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ABSTRACT

Low-discrepancy points are designed to efficiently fill the space in a uniform man-
ner. This uniformity is highly advantageous in many problems in science and
engineering, including in numerical integration, computer vision, machine per-
ception, computer graphics, machine learning, and simulation. Whereas most
previous low-discrepancy constructions rely on abstract algebra and number the-
ory, Message-Passing Monte Carlo (MPMC) was recently introduced to exploit
machine learning methods for generating point sets with lower discrepancy than
previously possible. However, MPMC is limited to generating point sets and can-
not be extended to low-discrepancy sequences (LDS), i.e., sequences of points
in which every prefix has low discrepancy, a property essential for many appli-
cations. To address this limitation, we introduce Neural Low-Discrepancy Se-
quences (NEUROLDS), the first machine learning-based framework for generat-
ing LDS. Drawing inspiration from classical LDS, we train a neural network to
map indices to points such that the resulting sequences exhibit minimal discrep-
ancy across all prefixes. To this end, we deploy a two-stage learning process:
supervised approximation of classical constructions followed by unsupervised
fine-tuning to minimize prefix discrepancies. We demonstrate that NEUROLDS
outperforms all previous LDS constructions by a significant margin with respect
to discrepancy measures. Moreover, we demonstrate the effectiveness of NEU-
ROLDS across diverse applications, including numerical integration, robot motion
planning, and scientific machine learning. These results highlight the promise and
broad significance of Neural Low-Discrepancy Sequences.

1 INTRODUCTION

Approximating integrals using a finite set of sample points is a central task in scientific computation,
with applications ranging from numerical integration to uncertainty quantification and Bayesian
inference to computer vision and machine learning tasks; Chen et al. (2018); Paulin et al. (2022);
Keller (2013); Herrmann & Schwab (2020); Mishra & Rusch (2021); Longo et al. (2021). Problems
that arise in these areas often involve computing expectations of the form Eρ(f) of a function f(x)
in Rd with respect to some probability distribution F with density function ρ(x).

The simple Monte Carlo (MC) method estimates expectations of this kind by drawing samples
{Xi}Ni=1 randomly IID from F and computing the sample mean, i.e.,

Eρ(f) =
∫
Rd

f(x)ρ(x) dx ≈ 1

N

N∑
i=1

f(Xi). (1)

In this work, we will assume that there exists a transformation to map our integration problem to the
d-dimensional unit hypercube and thus will assume hereafter that F is the uniform distribution on
[0, 1]d. Under the assumption that some notion of variance of the integrand f(x) is finite (e.g., in
the sense of Hardy-Krause; Owen (2005)), the standard MC convergence rate of O(N−1/2) applies,
which may necessitate very largeN when a high degree of accuracy is required. A popular variation
on the MC method is to replace the random samples with a deterministic node set that more evenly
covers the domain. Such low-discrepancy (LD) points form the foundation of quasi-Monte Carlo
(QMC) methods; Dick et al. (2013); Hickernell et al. (2025), which achieve error rates close to
O(N−1) in favorable cases.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Assuming the integrand belongs to a reproducing kernel Hilbert space (RKHS) H of functions Rd →
R equipped with an inner product ⟨·, ·⟩H and corresponding norm ∥ · ∥H, one can use the Cauchy-
Schwarz inequality within H to derive an error bound on the approximation (1) as∣∣∣∣∣ 1N

N∑
i=1

f(Xi)−
∫
[0,1]d

f(x) dx

∣∣∣∣∣ ≤ ∥f∥HDk
2 ({Xi}Ni=1).

In the above, Dk
2 ({Xi}Ni=1) is referred to as the kernel discrepancy, or simply, the discrepancy for

brevity, and the term ∥f∥H is a measure of variation of the integrand; see Hickernell (1998) for
further details. The discrepancy term measures how closely the empirical distribution of the discrete
sample point set approximates the uniform distribution on [0, 1]d. Denote by k : Rd × Rd → R the
reproducing kernel associated with the RKHS H. The discrepancy can be computed explicitly as

Dk
2 ({Xi}Ni=1) =

√√√√∫∫
[0,1]d

k(x,y) dx dy − 2
N

N∑
i=1

∫
[0,1]d

k(Xi,y) dy + 1
N2

N∑
i,j=1

k(Xi,Xj).

(2)
Thus, employing sampling locations {Xi}Ni=1 with small discrepancy, in principle, leads to a more
accurate and tighter approximation of the expectation of interest. It then follows that constructing
sampling nodes with minimal discrepancy is of broad importance, with applications across many
areas of computational science.

1.1 SETS VERSUS SEQUENCES

In the study of QMC methods, it is important to distinguish between LD sets and sequences. The-
oretical results on sequences in dimension d often correspond to those on sets in dimension d + 1;
Roth (1954); Kirk (2020). Thus, despite being closely linked, sets and sequences are designed to
address different problems.

