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Abstract

Motivated by applications of large embedding models, we study differentially
private (DP) optimization problems under sparsity of individual gradients. We
start with new near-optimal bounds for the classic mean estimation problem but
with sparse data, improving upon existing algorithms particularly for the high-
dimensional regime. The corresponding lower bounds are based on a novel block-
diagonal construction that is combined with existing DP mean estimation lower
bounds. Next, we obtain pure- and approximate-DP algorithms with almost optimal
rates for stochastic convex optimization with sparse gradients; the former represents
the first nearly dimension-independent rates for this problem. Furthermore, by intro-
ducing novel analyses of bias reduction in mean estimation and randomly-stopped
biased SGD we obtain nearly dimension-independent rates for near-stationary
points for the empirical risk in nonconvex settings under approximate-DP.

1 Introduction

The pervasiveness of personally sensitive data in machine learning applications (e.g., advertising,
public policy, and healthcare) has led to the major concern of protecting users’ data from their
exposure. When releasing or deploying these trained models, differential privacy (DP) offers a
rigorous and quantifiable guarantee on the privacy exposure risk [1].

Consider neural networks whose inputs have categorical features with large vocabularies. These
features can be modeled using embedding tables; namely, for a feature that takes K distinct values,
we create trainable parameters w1, . . . , wK ∈ Rk, and use wa as input to the neural network when
the corresponding input feature is a. A natural outcome of such models is that the per-example
gradients are guaranteed to be sparse; when the input feature is a, then only the gradient with respect
to wa is non-zero. Given the prevalence of sparse gradients in practical deep learning applications,
GPUs/TPUs that are optimized to leverage gradient sparsity are commercially offered and widely
used in industry [2, 3, 4, 5]. To leverage gradient sparsity, recent practical work has considered DP
stochastic optimization with sparse gradients for large embedding models for different applications
including recommendation systems, natural language processing, and ads modeling [6, 7].

Despite its relevance and promising empirical results, there is limited understanding of the theoretical
limits of DP learning under gradient sparsity. This gap motivates our work.
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Setting Upper bound Lower bound

ε-DP 1 ∧
√

s ln d
εn

∧
√
sd

εn
(Thm. 3.2) 1 ∧

√
s ln(d/(εn))

εn
∧

√
sd

εn
(Thm. 4.1)

(ε, δ)-DP 1 ∧ (s ln(d/s) ln(1/δ))1/4√
εn

∧
√

d ln(1/δ)

εn
(Thm. B.1) 1 ∧ (s ln(1/δ))1/4√

εn
∧

√
d ln(1/δ)

εn
(Thm. 4.5)

Table 1: Rates for DP mean estimation with sparse data of unit ℓ2-norm. Bounds stated for constant
success/failure probability, resp. We use a ∧ b to denote min(a, b). New results highlighted .

Setting Guarantee
New Upper bound

(sparse)
Upper bound
(non-sparse)

(ε, δ)-DP
Convex ERM (s ln(d) ln(1/δ))1/4√

εn
∧Rε,δ (Thm. 5.4, 6.1) Rε,δ

SCO (s ln(d) ln(1/δ))1/4√
εn

∧Rε,δ +
1√
n

(Thm. 6.3) Rε,δ +
1√
n

ε-DP
Convex ERM

(
s ln(d)

εn

)1/3

∧Rε (Thm. 6.1, G.4) Rε

SCO
(

s ln(d)
εn

)1/3

∧Rε +
1√
n

(Thm. 6.3) Rε +
1√
n

(ε, δ)-DP Emp. Grad. Norm (s ln(d/s) ln3(1/δ))1/8

(εn)1/4
∧
(
Rε,δ

)2/3 (Thm. 5.4)
(
Rε,δ

)2/3
Table 2: Rates for DP optimization with sparse gradients, compared to best-existing upper bounds in
the non-sparse case. In the above, the bounds are stated for constant success probability, the function
parameters and polylog(n) factors are omitted, Rε,δ =

√
d ln(1/δ)/(εn), Rε = d/(εn), and our

improvements are highlighted .

1.1 Our Results

We initiate the study of DP optimization under gradient sparsity. More precisely, we consider a
stochastic optimization (SO) problem, min{FD(x) : x ∈ X}, where X ⊆ Rd is a convex set, and
FD(x) = Ez∼D[f(x, z)], with f(·, z) enjoying some regularity properties, and D is a probability
measure supported on a set Z . Our main assumption is gradient sparsity: for an integer 0 ≤ s ≤ d,

∀x ∈ X , z ∈ Z : ∥∇f(x, z)∥0 ≤ s ,

where ∥y∥0 denotes the number of nonzero entries of y. We also study empirical risk minimization
(ERM), where given a dataset S = (z1, . . . , zn) we aim to minimize FS(x) :=

1
n

∑
i∈[n] f(x, zi).

Our results unearth three regimes of accuracy rates for the above setting: (i) the small dataset size
regime where the optimal rate is constant, (ii) the large dataset size where the optimal rates are
polynomial in the dimension, and (iii) an intermediate dataset size regime characterized by a new
high-dimensional rate1 (see Table 1 and Table 2, for precise rates). These results imply in particular
that even for high-dimensional models, this problem is tractable under gradient sparsity. Without
sparsity, these polylogarithmic rates is impossible due to known lower bounds [8].

In Section 3, we start with the fundamental task of ℓ2-mean estimation with sparse data (which
reduces to ERM with sparse linear losses [8]). Here, we obtain new upper bounds (see Table 1).
These rates are obtained by adapting the projection mechanism [9], with a convex relaxation that
makes our algorithms efficient. Note that for pure-DP, even our large dataset rate of

√
sd/(εn) can be

substantially smaller than the dense pure-DP rate of d/(εn) [8], whenever s≪ d. For approximate-
DP we also obtain a sharper upper bound by solving an ℓ1-regression problem of a noisy projection
of the empirical mean over a random subspace. Its analysis combines ideas from compressed sensing
[10] with sparse approximation via the Approximate Carathéodory Theorem [11].

In Section 4, we prove lower bounds that show the near-optimality of our algorithms. For pure-DP,
we obtain a new lower bound of Ω(s log(d/s)/(nε)), which is based on a packing of sparse vectors.

1We will generally refer to high-dimensional or nearly dimension-independent rates indistinguishably,
meaning more precisely that the rates scale polylogarithmically with the dimension.
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While this lower bound looks weaker than the standard Ω(d/(nε)) lower bound based on dense
packings [12, 8], we design a novel bootstrapping via a block diagonal construction where each
block contains a sparse lower bound as above. This, together with a padding argument [8], yields
lower bounds for the three regimes of interest. For approximate-DP, we also use the block diagonal
bootstrapping, where this time the blocks use classical fingerprinting codes in dimension s [8, 13].
Our approximate-DP lower bounds, however, have a gap of ln(d/s)1/4 in the high-dimensional
regime; we conjecture that the aforementioned compressed sensing-based upper bound is tight.

In Section 5, we study DP-ERM with sparse gradients, under approximate-DP. We propose the use of
stochastic gradient (SGD) with a mean estimation gradient oracle based on the results in Section 3.
This technique yields nearly-tight bounds in the convex case (similar to first row of Table 2), and for
the nonconvex case the stationarity rates are nearly dimension independent (last row of Table 2). The
main challenge here is the bias in mean estimation, which dramatically deteriorates the rates of SGD.
Hence we propose a bias reduction method inspired by the simulation literature [14]. This technique
uses a random batch size in an exponentially increasing schedule and a telescopic estimator of the
gradient which—used in conjunction with our DP mean estimation methods—provides a stochastic
first-order oracle that attains bias similar to the one of a full-batch algorithm, with moderately bounded
variance. Note that using the full-batch in this case would lead to polynomially weaker rates; in
turn, our method leverages the batch randomization to conduct a more careful privacy accounting
based on subsampling and the fully-adaptive properties of DP [15]. The introduction of random
batch sizes and the random evolution of the privacy budget leads to various challenges in analyzing
the performance of SGD. First, we analyze a randomly stopped method, where the stopping time
dictated by the privacy budget. Noting that the standard SGD analysis bounds the cumulative regret,
which is a submartingale, we carry out this analysis by integrating ideas from submartingales and
stopping times [16]. Second, this analysis only yields the desired rates with constant probability.
Towards high probability results, we leverage a private model selection [17] based on multiple runs
of randomly-stopped SGD that exponentially boosts the success probability (details in Appendix F).

