
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL LOW-DISCREPANCY SEQUENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-discrepancy points are designed to efficiently fill the space in a uniform man-
ner. This uniformity is highly advantageous in many problems in science and
engineering, including in numerical integration, computer vision, machine per-
ception, computer graphics, machine learning, and simulation. Whereas most
previous low-discrepancy constructions rely on abstract algebra and number the-
ory, Message-Passing Monte Carlo (MPMC) was recently introduced to exploit
machine learning methods for generating point sets with lower discrepancy than
previously possible. However, MPMC is limited to generating point sets and can-
not be extended to low-discrepancy sequences (LDS), i.e., sequences of points
in which every prefix has low discrepancy, a property essential for many appli-
cations. To address this limitation, we introduce Neural Low-Discrepancy Se-
quences (NEUROLDS), the first machine learning-based framework for generat-
ing LDS. Drawing inspiration from classical LDS, we train a neural network to
map indices to points such that the resulting sequences exhibit minimal discrep-
ancy across all prefixes. To this end, we deploy a two-stage learning process:
supervised approximation of classical constructions followed by unsupervised
fine-tuning to minimize prefix discrepancies. We demonstrate that NEUROLDS
outperforms all previous LDS constructions by a significant margin with respect
to discrepancy measures. Moreover, we demonstrate the effectiveness of NEU-
ROLDS across diverse applications, including numerical integration, robot motion
planning, and scientific machine learning. These results highlight the promise and
broad significance of Neural Low-Discrepancy Sequences.

1 INTRODUCTION

Approximating integrals using a finite set of sample points is a central task in scientific computation,
with applications ranging from numerical integration to uncertainty quantification and Bayesian
inference to computer vision and machine learning tasks; Chen et al. (2018); Paulin et al. (2022);
Keller (2013); Herrmann & Schwab (2020); Mishra & Rusch (2021); Longo et al. (2021). Problems
that arise in these areas often involve computing expectations of the form Eρ(f) of a function f(x)
in Rd with respect to some probability distribution F with density function ρ(x).

The simple Monte Carlo (MC) method estimates expectations of this kind by drawing samples
{Xi}Ni=1 randomly IID from F and computing the sample mean, i.e.,

Eρ(f) =
∫
Rd

f(x)ρ(x) dx ≈ 1

N

N∑
i=1

f(Xi). (1)

In this work, we will assume that there exists a transformation to map our integration problem to the
d-dimensional unit hypercube and thus will assume hereafter that F is the uniform distribution on
[0, 1]d. Under the assumption that some notion of variance of the integrand f(x) is finite (e.g., in
the sense of Hardy-Krause; Owen (2005)), the standard MC convergence rate of O(N−1/2) applies,
which may necessitate very largeN when a high degree of accuracy is required. A popular variation
on the MC method is to replace the random samples with a deterministic node set that more evenly
covers the domain. Such low-discrepancy (LD) points form the foundation of quasi-Monte Carlo
(QMC) methods; Dick et al. (2013); Hickernell et al. (2025), which achieve error rates close to
O(N−1) in favorable cases.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Assuming the integrand belongs to a reproducing kernel Hilbert space (RKHS) H of functions Rd →
R equipped with an inner product ⟨·, ·⟩H and corresponding norm ∥ · ∥H, one can use the Cauchy-
Schwarz inequality within H to derive an error bound on the approximation (1) as∣∣∣∣∣ 1N

N∑
i=1

f(Xi)−
∫
[0,1]d

f(x) dx

∣∣∣∣∣ ≤ ∥f∥HDk
2 ({Xi}Ni=1).

In the above, Dk
2 ({Xi}Ni=1) is referred to as the kernel discrepancy, or simply, the discrepancy for

brevity, and the term ∥f∥H is a measure of variation of the integrand; see Hickernell (1998) for
further details. The discrepancy term measures how closely the empirical distribution of the discrete
sample point set approximates the uniform distribution on [0, 1]d. Denote by k : Rd × Rd → R the
reproducing kernel associated with the RKHS H. The discrepancy can be computed explicitly as

Dk
2 ({Xi}Ni=1) =

√√√√∫∫
[0,1]d

k(x,y) dx dy − 2
N

N∑
i=1

∫
[0,1]d

k(Xi,y) dy + 1
N2

N∑
i,j=1

k(Xi,Xj).

(2)
Thus, employing sampling locations {Xi}Ni=1 with small discrepancy, in principle, leads to a more
accurate and tighter approximation of the expectation of interest. It then follows that constructing
sampling nodes with minimal discrepancy is of broad importance, with applications across many
areas of computational science.

1.1 SETS VERSUS SEQUENCES

In the study of QMC methods, it is important to distinguish between LD sets and sequences. The-
oretical results on sequences in dimension d often correspond to those on sets in dimension d + 1;
Roth (1954); Kirk (2020). Thus, despite being closely linked, sets and sequences are designed to
address different problems.

LD sets are finite collections of nodes that achieve good uniformity over the d−dimensional unit
hypercube. For such sets, one can typically establish a discrepancy bound of C(logN)d−1/N
for some absolute constant C depending on the specific construction. These are particularly well
suited to applications where the number of samples is known in advance, and this fixed-N setting
is exactly the problem addressed by the recently successful Message-Passing Monte Carlo (MPMC)
framework; Rusch et al. (2024). Classical examples of LD sets include Hammersley point sets;
Hammersley (1960), rank-1 lattices; Dick et al. (2022), and digital nets; Dick & Pillichshammer
(2010). In contrast, LD sequences are infinite constructions that are extensible in the number of
points, with the property that every initial segment, referred to in this text as a prefix, of length N
achieves discrepancy of order O((logN)d/N). Classical examples are the van der Corput sequence
in one-dimension, Sobol’ and Halton sequences for any dimension; Halton (1960); Sobol’ (1967)
and their numerous variants, as well as more modern greedy-optimized extensible constructions;
Kritzinger (2022). As an important remark, the standard LD sequence constructions typically yield
much smaller discrepancy values at special values of N , such as a powers of 2, which introduces an
inherent limitation in practice as performance can fluctuate depending on the chosen sample size.
For example, in the first 214 van der Corput points, there is never a better discrepancy for N points
than for 2m points when 2m < N < 2m+1; (Owen, 2023, Figure 15.4).

An inherent trade-off arises: the discrepancy can often be minimized more effectively for a LD
set since the sampling nodes are optimized globally for a particular, pre-specified N ; Rusch et al.
(2024). However, extending such optimized sets to larger sizes is challenging, as adding new nodes
typically disrupts the carefully balanced uniformity. Sequences, on the other hand, provide greater
flexibility in practice, since they allow sample sizes to be increased adaptively without restarting the
construction, albeit often at the cost of a slightly higher discrepancy for any given N .

