able oversight: as agents autonomously develop capabilities,
emergent risks such as unsafe behaviors, misaligned values,
and reward hacking increase, demanding oversight mecha-
nisms that evolve alongside agent capabilities.

2. Preliminaries
2.1. Intelligent Agents

Language model agents (Xi et al., 2023; Yao et al., 2023;
Gravitas, 2023; Wang et al., 2024; Hong et al., 2024) are
compound systems that harness LLMs (Brown et al., 2020;
Ouyang et al., 2022; Chowdhery et al., 2023) as their core
computational engine for autonomous reasoning, planning,
and action in real-world tasks. While traditional agents re-
lied on handcrafted rules (Wilkins, 2014) or reinforcement
learning (Sutton, 1988; Silver et al., 2016)—approaches
that struggled to generalize across environments (Lake et al.,
2017)—LLM-based agents leverage world knowledge and
commonsense understanding acquired through large-scale
training to adapt readily to novel tasks. This versatility has
enabled applications across diverse domains, from web nav-
igation (Nakano et al., 2021; Gur et al., 2024) and computer
interaction (Wu et al., 2024; Xie et al., 2024) to scientific
discovery (Lu et al., 2024) and gaming (Wang et al., 2023a).

Agents. Following the cognitive architecture proposed in
Sumers et al. (2024), an agent’s behavior is primarily influ-
enced by its decision-making policy, parameterized by the
underlying LLM’s weights and the agent’s source code. The
source code contains procedural instructions (commonly
known as the system prompt) that are loaded into work-
ing memory at the start of each task. These instructions
specify crucial operational aspects, such as using ReAct
(Yao et al., 2023) for reasoning and planning, and defin-
ing instructions for interfacing with tool APIs (Schick et al.,
2023) or memory retrievers (Lewis et al., 2020). The agent’s
working memory, practically realized through the LLM’s
context, maintains its current working state, effectively a
concatenation of all previous states and actions.

Modules. Agents can be optionally equipped with two in-
ternal modules: a long-term memory store, encompassing
semantic memory (facts and world knowledge) and episodic
memory (the agent’s own experiences); and a tool library,
comprising callable APIs (e.g., a Python interpreter). These
modules enhance the agent by providing persistent memory
access and enabling real-world interaction through tools. At
each decision point, the agent may take a grounded action,
interacting with the external environment, where the next
state is determined by the environment’s transition function,
or an internal action by interacting with its internal modules
(e.g., retrieving from memory or calling an API).

2.2. Agent Learning Mechanisms

There are two main pathways for learning new behaviors
in LLM-based agents: training-based methods that directly
optimize the weights, and training-free techniques that en-
hance the agent’s source code or augment its internal mod-
ules. Training-based. The LLM’s weights encode implicit
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procedural knowledge that can be refined through addi-
tional training. Prominent approaches include supervised
(or imitation) learning from demonstrations (Cobbe et al.,
2021; Chung et al., 2024; Zhang et al., 2024b) and rein-
forcement learning through online exploration (Bai et al.,
2024; Havrilla et al., 2024). However, these methods face
significant scaling challenges: they are constrained by costly
expert annotations or limited to isolated interactive environ-
ments with narrow task distributions, typically producing
specialist agents with restricted generalization capabilities.

Training-free. An alternative approach focuses on opti-
mizing the agent’s source code, tools, or memory systems.
Prompt optimization techniques (Yang et al., 2024a; Guo
et al., 2024) automatically refine procedural prompts to en-
hance performance. Notable advances by Khattab et al.
(2024); Zhuge et al. (2024) conceptualize agent workflows
as computational graphs, enabling both optimization of
node-level prompts and improvement of overall orches-
tration (edge connectivity). Agents can also learn from
experience by updating their long-term memory: episodic
trajectories can be stored in episodic memory (Park et al.,
2023; Zhang et al., 2024a) for future retrieval, while new
knowledge can be written into semantic memory, including
discovered facts (Shinn et al., 2024), scientific insights (Lu
et al., 2024), and enhanced tools (e.g., new Python func-
tions) (Wang et al., 2023a; Wu et al., 2024).

Self-improvement. The challenges of obtaining human su-
pervision and constructing rich learning environments have
motivated research into self-improving agents (Tao et al.,
2024). The self-improvement process involves meta-level
mechanism that autonomously identify learning opportu-
nities and enhance the agent’s knowledge and capabilities
through experiential learning. This approach substantially
reduces the need for manual retraining interventions, while
enabling rapid development of sophisticated capabilities and
maintaining adaptability to real-world environments. No-
table advances include methods that enhance agent reason-
ing by bootstrapping from self-generated traces (Zelikman
et al., 2022; Aksitov et al., 2023) and improve alignment
through self-instruction (Bai et al., 2022; Dong et al., 2023).
While these approaches eliminate the need for ground-truth
labels, they typically require predefined task pools. Recent
work has expanded these boundaries by exploring LLMs’
capacity to generate their own learning tasks, e.g., for align-
ment (Wang et al., 2023c) and robotics (Faldor et al., 2024).