In Section 6, we study further DP-SO and DP-ERM algorithms for the convex case. Our algorithms
are based on regularized output perturbation with an ℓ∞ projection post-processing step. While this
projection step is rather unusual, its role is clear from the analysis: it leverages the ℓ∞ bounds of
noise addition, which in conjunction with convexity provides an error guarantee that also leverages
the gradient sparsity. This algorithm is nearly-optimal for approximate-DP. For pure-DP, the previous
algorithm requires an additional smoothness assumption, hence we propose a second algorithm based
on the exponential mechanism [18] run over a net of suitably sparse vectors. Neither of the pure-DP
algorithms matches the lower bound for mean estimation (the gap in the exponent of the rate is of
1/6), but they attain the first nearly dimension-independent rates for this problem.

1.2 Related Work

DP optimization is an extensively studied topic for over a decade (see [8, 19, 20], and the references
therein). In this field, some works have highlighted the role of model sparsity (e.g., using sparsity-
promoting ℓ1-ball constraints) in near-dimension independent excess-risk rates for DP optimization,
both for ERM and SCO [21, 22, 23, 24, 25, 26, 27]. These settings are unrelated to ours, as sparse
predictors are typically related to dense gradients.

Another proposed assumption to mitigate the impact of dimension in DP learning is that gradients lie
(approximately) in a low dimensional subspace [28, 29, 30, 31] or where dimension is substituted
by a bound on the trace of the Hessian of the loss [32]. These useful results are unfortunately not
applicable to our setting of interest, as we are interested in arbitrary gradient sparsity patterns for
different datapoints.

Substantially less studied is the role of gradient sparsity. Closely related to our work, [6] studied
approximate DP-ERM under gradient sparsity, with some stronger assumptions. Aside from an
additional ℓ∞ bound on individual gradients, the following partitioning sparsity assumption is
imposed. The dataset S can be uniformly partitioned into subsets S1, . . . , Sm with a uniform
gradient sparsity bound: for all k ∈ [m] and x ∈ X ,

∥∥∑
z∈Sk

∇f(x, z)
∥∥
0
≤ c1. The work shows

polylogarithmic in the dimension rates, for both convex and nonconvex settings. Our results only
assume individual gradient sparsity, so on top of being more general, they are also faster and provably
nearly optimal in the convex case. Another relevant work is [7], which studies the computational
and utility benefits for DP with sparse gradients in neural networks with embedding tables. With the
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caveat that variable selection on stochastic gradients is performed at the level of contributing buckets
(i.e., rows of the embedding table), rather than on gradient coordinates, this work shows substantial
improvements on computational efficiency and also on the resulting utility.

In [33], bias reduction is used to mitigate the regularization bias in SCO. While they also borrow
inspiration from [14], both their techniques and scope are unrelated to ours.

1.3 Future Directions

We present some of the main open questions and future directions of this work. First, we con-
jecture that for approximate-DP mean estimation—similarly to the pure-DP case—a lower bound
Ω
(√

s log(d/s) ln(1/δ)/[nε]
)

should exist; such construction could be bootstrapped with a block-
diagonal dataset for a tight lower bound (Lemma 4.3). Second, for pure DP-SCO, we believe an
algorithm should exist that achieves rates analogous to those for mean estimation. Unfortunately,
most of variants of output perturbation (including phasing [20, 24, 34]) cannot attain such rates.
From a practical perspective, the main open question is whether our rates are attainable without prior
knowledge of s; note that all our mean estimation algorithms (which carries over to our optimization
results) depend crucially on knowledge of this parameter. While we can treat s as a hyperparameter,
it would be highly beneficial to design algorithms that automatically adapt to it.

We believe our bias reduction is of broader interest. For example, [35, 36] have shown strong
negative results about bias in DP mean estimation. While similar lower bounds may hold for sparse
estimation, bias reduction allows us to amortize this error within an iterative method, preventing error
accumulation.

Finally, there is no evidence of our nonconvex rate being optimal. In this vein, we should remark that
even in the dense case the optimal stationarity rates are still open [37].

2 Notation and Preliminaries

In this work, ∥ · ∥ = ∥ · ∥2 is the standard Euclidean norm on Rd. We will also make use of
ℓp-norms, where ∥x∥p :=

(∑
j∈[d] |xj |p

)1/p
for 1 ≤ p ≤ ∞. For p = 0, we use the notation

∥x∥0 = |{j ∈ [d] : xj ̸= 0}|, i.e., the size of the support of x. We denote the r-radius ball centered
at x of the p-norm in Rd by Bdp(x, r) := {y ∈ Rd : ∥y− x∥p ≤ r}. Given s ∈ [d] and L > 0, the set
of s-sparse vectors is (the scaling factor L is omitted in the notation for brevity)

Sds := {x ∈ Rd : ∥x∥0 ≤ s, ∥x∥2 ≤ L}. (1)

Note that Jensen’s inequality implies: if ∥x∥0 ≤ s and 1 ≤ p < q ≤ ∞, then ∥x∥p ≤ s1/p−1/q∥x∥q .

Remark 2.1. The upper bound results in this paper hold even if we replace the set Sds of sparse
vectors by the strictly larger ℓ1-ball Bd1(0, L

√
s) . Note that while our upper bounds extend to the ℓ1

assumption above, our lower bounds work under the original sparsity assumption.

Let f : X × Z 7→ R be a loss function. The function evaluation f(x, z) represents the loss incurred
by hypothesis x ∈ X on datapoint z ∈ Z . In stochastic optimization (SO), we consider a data
distribution D, and our goal is to minimize the expected loss under this distribution

minx∈X

{
FD(x) := Ez∼D[f(x, z)]

}
. (SO)

Throughout, we use x∗(D) to denote an optimal solution to (SO), which we assume exists. In the
empirical risk minimization (ERM) problem, we consider sample datapoints S = (z1, . . . , zn) and
our goal is to minimize the empirical error with respect to the sample

minx∈X

{
FS(x) :=

1
n

∑
i∈[n] f(x, zi)

}
. (ERM)

We denote by x∗(S) an arbitrary optimal solution to (ERM), which we assume exists. Even when S
is drawn i.i.d. from D, solutions (or optimal values) of (SO) and (ERM) do not necessarily coincide.

We present the definition of differential privacy (DP), deferring useful properties and examples to
Appendix A. Let Z be a sample space, and X an output space. A dataset is a tuple S ∈ Zn, and
datasets S, S′ ∈ Zn are neighbors (denoted as S ≃ S′) if they differ in only one of their entries.
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Definition 2.2 (Differential Privacy). Let A : Zn 7→ X . We say that A is (ε, δ)-(approximately)
differentially private (DP) if for every pair S ≃ S′, we have for all E ⊆ X that Pr[A(S) ∈
E ] ≤ eε · Pr[A(S′) ∈ E ] + δ. When δ = 0, we say that A is ε-DP or pure-DP.

3 Upper Bounds for DP Mean Estimation with Sparse Data

We first study DP mean estimation with sparse data. Our first result is that the projection mechanism
[9] is nearly optimal, both for pure- and approximate-DP. In our case, we interpret the marginals on
each of the d dimensions as the queries of interest: this way, the ℓ2-error on private query answers
corresponds exactly to the ℓ2-norm estimation error. A key difference to the approach in [9] and
related works is that we project the noisy answers onto the set K := Bd1(0, L

√
s), which is a (coarse)

convex relaxation of conv(Sds ). This is crucial to make our algorithm efficiently implementable. Due
to space limitations, proofs from this section have been deferred to Appendix B.

Algorithm 1 Projection_Mechanism(z̄(S), ε, δ, n)

Require: Vector z̄(S) = 1
n

∑n
i=1 zi from dataset S ∈ (Sds )n; ε, δ ≥ 0, privacy parameters

z̃ = z̄(S) + ξ, with ξ ∼

Lap(σ)⊗d with σ =
( 2L

√
s

nε

)
if δ = 0 ,

N (0, σ2I) with σ2 = 8L2 ln(1.25/δ)
(nε)2 if δ > 0 .

return ẑ = argmin{∥z − z̃∥2 : z ∈ K}, where K := Bd1(0, L
√
s)

Lemma 3.1. In Algorithm 1, it holds that ∥ẑ − z̄(S)∥2 ≤
√
2L∥ξ∥∞

√
s, almost surely.