LD sets are finite collections of nodes that achieve good uniformity over the d−dimensional unit
hypercube. For such sets, one can typically establish a discrepancy bound of C(logN)d−1/N
for some absolute constant C depending on the specific construction. These are particularly well
suited to applications where the number of samples is known in advance, and this fixed-N setting
is exactly the problem addressed by the recently successful Message-Passing Monte Carlo (MPMC)
framework; Rusch et al. (2024). Classical examples of LD sets include Hammersley point sets;
Hammersley (1960), rank-1 lattices; Dick et al. (2022), and digital nets; Dick & Pillichshammer
(2010). In contrast, LD sequences are infinite constructions that are extensible in the number of
points, with the property that every initial segment, referred to in this text as a prefix, of length N
achieves discrepancy of order O((logN)d/N). Classical examples are the van der Corput sequence
in one-dimension, Sobol’ and Halton sequences for any dimension; Halton (1960); Sobol’ (1967)
and their numerous variants, as well as more modern greedy-optimized extensible constructions;
Kritzinger (2022). As an important remark, the standard LD sequence constructions typically yield
much smaller discrepancy values at special values of N , such as a powers of 2, which introduces an
inherent limitation in practice as performance can fluctuate depending on the chosen sample size.
For example, in the first 214 van der Corput points, there is never a better discrepancy for N points
than for 2m points when 2m < N < 2m+1; (Owen, 2023, Figure 15.4).

An inherent trade-off arises: the discrepancy can often be minimized more effectively for a LD
set since the sampling nodes are optimized globally for a particular, pre-specified N ; Rusch et al.
(2024). However, extending such optimized sets to larger sizes is challenging, as adding new nodes
typically disrupts the carefully balanced uniformity. Sequences, on the other hand, provide greater
flexibility in practice, since they allow sample sizes to be increased adaptively without restarting the
construction, albeit often at the cost of a slightly higher discrepancy for any given N .

1.2 RELATED WORK

There exists a growing literature on the optimization of sampling node locations. Some works aim to
minimize the discrepancy directly; Clément et al. (2025); Mak & Joseph (2018); Chen et al. (2018);
Dwivedi & Mackey (2024), while others use alterative methods and figures-of-merit; Miller et al.
(2025); Mak & Joseph (2025); Ding et al. (2025).
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The Message-Passing Monte Carlo (MPMC) method; Rusch et al. (2024) is one such general QMC
construction method, and unlike classical construction methods such as digital nets or rank-1 lat-
tices, which are derived through number-theoretic means, MPMC is the first work to formulate the
problem as one of learning a uniform design through state-of-the-art geometric deep learning tools.
The core of the method is a graph neural network based on a message-passing algorithm where
each node of the graph corresponds to a sample point and the edges (formed via nearest neighbor)
encode the geometric relations between the points. The optimization is initialized by IID random
points contained in [0, 1]d and proceeds by updating the message-passing neural network parame-
ters according to an L2-based discrepancy function–the classical L2-star discrepancy is used in the
original formulation–which serves as a differentiable objective function. A resulting transformation
is learned which maps the original IID random points into a uniform output set which has very small
discrepancy. MPMC has its main strengths in the very effective minimization of discrepancy values
for an N -element point set–some of the smallest discrepancy values ever obtained–and its flexibility
of design via the exchangeability of differentiable loss function including extensions to minimize
Stein discrepancies; Kirk et al. (2025).

Importantly, the limitations of MPMC are also clear: the optimization process must be repeated for
each fixed choice of N since the construction is not extensible to larger point sets. Furthermore, the
computational cost grows quickly with the number of sampling points and thus training more than a
few thousand points becomes very computationally expensive. These limitations highlight the need
for a model which allows for sequential and extensible generation of LD sequences of points.

1.3 OUR CONTRIBUTION

In this paper, following in the footsteps of several recent works employing machine learning ar-
chitectures in LD optimization pipelines, we develop NEUROLDS, a flexible LDS generator. We
further demonstrate that NEUROLDS outperforms classical LD sequences in terms of discrepancy
minimization, QMC integration, robot motion planning, and scientific machine learning applica-
tions.

2 METHODS

NEUROLDS is a deterministic sequence generator fθ : {1, . . . , N} → [0, 1]d that preserves the
index-driven construction central to QMC. Classical LD sequences (e.g., Halton and Sobol’) are
constructed via number-theoretic digit transforms of the index; see Section 2.1 for details. Instead,
NEUROLDS feeds the index i through a K-band sinusoidal positional encoding and an L-layer
multi-linear perceptron (MLP) with ReLU and final sigmoid activation functions to obtain Xi ∈
[0, 1]d. We first carry out a pre-training procedure by approximating a traditional LD sequence (i.e.,
Sobol’) using the mean squared error (MSE), then fine-tune by minimizing closed-form L2-based
discrepancy losses over all sequence prefixes; see Clément et al. (2025) and Appendix A for exact
expressions of the discrepancy loss functions.

2.1 INDEX-BASED SEQUENCE CONSTRUCTION

Classical QMC sequences such as Halton and Sobol’ rely on the index i ∈ N0 as the fundamental
input. For Halton, the j-th coordinate is obtained from the radical–inverse function in base bj
with b1, . . . , bd typically chosen as the first d primes; Halton (1960); Niederreiter (1992); Dick
& Pillichshammer (2010). Writing i =

∑∞
k=0 akb

k
j with digits ak ∈ {0, . . . , bj − 1}, the j-th

coordinate of the i-th point of the Halton sequence is

ϕbj (i) =

∞∑
k=0

ak b
−(k+1)
j ,

i.e., take the digits of i in base bj and place them after the decimal point. The Halton sequence is
therefore {(ϕb1(i), . . . , ϕbd(i)) : i ≥ 0}. This yields good equidistribution in low d, but number-
theoretic correlations emerge as d grows (Niederreiter, 1992; Dick & Pillichshammer, 2010; Kirk &
Lemieux, 2025).