3. Defining Intrinsic Metacognitive Learning
3.1. Formal Framework

We formally frame metacognitive learning as a lens through
which to understand self-improvement. Metacognition was
first investigated and formalized in developmental psychol-
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Figure 1. Overview of metacognitive learning.

ogy, establishing its fundamental role in learning and ed-
ucation (Pintrich, 2002; Zimmerman & Schunk, 2013).
Metacognition is a bi-level process in which a metacognitive
layer monitors, evaluates, and regulates an underlying cogni-
tive layer, which could generally entail reasoning, learning,
or creative thinking. In our setting of self-improvement,
the cognitive-level process is learning itself: engaging with
tasks through sensing, acting, and learning from experi-
ence (i.e., experiential learning) (Kolb & Kolb, 2009). The
metacognitive layer forms a higher-order, closed-loop mech-
anism that oversees and regulates the learning process to
optimize long-term outcomes. More formally, we say:

Definition: Metacognitive Learning
Metacognitive learning is a continuous learning process
in which a metacognitive system leverages knowledge
of learning goals, learning strategies, and agent capa-
bilities (knowledge) to plan learning activities for the
self-improving agent (planning), while continuously eval-
uating progress and refining future plans (evaluation).

We visualize the metacognitive learning process in Figure 1,
noting that the definition is neutral to whether the metacog-
nitive process is performed intrinsically by the agent or
imposed extrinsically by a human-programmed mechanism.

The process comprises three key components: metacogni-
tive knowledge, which includes meta-level understanding
of an agent’s capabilities (strengths, weaknesses, and ex-
isting skills) (Pintrich, 2002), task requirements, and avail-
able learning strategies (Serra & Metcalfe, 2009). This
knowledge informs the use of metacognitive skills: plan-
ning, which guides resource allocation (what to learn) and
learning approaches (how to learn); and evaluation, which
closes the loop by assessing the effectiveness of the learning
plan (Fleur et al., 2021). In Section 5, we examine how these
components manifest in current LLM agents and assess the
extent to which they demonstrate these capabilities.

3.2. Intrinsic vs. Extrinsic Metacognitive Learning

At this point, we note that contemporary self-improving
agents can be viewed through the lens of metacognitive
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learning. However, unlike human metacognition where the
process is largely innate, these agents often rely on exter-
nally prescribed metacognitive mechanisms designed by hu-
man experts to control their learning process. These experts
assume metacognitive responsibilities by implementing pre-
defined mechanisms: acquisition metrics for task selection
(in curriculum learning (Jiang et al., 2021) and bootstrapped
self-training (Singh et al., 2024)), fixed task pools (Li et al.,
2024a), static learning strategies (like finetuning (Zelik-
man et al., 2022) or RAG (Shinn et al., 2024)), and pre-
programmed success metrics (Qi et al., 2024). The distinc-
tion between intrinsic and extrinsic metacognitive learning
thus reflects the distribution of control of the metacognitive
responsibilities: from self-driven adaptation or externally-
imposed control of the self-improvement process.1

Extrinsic metacognitive learning faces two key challenges:
limited adaptability and scalability. First, these mechanisms
are typically fixed or externally updated, decoupling them
from the agent’s learning experiences and evolving capabili-
ties. Second, they do not engage any meta-level reasoning
from the learning agent, placing the burden of the metacog-
nitive loop on humans. Consequently, we argue that such
processes are insufficient for supporting scalable and gener-
alized self-improvement, especially in two crucial scenarios:

1. Domain/task distribution shift. As agents improve, they
inevitably encounter new domains and shifting task dis-
tributions. Fixed external mechanisms that succeed in
one domain (e.g., bootstrapped finetuning for reasoning)
may fail in others (e.g., acquiring fine motor skills). For
instance, Zelikman et al. (2022); Aksitov et al. (2023);
Dong et al. (2023) implement externally designed self-
improvement mechanisms that assume particular correct-
ness or task-specific signals. While effective in their
intended contexts, these approaches do not generalize
easily across domains, creating a bottleneck where fur-
ther improvement requires recurring human intervention.