We now provide the privacy and accuracy guarantees of Algorithm 1.
Theorem 3.2. For δ = 0, Algorithm 1 is ε-DP, and with probability 1− β:

∥ẑ − z̄(S)∥2 ≲ L ·min

{√
sd ln(d/β)

nε ,
√

s ln(d/β)
nε

}
.

Theorem 3.3. For δ > 0, Algorithm 1 is (ε, δ)-DP, and with probability 1− β:

∥ẑ − z̄(S)∥2 ≲ L ·min

{
(
√
d+
√

log(1/β))
√

ln(1/δ)

nε , (s log(1/δ) log(d/β))1/4√
nε

}
.

Sharper Upper Bound via Compressed Sensing In Appendix B.4 we propose a faster mean
estimation approximate-DP algorithm. Its rate nearly matches the lower bound we will prove in
Theorem 4.4. We believe that this rate is essentially optimal. This algorithm projects the data average
into a low dimensional subspace (via a random projection matrix), and uses compressed sensing to
recover a noisy version of this projection: this way, noise provides privacy, which is further boosted by
the random projection, and the accuracy follows from an application of the stable and noisy recovery
properties of compressed sensing [10], together with the Approximate Carathéodory Theorem.

4 Lower Bounds for DP Mean Estimation with Sparse Data

We provide matching lower bounds to those from Section 3. Moreover, although the stated lower
bounds are for mean estimation, known reductions imply analogous lower bounds for DP-ERM
and DP-SCO [8, 19]. First, for pure-DP we provide a packing-type construction based on sparse
vectors. This is used in a novel block-diagonal construction, which provides the right low/high-
dimensional transition. On the other hand, for approximate-DP, a block diagonal reduction with
existing fingerprinting codes [38, 13], suffices to obtain lower bounds that exhibit a nearly tight
low/high-dimensional transition. For simplicity, we consider the case of L = 1, i.e., Sds = {z ∈ Rd :
∥z∥0 ≤ s, ∥z∥2 ≤ 1}; it is easy to see that any lower bound scales linearly in L. We defer proofs
from this section to Appendix C.

4.1 Lower Bounds for Pure-DP

Our main lower bound for pure-DP mechanisms is as follows.
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Theorem 4.1. Let ε > 0 and s < d/2. Then the empirical mean estimation problem over Sds satisfies

inf
A : ε-DP

sup
S∈(Sd

s )
n

P
[
∥A(S)− z̄(S)∥2 ≳ min

{
1,
√

s log(d/[εn])
εn ,

√
sd

εn

}]
≳ 1.

The statement above—as well as those which follow—should be read as “for all DP algorithms A,
there exists a dataset S, such that the mean estimation error is lower bounded by α(n, d, ε, δ) with

probability at least β(n, d, ε, δ)” (where in this case α ≳ min
{
1,
√

s log(d/[εn])
εn ,

√
sd

εn

}
and β ≳ 1).

We also introduce a strengthening of the worst case lower bound, based on hard distributions.
Definition 4.2. We say that a probability µ over Zn induces an (α, β)-distributional lower bound
for (ε, δ)-DP mean estimation if infA: (ε,δ)-DP PS∼µ,A

[
∥A(S)− z̄(S)∥2 ≥ α

]
≥ β.

Note this type of lower bound readily implies a worst case lower bound. On the other hand, while the
existence of hard distributions follows by the existence of hard datasets (by Yao’s minimax principle),
we provide explicit constructions of these distributions, for the sake of clarity.

Theorem 4.1 follows by combining the two results that we provide next. First, and our main technical
innovation in the sparse case is a block-diagonal dataset bootstrapping construction, which turns a
low-dimensional lower bound into a high-dimensional one.
Lemma 4.3 (Block-Diagonal Lower Bound Bootstrapping). Let n0, t ∈ N. Let µ be a distribution
over (Sts)n0 that induces an (α0, ρ0)-distributional lower bound for (ε, δ)-DP mean estimation.
Then, for any d ≥ t, n ≥ n0 and K ≤ min

{
n
n0

, d
t

}
, there exists µ̃ over (Sds )n that induces

an (α, ρ)-distributional lower bound for (ε, δ)-DP mean estimation, where α ≳ α0n0

n

√
ρ0K and

ρ ≥ 1− exp(−ρ0/8).

Note that the above result needs a base lower bound for which packing-based constructions suffice.
Theorem 4.4. Let ε > 0 and s < d/2. Then there exists an (α, ρ)-distributional lower bound for

ε-DP mean estimation over (Sds )n with α ≳ min
{
1, s log(d/s)

εn

}
and ρ = 1/2.

4.2 Lower Bounds for Approximate-DP

While the lower bound for the approximate-DP case is similarly based on the block-diagonal reduction,
its base lower bound follows more directly from the dense case.
Theorem 4.5. Let ε ∈ (0, 1], 2−o(n) ≤ δ ≤ 1

n1+Ω(1) . Then the empirical mean estimation problem
over Sds satisfies

inf
A : (ε,δ)-DP

sup
S∈(Sd

s )
n

P
[
∥A(S)− z̄(S)∥2 ≳ min

{
1, [s ln(1/δ)]1/4√

nε
,

√
d ln(1/δ)

nε

}]
≳ 1.

5 Bias Reduction Method for DP-ERM with Sparse Gradients

We now start with our study of DP-ERM with sparse gradients. We defer some proofs to Appendix E.
In this section and later, we will impose subsets of the following assumptions:

(A.1) Initial distance: For SCO, ∥x0 − x∗(D)∥ ≤ D; for ERM, ∥x0 − x∗(S)∥ ≤ D.
(A.2) Diameter bound: ∥x− y∥ ≤ D, for all x, y ∈ X .
(A.3) Convexity: f(·, z) is convex, for all z ∈ Z .
(A.4) Loss range: f(x, z)− f(y, z) ≤ B, for all x, y ∈ X , z ∈ Z .
(A.5) Lipschitzness: f(·, z) is L-Lipschitz, for all z ∈ Z .
(A.6) Smoothness: ∇f(·, z) is H-Lipschitz, for all z ∈ Z .
(A.7) Individual gradient sparsity: ∇f(x, z) is s-sparse, for all x ∈ X and z ∈ Z .

The most natural and popular DP optimization algorithms are based on SGD. Here we show how to
integrate the mean estimation algorithms from Section 3 to design a stochastic first-order oracle that
can be readily used by any stochastic first-order method. The key challenge here is that estimators
from Section 3 are inherently biased, which is known to dramatically deteriorate the convergence
rates. Hence, we start by introducing a bias reduction method.
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Algorithm 2 Subsampled_Bias-Reduced_Gradient_Estimator(x, S,N, ε, δ)

Require: Dataset S = (z1, . . . , zn) ∈ Zn, ε, δ > 0 privacy parameters, L-Lipschitz loss f(x, z)
with s-sparse gradient, x ∈ X , batch size parameter N ∼ TGeom(M) with M = ⌊log2(n)⌋ − 1
Let B ∼ Unif

((
n

2N+1

))
, O,E a partition of B with |O| = |E| = 2N , I ∼ Unif([n])

G+
N+1(x,B) = Projection_Mechanism(∇FB(x), ε/4, δ/4, 2

N+1) (Algorithm 1)
G−

N (x,O) = Projection_Mechanism(∇FO(x), ε/4, δ/4, 2
N )

G−
N (x,E) = Projection_Mechanism(∇FE(x), ε/4, δ/4, 2

N )
G0(x, I) = Projection_Mechanism(∇f(x, zI), ε/4, δ/4, 1)
Return (below pk = P[TGeom(M) = k])

G(x) = 1
pN

(
G+

N+1(x,B)− 1
2

(
G−

N (x,O) +G−
N (x,E)

))
+G0(x, I)

Algorithm 3 Subsampled_Bias-Reduced_Sparse_SGD(x0, S, ε, δ)

Require: Initialization x0 ∈ X ; Dataset S = (z1, . . . , zn) ∈ Zn; ε, δ, privacy parameters; stepsize
η > 0; gradient oracle for L-Lipschitz and with s-sparse gradient loss f(·, z)
t← −1
while

√
2 ln

(
4
δ

)∑t−1
s=0

(
3·2Ns+1+1

16n

)2
+ ε

2

∑t−1
s=0

(
3·2Ns+1+1

16n

)2 ≤ 1
2 and

∑t−1
s=0

3·2Ns+1+1
16n ≤ 1

4

do
t← t+ 1
Nt ∼ TGeom(M) where M = ⌊log2(n)⌋ − 1
G(xt) = Subsampled_Bias-Reduced_Gradient_Estimator(xt, S,Nt, ε/8, δ/4) (Alg. 2)
xt+1 = ΠX

[
xt − ηG(xt)

]
end while

return

{
x̄ = 1

t+1

∑t
s=0 x

s if f(·, z) is convex ,

xt̂ where t̂ ∼ Unif({0, . . . , T}) iff(·, z) is not convex.