1.2 RELATED WORK

There exists a growing literature on the optimization of sampling node locations. Some works aim to
minimize the discrepancy directly; Clément et al. (2025); Mak & Joseph (2018); Chen et al. (2018);
Dwivedi & Mackey (2024), while others use alterative methods and figures-of-merit; Miller et al.
(2025); Mak & Joseph (2025); Ding et al. (2025).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The Message-Passing Monte Carlo (MPMC) method; Rusch et al. (2024) is one such general QMC
construction method, and unlike classical construction methods such as digital nets or rank-1 lat-
tices, which are derived through number-theoretic means, MPMC is the first work to formulate the
problem as one of learning a uniform design through state-of-the-art geometric deep learning tools.
The core of the method is a graph neural network based on a message-passing algorithm where
each node of the graph corresponds to a sample point and the edges (formed via nearest neighbor)
encode the geometric relations between the points. The optimization is initialized by IID random
points contained in [0, 1]d and proceeds by updating the message-passing neural network parame-
ters according to an L2-based discrepancy function–the classical L2-star discrepancy is used in the
original formulation–which serves as a differentiable objective function. A resulting transformation
is learned which maps the original IID random points into a uniform output set which has very small
discrepancy. MPMC has its main strengths in the very effective minimization of discrepancy values
for an N -element point set–some of the smallest discrepancy values ever obtained–and its flexibility
of design via the exchangeability of differentiable loss function including extensions to minimize
Stein discrepancies; Kirk et al. (2025).

Importantly, the limitations of MPMC are also clear: the optimization process must be repeated for
each fixed choice of N since the construction is not extensible to larger point sets. Furthermore, the
computational cost grows quickly with the number of sampling points and thus training more than a
few thousand points becomes very computationally expensive. These limitations highlight the need
for a model which allows for sequential and extensible generation of LD sequences of points.

1.3 OUR CONTRIBUTION

In this paper, following in the footsteps of several recent works employing machine learning ar-
chitectures in LD optimization pipelines, we develop NEUROLDS, a flexible LDS generator. We
further demonstrate that NEUROLDS outperforms classical LD sequences in terms of discrepancy
minimization, QMC integration, robot motion planning, and scientific machine learning applica-
tions.

2 METHODS

NEUROLDS is a deterministic sequence generator fθ : {1, . . . , N} → [0, 1]d that preserves the
index-driven construction central to QMC. Classical LD sequences (e.g., Halton and Sobol’) are
constructed via number-theoretic digit transforms of the index; see Section 2.1 for details. Instead,
NEUROLDS feeds the index i through a K-band sinusoidal positional encoding and an L-layer
multi-linear perceptron (MLP) with ReLU and final sigmoid activation functions to obtain Xi ∈
[0, 1]d. We first carry out a pre-training procedure by approximating a traditional LD sequence (i.e.,
Sobol’) using the mean squared error (MSE), then fine-tune by minimizing closed-form L2-based
discrepancy losses over all sequence prefixes; see Clément et al. (2025) and Appendix A for exact
expressions of the discrepancy loss functions.

2.1 INDEX-BASED SEQUENCE CONSTRUCTION

Classical QMC sequences such as Halton and Sobol’ rely on the index i ∈ N0 as the fundamental
input. For Halton, the j-th coordinate is obtained from the radical–inverse function in base bj
with b1, . . . , bd typically chosen as the first d primes; Halton (1960); Niederreiter (1992); Dick
& Pillichshammer (2010). Writing i =

∑∞
k=0 akb

k
j with digits ak ∈ {0, . . . , bj − 1}, the j-th

coordinate of the i-th point of the Halton sequence is

ϕbj (i) =

∞∑
k=0

ak b
−(k+1)
j ,

i.e., take the digits of i in base bj and place them after the decimal point. The Halton sequence is
therefore {(ϕb1(i), . . . , ϕbd(i)) : i ≥ 0}. This yields good equidistribution in low d, but number-
theoretic correlations emerge as d grows (Niederreiter, 1992; Dick & Pillichshammer, 2010; Kirk &
Lemieux, 2025).

Sobol’ sequences, in contrast, are digital (t, d)-sequences in base 2 constructed from primitive
polynomials over the finite field F2 := {0, 1} (arithmetic mod 2; addition is bitwise XOR);

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Sobol’ (1967); Dick & Pillichshammer (2010). Each dimension j uses a polynomial pj(z) =
zmj + a1z

mj−1 + · · · + amj with coefficients ai ∈ {0, 1} to generate binary direction numbers
vj,k ∈ (0, 1) (interpreted as binary fractions). For k > mj , they satisfy

vj,k = a1vj,k−1 ⊕ · · · ⊕ amj
vj,k−mj

⊕
(
vj,k−mj

≫ mj

)
,

where ⊕ denotes bitwise XOR and ≫ mj denotes a bitwise right shift by mj places. Let g(i) =
i⊕ (i≫ 1) be the Gray code of i, and let gk(i) be its k-th bit. Then

Xi,j =

∞⊕
k=1

gk(i) vj,k,

interpreted as a binary fraction in [0, 1) by reading the resulting bitstring after the binary point.
This digital construction yields very small discrepancy even in moderate d (Dick & Pillichshammer,
2010).

Inspired by these number-theoretic constructions, we also root our approach in the index, but in-
stead of fixed digit expansions or direction numbers, we expose multiple frequency scales of i via
sinusoidal features. These features play an analogous role to the radical–inverse digits of Halton or
the Gray-coded direction numbers of Sobol’, while allowing the downstream MLP to learn flexible
digital rules according to a discrepancy objective function generating points in [0, 1]d that achieve
very high uniformity. Each index i is mapped to a sinusoidal encoding

ψi := ψ(i) =

[
i

N
, sin

(
2kπ i

N

)
, cos

(
2kπ i

N

)
: k = 0, . . . ,K − 1

]
∈ R1+2K ,

analogous to Fourier features in positional encoding. This embedding exposes multiple frequency
scales of the index to the network, mirroring the role of base-b digit expansions in Halton or Sobol’.

The encoded index is passed through an L-layer feedforward network with ReLU activations and a
final sigmoid, yielding Xi = fθ(ψi) ∈ [0, 1]d. The collection {Xi}Ni=1 defines a deterministic,
learned sequence.

2.2 TWO-STAGE OPTIMIZATION

Training proceeds in two complementary phases, and an overview of the overall architecture is
shown in Figure 1.

Pre-training (MSE alignment). We initialize fθ by regressing onto a chosen reference QMC
sequence, with natural starting points being the Sobol’ or Halton sequences. Given these targets
{qi}Ni=1, we minimize

Lpre(θ) =
1

N

N∑
i=1

∥∥fθ(ψi)− qi
∥∥2
2
.