2. Capability-mechanism mismatch. As agents become
more capable, static metacognitive mechanisms can be-
come less effective. These extrinsic systems encode
stationary assumptions about the learning process that
may not hold as the agent evolves. Recall the athlete
learning a new sport: early progress might be driven
by simple corrections, but more advanced improvement
requires adaptive, nuanced adjustments. As an example,
the “generation-verification gap” identified by Song et al.
(2024) demonstrated that static self-improvement loops
lose efficacy as agents’ generative (task-solving) abilities
outpace their ability to evaluate their own outputs.

1We acknowledge a philosophical tension in this definition: if a human programs
or instructs an agent to reflect and plan its learning, is the process truly intrinsic? We
reconcile this through a functional autonomy view, defining the process as intrinsic or
extrinsic based on who exercises metacognitive control during learning: the agent or
an external mechanism. While all agents are human-bootstrapped, what matters is
whether the agent makes the decisions that shape its ongoing learning dynamics.

These challenges highlight the limitations of extrinsic
metacognitive mechanisms. As an alternative, we advocate
for intrinsic metacognitive learning, where the agent per-
forms metacognitive functions internally. This activates the
agent’s meta-level reasoning to adapt its self-improvement
processes as learning unfolds. By evolving alongside do-
main shifts and growing capabilities, such an approach could
support more scalable and sustained self-improvement.

3.3. Case Studies

To support our position and ground the principles of the
metacognitive learning framework, we examine three self-
improving agents through detailed case studies. These
agents exhibit progressively greater degrees of intrinsic
metacognitive learning, illustrating how a shift toward in-
trinsic processes influences self-improvement dynamics.

STAR (Zelikman et al., 2022) showed how reasoning agents
can bootstrap their capabilities to tackle increasingly com-
plex tasks. Self-improvement begins with a small set of
examples containing both reasoning traces and answers,
alongside a larger dataset with answers only. The agent
iteratively attempts new tasks and is finetuned on success-
ful traces (those leading to correct answers). In STAR,
metacognitive mechanisms are largely extrinsic: the agent
lacks active metacognitive knowledge and does not assess
its capabilities, understand task characteristics, or consider
learning strategies. Task ordering is externally managed by
finetuning on problems near the edge of the agent’s compe-
tence, while learning strategies are guided through rational-
ization, using answer hints to generate reasoning traces. The
agent also does not monitor its learning progress or adapt
its self-improvement process. These extrinsic mechanisms
are difficult to generalize across task domains, limiting the
agent’s ability to scale its learning autonomously.

Voyager (Wang et al., 2023a) presented an LLM-based em-
bodied agent for lifelong learning in Minecraft. The agent
maintains a growing skill library (long-term memory) and
continually acquires new capabilities to perform increas-
ingly complex actions. At the cognitive level, it learns new
skills represented as executable Python functions. Voyager
actively updates its metacognitive knowledge by tracking
its capabilities and assessing candidate task characteristics.
In planning its learning trajectory, it balances intrinsic goals
like exploration and task learnability, and evaluates progress
using metrics such as distinct skills acquired and items
crafted. This marks a shift toward intrinsic metacognition:
both metacognitive knowledge and planning are internalized.
Voyager notably outperforms extrinsically guided baselines,
including an expert-designed curriculum, underscoring the
benefits of agent-directed learning. However, its learning
strategy (how it acquires new skills) remains fixed and ex-
ternally defined. The agent does not reflect on or adapt this
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strategy, applying the same exploration-learning loop across
tasks. This may limit adaptability as domain complexity or
agent capabilities grow (e.g., beyond tool crafting).

While not centered on acquiring problem-solving capabil-
ities, Generative Agents (Park et al., 2023) simulate hu-
man behavior in a sandbox environment (The Sims), where
agents autonomously interact, accumulate experiences, and
develop distinct personas. The cognitive-level tasks involve
everyday activities such as painting, socializing, or visiting
cafés. Agents maintain intrinsic metacognitive knowledge
through an evolving understanding of their identities, moti-
vations, and social relationships. They autonomously plan
their daily activities, engage in spontaneous interactions,
and refine their personalities over time through lived ex-
perience. A key metacognitive mechanism in the system
is a reflection process. When triggered, agents perform
abstract reflection (e.g., recognizing a newfound interest
in academic research), updating their semantic memory in
ways that shape future planning. This reflection process
bears conceptual similarity to self-reflection techniques like
Reflexion (Shinn et al., 2024), though with an important dis-
tinction. Reflexion operates at the cognitive level, improving
performance on specific tasks via feedback on prior attempts.
In contrast, Generative Agents reflect at the metacognitive
level, reasoning over insights derived from cognitive-level
activities to drive long-term behavioral evolution.