5.1 Subsampled Bias-Reduced Gradient Estimator for DP-ERM

We propose Algorithm 2, inspired by a debiasing technique proposed in [14]. The idea is the
following: we know that the projection mechanism2 would provide more accurate gradient estimators
with larger sample sizes, and we will see that its bias improves analogously. We choose our batch size
as a random variable with exponentially increasing range, and given such a realization we subtract
the projection mechanism applied to the whole batch minus the same mechanism applied to both
halves of this batch.3 This subtraction, together with a multiplicative and additive correction, results
in the expected value of the outcome G(x) corresponding to the estimator with the largest batch size,
leading to its expected accuracy being boosted by such large sample size, without necessarily utilizing
such amount of data (in fact, the probability of such batch size being picked is polynomially smaller,
compared to the smallest possible one). The caveat with this technique, as we will see, relates to a
heavy-tailed distribution of outcomes, and therefore great care is needed for its analysis.

Instrumental to our analysis is the following truncated geometric distribution with parameter M ∈
N, whose law will be denoted by TGeom(M): we say N ∼ TGeom(M) if it is supported on
{0, . . . ,M}, and takes value k with probability pk := CM/2k, where CM = (2(1− 2−(M+1)))−1,
is the normalizing constant. Note that 1/2 ≤ CM ≤ 1, thus it is bounded away from 0 and +∞.

We propose Algorithm 3, which interacts with the oracle given in Algorithm 2. For convenience, we
will denote the random realization from the truncated geometric distribution used in iteration t by Nt.
The idea is that, using the fully adaptive composition property of DP [15], we can run the method
until our privacy budget is exhausted. Due to technical reasons, related to the bias reduction, we need

2Note that we use the projection mechanism (Algorithm 1) as subroutine for Algorithm 2 only to have a
self-contained presentation in the main body of the paper. We will analyze and state the sharper bounds obtained
with Algorithm 5 as subroutine.

3We follow the Blanchet-Glynn notation of O and E to denote the ‘odd’ and ‘even’ terms for the batch
partition [14]; this partitioning is arbitrary.
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to shift by one the termination condition in the algorithm. In particular, our algorithm goes over the
reduced privacy budget of (ε/2, δ/2). The additional slack in the privacy budget guarantees that even
with the extra oracle call the algorithm respects the privacy constraint.
Lemma 5.1. Algorithm 3 is (ε, δ)-DP.

5.2 Bias and Moment Estimates for the Debiased Gradient Estimator

We provide bias and second moment estimates for our debiased estimator of the empirical gradient.
In summary, we show that this estimator has bias matching that of the full-batch gradient estimator,
while at the same time its second moment is bounded by a mild function of the problem parameters.

Lemma 5.2. Let d ≳
nε
√

s ln(d/s)√
ln(1/δ)

. Algorithm 2, enjoys bias and second moment bounds∥∥∥E[G(x)−∇FS(x)|x]
∥∥∥ ≲ L[s ln(d/s) ln(1/δ)]1/4√

nε
=: b,

E[∥G(x)∥2|x] ≲ L2 ln(n)
√

s ln(d/s) ln(1/δ)

ε =: ν2.

Proof. For simplicity, we assume without loss of generality that n is a power of 2, so that 2M+1 = n.

Bias. Let, for k = 0, . . . ,M , G+
k+1(x) = E[G+

N+1(x,B) | N = k, x], and

G−
k (x) = E[G−

N (x,E) | N = k, x] = E[G−
N (x,O) | N = k, x],

where the last equality follows from the identical distribution of O and E. Noting further that
G+

k (x) = G−
k (x) (which follows from the uniform sampling and the cardinality of the used data-

points), and using the law of total probability, we have

E[G(x) | x] =
∑M

k=0

(
G+

k (x)−G−
k−1(x)

)
+ E[G0(x, I) | x]

= G+
M+1(x)−G−

0 (x) + E[G0(x, I) | x]
= E[G+

M+1(x)−∇FS(x)|x] +∇FS(x),

where we also used that E[G0(x, I) | x] = G−
0 (x) (since I is a singleton). Next, by Theorem B.1

∥E[G(x) | x]−∇FS(x)∥ ≤ ∥E[G+
M+1(x)−∇FS(x)|x]∥ ≲ L [s ln(d/s) ln(1/δ)]1/4√

nε
.

Second moment bound. Using the law of total probability, and that O,E are a partition of B:

E[∥G(x)∥2 | x] =
M∑
k=0

pkE
[∥∥∥ 1

pk
[G+

N+1(x,B)−∇FB(x)]

− 1

2pk

[
G−

N (x,O)−∇FO(x) +G−
N (x,E)−∇FE(x)

]
+G0(x, I)

∥∥∥2∣∣∣x,N = k
]

≤ 2E[∥G0(x, I)∥2 | x] + 4

M∑
k=0

1

pk
E
[∥∥∥G+

N+1(x,B)−∇FB(x)
∥∥∥2∣∣∣x,N = k

]
+

M∑
k=0

1

pk
E
[∥∥∥G−

N (x,O)−∇FO(x)
∥∥∥2 + ∥∥∥G−

N (x,E)−∇FE(x)
∥∥∥2∣∣∣x,N = k

]
.

We now use Theorem B.1, to conclude that

E
[∥∥∥G+

N+1(x,B)−∇FB(x)
∥∥∥2 ∣∣∣ x,N = k

]
≲

L2
√

s ln(d/s) ln(1/δ)

2k+1ε

maxA∈{O,E}

{
E
[∥∥∥G−

N (x,A)−∇FA(x)
∥∥∥2 ∣∣∣ x,N = k

]}
≲

L2
√

s ln(d/s) ln(1/δ)

2kε

E
[∥∥G0(x, I)

∥∥2 ∣∣ x] ≲ L2
√

s ln(d/s) ln(1/δ)

ε .

Recalling that M + 1 = log2 n and pk = 2−k, these bounds readily imply that E∥G(x)∥2 ≲ ν2.
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5.3 Accuracy Guarantees for Subsampled Bias-Reduced Sparse SGD

The previous results provide useful information about the privacy, bias, and second-moment of our
proposed oracle. Our goal now is to provide excess risk rates for DP-ERM. For this, we need to prove
the algorithm runs for long enough, i.e., a lower bound on the stopping time of Algorithm 3,

T := inf
{
t : ε

2 < ε
(
2 ln

(
4
δ

) t∑
s=0

(
3·2Ns+1+1

16n

)2)1/2

+ ε2

2

t∑
s=0

3·2Ns+1+1
16n or δ

4 <

t∑
s=0

(3·2Ns+1+1)δ
16n

}
.

(2)

The proof of Theorem 5.2 implies that moments of G increase exponentially in M . This heavy-tailed
behavior implies that T may not concentrate strongly enough to obtain high probability lower bounds
for T . What we will do instead is showing that with constant probability T behaves as desired.

To justify the approach, let us provide a simple in-expectation bound on how the privacy budget
accumulates in the definition of T : letting εt = (3 · 2Nt+1 + 1)ε/[16n], we have that

E
[∑t

s=0 ε
2
s

]
= (t+1)ε2

(16n)2 E
[
(3 · 2N1+1 + 1)2

]
≤ 2(t+1)ε2

(16n)2

(
9E[22(N1+1)] + 1

])
≲ tε2

n ,

where in the last step we used that E
[
22(N1+1)

]
= CM

∑M+1
k=1 2k ≲ n. This in-expectation analysis

can be used in combination with ideas from stopping times to establish bounds for T .
Lemma 5.3. Let 0 < δ < 1/n2. Let T be the stopping time defined in eqn. (2). Then, there exists
t = Cn/ log(2/δ) (with C > 0 an absolute constant) such that P[T ≤ t] ≤ 1/4. On the other hand,

n2

(n+1) ln(4/δ) − 1 ≤ E[T ] ≤ 64n
9 ln(4/δ) .