In practice, the reference sequence is generated with an appropriate burn-in period, as is sometimes
recommended in the literature; Owen (2022). This pre-training phase stabilizes the learning process
and proves essential for the success of our method (see Section 3.3).

Fine-tuning (discrepancy minimization). After pre-training, we further refine fθ by minimizing
differentiable L2-based discrepancy losses (2), evaluated over all sequence prefixes. These losses
are induced by symmetric positive-definite kernels k, and we adopt product-form kernels that yield
classical discrepancy measures. For example, choosing k(x,y) =

∏d
j=1

(
1 − max(xj , yj)

)
for

x,y ∈ [0, 1]d recovers the standard L2 star discrepancy; Warnock (1972). Other well-studied
choices include symmetric, centered, and periodic variants, all of which admit exact and differen-
tiable forms. Each discrepancy can be computed in O(dN2) time across all prefixes of a sequence
of length N . We refer to Clément et al. (2025) for a comprehensive overview of L2 discrepan-
cies, and to Appendix A for explicit kernel definitions, which serve as tunable hyperparameters in
NEUROLDS.

In higher dimensions, the efficacy of QMC methods often relies on there being some underlying
low-dimensional structure, or decaying importance of variables; Dick et al. (2013); Wang & Sloan

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

...

...
...

...

...

...

...

...

...

...

...

...

X1, . . . ,XN ∈ [0, 1]d
Ψ ∈ RN×(1+2K)

ψ2

ψi

ψN

2

1

N

i

ψ1

L layers MLP

X2

Xi

XN

X1

Xi

XN

X1

Figure 1: Schematic of the proposed NEUROLDS model. First, each index i ∈ {1, . . . , N} is
mapped to a sinusoidal feature vector ψi ∈ R1+2K . Second, the encoded features are passed
through an L-layer multilayer perceptron (MLP), which outputs Xi ∈ [0, 1]d. Finally, the col-
lection {X1, . . . ,XN} forms a (learned) low-discrepancy sequence within the unit hypercube.

(2005). After the emergence of a rigorous framework from weighted function spaces Sloan & Woz-
niakowski (1998), many works now exist in this setting; Dick et al. (2006); Caflisch & Morokoff
(1996); Sloan & Woźniakowski (2001); Gnewuch et al. (2014); Chen et al. (2025). Precisely, one
assigns a product weight vector γ = (γ1, . . . , γd) ∈ Rd+ often depending on some a-priori knowl-
edge of the problem allowing one to quantify the relative importance of variables. This introduces
a tailored training ability of NEUROLDS to be applied to anisotropic integrands, as demonstrated in
our Borehole case study in Section 3.2.1.

Our overall fine-tuning loss averages prefix discrepancies:

Ldisc(θ) =

N∑
P=2

wP ·D•
2({Xi}Pi=1)

2, (3)

where wP are a choice of weights and • ∈ {star, sym, ctr, per, ext, asd} denotes the choice of kernel
function.

In this work, all results are produced with uniform weights such that all prefix lengths P ≤ N
contribute equally to the loss. Alternative weighting schemes and their potential effects are discussed
in Section 3.3.

3 RESULTS

3.1 DISCREPANCY MINIMIZATION

We evaluate the discrepancy of NEUROLDS in dimension d = 4 for three different choices of L2-
discrepancy losses: the symmetric Dsym

2 , the star Dstar
2 , and the centered Dctr

2 . For each loss, our
NEUROLDS sequence is obtained by pretraining on Sobol’ prefixes and then fine-tuning on the
target discrepancy. To ensure comparable conditions, we apply a burn-in of 128 points across the
board: (i) during pretraining we regress to Sobol’ with the first 128 points discarded (i.e., indices
are shifted by 128), and (ii) Sobol’ and Halton baselines are likewise evaluated after discarding their
first 128 points. Hyperparameters for NEUROLDS are selected per loss using Optuna; Akiba et al.
(2019); the best configurations are summarized in the Appendix in Table 5.

Besides the classical Sobol’ and Halton baselines, we also compare against randomized Sobol’ via
Owen’s nested uniform scrambling; Owen (1995; 1997). This yields sequences that retain low-
discrepancy guarantees in expectation, while breaking any uniformity flaws. In our experiments, we
report the mean over 32 independent scramblings.

Table 6 in the Appendix reports the exact discrepancy values for several values of N . NEUROLDS
achieves the lowest discrepancy at every sequence length for all three losses. Scrambling reduces

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

some oscillations in Sobol’, but even its randomized variants remain above NEUROLDS for all
reported N . The full sequence discrepancy profiles are shown in Fig. 2.

For visual aid, Fig. 5 in the Appendix shows the first N ∈ {64, 128, 256} points of Sobol’ and
NEUROLDS in two dimensions. For this illustrative experiment, NEUROLDS was trained with
the Dsym

2 , and all hyperparameters were tuned via Optuna. Although Sobol’ achieves good global
coverage, it often exhibits structured alignments and mild clustering artifacts, particularly at small
N . By contrast, NEUROLDS points appear more irregular, or random, while still covering the
domain evenly.

Figure 2: Comparison plots of different discrepancy metrics for 4d point sequences up to a length
of 10000 as a function of sequence length: Dsym

2 (left), Dstar
2 (middle), and Dctr

2 (right). Each panel
compares Sobol’, Halton, NEUROLDS, and Scrambled Sobol’ (mean over 32 scrambled sequences).

3.2 APPLICATIONS

3.2.1 QUASI-MONTE CARLO INTEGRATION

LDS are most often employed in QMC integration to approximate a d-dimensional integral over
[0, 1]d, with the goal of achieving faster convergence than standard Monte Carlo. To illustrate the
effectiveness of NEUROLDS in this setting, we consider the 8-dimensional Borehole function, a
benchmark in uncertainty quantification, sensitivity analysis, and approximation algorithms An &
Owen (2001); Morris et al. (1993); Kersaudy et al. (2015). The function models the flow rate of
water through a borehole connecting two aquifers separated by an impermeable rock layer. Our
objective is to approximate the expected flow rate, i.e., the integral of the Borehole function over the
8-dimensional parameter space; see Appendix B for details.

Since no analytical solution is available, we pre-compute a high-fidelity reference value using plain
Monte Carlo with N = 221 samples. Against this benchmark, we compare several low-discrepancy
constructions: classical Sobol’ and Halton sequences, our proposed NEUROLDS, and a greedy
baseline obtained via Nelder–Mead optimization Nelder & Mead (1965); see (Chen et al., 2018,
Appendix B.2.1) for implementation details. Both NEUROLDS and the NM-Greedy construction
are optimized against the weighted symmetric L2 discrepancy (see Appendix A), using a computed
weight vector γ that down-weights irrelevant coordinates identified by sensitivity analysis and pe-
nalizes irregularity more evenly across dimensions; details are again given in Appendix B.