Sobol’ sequences, in contrast, are digital (t, d)-sequences in base 2 constructed from primitive
polynomials over the finite field F2 := {0, 1} (arithmetic mod 2; addition is bitwise XOR);

3
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Sobol’ (1967); Dick & Pillichshammer (2010). Each dimension j uses a polynomial pj(z) =
zmj + a1z

mj−1 + · · · + amj with coefficients ai ∈ {0, 1} to generate binary direction numbers
vj,k ∈ (0, 1) (interpreted as binary fractions). For k > mj , they satisfy

vj,k = a1vj,k−1 ⊕ · · · ⊕ amj
vj,k−mj

⊕
(
vj,k−mj

≫ mj

)
,

where ⊕ denotes bitwise XOR and ≫ mj denotes a bitwise right shift by mj places. Let g(i) =
i⊕ (i≫ 1) be the Gray code of i, and let gk(i) be its k-th bit. Then

Xi,j =

∞⊕
k=1

gk(i) vj,k,

interpreted as a binary fraction in [0, 1) by reading the resulting bitstring after the binary point.
This digital construction yields very small discrepancy even in moderate d (Dick & Pillichshammer,
2010).

Inspired by these number-theoretic constructions, we also root our approach in the index, but in-
stead of fixed digit expansions or direction numbers, we expose multiple frequency scales of i via
sinusoidal features. These features play an analogous role to the radical–inverse digits of Halton or
the Gray-coded direction numbers of Sobol’, while allowing the downstream MLP to learn flexible
digital rules according to a discrepancy objective function generating points in [0, 1]d that achieve
very high uniformity. Each index i is mapped to a sinusoidal encoding

ψi := ψ(i) =

[
i

N
, sin

(
2kπ i

N

)
, cos

(
2kπ i

N

)
: k = 0, . . . ,K − 1

]
∈ R1+2K ,

analogous to Fourier features in positional encoding. This embedding exposes multiple frequency
scales of the index to the network, mirroring the role of base-b digit expansions in Halton or Sobol’.

The encoded index is passed through an L-layer feedforward network with ReLU activations and a
final sigmoid, yielding Xi = fθ(ψi) ∈ [0, 1]d. The collection {Xi}Ni=1 defines a deterministic,
learned sequence.

2.2 TWO-STAGE OPTIMIZATION

Training proceeds in two complementary phases, and an overview of the overall architecture is
shown in Figure 1.

Pre-training (MSE alignment). We initialize fθ by regressing onto a chosen reference QMC
sequence, with natural starting points being the Sobol’ or Halton sequences. Given these targets
{qi}Ni=1, we minimize

Lpre(θ) =
1

N

N∑
i=1

∥∥fθ(ψi)− qi
∥∥2
2
.

In practice, the reference sequence is generated with an appropriate burn-in period, as is sometimes
recommended in the literature; Owen (2022). This pre-training phase stabilizes the learning process
and proves essential for the success of our method (see Section 3.3).

Fine-tuning (discrepancy minimization). After pre-training, we further refine fθ by minimizing
differentiable L2-based discrepancy losses (2), evaluated over all sequence prefixes. These losses
are induced by symmetric positive-definite kernels k, and we adopt product-form kernels that yield
classical discrepancy measures. For example, choosing k(x,y) =

∏d
j=1

(
1 − max(xj , yj)

)
for

x,y ∈ [0, 1]d recovers the standard L2 star discrepancy; Warnock (1972). Other well-studied
choices include symmetric, centered, and periodic variants, all of which admit exact and differen-
tiable forms. Each discrepancy can be computed in O(dN2) time across all prefixes of a sequence
of length N . We refer to Clément et al. (2025) for a comprehensive overview of L2 discrepan-
cies, and to Appendix A for explicit kernel definitions, which serve as tunable hyperparameters in
NEUROLDS.

In higher dimensions, the efficacy of QMC methods often relies on there being some underlying
low-dimensional structure, or decaying importance of variables; Dick et al. (2013); Wang & Sloan
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Figure 1: Schematic of the proposed NEUROLDS model. First, each index i ∈ {1, . . . , N} is
mapped to a sinusoidal feature vector ψi ∈ R1+2K . Second, the encoded features are passed
through an L-layer multilayer perceptron (MLP), which outputs Xi ∈ [0, 1]d. Finally, the col-
lection {X1, . . . ,XN} forms a (learned) low-discrepancy sequence within the unit hypercube.

(2005). After the emergence of a rigorous framework from weighted function spaces Sloan & Woz-
niakowski (1998), many works now exist in this setting; Dick et al. (2006); Caflisch & Morokoff
(1996); Sloan & Woźniakowski (2001); Gnewuch et al. (2014); Chen et al. (2025). Precisely, one
assigns a product weight vector γ = (γ1, . . . , γd) ∈ Rd+ often depending on some a-priori knowl-
edge of the problem allowing one to quantify the relative importance of variables. This introduces
a tailored training ability of NEUROLDS to be applied to anisotropic integrands, as demonstrated in
our Borehole case study in Section 3.2.1.

Our overall fine-tuning loss averages prefix discrepancies:

Ldisc(θ) =

N∑
P=2

wP ·D•
2({Xi}Pi=1)

2, (3)

where wP are a choice of weights and • ∈ {star, sym, ctr, per, ext, asd} denotes the choice of kernel
function.