With our bounds on T , further analysis involving regret bounds on randomly stopped SGD yields the
following bounds for convex and nonconvex losses. See Theorem E.2 and Theorem E.3 for details.
Theorem 5.4. Consider a (SO) problem under initial distance (Item (A.1)), Lipschitzness (Item (A.5))
and gradient sparsity (Item (A.7)) assumptions.

• In the convex case (Item (A.3)), Algorithm 3 satisfies

P
[
FS(x̂)− FS(x

∗(S)) ≲ LD

√
lnn[s ln(d/s) ln3(1/δ)]1/4√

εn

]
≥ 1

2
.

• In the nonconvex case, additionally assuming smoothness (Item (A.6)) and the following initial
suboptimality assumption: namely, that given our initialization x0 ∈ Rd, there exists Γ > 0 such
that FS(x

0)− FS(x
∗(S)) ≤ Γ; Algorithm 3 satisfies

P
[
∥∇FS(x

t̂)∥22 ≲
(√

ΓHL
√
ln(n) ln(1/δ) + L2

) [s ln(d/s) ln(1/δ)]1/4√
εn

]
≥ 1

2
.

Boosting the Confidence of the Bias-Reduced SGD To conclude, in Appendix F we provide
a boosting algorithm that can exponentially amplify the success probability of Algorithm 3. The
approach is based on making parallel runs of the method and using private model selection to obtain
the best performing model.

6 DP Convex Optimization with Sparse Gradients via Regularized Output
Perturbation

We conclude our work introducing another class of algorithms that attains nearly optimal rates
for approximate-DP ERM and SO in the convex setting. These algorithms are based on solving a
regularized ERM problem and privatizing its output by an output perturbation method. The main
innovation of this technique is that we reduce the noise error by a ∥ · ∥∞-projection. This type of
projection leverages the concentration of the noise in high-dimensions. We carry out an analysis
that also leverages the convexity of the risk and the gradient sparsity to obtain these rates. The
full description is included in Algorithm 4. We defer missing proofs from this section, as well as
additional results, to Appendix G.
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Algorithm 4 Output_Perturbation
Require: Dataset S = (z1, . . . , zn) ∈ Zn, ε, δ ≥ 0 privacy params., f(·, z) L-Lipschitz convex

function (if δ = 0 further assume H-smooth) with s-sparse gradient, λ ≥ 0 regularization param.
Let x∗

λ(S) = argminx∈XFλ
S (x), where Fλ

S (x) :=
[
FS(x) +

λ
2 ∥x∥

2
2

]
x̃ = x∗

λ(S) + ξ, with ξ ∼

Lap(σ)⊗d with σ = 2
√
2sL

λεn

(
2H
λ + 1

)
if δ = 0 ,

N (0, σ2I) with σ2 = 8L2 ln(1.25/δ)
[λεn]2 if δ > 0 .

return x̂ = argminx∈X ∥x− x̃∥∞ (breaking ties arbitrarily)

Theorem 6.1. Consider an ERM problem under assumptions: initial distance (Item (A.1)), convexity
(Item (A.3)), Lipchitzness (Item (A.5)) and gradient sparsity (Item (A.7)). Then, Algorithm 4 is
(ε, δ)-DP, and it satisfies the following excess risk guarantees, for any 0 < β < 1:

• If δ = 0, and under the additional assumption of smoothness (A.6) and unconstrained domain,

X = Rd, then selecting λ =
(

L2H
D2

s log(d/β)
εn

)1/3

, it holds with probability 1− β that

FS(x̂)− FS(x
∗(S)) ≲ L2/3H1/3D4/3

(
s log(d/β)

εn

)1/3

.

• If δ > 0 then selecting λ = L
D ·

[s log(1/δ) log(d/β)]1/4√
εn

, we have with probability 1− β that

FS(x̂)− FS(x
∗(S)) ≲ LD · (s log(1/δ) log(d/β))

1/4

√
εn

.

Remark 6.2. For approximate-DP, the theorem above can also be proved if we replace assumption
(Item (A.1)) by the diameter assumption (Item (A.2)). On the other hand, for the pure-DP case it is
a natural question whether the smoothness assumption is essential. In Appendix G.3, we provide a
version of the exponential mechanism that works without the smoothness and unconstrained domain
assumptions. This algorithm is inefficient and it does require an structural assumption on the feasible
set, but it illustrates the possibilities of more general results in the pure-DP setting.

We note that the proposed output perturbation approach (Algorithm 4) leads to nearly optimal
population risk bounds for approximate-DP, by a different tuning of the regularization parameter λ.
Theorem 6.3. Consider a problem (SO) under bounded initial distance (Item (A.1)) (or bounded
diameter, Item (A.2), if δ > 0), convexity (Item (A.3)), Lipschitzness (Item (A.5)), bounded range
(Item (A.4)), and gradient sparsity (Item (A.7)). Then, Algorithm 4 is (ε, δ)-DP, and for 0 < β < 1,

• If δ = 0, and under the additional assumption of smoothness (A.6) and unconstrained domain,

X = Rd. Selecting λ =
(

L2H
D2

s log(d/β)
εn

)1/3

, then with probability 1− β

FS(x̂)− FS(x
∗(D)) ≲ L2/3H1/3D4/3

(
s log(d/β)

εn

)1/3

+B
√

ln(1/β)
n .

• If δ > 0. Selecting λ = L
D

(
ln(n) ln(1/β)

n +

√
s ln(1/δ) ln(d/β)

εn

)1/2

, then with probability 1− β

FD(x̂)− FD(x
∗(D)) ≲ LD [s ln(1/δ) log(d/β)]1/4√

εn
+ (LD

√
lnn+B)

√
ln(1/β)

n .
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Appendix

A Auxiliary Privacy Results

The privacy and accuracy of some of the perturbation based methods we use to privatize our algorithms
are based on the following simple facts (see, e.g., [1]).

Fact A.1 (Laplace & Gaussian mechanisms). For all g : Zn 7→ Rd

(a) If the ℓ1-sensitivity of g is bounded, i.e., ∆g
1 := supS≃S′ ∥g(S) − g(S′)∥1 < +∞, then

Ag
Lap(S) := g(S) + ξ where ξ ∼ Lap⊗d(∆g

1/ε) is ε-DP.

(b) If the ℓ2-sensitivity of g is bounded, i.e., ∆g
2 := supS≃S′ ∥g(S) − g(S′)∥2 < +∞, then

Ag
N (S) := g(S) + ξ, where ξ ∼ N

(
0, σ2I

)
for σ ≥ ∆g

2

√
2 log(1.25/δ)

ε is (ε, δ)-DP.

Fact A.2 (Laplace & Gaussian concentration). Let σ > 0 and 0 < β < 1.

(a) For ξ ∼ Lap(σ)⊗d: (i) ∥ξ∥∞ ≲ σ log(d/β) holds with probability 1− β, and (ii) ∥ξ∥2 ≲
σ
√
d log(d/β) holds with probability 1− β.

(b) For ξ ∼ N (0, σ2I), (i) ∥ξ∥∞ ≲ σ
√

log(d/β) holds with probability 1 − β, (ii) ∥ξ∥2 ≲
σ
(√

d+
√
log(1/β)

)
holds with probability 1− β, and (iii) E∥ξ∥22 = dσ2.

We note the existence of packing sets of sparse vectors (e.g., [39, 40]). Denote by Cds the set of all
s-sparse vectors in {0, 1/

√
s}d; note that Cds ⊆ Sds .

Lemma A.3. For all s and d such that s ≤ d/2, there exists a subset P ⊆ Cds such that |P| ≥
(d/s− 1/2)s/2 and for all u, v ∈ P , it holds that ∥u− v∥2 ≥ 1/

√
2.

Proof. This follows from a simple packing-based construction (see, e.g., [40]). There are
(
d
s

)
vectors

in Cds , and for each vector v ∈ Cds , there are at most
(

d
⌊s/2⌋

)
many vectors u ∈ Cds such that ∥u−v∥0 ≤

s/2 and hence ∥u− v∥2 ≤ 1/
√
2. Thus, we can greedily pick vectors to be C, guaranteeing that all

vectors u, v ∈ Cds satisfy ∥u− v∥0 > s/2, and have |C| ≥
(
d
s

)
/
(

d
⌊s/2⌋

)
≥

(
d
s −

1
2

)s/2
.

For completeness, we provide a classical dataset bootstrapping argument used for DP mean estimation
lower bounds [8]. Whereas in the original reference this bootstrapping is achieved by appending
dummy vectors which mutually cancel out with the goal of maintaining the structure of vectors, we
simply append zero vectors as dummies as we do not need to satisfy an exact sparsity pattern.