These preliminary observations suggest that self-improving
agents with intrinsic metacognitive functions achieve more
sustained progress, particularly in the diversity and nov-
elty of their evolving capabilities. However, substantiating
this hypothesis will require rigorous, systematic studies to
more robustly assess the relative strengths and limitations
of intrinsic versus extrinsic metacognitive learning.

4. Alternative Views
One of the earliest lines of work to explore metacognition in
AI systems is metareasoning, which distinguishes between
object-level computation and meta-level control, motivated
by the need to manage computational costs under resource-
bounded rationality (Russell & Wefald, 1991). Metarea-

soning is viewed as a higher-level process that monitors
and regulates object-level reasoning or decision-making. A
prominent application is in anytime algorithms, where so-
lution quality improves over time and computation can be
interrupted at any point (notably, learning can be viewed as
an anytime process). For example, Davis (1980) introduced
metarules to guide inference in rule-based expert systems,
and Genesereth & Smith (1983) used logic programming to
reason about which computations to perform. While focused
on reasoning, this line of work offers conceptual tools, e.g.,
resource allocation and decision-making under uncertainty,
could prove relevant to learning-centric metacognition.

Recent work has explored metacognition’s role in the con-
text of LLM agentic systems, though primarily focusing on
its regulation of thinking and problem-solving processes
rather than learning and self-improvement processes. Wei
et al. (2024) investigated metacognition’s potential to en-
hance AI capabilities across four domains: improving un-
derstanding of black-box systems, strengthening reason-
ing through self-reflection, increasing adaptability via error
detection and correction, and refining perception through
metacognitive assessment. They proposed neurosymbolic
techniques to achieve these capabilities. Similarly, John-
son et al. (2024) examined how metacognition helps agents
approach ‘intractable’ problems: those characterized by am-
biguity, uncertainty, novelty, or computational complexity.
Their work elucidates the relationship between cognitive-
level strategies (e.g., heuristics, analogical reasoning) and
metacognitive processes, showing how the latter can regu-
late the former by seeking additional inputs, selecting appro-
priate strategies, and dynamically adjusting based on out-
comes. While these contributions advance our understand-
ing of metacognition in AI, they complement our position
by focusing on task-specific problem-solving rather than the
application of metacognition to enhance self-improvement.

Tankelevitch et al. (2024) examined metacognition in
human-LLM interactions, focusing on the metacognitive
demands placed on human users. Their findings show that
effective use of LLMs requires considerable metacognitive
effort from users to evaluate and control outputs, motivat-
ing the development of support mechanisms such as ex-
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plainability and customizability to alleviate this cognitive
burden. In a related position, Hughes et al. (2024) argues
that open-endedness, the capacity to continually generate
novel, learnable artifacts, is a core requirement for artifi-
cial superintelligence. Viewed through this lens, intrinsic
metacognitive learning offers a potential pathway for learn-
ing agents to exhibit open-ended evolution.

5. Towards Intrinsic Metacognitive Learning
This section analyzes the core components of intrinsic
metacognitive learning: metacognitive knowledge, planning,
and evaluation. While many examples focus on metacog-
nition in reasoning, the analysis remains relevant, as the
only distinction lies in the nature of the cognitive-level task.
Whether the agent is reasoning or learning, metacognitive
systems operates at a higher level to monitor, regulate, and
adapt the underlying process. By assessing the extent to
which these intrinsic abilities are present and identifying
areas requiring further development, we aim to clarify the
path towards realizing intrinsic metacognitive learning.

5.1. Metacognitive Knowledge

Intrinsic metacognitive knowledge refers to an agent’s abil-
ity to assess its own capabilities, understand task demands,
and evaluate potential learning strategies. Traditional ma-
chine learning agents have not required such abilities, as
they operate within fixed frameworks: with predefined
datasets (what to learn), algorithms and optimizers (how
to learn), and objective functions (learning goals). In con-
trast, agentic metacognition, where agents actively construct
and apply self-knowledge, represents a recent shift toward
more adaptive and autonomous learning systems.

The emergence of intrinsic metacognitive knowledge has
been enabled by generalist LLM-based agents, which em-
bed world knowledge and exhibit human-esque, context-
sensitive reasoning and reflection. Recent research has
both supported and challenged LLM agents’ metacogni-
tive knowledge. Studies have shown that agents can classify
mathematical problems based on required solution proce-
dures (Didolkar et al., 2024), demonstrating awareness of
their skills and how to apply them. Sachdeva et al. (2024)
revealed that LLM agents can identify beneficial training
tasks for improving their capabilities, while Wang et al.
(2023a); Wu et al. (2024) demonstrated the intrinsic ability
to evaluate their current competencies and select learning
tasks that would help them acquire new skills.