In this work, all results are produced with uniform weights such that all prefix lengths P ≤ N
contribute equally to the loss. Alternative weighting schemes and their potential effects are discussed
in Section 3.3.

3 RESULTS

3.1 DISCREPANCY MINIMIZATION

We evaluate the discrepancy of NEUROLDS in dimension d = 4 for three different choices of L2-
discrepancy losses: the symmetric Dsym

2 , the star Dstar
2 , and the centered Dctr

2 . For each loss, our
NEUROLDS sequence is obtained by pretraining on Sobol’ prefixes and then fine-tuning on the
target discrepancy. To ensure comparable conditions, we apply a burn-in of 128 points across the
board: (i) during pretraining we regress to Sobol’ with the first 128 points discarded (i.e., indices
are shifted by 128), and (ii) Sobol’ and Halton baselines are likewise evaluated after discarding their
first 128 points. Hyperparameters for NEUROLDS are selected per loss using Optuna; Akiba et al.
(2019); the best configurations are summarized in the Appendix in Table 5.

Besides the classical Sobol’ and Halton baselines, we also compare against randomized Sobol’ via
Owen’s nested uniform scrambling; Owen (1995; 1997). This yields sequences that retain low-
discrepancy guarantees in expectation, while breaking any uniformity flaws. In our experiments, we
report the mean over 32 independent scramblings.

Table 6 in the Appendix reports the exact discrepancy values for several values of N . NEUROLDS
achieves the lowest discrepancy at every sequence length for all three losses. Scrambling reduces

5
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some oscillations in Sobol’, but even its randomized variants remain above NEUROLDS for all
reported N . The full sequence discrepancy profiles are shown in Fig. 2.

For visual aid, Fig. 5 in the Appendix shows the first N ∈ {64, 128, 256} points of Sobol’ and
NEUROLDS in two dimensions. For this illustrative experiment, NEUROLDS was trained with
the Dsym

2 , and all hyperparameters were tuned via Optuna. Although Sobol’ achieves good global
coverage, it often exhibits structured alignments and mild clustering artifacts, particularly at small
N . By contrast, NEUROLDS points appear more irregular, or random, while still covering the
domain evenly.

Figure 2: Comparison plots of different discrepancy metrics for 4d point sequences up to a length
of 10000 as a function of sequence length: Dsym

2 (left), Dstar
2 (middle), and Dctr

2 (right). Each panel
compares Sobol’, Halton, NEUROLDS, and Scrambled Sobol’ (mean over 32 scrambled sequences).

3.2 APPLICATIONS

3.2.1 QUASI-MONTE CARLO INTEGRATION

LDS are most often employed in QMC integration to approximate a d-dimensional integral over
[0, 1]d, with the goal of achieving faster convergence than standard Monte Carlo. To illustrate the
effectiveness of NEUROLDS in this setting, we consider the 8-dimensional Borehole function, a
benchmark in uncertainty quantification, sensitivity analysis, and approximation algorithms An &
Owen (2001); Morris et al. (1993); Kersaudy et al. (2015). The function models the flow rate of
water through a borehole connecting two aquifers separated by an impermeable rock layer. Our
objective is to approximate the expected flow rate, i.e., the integral of the Borehole function over the
8-dimensional parameter space; see Appendix B for details.

Since no analytical solution is available, we pre-compute a high-fidelity reference value using plain
Monte Carlo with N = 221 samples. Against this benchmark, we compare several low-discrepancy
constructions: classical Sobol’ and Halton sequences, our proposed NEUROLDS, and a greedy
baseline obtained via Nelder–Mead optimization Nelder & Mead (1965); see (Chen et al., 2018,
Appendix B.2.1) for implementation details. Both NEUROLDS and the NM-Greedy construction
are optimized against the weighted symmetric L2 discrepancy (see Appendix A), using a computed
weight vector γ that down-weights irrelevant coordinates identified by sensitivity analysis and pe-
nalizes irregularity more evenly across dimensions; details are again given in Appendix B.

The experimental protocol is deterministic: for each sequence type we generate a single fixed in-
stance of the first N points, without randomization or scrambling, and compute the absolute error
of the sample mean estimator of the Borehole integral. Table 1 reports these errors across a range of
N , with the smallest error in each row highlighted in bold.

We find that NEUROLDS, trained with coordinate-weighted discrepancy losses to emphasize the
most influential variables, consistently delivers superior accuracy compared with the other sequences
across nearly all values of N . By contrast, Halton performs the worst overall, as expected given its
well-documented uniformity pathologies in moderate to high dimensions Kirk & Lemieux (2025).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Absolute errors for the Borehole integral approximation with increasing sequence length
(N ) for NEUROLDS, Sobol’, Halton and a greedy construction. Bold marks the best error per row,
underlined the second best.

N NEUROLDS (ours) Sobol’ Halton NM-Greedy

20 1.0309 7.3049 3.3671 3.8426
60 0.1864 0.1840 0.7724 0.5877

100 0.5765 0.4879 1.1391 0.0299
140 0.2095 0.4487 0.8304 0.2601
180 0.4204 0.4222 1.0487 0.9011
220 0.3430 0.2611 1.1711 0.5779
260 0.0239 0.5665 0.4516 0.7185
300 0.0467 0.0951 0.5534 0.0726
340 0.1478 0.2806 0.6215 0.6954
380 0.2059 0.1129 0.1613 0.4612
420 0.1066 0.1837 0.2260 0.4224
460 0.0657 0.1086 0.2164 0.0587
500 0.0651 0.1121 0.2619 0.2205

Although the NM-Greedy construction also incorporates sensitivity-informed weights, its perfor-
mance lags behind NEUROLDS. Notably, NEUROLDS achieves either the smallest or second-
smallest error for all but two tested values of N .