Lemma A.4 (Dataset bootstrapping argument from [8]). Suppose for some n, there exists a mecha-
nism A such that for all S ∈ (Sds )n, it holds with probability at least 1/2 that ∥A(S)− z̄(S)∥2 ≤ C,
for some C ≥ 0. Then for all n∗ < n, there exists a mechanism A′ such that for all S′ ∈ (Sds )n

∗
,

it holds with probability at least 1/2 that ∥A(S′)− z̄(S′)∥2 ≤ C n
n∗ . Furthermore, A′ satisfies the

same privacy guarantees as A, namely if A is ε-DP (or (ε, δ)-DP), then so is A′.

Proof. Given mechanism A, consider mechanism A′ that for any dataset S′ ∈ (Sds )n
∗
, builds dataset

S by adding n− n∗ copies of 0 to S′ and returns n
n∗A(S). From the guarantees of A, it holds that

P [∥A(S)− z̄(S)∥2 ≤ C] ≥ 1
2 . Since A′(S′) = n

n∗A(S) and z̄(S′) = n
n∗ z̄(S), it follows that

P
[
∥A′(S′)− z̄(S′)∥2 ≤ C

n

n∗

]
≥ 1

2
.

Since A′ just applies A once, it follows that A′ satisfies the same privacy guarantee as A.

Next we provide a generic reduction of existence of packing sets with pure-DP mean estimation
lower bounds. Note however that the lower bounds we state work on the distributional sense.

14



Lemma A.5 (Packing-based mean estimation lower bound, adapted from [12, 8]). Let P ⊆ Rd be
an α0-packing set of vectors with |P| = p. Then, there exists a distribution µ over Pn that induces

an (α, ρ)-distributional lower bound for ε-DP mean estimation with α = α0

2 min
{
1, log(p/2)

εn

}
and

ρ = 1/2.

Proof. Let n∗ = log(p/2)
ε . First, consider the case where n < n∗. We construct p datasets S1, . . . Sp

where Sl consists of n copies of zl, and define µ = Unif({S1, . . . , Sp}). Note that for all k ̸= l, it
holds that ∥z̄(Sk)− z̄(Sl)∥2 ≥ α0. Suppose µ does not induce a distributional lower bound. Then
there exists A which is ε-DP and has ℓ2-accuracy better than α0/2 w.p. at least 1/2: this implies in
particular that

Pl∼Unif([p])
[
A(Sl) ∈ Bd2(zl), α0

2 )
]
≥ 1

2
.

For all distinct k, l, the datasets Sk and Sl differ in all n entries, and hence for any ε-DP mechanism
A, it holds that P[A(Sl) ∈ Bd2(zk, α0

2 )] ≥ 1
2e

−εn. However, by construction, Bd2(zl, α0

2 ) are pairwise
disjoint. Hence,

1 ≥
p∑

k=1

PS∼µ[A(S) ∈ Bd2(zk, α0/2)] =

p∑
j=1

p∑
k=1

PS∼µ[A(S) ∈ Bd2(zk, α0/2)|S = zj ]
1

p

≥ e−εn

p

p∑
j=1

p∑
k=1

PS∼µ[A(S) ∈ Bd2(zk, α0/2)|S = zk] ≥
e−εnp

2
.

Thus, we get that n ≥ log(p/2)
ε , which is a contradiction since we assumed n < n∗. Hence, µ induces

an (α0/2, 1/2)-distributional lower bound for ε-DP mean estimation.
Next, consider the case where n > n∗. Then the previous argument together with Lemma A.4 implies
an (α, ρ)-lower bounded, where α = n∗

2n and ρ = 1/2, as desired.

We will make use of the following fully adaptive composition property of DP, which informally
states that for a prescribed privacy budget, a composition of (adaptively chosen) mechanisms whose
privacy parameters are predictable, if we stop the algorithm before the (predictable) privacy budget is
exhausted, the result of the full transcript is DP.
Theorem A.6 ((ε, δ)-DP Filter, [15]). Suppose (At)t≥0 is a sequence of algorithms such that, for
any t ≥ 0, At is (εt, δt)-DP, conditionally on (A0:t−1) (in particular, (εt, δt)t is (At)t-predictable).
Let ε > 0 and δ = δ′ + δ′′ be the target privacy parameters such that δ′ > 0, δ′′ ≥ 0. Let

ε[0:t] :=

√√√√2 ln
( 1
δ′
) t∑
s=0

ε2s +
1

2

t∑
s=0

ε2s, and δ[0:t] :=

t∑
s=0

δs,

and define the stopping time

T ((εt, δt)t) := inf
{
t : ε < ε[0:t+1]

}
∧ inf

{
t : δ′′ < δ[0:t+1]

}
.

Then, the algorithm A0:T (·)(·) is (ε, δ)-DP, where T (x) = T
(
(εt(x), δt(x)

)
t≥0

.

B Missing Proofs from Section 3

B.1 Proof of Lemma 3.1

Proof. From the properties of the Euclidean projection, we have

⟨ẑ − z̄(S), ẑ − z̃⟩ ≤ 0. (3)

Hence,

∥ẑ − z̄(S)∥22 = ⟨ẑ − z̄(S), ẑ − z̃⟩+ ⟨ẑ − z̄(S), ξ⟩
(3)
≤ ⟨ẑ − z̄(S), ξ⟩

≤ 2 ·max
u∈K
⟨u, ξ⟩ ≤ 2 ·max

u∈K
∥u∥1 · ∥ξ∥∞ = 2L∥ξ∥∞

√
s,

where we used the fact that conv(Sds ) ⊆ K.
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B.2 Proof of Theorem 3.2

Proof. First, the privacy follows from the ℓ1-sensitivity bound of the empirical mean

∆1 = supS≃S′ ∥z̄(S)− z̄(S′)∥1 = 1
n supz,z′∈Sd

s
∥z − z′∥1 ≤ 2L

√
s

n ,

together with Theorem A.1(a).

For the accuracy, the first term follows from Theorem A.2(a)-(ii), and the fact that Euclidean projection
does not increase the ℓ2-estimation error, and the second term follows from Lemma 3.1 with the fact
that ∥ξ∥∞ ≤ O

(
L
√
s

nε · log(d/β)
)

holds with probability at least 1− β, by Theorem A.2(a)-(i).

B.3 Proof of Theorem 3.3

Proof. The privacy guarantee follows from the ℓ2-sensitivity bound of the empirical mean, ∆2 = 2L
n ,

together with Theorem A.1(b). For the accuracy, the first term in the minimum follows from
Theorem A.2(b)-(ii), and the fact that Euclidean projection does not increase the ℓ2-estimation error.
The second term follows from Lemma 3.1 and Theorem A.2(b)-(ii).

B.4 Sharper DP Mean Estimation Upper Bounds via Compressed Sensing

We propose Algorithm 5, a more accurate method for approximate-DP mean estimation based on
compressed sensing [10]. The precise improvements relate to reducing the log(d) factor to log(d/s),
and a faster rate dependence on the confidence β. The idea is that for sufficiently high dimensions, a
small number of random measurements suffices to estimate a noisy and approximately sparse signal.
These properties follow from existing results in compressed sensing, which provide guarantees based
on the ℓ2-norm of the noise, and the best sparse approximation in the ℓ2-norm (known as ℓ2-ℓ2-stable
and noisy recovery) [10]. We will exploit such robustness in two ways: regarding the noise robustness,
this property is used in order to perturb our measurements, which will certify the privacy; on the other
hand, the approximate recovery property is used to find a sparser approximation of our empirical mean.
As the approximation is only used for analysis, we can appeal to the Approximate Caratheodory
Theorem to certify the existence of a sparse vector whose sparsity increases more moderately with n
than the empirical average [11].

An interesting feature of this algorithm is that ℓ1-minimization promotes sparse solutions, and thus
we expect our output to be approximately sparse: this is not a feature that we particularly exploit,
but it may be relevant for computational and memory considerations. Furthermore, note that the ℓ1-
minimization problem does not require exact optimality for the privacy guarantee, hence approximate
solvers can be used without compromising privacy.