The experimental protocol is deterministic: for each sequence type we generate a single fixed in-
stance of the first N points, without randomization or scrambling, and compute the absolute error
of the sample mean estimator of the Borehole integral. Table 1 reports these errors across a range of
N , with the smallest error in each row highlighted in bold.

We find that NEUROLDS, trained with coordinate-weighted discrepancy losses to emphasize the
most influential variables, consistently delivers superior accuracy compared with the other sequences
across nearly all values of N . By contrast, Halton performs the worst overall, as expected given its
well-documented uniformity pathologies in moderate to high dimensions Kirk & Lemieux (2025).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Absolute errors for the Borehole integral approximation with increasing sequence length
(N) for NEUROLDS, Sobol’, Halton and a greedy construction. Bold marks the best error per row,
underlined the second best.

N NEUROLDS (ours) Sobol’ Halton NM-Greedy

20 1.0309 7.3049 3.3671 3.8426
60 0.1864 0.1840 0.7724 0.5877

100 0.5765 0.4879 1.1391 0.0299
140 0.2095 0.4487 0.8304 0.2601
180 0.4204 0.4222 1.0487 0.9011
220 0.3430 0.2611 1.1711 0.5779
260 0.0239 0.5665 0.4516 0.7185
300 0.0467 0.0951 0.5534 0.0726
340 0.1478 0.2806 0.6215 0.6954
380 0.2059 0.1129 0.1613 0.4612
420 0.1066 0.1837 0.2260 0.4224
460 0.0657 0.1086 0.2164 0.0587
500 0.0651 0.1121 0.2619 0.2205

Although the NM-Greedy construction also incorporates sensitivity-informed weights, its perfor-
mance lags behind NEUROLDS. Notably, NEUROLDS achieves either the smallest or second-
smallest error for all but two tested values of N .

3.2.2 ROBOT MOTION PLANNING

Optimal exploration of the configuration space is a crucial component of sampling based motion
planning. Indeed, if the sampled points leave large gaps or cluster unevenly, the planner may fail
to discover important paths between regions, particularly when narrow passages are present. For
a specific family of planners-Probabilistic Roadmaps (PRM)-there exist theoretical guarantees that
directly connect the quality of sampling to path optimality Janson et al. (2018). More recently, the
guarantee has been expressed in terms of discrepancy, and significant empirical performance gains
obtained with MPMC point sets on a suite of PRM benchmarks Chahine et al. (2025).

However, most sampling-based planners construct their search structures sequentially. For example,
the Rapidly-exploring Random Tree (RRT) grows strictly one node at a time, with each new sample
extending the current frontier of exploration (Algorithm provided in Appendix C). In this setting,
order matters significantly: an early bias toward one region may starve others, leading to poor
coverage of narrow passages. The sequential sampling structure must align with the incremental
expansion of RRT, with both spatial distribution and temporal ordering central to performance.

We compare the sampling quality of NEUROLDS against uniform sampling, as well as Halton
and Sobol’ sequences, on a challenging motion planning experiment: Kinematic Chain in a Semi-
Circular Tunnel. The task is to control a chain of 4 revolute joints in the plane from an initial
configuration inside a semi-circular tunnel to an exterior target pose. The challenge lies in thread-
ing the articulated links through the curved tunnel, requiring coordinated rotations across all joints.
We randomize the placement of the tunnel between runs, with 160 repetitions per sequence. The
success rates for the experiment under different difficulty levels are summarized in Table 2. Across
all passage widths, NEUROLDS consistently delivers the highest success, demonstrating its ability
to guide the planner through narrow passages. Its structured, adaptive sampling produces well-
distributed points that efficiently cover the configuration space, ensuring robust path discoveries.
Overall, these results highlight the advantage of neural-adapted sampling in motion planning tasks,
where sequential exploration and effective coverage are critical.

3.2.3 SCIENTIFIC MACHINE LEARNING

LDS have been shown to improve the generalization of deep neural networks trained to approximate
parameter-to-observable mappings arising from parametric partial differential equations (PDEs)
Mishra & Rusch (2021); Longo et al. (2021). In this section, we empirically test whether NEU-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: RRT success rates (in %) for NEUROLDS, Sobol, Halton, and Uniform sampling. Each
distribution uses 10 precomputed sequences of lengthN = 105, reused across random initializations
and difficulty levels. Bold marks the best per row, underline the second best.

Experiment Passage width NEUROLDS (ours) Sobol’ Halton Uniform

4d Kinematic Chain

0.64 96.58 73.04 87.95 85.83
0.60 94.41 72.29 86.95 76.58
0.56 83.60 73.41 83.66 68.88
0.52 79.87 68.69 82.54 71.61
0.48 80.06 68.75 72.85 69.06
0.44 73.16 64.96 71.24 72.23
0.40 80.00 65.59 67.32 68.38

ROLDS improves the performance of deep neural networks over random points and competing LDS
constructions in this context. To this end, we consider a multidimensional Black-Scholes PDE that
models the pricing of a European multi-asset basket call option, where the assets in the basket are
assumed to change in time according to a multivariate geometric brownian motion. The details of
the PDE is given in Appendix D. In our experimental setup, we train neural networks to predict the
’fair price’, i.e., solution of the Black-Scholes PDE at time t = 0, for different initial values of the
underlying asset prices drawn from [0, 1]2. We compare the performance of NEUROLDS against
uniform random points as well as Sobol’ sequences. We fix the length of the sequence to 1000. To
ensure meaningful results, we present the average of 20 training runs of the same network using
different random weight initializations. Moreover, we conduct a light random search to optimize the
learning rate, width, and number of layers of the trained MLP for each of the three sampling meth-
ods. The results can be seen in Table 3. While Sobol’ sequences outperform uniform random points,
our NEUROLDS achieve superior performance over both. Moreover, NEUROLDS achieves lower
error than Sobol’ or random for any choice of the L2-discrepancy. We conclude that NEUROLDS
can successfully be leveraged in the context of scientific machine learning.

Table 3: Average mean-squared error (MSE) of fair price predictions for the 2d Black–Scholes PDE
over 20 runs (lower is better). Values are reported as [×10−4]. Best result in bold.

Baselines NEUROLDS (ours)

MC Sobol’ Dsym
2 Dstar

2 Dext
2 Dper

2 Dctr
2 Dasd

2

MSE [×10−4] 4.24 4.04 3.69 3.66 4.01 3.82 3.34 3.63

3.3 MODEL ABLATIONS AND SENSITIVITY STUDIES

We now examine the role of individual design choices in NEUROLDS.