3.2.2 ROBOT MOTION PLANNING

Optimal exploration of the configuration space is a crucial component of sampling based motion
planning. Indeed, if the sampled points leave large gaps or cluster unevenly, the planner may fail
to discover important paths between regions, particularly when narrow passages are present. For
a specific family of planners-Probabilistic Roadmaps (PRM)-there exist theoretical guarantees that
directly connect the quality of sampling to path optimality Janson et al. (2018). More recently, the
guarantee has been expressed in terms of discrepancy, and significant empirical performance gains
obtained with MPMC point sets on a suite of PRM benchmarks Chahine et al. (2025).

However, most sampling-based planners construct their search structures sequentially. For example,
the Rapidly-exploring Random Tree (RRT) grows strictly one node at a time, with each new sample
extending the current frontier of exploration (Algorithm provided in Appendix C). In this setting,
order matters significantly: an early bias toward one region may starve others, leading to poor
coverage of narrow passages. The sequential sampling structure must align with the incremental
expansion of RRT, with both spatial distribution and temporal ordering central to performance.

We compare the sampling quality of NEUROLDS against uniform sampling, as well as Halton
and Sobol’ sequences, on a challenging motion planning experiment: Kinematic Chain in a Semi-
Circular Tunnel. The task is to control a chain of 4 revolute joints in the plane from an initial
configuration inside a semi-circular tunnel to an exterior target pose. The challenge lies in thread-
ing the articulated links through the curved tunnel, requiring coordinated rotations across all joints.
We randomize the placement of the tunnel between runs, with 160 repetitions per sequence. The
success rates for the experiment under different difficulty levels are summarized in Table 2. Across
all passage widths, NEUROLDS consistently delivers the highest success, demonstrating its ability
to guide the planner through narrow passages. Its structured, adaptive sampling produces well-
distributed points that efficiently cover the configuration space, ensuring robust path discoveries.
Overall, these results highlight the advantage of neural-adapted sampling in motion planning tasks,
where sequential exploration and effective coverage are critical.

3.2.3 SCIENTIFIC MACHINE LEARNING

LDS have been shown to improve the generalization of deep neural networks trained to approximate
parameter-to-observable mappings arising from parametric partial differential equations (PDEs)
Mishra & Rusch (2021); Longo et al. (2021). In this section, we empirically test whether NEU-
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Table 2: RRT success rates (in %) for NEUROLDS, Sobol, Halton, and Uniform sampling. Each
distribution uses 10 precomputed sequences of lengthN = 105, reused across random initializations
and difficulty levels. Bold marks the best per row, underline the second best.

Experiment Passage width NEUROLDS (ours) Sobol’ Halton Uniform

4d Kinematic Chain

0.64 96.58 73.04 87.95 85.83
0.60 94.41 72.29 86.95 76.58
0.56 83.60 73.41 83.66 68.88
0.52 79.87 68.69 82.54 71.61
0.48 80.06 68.75 72.85 69.06
0.44 73.16 64.96 71.24 72.23
0.40 80.00 65.59 67.32 68.38

ROLDS improves the performance of deep neural networks over random points and competing LDS
constructions in this context. To this end, we consider a multidimensional Black-Scholes PDE that
models the pricing of a European multi-asset basket call option, where the assets in the basket are
assumed to change in time according to a multivariate geometric brownian motion. The details of
the PDE is given in Appendix D. In our experimental setup, we train neural networks to predict the
’fair price’, i.e., solution of the Black-Scholes PDE at time t = 0, for different initial values of the
underlying asset prices drawn from [0, 1]2. We compare the performance of NEUROLDS against
uniform random points as well as Sobol’ sequences. We fix the length of the sequence to 1000. To
ensure meaningful results, we present the average of 20 training runs of the same network using
different random weight initializations. Moreover, we conduct a light random search to optimize the
learning rate, width, and number of layers of the trained MLP for each of the three sampling meth-
ods. The results can be seen in Table 3. While Sobol’ sequences outperform uniform random points,
our NEUROLDS achieve superior performance over both. Moreover, NEUROLDS achieves lower
error than Sobol’ or random for any choice of the L2-discrepancy. We conclude that NEUROLDS
can successfully be leveraged in the context of scientific machine learning.

Table 3: Average mean-squared error (MSE) of fair price predictions for the 2d Black–Scholes PDE
over 20 runs (lower is better). Values are reported as [×10−4]. Best result in bold.

Baselines NEUROLDS (ours)

MC Sobol’ Dsym
2 Dstar

2 Dext
2 Dper

2 Dctr
2 Dasd

2

MSE [×10−4] 4.24 4.04 3.69 3.66 4.01 3.82 3.34 3.63

3.3 MODEL ABLATIONS AND SENSITIVITY STUDIES

We now examine the role of individual design choices in NEUROLDS.