Algorithm 5 Gaussian ℓ1-Recovery(z̄(S), ε, δ, n)

Require: z̄(S) = 1
n

∑
i∈[n] zi ∈ Rd from dataset S ∈ (Ss,d)n; privacy parameters ε, δ > 0

m ≂ nε
√

s ln(d/s)
ln(1/δ)

return ẑ =


z̄(S) + ξ, where ξ ∼ N (0, σ2Id×d) and σ2 = 8L2 ln(1.25/δ)

(nε)2 , if d < m ln2 m,

z̃ · 1{∥z̃∥2 ≤ 2L}, where z̃ = argmin{∥z∥1 : Az = b}, A ∼ (N (0, 1
m ))m×d,

b = Az̄(S) + ξ and ξ ∼ N (0, σ2Im×m) with σ2 = 18L2 ln(2.5/δ)
(nε)2 , otherwise

Theorem B.1. If 6 exp{−cm} ≤ δ < s ln(d/s)
m2 (where c > 0 is a constant) and 0 < ε ≤ 1, then

Algorithm 5 is (ε, δ)-DP, and with probability 1− δ/2− β,

∥ẑ − z̄(S)∥2 ≲ Lmin
{

(
√
d+
√

ln(1/β))
√

ln(1/δ)

nε , (s ln(d/s) ln(1/δ))1/4√
nε

+

√
ln(1/β) ln(1/δ)

nε

}
. (4)

Moreover, we have the following second moment estimate,

E[∥ẑ − z̄∥22] ≲ L2 min
{d ln(1/δ)

(nε)2
,

√
s ln(d/s) ln(1/δ)

nε

}
.
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Proof. First, if d < m ln2 m, then Algorithm 5 is (ε, δ)-DP by privacy of Gaussian noise addition
and the post-processing property of DP. Moreover, its (high probability and second moment) accuracy
guarantees follow from Theorem A.2.

Next, if d ≥ m ln2 m, we start with the privacy analysis. Let S ≃ S′ and suppose they only differ in
their ith entry. We note that due to our choice of m, A is an approximate restricted isometry with
probability 1 − 3 exp{−cm} [41] (where c is the same as in the theorem statement); in particular,
letting K ≂ nε√

s ln(d/s) ln(1/δ)
, we have that for all v ∈ Rd which is (sK)-sparse

1

2
∥v∥2 ≤ ∥Av∥2 ≤

3

2
∥v∥2.

Hence, due to our assumption on δ, the event above has probability at least 1− δ/2, and therefore

∥A(z̄ − z̄′)∥2 =
1

n
∥A(zi − z′i)∥2 ≤

3L

n
,

where we used the fact that zi − z′i is (2s)-sparse. We conclude by the choice of σ2 that Az̄ + ξ is
(ε, δ)-DP, and thus z̃ is (ε, δ)-DP by postprocessing.

We now proceed to the accuracy guarantee. By [10, Theorem 3.6 (b)], under the same event as stated
above (which has probability 1− δ/2) we have

∥ẑ − z̄∥2 ≲ ∥ξ∥2 + inf
z: ∥z∥0≤sK

∥z − z̄∥2.

For the first term, we use Gaussian norm concentration to guarantee that with probability 1− β,

∥ξ∥2 ≲
(√

m+
√
ln(1/β)

)
σ ≲

(√
Ks ln(d/s) +

√
ln

( 1
β

))L√ln(1/δ)

nε
.

For the second term, by the Approximate Carátheodory Theorem [11], the infimum above is upper
bounded by O(L/

√
K); for this, note that z̄ lies in the convex hull of Sds . Given our choice of K, we

have that, with probability 1− δ/2− β

∥ẑ − z̄∥2 ≲ L
( [s ln(d/s) ln(1/δ)]1/4√

nε
+

√
ln(1/β) ln(1/δ)

nε

)
.

We conclude by providing the second moment estimate, by a simple tail integration argument. First,
by the law of total probability, and letting E be the event of A being an approximate restricted
isometry,

E∥ẑ − z̄∥22 ≤ E[∥ẑ − z̄∥22|E ] + 9L2δ,

where we also used that ∥ẑ∥2 ≤ 2L and ∥z̄∥2 ≤ L, almost surely. Now, conditionally on E , we have

that letting α ≂ L [s ln(d/s) ln(1/δ)]1/4√
nε

(below c > 0 is an absolute constant),

E[∥ẑ − z̄∥22|E ] =
∫ ∞

0

P
[
∥ẑ − z̄∥2 ≥ u

]
(2u)du

≤ α2

2
+

∫ ∞

0

P
[
∥ẑ − z̄∥2 − α ≥ τ

]
2(α+ τ)dτ

≤ α2

2
+

∫ ∞

0

2 exp
{
− c(nε)2

L2 ln(1/δ)
τ2
}
(α+ τ)dτ

≲
α2

2
+ 2αL

√
ln(1/δ)

nε
+ L2 ln(1/δ)

(nε)2

≲ α2,

where in the second inequality we used the previous high probability upper bound (here c > 0 is an
absolute constant), and in the last step we used that nε >

√
ln(1/δ). Finally, by our assumptions on

δ, 9L2δ ≲ α2, and this concludes the proof.
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C Missing Proofs from Section 4

C.1 Proof of Lemma 4.3

Proof. Consider an n× d data matrix D whose rows correspond to datapoints of a dataset S, and
whose columns correspond to their d features. We will indistinctively refer to S or D as needed
(these are equivalent representations of a dataset). This data matrix will be comprised of K diagonal
blocks, D1, . . . , DK ; in particular, outside of these blocks, the matrix has only zeros. These blocks
are sampled i.i.d. from the hard distribution µ given by hypothesis. Denote µ̃ the law of D.
Let now z̄k(Dk) ∈ Rt be the mean (over rows) of dataset Dk. Then, the mean (over rows) of
dataset D is given by z̄(D) = n0

n

[
z̄1(D1)

∣∣ . . . ∣∣z̄K(DK)
]
, where [z1| . . . |zK ] ∈ Rd denotes the

concatenation of z1, . . . , zK (note that if K < d/t, then the concatenation above needs to be padded
with (d− tK)-zeros, which we omit for simplicity).
Let A be an (ε, δ)-DP algorithm, and let Ak its output on the kth block variables, then

∥A(D)− z̄(D)∥22 =

K∑
k=1

∥∥∥Ak(D)− n0

n
z̄k(Dk)

∥∥∥2
2
=

n2
0

n2

K∑
k=1

∥∥ n

n0
Ak(D)− z̄k(Dk)

∥∥∥2
2
.

Let now Bk(D) := n
n0
Ak(D), and note it is (ε, δ)-DP w.r.t. Dk (as it is DP w.r.t. D); further, by the

independence of D1, . . . , DK , we can condition on (Dh)h̸=k, to conclude that the squared ℓ2-error
∥Bk(D)− z̄k(Dk)∥22 must be at least α2

0, with probability at least ρ0 (both on Dk and the internal
randomness of Bk). Letting Yk := 1{∥Bk(D)−z̄k(Dk)∥2≥α0}, we have

P
[
∥A(D)− z̄(D)∥22 ≥

(α0n0

n

)2 ρ0K
2

]
≥ P

[ K∑
k=1

Yk ≥
ρ0K

2

]
.

We will now use a coupling argument to lower bound the probability above. First, we let
U1, . . . , UK

i.i.d.∼ Unif([0, 1]), and Wk = 1{Ui≥ρ0} which are i.i.d. On the other hand, we de-
fine

pk(y1, . . . , yk−1) := P[Yk = 1|Y1 = y1, . . . , Yk−1 = yk−1]

Ỹk := 1{Uk≥pk(Ỹ1,...,Ỹk−1)}.

Noting that Y d
= Ỹ , and that Ỹk ≥ Wk almost surely, due to the fact that pk ≥ ρ0 almost surely

(which it follows from the ℓ2-error argument discussed above), we have

P
[ K∑
k=1

Yk ≥
ρ0K

2

]
= P

[ K∑
k=1

Ỹk ≥
ρ0K

2

]
≥ P

[ K∑
k=1

Wk ≥
ρ0K

2

]
≥ 1− exp(−ρ0/8),

where we used a one-sided multiplicative Chernoff bound.

Therefore, ∥A(D)− z̄(D)∥22 ≳
(

α0n0

n

)2

ρ0K, with probability 1− exp(−ρ0/8). We conclude that
µ̃ induces an (α, ρ)-distributional lower bound for (ε, δ)-DP mean estimation, as claimed.

C.2 Proof of Theorem 4.4

Proof. By Lemma A.3, there exists a set P of 1/
√
2-packing vectors on Cds with log(|P|) ≳

s log(d/s). Lemma A.5 thus implies the desired lower bound.