The most significant challenge to claims of metacogni-
tive knowledge comes from LLM hallucinations, instances
where models fail to accurately represent their internal
knowledge state (Bender et al., 2021). Other notable limita-
tions include agents’ inability to reliably assess their capac-

ity to perform tasks (Kadavath et al., 2022), their confusion
about their own capabilities (e.g., access to real-time tools),
and their lack of goal awareness (Li et al., 2024b). However,
it is worth noting that humans also exhibit systematic errors
in self-assessment, such as familiarity bias (Serra & Met-
calfe, 2009) and foresight bias (Koriat & Bjork, 2005). In
Section 6.2, we discuss some strategies to mitigate halluci-
nations and enhance metacognitive knowledge.

5.2. Metacognitive Skill: Evaluation

Intrinsic metacognitive evaluation encompasses two key as-
pects: ongoing assessment of learning progress, and reflec-
tive analysis of past learning experiences to gauge the effec-
tiveness of strategies and refine future learning approaches.

5.2.1. TRACKING PROGRESS

For well-defined capabilities and goals, progress has tradi-
tionally been measured through empirical metrics on held-
out datasets, using benchmarks for language understand-
ing, mathematical problem-solving, and abstract reasoning
(Chollet, 2019; Hendrycks et al., 2021). Self-improvements
can then be tracked through improvements in these measur-
able metrics (Zelikman et al., 2022; Aksitov et al., 2023).
However, conventional benchmarks, with their focus on
static and narrow task distributions, struggle to evaluate in-
creasingly complex capabilities. While human evaluation
offers an alternative (Chiang et al., 2024), it proves simi-
larly time-consuming and difficult to scale. Recent advances
have shown that LLM agents can effectively serve as hu-
man proxies for intrinsic performance evaluation (Cobbe
et al., 2021; Chen et al., 2024a). Notably, LLM-based eval-
uations excel precisely where quantifiable metrics fall short:
assessing difficult-to-measure aspects such as emotional in-
telligence (Wang et al., 2023b), human preferences (Bai
et al., 2022; Zheng et al., 2023), and making fine-grained
subjective judgments about creativity (Bradley et al., 2024)
and interestingness (Zhang et al., 2024c). This suggests
a promising complementarity between external objective
metrics and intrinsic evaluation approaches.

5.2.2. METACOGNITIVE REFLECTION

This stage of evaluation completes the metacognitive feed-
back loop by assessing the effectiveness of learning plans
and enabling dynamic adjustments to future planning. Un-
like task-level reflection, which focuses on improving per-
formance on individual tasks, metacognitive reflection eval-
uates the agent’s overall learning process. It analyzes long-
term progress to assess the quality of learning strategies and
inform future adaptations. For example, an agent might eval-
uate how well it allocated effort across tasks with varying
characteristics (Wang et al., 2023a; Zhang et al., 2024c), or
compare the effectiveness of memory-based learning versus
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finetuning. Although cognitive- and metacognitive-level
reflection operate at different levels of abstraction, they
share underlying mechanisms: assessing performance (e.g.,
action-level rewards vs. learning progress) and making tar-
geted adjustments (e.g., refining task execution vs. revising
learning strategies) (Shinn et al., 2024; Madaan et al., 2024).

Given this, it is worthwhile to ponder the differences be-
tween cognitive- and metacognitive-level reflection. A cen-
tral distinction lies in their observability: metacognitive
reflection often has access to more complete information
about the cognitive process: for example, evaluating a learn-
ing plan based on its long-term impact on learning progress.
In contrast, cognitive-level reflection typically relies on par-
tial or noisy signals from the environment, such as observa-
tions of future states and rewards (Russell & Wefald, 1991).
Additionally, because metacognitive reflection operates over
representations of the cognitive process, it can, in principle,
be domain-agnostic. Whether the agent is learning to reason,
navigate, or manipulate objects, the structure and function
of the metacognitive loop may remain largely consistent, so
long as the agent can extract suitable, domain-specific repre-
sentations of learning progress and outcomes for evaluation.

5.3. Metacognitive Skill: Planning

Metacognitive planning is the process by which an agent dy-
namically refines its learning approaches based on metacog-
nitive evaluations. This involves setting sub-goals, allocat-
ing resources, and selecting appropriate learning strategies.
At its core, planning revolves around two key considerations:
what to learn: determining which tasks are most effective
for promoting learning (a resource allocation question), and
how to learn: identifying the most efficient mechanisms for
acquiring new capabilities (a strategy question).