Pre-training vs. direct discrepancy minimization. To assess whether pre-training is necessary,
we compared two pipelines in 2d, 3d, and 4d: 1) Pre-train+FT: regress to Sobol’ sequence and
then fine-tune on the target discrepancy; 2) Direct: initialize randomly and optimize the discrepancy
loss from scratch. We kept the architecture, optimizer, and budget fixed, and tuned hyperparameters
for each pipeline via Optuna. Across all dimensions, the Direct variant consistently collapsed to a
degenerate solution in which points concentrate near a corner of [0, 1]d (a pathology observed also
in related work Clément et al. (2025)), while Pre-train+FT remained stable. This indicates that
Sobol’-based pre-training provides an essential inductive bias before discrepancy refinement.

Alternative sequence generation with autoregressive GNNs. To test if explicit autoregression
helps, we implemented an AR-GNN that emits one point conditioned on the previous prefix and
compared it to our index-conditioned MLP in 2d. We matched parameter count and training budget
and tuned both models with Optuna. While the AR-GNN performed reasonably for small sequence

8
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lengths, beyond a few hundred points the training signal became too weak to propagate through
long contexts without truncation, and performance degraded relative to the index-based MLP. Be-
cause truncation undermines global low-discrepancy structure, we adopt the simpler index-based
formulation, which proved more robust across dimensions.

Effect of sinusoidal frequency parameter K. To isolate the contribution of the index encoding
bandwidth, we trained models in 2d, 3d, and 4d that are identical in every respect except K, using
K ∈ {8, 16, 32} (Optuna re-tunes learning-rate and weight-decay per K). In 4d, the ablation is
visualized in the dedicated panel figure (see Fig. 6): largerK reduces fluctuations ofDsym

2 (i.e., more
stable curves), whereas small K (e.g., 8) exhibits higher variance. Thus, increasing K improves
stability of the discrepancy profile at the cost of a modest increase in training time.

Impact of non-linearities. We evaluated the necessity of depth by replacing the MLP with a
purely linear map (followed by a sigmoid) and by a shallow one-hidden-layer ReLU MLP, all in 2d
and 3d with Optuna-tuned hyperparameters. The linear model systematically failed to approximate
Sobol’-like structure and yielded poor discrepancy throughout the prefix. A single hidden layer
could reach competitive levels but required substantially longer training time. Our deeper MLP
strikes a favorable accuracy–efficiency balance across dimensions.

Impact of weights in fine-tuning discrepancy loss. We run on d = 4 with 10000 points and
optimal hyperparameters tuned via Optuna, and compare the effect of using uniform weighting
wP = 1/(N−2) versus length-proportional weighting wP∗ = 2P/(N2 + N − 2). Clearly, from
Figure 7 from the Appendix we see that performance is comparable: the uniform version performs
slightly better for shorter prefixes, while wP∗ yields lower discrepancy on longer prefixes. This
matches intuition, since wP∗ places more emphasis on later prefixes, thus optimizing them at the
expense of early ones.

4 DISCUSSION

NEUROLDS shows that neural architectures can successfully generate LDS, providing a solution to
the fixed N limitation of the MPMC model Rusch et al. (2024), with strong empirical performance
across numerical integration, path planning and scientific machine learning tasks. Our model formu-
lation as presented here focuses on classical L2-based discrepancy functions to target the uniform
distribution on [0, 1]d, the traditional setting for QMC methods. However, we note that the presented
framework is flexible, and can be extended to more general notions of kernel discrepancies, such as
Stein discrepancies Liu et al. (2016), enabling designs that compact non-uniform distributions into
an extensible sequence of nodes.

Finally, we note that our reliance on Sobol’ or Halton pre-alignment underlines the continued im-
portance of classical number-theoretic and non-ML optimization-based QMC constructions, which
provide the stability needed for successful training as highlighted in Section 3.3.

5 REPRODUCIBILITY STATEMENT

We provide an anonymized supplementary code package that implements our method to generate
low-discrepancy sequences via NeuroLDS. A public repository with identical code will be released
after review.

6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used for language rephrasing and light coding assistance (e.g., refactoring, boilerplate,
docstrings, linting fixes). They did not originate methods, model designs, or results; the authors take
full responsibility. LLMs are not eligible for authorship.
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Supplementary Material for:
Neural Low-Discrepancy Sequences

A THE DISCREPANCY AND ASSOCIATED KERNELS

In the main text, it is discussed how several variants of the discrepancy can be formulated by sub-
stituting an appropriate symmetric and positive-definite kernel into equation (2). In this Appendix,
we list popular choices of (product) kernels and the associated discrepancy function. The interested
reader is additionally referred to Clément et al. (2025).

Table 4: Kernel functions corresponding to commonly used L2 discrepancy measures.

Discrepancy Kernel function k(x,y)

Star (Dstar
2 )

d∏
j=1

(
1−max(xj , yj)

)
Extreme (Dext

2 )
d∏
j=1

(
min(xj , yj)− xjyj

)
Periodic (Dper

2 )
d∏
j=1

(
1
2 − |xj − yj |+ (xj − yj)

2
)

Centered (Dctr
2 )

d∏
j=1

1
2

(
|xj − 1

2 |+ |yj − 1
2 | − |xj − yj |

)
Symmetric (Dsym

2 )
d∏
j=1

1
4

(
1− 2|xj − yj |

)
Average squared (Dasd

2 )
d∏
j=1

1
2

(
1− |xj − yj |

)

In higher dimensions, it is recommended to introduce coordinate weights γ ∈ Rd+ to reflect variable
importance. In this weighted setting, kernels take the form

k̃(x,y) =

d∏
j=1

(
1 + γj k(xj , yj)

)
,

where k(·, ·) denotes a one-dimensional kernel selected from Table 4.