Pre-training vs. direct discrepancy minimization. To assess whether pre-training is necessary,
we compared two pipelines in 2d, 3d, and 4d: 1) Pre-train+FT: regress to Sobol’ sequence and
then fine-tune on the target discrepancy; 2) Direct: initialize randomly and optimize the discrepancy
loss from scratch. We kept the architecture, optimizer, and budget fixed, and tuned hyperparameters
for each pipeline via Optuna. Across all dimensions, the Direct variant consistently collapsed to a
degenerate solution in which points concentrate near a corner of [0, 1]d (a pathology observed also
in related work Clément et al. (2025)), while Pre-train+FT remained stable. This indicates that
Sobol’-based pre-training provides an essential inductive bias before discrepancy refinement.

Alternative sequence generation with autoregressive GNNs. To test if explicit autoregression
helps, we implemented an AR-GNN that emits one point conditioned on the previous prefix and
compared it to our index-conditioned MLP in 2d. We matched parameter count and training budget
and tuned both models with Optuna. While the AR-GNN performed reasonably for small sequence

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

lengths, beyond a few hundred points the training signal became too weak to propagate through
long contexts without truncation, and performance degraded relative to the index-based MLP. Be-
cause truncation undermines global low-discrepancy structure, we adopt the simpler index-based
formulation, which proved more robust across dimensions.

Effect of sinusoidal frequency parameter K. To isolate the contribution of the index encoding
bandwidth, we trained models in 2d, 3d, and 4d that are identical in every respect except K, using
K ∈ {8, 16, 32} (Optuna re-tunes learning-rate and weight-decay per K). In 4d, the ablation is
visualized in the dedicated panel figure (see Fig. 6): largerK reduces fluctuations ofDsym

2 (i.e., more
stable curves), whereas small K (e.g., 8) exhibits higher variance. Thus, increasing K improves
stability of the discrepancy profile at the cost of a modest increase in training time.

Impact of non-linearities. We evaluated the necessity of depth by replacing the MLP with a
purely linear map (followed by a sigmoid) and by a shallow one-hidden-layer ReLU MLP, all in 2d
and 3d with Optuna-tuned hyperparameters. The linear model systematically failed to approximate
Sobol’-like structure and yielded poor discrepancy throughout the prefix. A single hidden layer
could reach competitive levels but required substantially longer training time. Our deeper MLP
strikes a favorable accuracy–efficiency balance across dimensions.

Impact of weights in fine-tuning discrepancy loss. We run on d = 4 with 10000 points and
optimal hyperparameters tuned via Optuna, and compare the effect of using uniform weighting
wP = 1/(N−2) versus length-proportional weighting wP∗ = 2P/(N2 + N − 2). Clearly, from
Figure 7 from the Appendix we see that performance is comparable: the uniform version performs
slightly better for shorter prefixes, while wP∗ yields lower discrepancy on longer prefixes. This
matches intuition, since wP∗ places more emphasis on later prefixes, thus optimizing them at the
expense of early ones.

4 DISCUSSION

NEUROLDS shows that neural architectures can successfully generate LDS, providing a solution to
the fixed N limitation of the MPMC model Rusch et al. (2024), with strong empirical performance
across numerical integration, path planning and scientific machine learning tasks. Our model formu-
lation as presented here focuses on classical L2-based discrepancy functions to target the uniform
distribution on [0, 1]d, the traditional setting for QMC methods. However, we note that the presented
framework is flexible, and can be extended to more general notions of kernel discrepancies, such as
Stein discrepancies Liu et al. (2016), enabling designs that compact non-uniform distributions into
an extensible sequence of nodes.

Finally, we note that our reliance on Sobol’ or Halton pre-alignment underlines the continued im-
portance of classical number-theoretic and non-ML optimization-based QMC constructions, which
provide the stability needed for successful training as highlighted in Section 3.3.

5 REPRODUCIBILITY STATEMENT

We provide an anonymized supplementary code package that implements our method to generate
low-discrepancy sequences via NeuroLDS. A public repository with identical code will be released
after review.

6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used for language rephrasing and light coding assistance (e.g., refactoring, boilerplate,
docstrings, linting fixes). They did not originate methods, model designs, or results; the authors take
full responsibility. LLMs are not eligible for authorship.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 2623–2631. ACM, 2019. doi: 10.1145/3292500.
3330701.

J. An and A. Owen. Quasi-regression. J. Complexity, 17:588–607, 2001.

R. E. Caflisch and W. Morokoff. Valuation of mortgage backed securities using the quasi-Monte
Carlo method. In International Association of Financial Engineers First Annual Computational
Finance Conference, 1996.

M. Chahine, T. K. Rusch, Z. J. Patterson, and D. Rus. Improving Efficiency of Sampling-based
motion planning via Message-Passing Monte Carlo. In 9th Annual Conference on Robot Learning,
2025.

J. Chen, H. Jiang, and N. Kirk. High-Dimensional Quasi-Monte Carlo via Combinatorial Discrep-
ancy, 2025. URL https://arxiv.org/abs/2508.18426.

W. Ye Chen, L. Mackey, J. Gorham, F.-X. Briol, and C. Oates. Stein points. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 844–853. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/chen18f.html.

F. Clément, N. Kirk, A. B. Owen, and T. K. Rusch. On the optimization of discrepancy measures.
arXiv preprint arXiv:2508.04926, 2025.

F. Clément, C. Doerr, K. Klamroth, and L. Paquete. Constructing optimal star discrepancy sets.
Proceedings of the American Mathematical Society, Series B, 12(7):78–90, 2025.

J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte
Carlo Integration. Cambridge University Press, Cambridge, 2010.

J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski. Good lattice rules in weighted Korobov spaces
with general weights. Numer. Math., 103(1):63–97, 2006. ISSN 0029-599X.

J. Dick, F. Kuo, and I. H. Sloan. High dimensional integration — the Quasi-Monte Carlo way. Acta
Numer., 22:133–288, 2013. doi: 10.1017/S0962492913000044.

J. Dick, P. Kritzer, and F. Pillichshammer. Lattice Rules: Numerical Integration, Approximation,
and Discrepancy. Springer Series in Computational Mathematics. Springer Cham, 2022. doi:
https://doi.org/10.1007/978-3-031-09951-9.

L. Ding, S. Mak, and J. C. F. Wu. The BdryMatérn GP: Reliable incorporation of bound-
ary information on irregular domains for Gaussian process modeling, 2025. URL https:
//arxiv.org/abs/2507.09178.