5.3.1. WHAT TO LEARN?

The question of what to learn has traditionally been ad-
dressed through curriculum learning (Bengio et al., 2009),
which assumes a large-scale task pool and seeks to optimize
the selection and sequencing of tasks to accelerate knowl-
edge acquisition. In this vein, Dennis et al. (2020); Bauer
et al. (2023) introduced expansive, parameterized task dis-
tributions where tasks are sequentially sampled based on
estimated agent regret, demonstrating sustained skill acqui-
sition. These self-improvement approaches were largely
guided by extrinsic planning, with expert-curated task pools
and -imposed acquisition methods. More recent advances,
however, have shifted control toward the agent itself by
leveraging intrinsic drivers such as curiosity and learnability.
Approaches like those in Wang et al. (2023a); Zhang et al.
(2024c); Lu et al. (2024) use internal notions of exploration,
curiosity, and planning to autonomously propose new learn-
ing tasks to refine capabilities. Surprisingly, these intrinsic

mechanisms often outperform traditional, human-crafted
acquisition formulas, which can mischaracterize learning
objectives and introduce unintended biases or inefficiencies.

A major challenge lies in enabling agents to acquire tasks
beyond those in pools predefined by human experts. Fal-
dor et al. (2024); Wu et al. (2024) address this by allow-
ing agents to autonomously generate tasks, defining them
through Python functions. Another promising direction in-
volves the development of world models that can create
arbitrary task environments based on descriptions produced
by learning agents (Yang et al., 2024b; Bruce et al., 2024). A
separate, yet crucial, challenge lies in obtaining accurate and
robust feedback for these generated tasks. Machine learn-
ing systems typically rely on well-defined rewards from
reliable oracles to guide effective learning, resources that
are often unavailable for synthetic tasks. To mitigate this,
self-improving agents have demonstrated the ability to learn
from partial or synthesized feedback, such as code execu-
tion traces (Jiang et al., 2023), or heuristics that identify
high-reward actions (e.g., self-consistency (Zelikman et al.,
2022)). However, the long-term effectiveness of these ap-
proaches remains an open question (Song et al., 2024).

Recent evidence suggests that foundation models can serve
as an alternative source of proxy feedback. Techniques such
as generating test cases (Chen et al., 2024b), evolving re-
ward functions (Ma et al., 2024), or querying foundation
models for estimated rewards (Aksitov et al., 2023; Roca-
monde et al., 2024; Chen et al., 2024a) have shown promise.
The integration of generalized task generators with compa-
rably general reward models could unlock the full potential
of intrinsic metacognition, pushing their self-improvement
beyond human-prescribed and finite task sets.

5.3.2. HOW TO LEARN?

At a high level, most learning processes typically consist of
two key phases: exploration, where the agent acquires new
experiences, and learning, where it extracts knowledge from
accumulated experiences. Exploration. Various strategies
have been developed to enhance exploration. In self-training
approaches, a common technique is to modify the agent’s
policy distribution to promote greater exploration. For in-
stance, temperature scaling is used to encourage sampling
of more diverse reasoning paths (Singh et al., 2024; Dong
et al., 2023). Other methods introduce uncertainty-guided
exploration, such as upper-confidence bound (UCB) tech-
niques for tree search (Hao et al., 2023), iterative exploration
driven by self- or LLM-generated feedback (Shinn et al.,
2024; Zhao et al., 2024a), and prompt-based instructions
designed to encourage agents to seek novel experiences (Lu
et al., 2024; Wang et al., 2023a). These exploration strate-
gies aim to increase the likelihood of acquiring experiences
that are conducive to acquiring new capabilities, which can
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then be reinforced to improve the agent’s capabilities.

Learning. One form of self-improvement occurs in-weight,
where an agent refines its weights through finetuning on
self-generated problem-solving traces. This approach has
demonstrated significant gains in reasoning performance
(Zelikman et al., 2022; Aksitov et al., 2023; Singh et al.,
2024), improved alignment with human principles (Wang
et al., 2023c; Dong et al., 2023), and facilitated trial-and-
error learning in self-generated reinforcement learning (RL)
environments (Faldor et al., 2024; Qi et al., 2024). Self-
improvement can also take place through long-term memory
updates, where agents store and retrieve both positive and
negative episodic experiences for future tasks (Zhang et al.,
2024a). Additionally, agents can encode abstract decision-
making rules or heuristics (Yang et al., 2023; Zhao et al.,
2024a) to improve future performance, or accumulate new
skills as reusable functions (Wang et al., 2023a; Wu et al.,
2024; Zhao et al., 2024b). A critical concern in sustained
learning is addressing the risk of catastrophic forgetting.
As agents continuously acquire new capabilities, they must
also preserve core competencies, raising the classic stability-
plasticity dilemma: how to balance the integration of new
knowledge with the retention of prior expertise (Dohare
et al., 2024). This tension is particularly pronounced in long-
term, open-ended self-improvement. Existing strategies,
such as replay-based methods, which interleave past and
present experiences, and divergence-based penalties, which
constrain updates to avoid drifting too far from prior policies
(Ouyang et al., 2022), offer partial solutions. However,
whether such approaches can scale to support sustained
self-improvement over time remains an open question.