B ON THE BOREHOLE FUNCTION

The Borehole function models the steady-state water flow rate through a borehole that connects two
aquifers separated by an impermeable rock layer. Mathematically, the function is:

f(rw, r, Tu, Hu, Tl, Hl, L,Kw) =
2πTu (Hu −Hl)

ln
(
r
rw

)(
1 + 2LTu

ln(r/rw) r2wKw
+ Tu

Tl

) .
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The input parameters are taken to be independent and uniformly distributed over the following
ranges:

rw ∈ [0.05, 0.15] (borehole radius)
r ∈ [100, 50000] (radius of influence)
Tu ∈ [63070, 115600] (transmissivity of upper aquifer)
Hu ∈ [990, 1110] (potentiometric head of upper aquifer)
Tl ∈ [63.1, 116] (transmissivity of lower aquifer)
Hl ∈ [700, 820] (potentiometric head of lower aquifer)
L ∈ [1120, 1680] (length of borehole)

Kw ∈ [9855, 12045] (hydraulic conductivity of borehole)

Sensitivity Analysis. To justify the choice of coordinate weight vector, we performed a global
sensitivity analysis of the Borehole function using Sobol’ indices.

We employed the Saltelli sampling scheme Saltelli (2002); Saltelli et al. (2010) as implemented in
the SALib package Herman & Usher (2017). For a problem of dimension d, this procedure requires
N(2d + 2) model evaluations. The outputs were then analyzed to compute: the first-order Sobol’
index Si measuring the proportion of output variance attributable to variations in input xi alone, and
the total-order index STi capturing the variance due to xi including all its interactions with other
variables.

Figure 3 reveals that the borehole radius rw dominates the model response, with S1 ≈ 0.83 and
ST1 ≈ 0.87. Other parameters, such as Hu, Hl and L contribute at an order of magnitude smaller
level, while the remaining variables have negligible influence.

On this basis, we constructed a coordinate weight vector that assigns the highest weight
to rw, reduced weights to Hu, Hl and L and near-zero weights to the remaining vari-
ables. Specifically, the Sobol’ indices were normalized against the maximum index, and
then mapping these values (with a small floor added) into product weights resulting in γ =
(1.0000, 0.0010, 0.0010, 0.0633, 0.0010, 0.0634, 0.0610, 0.0158).

Figure 3: Sobol’ indices for the Borehole function.

C ON RAPIDLY-EXPLORING RANDOM TREES

Rapidly-exploring Random Trees (RRT) are a widely used class of sampling-based motion planners
designed to efficiently explore high-dimensional configuration spaces. They are particularly effec-
tive in tasks with complex constraints or narrow passages, where uniform sampling alone may fail to
discover feasible paths. At each iteration, RRT incrementally grows a tree rooted at the initial con-
figuration by sampling a new configuration, extending the nearest tree node toward it, and checking
for collisions. The tree grows sequentially, which makes both the spatial distribution and temporal
order of the samples critical to planner performance.

Algorithm 1 summarizes the standard RRT procedure. The main parameters include the maximum
number of iterations K and the step size δ, which control the exploration extent and granularity of
the tree.
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Algorithm 1 Rapidly-exploring Random Tree (RRT)
Input: Initial configuration xinit, goal region Xgoal, maximum iterations K, step size δ

1: Initialize tree T with root xinit
2: for k = 1 to K do
3: Sample a random configuration xrand from the configuration space X
4: Find nearest node xnearest in T to xrand
5: Compute a new node xnew by moving from xnearest toward xrand by step size δ
6: if xnew is collision-free then
7: Add xnew to T with an edge from xnearest
8: if xnew ∈ Xgoal then
9: return Path from xinit to xnew

10: end if
11: end if
12: end for
13: return Failure (no path found)

Figure 4 illustrates the Kinematic chain experiment. The panel shows a 4d kinematic chain in a
semi-circular tunnel, which we use as our test scenario. Even in the 4d case with 10k sampled
points, controlling all four joint angles simultaneously is already non-trivial, highlighting the need
for well-structured sampling sequences.
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Figure 4: Visualization of kinematic chain task for a 4d chain in a semi-circular tunnel.

D ON THE BLACK-SCHOLES PDE EXAMPLE

We consider the following Black-Scholes partial differential equation (BSPDE):

∂V

∂t
+

d∑
i=1

rSi
∂V

∂Si
+

1

2

d∑
i=1

σ2
i S

2
i

∂2V

∂S2
i

+

d−1∑
i=1

d∑
j=i+1

ρijσiσjSiSj
∂2V

∂Si∂Sj
− rV = 0, (4)

subject to the terminal condition V (T,S) = Λ(S). Moreover, we consider the payoff function of a
European geometric average basket call option:

Λ(S(T )) = max


(

d∏
i=1

Si(T )

)1/d

−K, 0

 . (5)
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Since products of log-normal random variables are themselves log-normal, the initial value of the
pricing function—i.e., the discounted expectation at time t = 0—is

V (t,S) = e−r(T−t)EP̃ [Λ(S(T )) | S(t) = S].