R. Dwivedi and L. Mackey. Kernel thinning. Journal of Machine Learning Research, 25(152):1–77,
2024.

M. Gnewuch, A. Mayer, and K. Ritter. On weighted Hilbert spaces and integration of functions of
infinitely many variables. Journal of Complexity, 30(2):29–47, 2014. Dagstuhl 2012.

J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals. Numer. Math., 2:84–90, 1960.

J. M. Hammersley. Monte carlo methods for solving multivariable problems. Proceedings of the
New York Academy of Sciences, 86(5):844–874, 1960.

J. Herman and W. Usher. SALib: an open-source python library for sensitivity analysis. The Journal
of Open Source Software, 2017. doi: 10.21105/joss.00097.

10

https://arxiv.org/abs/2508.18426
https://proceedings.mlr.press/v80/chen18f.html
https://arxiv.org/abs/2507.09178
https://arxiv.org/abs/2507.09178

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

L. Herrmann and C. Schwab. Multilevel quasi-Monte Carlo uncertainty quantification for advection-
diffusion-reaction. In Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Rennes, France,
July 2018, pp. 31–67, 2020. doi: 10.1007/978-3-030-43465-6\ 2.

F. J. Hickernell. A generalized discrepancy and quadrature error bound. Mathematics of Computa-
tion, 67(221):299–322, 1998.

F. J. Hickernell, N. Kirk, and A. G. Sorokin. Quasi-Monte Carlo methods: What, Why, and How?
Preprint, https://arxiv.org/abs/2502.03644, 2025.

L. Janson, B. Ichter, and M. Pavone. Deterministic sampling-based motion planning: Optimality,
complexity, and performance. The International Journal of Robotics Research, 37(1):46–61,
2018.

A. Keller. Quasi-Monte Carlo image synthesis in a nutshell. In Monte Carlo and Quasi-Monte Carlo
Methods 2012, pp. 213–249, 2013.

P. Kersaudy, B. Sudret, N. Varsier, O. Picon, and J. Wiart. A new surrogate modeling technique
combining kriging and polynomial chaos expansions – application to uncertainty analysis in com-
putational dosimetry. Journal of Computational Physics, 286:103–117, 2015.

N. Kirk. On Proinov’s lower bound for the diaphony. Uniform Distribution Theory, 2(15):39–72,
2020.

N. Kirk and C. Lemieux. An improved Halton sequence for implementation in quasi-Monte Carlo
methods. In Proceedings of the Winter Simulation Conference, WSC ’24, pp. 431–442. IEEE
Press, 2025.

N. Kirk, T. K. Rusch, J. Zech, and D. Rus. Low stein discrepancy via Message-Passing Monte Carlo.
arXiv preprint arXiv:2503.21103, 2025.

R. Korn and S. Zeytun. Efficient basket Monte Carlo option pricing via a simple analytical approxi-
mation. Journal of Computational and Applied Mathematics, 243:48–59, 2013.

R. Kritzinger. Uniformly distributed sequences generated by a greedy minimization of the l2 dis-
crepancy. Moscow Journal of Combinatorics and Number Theory, 11(3):215–236, 2022.

Q. Liu, J. Lee, and M. Jordan. A kernelized stein discrepancy for goodness-of-fit tests. In Maria Flo-
rina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 276–284,
New York, New York, USA, 20–22 Jun 2016. PMLR.

M. Longo, S. Mishra, T. K. Rusch, and C. Schwab. Higher-order quasi-Monte Carlo training of deep
neural networks. SIAM Journal on Scientific Computing, 43(6):A3938–A3966, 2021.

S. Mak and V. R. Joseph. Support points. Ann. Statist., 46(6A):2562–2592, 2018.

S. Mak and V. R. Joseph. Robust designs for Gaussian process emulation of computer experiments,
2025. URL https://arxiv.org/abs/2507.09156.

J. J. Miller, S. Mak, B. Sun, S. R. Narayanan, S. Yang, Z. Sun, K. S. Kim, and C.-B. M. Kweon.
Expected diverse utility (edu): Diverse bayesian optimization of expensive computer simulators,
2025. URL https://arxiv.org/abs/2410.01196.

S. Mishra and T. K. Rusch. Enhancing accuracy of deep learning algorithms by training with low-
discrepancy sequences. SIAM Journal on Numerical Analysis, 59(3):1811–1834, 2021.

M. D. Morris, T. J. Mitchell, and D. Ylvisaker. Bayesian design and analysis of computer experi-
ments: Use of derivatives in surface prediction. Technometrics, 35(3):243–255, 1993.

J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 4
(7):308–313, 1965.

H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of
CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1992.

11

https://arxiv.org/abs/2502.03644
https://arxiv.org/abs/2507.09156
https://arxiv.org/abs/2410.01196

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A. B. Owen. Randomly permuted (t,m, s)-nets and (t, s)-sequences. Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, 106:299–317, 1995. doi: 10.1007/
978-1-4612-2552-2 23.

A. B. Owen. Scrambled net variance for integrals of smooth functions. The Annals of Statistics, 25
(4):1541–1562, 1997. doi: 10.1214/aos/1069362388.

A. B. Owen. Multidimensional variation for quasi-Monte Carlo. In International Conference on
Statistics in honour of Professor Kai-Tai Fang’s 65th birthday, pp. 49–74. World Scientific, 2005.

A. B. Owen. On dropping the first Sobol’ point. In Monte Carlo and Quasi-Monte Carlo Methods:
MCQMC, Oxford, England, August 2020, pp. 71–86, 2022.

A. B. Owen. Practical Quasi-Monte Carlo. At https://artowen.su.domains/mc/
practicalqmc.pdf, 2023.

L. Paulin, N. Bonneel, D. Coeurjolly, J.-C. Iehl, A. Keller, and V. Ostromoukhov. Matbuilder:
Mastering sampling uniformity over projections. ACM Transactions on Graphics (Proceedings
of SIGGRAPH), 41(4), August 2022. doi: https://doi.org/10.1145/3528223.3530063.

K. F. Roth. On irregularities of distribution. Mathematika, 1:73–79, 1954.

T. K. Rusch, N. Kirk, M.M. Bronstein, C. Lemieux, and D. Rus. Message-Passing Monte Carlo:
Generating low-discrepancy point sets via graph neural networks. Proceedings of the National
Academy of Sciences, 121(40):e2409913121, 2024.

A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics
Communications, 2(145):280–297, 2002.

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola. Variance based sen-
sitivity analysis of model output. design and estimator for the total sensitivity index. Computer
Physics Communications, 2(181):259–270, 2010.

I. H. Sloan and H. Wozniakowski. When are quasi-Monte Carlo algorithms efficient for high dimen-
sional integrals? J. Complexity, 14:1–33, 1998.