Despite a growing range of exploration and learning strate-
gies, most self-improving agents still rely on fixed learn-
ing mechanisms, applied uniformly across tasks and over
time. Few, if any, systems attempt to adapt or revise how
learning occurs in response to changing conditions. This
remains one of the most underdeveloped aspects of intrin-
sic metacognition. In practice, learning mechanisms are
complementary: finetuning refines core reasoning abilities,
while memory updates offers a scalable means of accumu-
lating factual knowledge or reusable tools. To succeed in
open-ended environments and shifting task distributions,
agents must move beyond static learning routines. A truly
self-improving agent must not only select effective strategies
autonomously, but also continually reflect on and evolve its
learning mechanisms to sustain long-term progress.

6. Open Questions
6.1. Optimal Modes of Shared Metacognition

So far, we have emphasized that some degree of intrinsic
metacognitive learning is essential for self-improvement and

that intelligent agents already possess many of the neces-
sary capabilities to achieve this. However, an open question
remains: how should metacognitive functions be optimally
distributed between agents and humans? At one extreme,
purely intrinsic metacognition grants the agent complete
autonomy to define its own improvement goals and regulate
its learning progress. At the other extreme, fully extrin-
sic metacognition relies on continuous human oversight to
expand task pools, define acquisition functions, design learn-
ing mechanisms, and actively monitor the agent’s evolving
capabilities. Neither approach is entirely practical. Pure
intrinsic metacognition risks the agent becoming trapped
in unproductive learning loops, where no meaningful self-
improvement occurs. Worse, unchecked self-improvement
without external guidance could lead to misalignment with
human values, principles, and needs. Conversely, pure ex-
trinsic metacognition is constrained by human limitations,
continuous monitoring and control introduce bottlenecks
that slow progress and hinder scalability.

This suggests that an effective approach potentially lies in
shared metacognition: a balanced framework where both
humans and agents share metacognitive responsibilities in
evaluation and planning. In Figure 2, we illustrate several
possible modes of shared metacognition. Shared responsi-
bility: Humans and agents collaboratively oversee learning
progress, with metacognitive functions distributed based on
their respective strengths. Hierarchical guidance: Humans
define high-level objectives and constraints, while agents au-
tonomously manage learning and self-improvement within
those boundaries. Gradual handoff : The system gradually
shifts from human-dominated mechanisms to increasing
agent autonomy as its intrinsic metacognitive capabilities,
trustworthiness, and transparency improve.

6.2. Finetuning Intrinsic Metacognition

While much of this discussion has centered on how in-
trinsic metacognitive capabilities can scale and generalize
self-improvement, an equally important question is how
these capabilities are themselves developed and finetuned
in self-improving agents. For intrinsic metacognitive learn-
ing to function effectively, the agent must possess a suffi-
ciently robust metacognitive foundation. As discussed ear-
lier, LLM agents are prone to hallucinations, planning and
reflection failures that can undermine core metacognitive
functions—such as self-assessment, evaluation, and plan-
ning—ultimately impairing their ability to improve learning
strategies. Furthermore, as agents evolve, there is no guaran-
tee that their initial metacognitive capacities will remain suf-
ficient or aligned to continuously guide self-improvement.

One approach to this challenge is to mirror the develop-
ment of metacognitive abilities in humans. Just as students
progress from heavily supervised education to increasingly
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autonomous graduate research, agents can gradually acquire
metacognitive skills. Early development of metacognitive
capabilities can rely on human-labeled or curated signals
to train or finetune intrinsic metacognition, for example,
using reward models to evaluate task selection or learning
strategies. This can be complemented by intrinsic metacog-
nitive reflection, where the agent compares learning out-
comes across different strategies and adjusts accordingly.
These two approaches can be scaffolded: human supervi-
sion guides initial metacognitive developments, which the
agent then continues to evolve these meta-level skills on-
line during self-improvement. Another promising direction
is evolutionary selection (Standish, 2003), where multiple
parallel metacognitive learning trajectories are explored in
tandem. In this framework, metacognitive capabilities can
cross-pollinate and adapt, with selection pressure favoring
agents that demonstrate more effective self-improvement.