This quantity is the option’s value at purchase time, i.e., the fair price of the European geometric
average basket call option under the Black–Scholes model. Using (5), the closed-form solution to
the multidimensional BSPDE (4) at (0,S) is (Theorem 2 in Korn & Zeytun (2013)):

V (0,S) = e−rT
(
s̃ em̃Φ(d1)−K Φ(d2)

)
, (6)

where Φ is the standard normal CDF, and

ν =
1

d

√√√√√ d∑
j=1

(
d∑
i=1

σ2
ij

)2

, m = rT − T

2d

d∑
i=1

d∑
j=1

σ2
ij , m̃ = m+

1

2
ν2,

s̃ =

(
d∏
i=1

Si

)1/d

, d1 =
log(s̃/K) +m+ ν2

ν
, d2 = d1 − ν,

with σ ∈ Rd×d the covariance matrix of stock returns (entries σij). For the experiments below we
fix σ = 10−5I, T = 5, K = 0.08, and r = 0.05, where I ∈ Rd×d is the identity matrix.

E ADDITIONAL TABLES AND PLOTS

This section provides supplementary material in the form of additional plots and tables that comple-
ment the main results. Figure 6 illustrates the behavior of NEUROLDS discrepancy under different
settings of K, highlighting both the overall trend and the fluctuation indices across prefix lengths.
Tables 5 and 6 report quantitative comparisons of prefix discrepancies against standard baselines as
well as the best hyperparameters found via Optuna. Together, these results give a more detailed view
of model performance and robustness beyond the main text.

Figure 5: First N ∈ {64, 128, 256} points of Sobol’ (blue) and NEUROLDS (orange) in 2d. NEU-
ROLDS was trained with the Dstar

2 discrepancy and Optuna-tuned hyperparameters. Sobol’ exhibits
visible structure and clustering, while NEUROLDS distributes points more irregularly yet evenly,
mitigating alignment artifacts and leading to lower prefix discrepancy.

Table 5: Optuna-selected hyperparameters per loss (rounded). All runs use sequence length 104,
pretrained on Sobol’ with 128 burn-in points, then fine-tuned on the target loss.

Loss Hidden Layers K Pretrain LR Fine-tune LR Final LR ratio

Dsym
2 768 7 64 2.61×10−3 5.04×10−3 3.02×10−2

Dstar
2 512 5 64 1.38×10−3 3.52×10−4 4.39×10−2

Dctr
2 768 7 32 2.85×10−3 4.14×10−3 1.14×10−1
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Table 6: Prefix discrepancy in d = 4 at lengths N ∈ {100, 500, 1000, 2000, 5000, 10000} for our
model, Sobol’, Halton, and the mean over 32 scrambled Sobol’ sequences. Lower is better; best per
loss/length in bold.

Dsym
2

Seq. Length Model Sobol’ Halton Scr. Sobol’ (mean)
100 0.002669 0.004840 0.005020 0.004602
500 0.000900 0.001615 0.001608 0.001610
1000 0.000578 0.000972 0.001002 0.000965
2000 0.000339 0.000527 0.000550 0.000540
5000 0.000167 0.000282 0.000278 0.000282
10000 0.000098 0.000167 0.000168 0.000169

Dstar
2

Seq. Length Model Sobol’ Halton Scr. Sobol’ (mean)
100 0.008603 0.009477 0.010333 0.010033
500 0.002585 0.002977 0.003052 0.003058
1000 0.001491 0.001824 0.001709 0.001818
2000 0.000776 0.000929 0.000937 0.000962
5000 0.000368 0.000462 0.000459 0.000460
10000 0.000213 0.000266 0.000266 0.000268

Dctr
2

Seq. Length Model Sobol’ Halton Scr. Sobol’ (mean)
100 0.003534 0.004607 0.004612 0.004673
500 0.001192 0.001654 0.001531 0.001621
1000 0.000711 0.000987 0.000988 0.000958
2000 0.000419 0.000541 0.000554 0.000539
5000 0.000200 0.000281 0.000279 0.000283
10000 0.000114 0.000167 0.000167 0.000169

Figure 6: NeuroLDS discrepancy underDsym
2 in 4d as a function of prefix length P . The three panels

show K ∈ {8, 16, 32} (one per panel). Models differ only in K; all remaining hyperparameters and
the training setup are identical. The y-axis is log-scaled; lower is better. To quantify fluctuations
across prefixes, we report a fluctuation index ρK := CV[DP ] = std(DP )/mean(DP ) computed
over P ≤ 104, where DP denotes the L2,sym discrepancy at prefix P . We obtain ρ8 = 1.886,
ρ16 = 1.608, and ρ32 = 1.537 (smaller is smoother). For reference, the 90% log-amplitude ∆90

K :=
P95[log10DP ]− P5[log10DP ] equals 0.954, 0.915, and 0.916 for K = 8, 16, 32, respectively.
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Figure 7: Comparison of fine-tuning with uniform weights (wP = 1/(N−2)) versus length-
proportional weights (wP∗ = 2P/(N2 + N − 2)) in 4d with N=10,000 points. Uniform weights
favor early prefixes, whereas wP∗ improves long-prefix performance.

18


	Introduction
	Sets versus Sequences
	Related Work
	Our Contribution

	Methods
	Index-Based Sequence Construction
	Two-Stage Optimization

	Results
	Discrepancy Minimization
	Applications
	Quasi-Monte Carlo Integration
	Robot Motion Planning
	Scientific Machine Learning

	Model Ablations and Sensitivity Studies

	Discussion
	Reproducibility Statement
	The Use of Large Language Models (LLMs)
	The discrepancy and associated kernels
	On the Borehole Function
	On Rapidly-Exploring Random Trees
	On the Black-Scholes PDE example
	Additional Tables and plots