I. H. Sloan and H. Woźniakowski. Tractability of multivariate integration for weighted Korobov
classes. Journal of Complexity, 17(4):697–721, 2001.

I. M. Sobol’. On the distribution of points in a cube and the approximate evaluation of integrals.
USSR Comput. Math. and Math. Phys., 7(4):86–112, 1967.

X. Wang and I. H. Sloan. Why are high-dimensional finance problems often of low effective dimen-
sion? SIAM J. Sci. Comput., 27 (1):159–183, 2005.

T. T. Warnock. Computing the discrepancy of sequences in the unit square. Mathematics of Com-
putation, 26(120):815–819, 1972.

12

https://artowen.su.domains/mc/practicalqmc.pdf
https://artowen.su.domains/mc/practicalqmc.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Supplementary Material for:
Neural Low-Discrepancy Sequences

A THE DISCREPANCY AND ASSOCIATED KERNELS

In the main text, it is discussed how several variants of the discrepancy can be formulated by sub-
stituting an appropriate symmetric and positive-definite kernel into equation (2). In this Appendix,
we list popular choices of (product) kernels and the associated discrepancy function. The interested
reader is additionally referred to Clément et al. (2025).

Table 4: Kernel functions corresponding to commonly used L2 discrepancy measures.

Discrepancy Kernel function k(x,y)

Star (Dstar
2)

d∏
j=1

(
1−max(xj , yj)

)
Extreme (Dext

2)
d∏
j=1

(
min(xj , yj)− xjyj

)
Periodic (Dper

2)
d∏
j=1

(
1
2 − |xj − yj |+ (xj − yj)

2
)

Centered (Dctr
2)

d∏
j=1

1
2

(
|xj − 1

2 |+ |yj − 1
2 | − |xj − yj |

)
Symmetric (Dsym

2)
d∏
j=1

1
4

(
1− 2|xj − yj |

)
Average squared (Dasd

2)
d∏
j=1

1
2

(
1− |xj − yj |

)

In higher dimensions, it is recommended to introduce coordinate weights γ ∈ Rd+ to reflect variable
importance. In this weighted setting, kernels take the form

k̃(x,y) =

d∏
j=1

(
1 + γj k(xj , yj)

)
,

where k(·, ·) denotes a one-dimensional kernel selected from Table 4.

B ON THE BOREHOLE FUNCTION

The Borehole function models the steady-state water flow rate through a borehole that connects two
aquifers separated by an impermeable rock layer. Mathematically, the function is:

f(rw, r, Tu, Hu, Tl, Hl, L,Kw) =
2πTu (Hu −Hl)

ln
(
r
rw

)(
1 + 2LTu

ln(r/rw) r2wKw
+ Tu

Tl

) .
13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The input parameters are taken to be independent and uniformly distributed over the following
ranges:

rw ∈ [0.05, 0.15] (borehole radius)
r ∈ [100, 50000] (radius of influence)
Tu ∈ [63070, 115600] (transmissivity of upper aquifer)
Hu ∈ [990, 1110] (potentiometric head of upper aquifer)
Tl ∈ [63.1, 116] (transmissivity of lower aquifer)
Hl ∈ [700, 820] (potentiometric head of lower aquifer)
L ∈ [1120, 1680] (length of borehole)

Kw ∈ [9855, 12045] (hydraulic conductivity of borehole)

Sensitivity Analysis. To justify the choice of coordinate weight vector, we performed a global
sensitivity analysis of the Borehole function using Sobol’ indices.

We employed the Saltelli sampling scheme Saltelli (2002); Saltelli et al. (2010) as implemented in
the SALib package Herman & Usher (2017). For a problem of dimension d, this procedure requires
N(2d + 2) model evaluations. The outputs were then analyzed to compute: the first-order Sobol’
index Si measuring the proportion of output variance attributable to variations in input xi alone, and
the total-order index STi capturing the variance due to xi including all its interactions with other
variables.

Figure 3 reveals that the borehole radius rw dominates the model response, with S1 ≈ 0.83 and
ST1 ≈ 0.87. Other parameters, such as Hu, Hl and L contribute at an order of magnitude smaller
level, while the remaining variables have negligible influence.

On this basis, we constructed a coordinate weight vector that assigns the highest weight
to rw, reduced weights to Hu, Hl and L and near-zero weights to the remaining vari-
ables. Specifically, the Sobol’ indices were normalized against the maximum index, and
then mapping these values (with a small floor added) into product weights resulting in γ =
(1.0000, 0.0010, 0.0010, 0.0633, 0.0010, 0.0634, 0.0610, 0.0158).

Figure 3: Sobol’ indices for the Borehole function.

C ON RAPIDLY-EXPLORING RANDOM TREES

Rapidly-exploring Random Trees (RRT) are a widely used class of sampling-based motion planners
designed to efficiently explore high-dimensional configuration spaces. They are particularly effec-
tive in tasks with complex constraints or narrow passages, where uniform sampling alone may fail to
discover feasible paths. At each iteration, RRT incrementally grows a tree rooted at the initial con-
figuration by sampling a new configuration, extending the nearest tree node toward it, and checking
for collisions. The tree grows sequentially, which makes both the spatial distribution and temporal
order of the samples critical to planner performance.

Algorithm 1 summarizes the standard RRT procedure. The main parameters include the maximum
number of iterations K and the step size δ, which control the exploration extent and granularity of
the tree.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 Rapidly-exploring Random Tree (RRT)
Input: Initial configuration xinit, goal region Xgoal, maximum iterations K, step size δ

1: Initialize tree T with root xinit
2: for k = 1 to K do
3: Sample a random configuration xrand from the configuration space X
4: Find nearest node xnearest in T to xrand
5: Compute a new node xnew by moving from xnearest toward xrand by step size δ
6: if xnew is collision-free then
7: Add xnew to T with an edge from xnearest
8: if xnew ∈ Xgoal then
9: return Path from xinit to xnew

10: end if
11: end if
12: end for
13: return Failure (no path found)

Figure 4 illustrates the Kinematic chain experiment. The panel shows a 4d kinematic chain in a
semi-circular tunnel, which we use as our test scenario. Even in the 4d case with 10k sampled
points, controlling all four joint angles simultaneously is already non-trivial, highlighting the need
for well-structured sampling sequences.

1.0 0.5 0.0 0.5
X coordinate

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Y
co

or
di

na
te

Horn Environment Visualization (d=4, eps=0.4)
Outer wall
Inner wall
Tunnel
Goal point (FIXED at -1,0)
Start robot
Goal robot
START end effector
GOAL end effector
Robot base

Figure 4: Visualization of kinematic chain task for a 4d chain in a semi-circular tunnel.