6.3. Evaluating Intrinsic Metacognition

Another important open question pertains to evaluating in-
trinsic metacognitive capabilities. Reliable evaluation is
essential not only for tracking an agent’s potential for sus-
tained self-improvement over time, but also as feedback
for finetuning metacognitive capabilities. Broadly, we iden-
tify three complementary evaluation approaches. The first
is an outcome-based approach, which assesses the self-
improvement achieved by an intrinsic metacognitive learn-
ing process: for example, by measuring the rate at which
an agent acquires new capabilities or improves on held-out
tasks over time. The underlying assumption is that, ceteris
paribus, stronger intrinsic metacognition should be observed
in more effective self-improvement, though this connection
remains indirect. A second, more direct approach is task-
based: evaluating how efficiently and effectively an agent
can learn on a previously unseen probe task. Here, stronger
intrinsic metacognitive abilities should enable better self-
assessment, planning, and strategy adjustment, leading to
faster learning and better overall performance.

A third approach is component-level evaluation, which seeks
to assess individual metacognitive functions. For exam-
ple, whether the agent accurately estimates task difficulty
(knowledge) or effectively reflects on past learning experi-
ences (evaluation) to identify the most appropriate learning
strategy (planning). This often requires counterfactual as-
sessment to determine whether better meta-level decisions
were available but not chosen, introducing practical chal-
lenges. Across all three approaches, a central difficulty
is non-stationarity: as an agent’s capabilities and intrinsic
metacognitive functions evolve, the evaluation testbed must
adapt accordingly to remain discriminative and relevant.
Moreover, effective assessment depends on a high degree
of transparency or explainability, allowing metacognitive
decisions to be interpreted and meaningfully evaluated.

6.4. Scalable and Safe Oversight

As metacognitive learning agents grow more autonomous
and capable, static or conventional oversight mechanisms
will no longer suffice. Left to learn in full autonomy, agents
risk developing unsafe behaviors (Zhuang & Hadfield-
Menell, 2020), misaligned values (Russell, 2022), or re-
ward hacking (Krakovna et al., 2020). These risks are com-
pounded by a lack of transparency around meta-level de-
cisions that shape the agent’s learning trajectory and the
capabilities it acquires over time. Addressing these chal-
lenges requires oversight that is both scalable and adaptive—
evolving in tandem with the agent’s growth. A key mecha-
nism is the imposition of safety constraints: hard limits on
potentially unsafe behaviors or capabilities that must be con-
tinuously evaluated and updated as the agent self-improves.
Ensuring value alignment is equally essential, demanding
robust monitoring and continued evaluation to confirm that
the agent’s learning goals remain safe and consistent with
human intent. Finally, effective oversight must incorporate
robust interpretability tools, enabling humans to trace and
understand self-improvement decisions, evaluate emerging
capabilities, and intervene when necessary (Nick, 2014).

Another critical challenge arises at the deployment stage.
While current agentic systems operate in relatively narrow
and controlled environments, general-purpose autonomous
agents will likely be deployed in vastly more dynamic, pos-
sibly real-world, settings. This shift necessitates large-scale
monitoring and rapid intervention mechanisms, not only
within controlled sandbox environments but also in phys-
ical and digital domains where unintended consequences
must be mitigated swiftly. A particularly delicate aspect of
real-world deployment is online exploration, where an agent
actively evaluates and refines its learning through trial and
error. In our view, until robust and continuous monitoring
and intervention mechanisms are in place, exploration-based
learning should be strictly confined to contained sandboxes.

7. Conclusion
Self-improvement is a promising path toward scaling LLM
agents to general intelligence. However, current approaches
rely on human-designed processes that struggle to adapt to
shifting task distributions and increasing agent capabilities.
We argue that sustained and generalized self-improvement
requires intrinsic metacognition, where agents actively eval-
uate, plan, and refine their own learning processes. Further-
more, many of the foundational capabilities for metacog-
nitive learning already exist in contemporary agents. Re-
alizing this vision requires advancing shared metacogni-
tion, where humans and agents collaboratively manage self-
improvement processes, addressing challenges in evaluating
and finetuning intrinsic metacognition, and developing scal-
able oversight mechanisms to ensure safety and alignment.
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Impact Statement
This paper argues that metacognitive learning, the intrinsic
ability of self-improving agents to evaluate and regulate their
own learning, is essential for scaling intelligence. While
this approach holds great promise, it also raises critical con-
cerns about scalable and safe oversight. In Section 6.4, we
emphasized these risks and proposed mitigation strategies.
However, ensuring alignment, preventing unintended behav-
iors, and maintaining transparency remain open challenges.
Addressing these issues is crucial to realizing the poten-
tial of self-improving agents while ensuring their safe and
responsible deployment.
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