D ON THE BLACK-SCHOLES PDE EXAMPLE

We consider the following Black-Scholes partial differential equation (BSPDE):

∂V

∂t
+

d∑
i=1

rSi
∂V

∂Si
+

1

2

d∑
i=1

σ2
i S

2
i

∂2V

∂S2
i

+

d−1∑
i=1

d∑
j=i+1

ρijσiσjSiSj
∂2V

∂Si∂Sj
− rV = 0, (4)

subject to the terminal condition V (T,S) = Λ(S). Moreover, we consider the payoff function of a
European geometric average basket call option:

Λ(S(T)) = max


(

d∏
i=1

Si(T)

)1/d

−K, 0

 . (5)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Since products of log-normal random variables are themselves log-normal, the initial value of the
pricing function—i.e., the discounted expectation at time t = 0—is

V (t,S) = e−r(T−t)EP̃ [Λ(S(T)) | S(t) = S].

This quantity is the option’s value at purchase time, i.e., the fair price of the European geometric
average basket call option under the Black–Scholes model. Using (5), the closed-form solution to
the multidimensional BSPDE (4) at (0,S) is (Theorem 2 in Korn & Zeytun (2013)):

V (0,S) = e−rT
(
s̃ em̃Φ(d1)−K Φ(d2)

)
, (6)

where Φ is the standard normal CDF, and

ν =
1

d

√√√√√ d∑
j=1

(
d∑
i=1

σ2
ij

)2

, m = rT − T

2d

d∑
i=1

d∑
j=1

σ2
ij , m̃ = m+

1

2
ν2,

s̃ =

(
d∏
i=1

Si

)1/d

, d1 =
log(s̃/K) +m+ ν2

ν
, d2 = d1 − ν,

with σ ∈ Rd×d the covariance matrix of stock returns (entries σij). For the experiments below we
fix σ = 10−5I, T = 5, K = 0.08, and r = 0.05, where I ∈ Rd×d is the identity matrix.

E ADDITIONAL TABLES AND PLOTS

This section provides supplementary material in the form of additional plots and tables that comple-
ment the main results. Figure 6 illustrates the behavior of NEUROLDS discrepancy under different
settings of K, highlighting both the overall trend and the fluctuation indices across prefix lengths.
Tables 5 and 6 report quantitative comparisons of prefix discrepancies against standard baselines as
well as the best hyperparameters found via Optuna. Together, these results give a more detailed view
of model performance and robustness beyond the main text.

Figure 5: First N ∈ {64, 128, 256} points of Sobol’ (blue) and NEUROLDS (orange) in 2d. NEU-
ROLDS was trained with the Dstar

2 discrepancy and Optuna-tuned hyperparameters. Sobol’ exhibits
visible structure and clustering, while NEUROLDS distributes points more irregularly yet evenly,
mitigating alignment artifacts and leading to lower prefix discrepancy.

Table 5: Optuna-selected hyperparameters per loss (rounded). All runs use sequence length 104,
pretrained on Sobol’ with 128 burn-in points, then fine-tuned on the target loss.

Loss Hidden Layers K Pretrain LR Fine-tune LR Final LR ratio

Dsym
2 768 7 64 2.61×10−3 5.04×10−3 3.02×10−2

Dstar
2 512 5 64 1.38×10−3 3.52×10−4 4.39×10−2

Dctr
2 768 7 32 2.85×10−3 4.14×10−3 1.14×10−1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Prefix discrepancy in d = 4 at lengths N ∈ {100, 500, 1000, 2000, 5000, 10000} for our
model, Sobol’, Halton, and the mean over 32 scrambled Sobol’ sequences. Lower is better; best per
loss/length in bold.

Dsym
2

Seq. Length Model Sobol’ Halton Scr. Sobol’ (mean)
100 0.002669 0.004840 0.005020 0.004602
500 0.000900 0.001615 0.001608 0.001610
1000 0.000578 0.000972 0.001002 0.000965
2000 0.000339 0.000527 0.000550 0.000540
5000 0.000167 0.000282 0.000278 0.000282
10000 0.000098 0.000167 0.000168 0.000169

Dstar
2

Seq. Length Model Sobol’ Halton Scr. Sobol’ (mean)
100 0.008603 0.009477 0.010333 0.010033
500 0.002585 0.002977 0.003052 0.003058
1000 0.001491 0.001824 0.001709 0.001818
2000 0.000776 0.000929 0.000937 0.000962
5000 0.000368 0.000462 0.000459 0.000460
10000 0.000213 0.000266 0.000266 0.000268

Dctr
2

Seq. Length Model Sobol’ Halton Scr. Sobol’ (mean)
100 0.003534 0.004607 0.004612 0.004673
500 0.001192 0.001654 0.001531 0.001621
1000 0.000711 0.000987 0.000988 0.000958
2000 0.000419 0.000541 0.000554 0.000539
5000 0.000200 0.000281 0.000279 0.000283
10000 0.000114 0.000167 0.000167 0.000169

Figure 6: NeuroLDS discrepancy underDsym
2 in 4d as a function of prefix length P . The three panels

show K ∈ {8, 16, 32} (one per panel). Models differ only in K; all remaining hyperparameters and
the training setup are identical. The y-axis is log-scaled; lower is better. To quantify fluctuations
across prefixes, we report a fluctuation index ρK := CV[DP] = std(DP)/mean(DP) computed
over P ≤ 104, where DP denotes the L2,sym discrepancy at prefix P . We obtain ρ8 = 1.886,
ρ16 = 1.608, and ρ32 = 1.537 (smaller is smoother). For reference, the 90% log-amplitude ∆90

K :=
P95[log10DP]− P5[log10DP] equals 0.954, 0.915, and 0.916 for K = 8, 16, 32, respectively.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 7: Comparison of fine-tuning with uniform weights (wP = 1/(N−2)) versus length-
proportional weights (wP∗ = 2P/(N2 + N − 2)) in 4d with N=10,000 points. Uniform weights
favor early prefixes, whereas wP∗ improves long-prefix performance.

18

	Introduction
	Sets versus Sequences
	Related Work
	Our Contribution

	Methods
	Index-Based Sequence Construction
	Two-Stage Optimization

	Results
	Discrepancy Minimization
	Applications
	Quasi-Monte Carlo Integration
	Robot Motion Planning
	Scientific Machine Learning

	Model Ablations and Sensitivity Studies

	Discussion
	Reproducibility Statement
	The Use of Large Language Models (LLMs)
	The discrepancy and associated kernels
	On the Borehole Function
	On Rapidly-Exploring Random Trees
	On the Black-Scholes PDE example
	Additional Tables and plots