C.3 Proof of Theorem 4.1

With all the building blocks in place, we now prove Theorem 4.1.

Proof of Theorem 4.1. We divide the analysis into the different regimes of sample size n. First, if
n ≲ s log(d/s)

ε , then Theorem 4.4 provides an Ω(1) lower bound.

Next we consider the case s log(d/s)
ε ≲ n ≲ d

ε . For s ≤ t ≤ d to be determined, let n0 = s log(t/s)
ε .

We choose t so that d
t ≂ n

n0
: this can be attained by choosing t ≂ ds

εn log
(

d
εn

)
. This implies in the
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context of Lemma 4.3 that K = d
t ≂ n

n0
. By Theorem 4.4, this implies a lower bound α0 ≳ 1, with

constant probability 1/2 for sparse mean estimation in dimension t. By Lemma 4.3, we conclude

a sparse mean estimation lower bound of α0n0

n

√
K
2 ≳ 1√

K
≳

√
s log(d/nε)

εn holds with constant
probability.

On the other hand, if n ≳ d
ε , let n∗ ≂ d

ε . By the previous paragraph, for datasets of size n∗ the

following lower bound holds, Ω
(√

s log(d/εn∗)
εn∗

)
≳

√
s
d . For any n > n∗, by Lemma A.4, we have

the lower bound Ω
(√

s
d
n∗

n

)
≳

√
sd

εn holds with constant probability.

C.4 Proof of Theorem 4.5

Proof. We divide the analysis into the different regimes of sample size n. First, if n ≲
√
s ln(1/δ)/ε,

then embedding an s-dimensional lower bound construction [42]4 and padding it with zeros for the
remaining d− s features, provides an Ω(1) lower bound with constant probability.

Next, we consider the case
√
s ln(1/δ)/ε ≲ n ≲

d
√

ln(1/δ)√
sε

. Let n0 =
√
s ln(1/δ)/ε, t = s,

and K = n
n0

≲ d
s , where the last inequality holds by our regime assumption. The classic s-

dimensional mean estimation lower bound by [42] provides an α0 ≳ 1 lower bound with constant
probability. Hence by Lemma 4.3, the sparse mean estimation problem satisfies a lower bound
Ω
(
α0n0

n

√
K
)
≳ 1√

K
≳ (s ln(1/δ))1/4√

εn
, with constant probability.

We conclude with the final range, n ≳
d
√

ln(1/δ)√
sε

. First, letting n∗ ≂ d
√

ln(1/δ)√
sε

, we note that this
sample size falls within the range of the previous analysis, which implies a lower bound with constant
probability of (s ln(1/δ))1/4

ε
√
n∗ ≳

√
s√
d

. Now, if n > n∗, by Lemma A.4, we conclude that the following

lower bound holds with constant probability, Ω
(√

s√
d
n∗

n

)
≳
√

d ln(1/δ)

nε .

D Analysis of Biased SGD

Given the heavy-tailed nature of our estimators, our guarantees for a single run of SGD with bias-
reduced first-order oracles only yields constant probability guarantees. Here we prove pathwise
bounds that facilitate such analyses.

D.1 Excess Empirical Risk: Convex Case

First, we provide a path-wise guarantee for a run of SGD with a biased oracle. Importantly, this
guarantee is made of a method which runs for a random number of steps.

Proposition D.1. Let (Ft)t be the natural filtration, and T be a random time. Let (xt)t be the
trajectory of projected SGD with deterministic stepsize sequence (ηt)t, and (biased) stochastic
first-order oracle G for a given function F . If x∗ ∈ argmin{F (x) : x ∈ X}, then the following
event holds almost surely

T∑
t=0

[F (xt)− F (x∗)] ≤ 1

2ηt
∥x0 − x∗∥2 +

T∑
t=0

[ηt
2
∥G(xt)∥2 + ⟨∇F (xt)− G(xt), xt − x∗⟩

]
.

4While [42] only provides 1-dimensional distributional lower bounds for approximate-DP mean estimation,
it is easy to convert these into higher dimensional lower bounds, see, e.g., [26, 43].
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Proof. By convexity

F (xt)− F (x∗) ≤ ⟨∇F (xt), xt − x∗⟩ = ⟨∇F (xt)− G(xt), xt − x∗⟩︸ ︷︷ ︸
:=bt

+⟨G(xt), xt − x∗⟩

≤ bt + ⟨G(xt), xt − xt+1⟩+ ⟨G(xt), xt+1 − x∗⟩

≤ bt +
ηt
2
∥G(xt)∥2 + 1

2ηt
∥xt − xt+1∥2 + ⟨∇G(xt), xt+1 − x∗⟩

(∗)
≤ bt +

ηt
2
∥G(xt)∥2 + 1

2ηt
∥xt − xt+1∥2 + 1

ηt
⟨xt+1 − xt, x∗ − xt+1⟩

= bt +
ηt
2
∥G(xt)∥2 + 1

2ηt
∥xt − x∗∥2 − 1

2ηt
∥xt+1 − x∗∥2,

where the second inequality follows by the Young inequality, and step (∗) we used the optimality
conditions of the projected SGD step:

⟨ηtG(xt) + [xt+1 − xt], x− xt+1⟩ ≥ 0 (∀x ∈ X ).

Therefore, summing up these inequalities, we obtain

T∑
t=0

[F (xt)− F (x∗)] ≤ 1

2η0
∥x0 − x∗∥2 +

T∑
t=0

[ηt
2
∥G(xt)∥2 + bt

]
.

Plugging in the definition of bt proves the result.

D.2 Stationary Points: Nonconvex Case

Proposition D.2. Let F satisfy (A.6), and let G be a biased first-order stochastic oracle for F . Let
(xt)t be the trajectory of SGD with oracle G, constant stepsize 0 < η ≤ 1/[2H], and initialization
x0 such that F (x0)−minx∈Rd F (x) ≤ Γ. Let T be a random time. Then the following event holds
almost surely

T∑
t=0

∥∇F (xt)∥22 ≤
Γ

η
+

ηH

2

T∑
t=0

∥G(xt)∥22 −
T∑

t=0

⟨∇F (xt),G(xt)−∇F (xt)⟩

Proof. By smoothness of f , we have

F (xt+1)− F (xt) ≤ −η⟨∇F (xt),G(xt)⟩+ η2H

2
∥G(xt)∥22

≤ −η∥∇F (xt)∥22 − η⟨∇F (xt),G(xt)−∇F (xt)⟩+ η2H

2
∥G(xt)∥22.

Therefore,
T∑

t=0

∥∇F (xt)∥22 ≤
F (x0)− F (xT+1)

η
−

T∑
t=0

⟨∇F (xt),G(xt)−∇F (xt)⟩+ ηH

2

T∑
t=0

∥G(xt)∥22

≤ Γ

η
−

T∑
t=0

⟨∇F (xt),G(xt)−∇F (xt)⟩+ ηH

2

T∑
t=0

∥G(xt)∥22.

E Missing proofs from Section 5

E.1 Proof of Lemma 5.1

Proof. The proof is based on the fully adaptive composition theorem of DP [15]. For this, we
consider {At}t≥0, where A0(S) = (x0, N0) (here N0 the first truncated geometric parameter), and
inductively, At+1(At(S), S) for t ≥ 0 takes as input At(S) = (xt, Nt), computes G(xt) using the
subsampled debiased gradient estimator (Algorithm 2), and performs a projected gradient step based
on G(xt). LetHt be the σ-algebra induced by (As)s=0,...,t.
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Suppose now that At is (εt, δt)-DP, where (εt, δt) are Ht-measurable (we will later obtain these
parameters), and let T := inf{t : ε[0:t] > ε/2, δ[0:t] > δ/2}, in the language of Theorem A.6
(notice that in the context of that theorem, we are choosing δ′ = δ′′ = δ/4). We first claim that
(xt)t=0,...,T−1 is (ε/2, δ/2)-DP, which follows directly from Theorem A.6. Next, we will later show
that εt ≤ ε/4 and δt ≤ δ/4, almost surely (this applies in particular to xT ), and therefore by the
composition property of DP, (xt)t≤T is (ε, δ)-DP.

Next, we provide the bounds on (εt, δt) required to conclude the proof. For this, we first note that—
conditionally on xt, Nt and Bt—the computation of G+

Nt+1(x
t, Bt), G−

Nt
(xt, Ot), G−

Nt
(xt, Et), is

(3ε/32, 3δ/16)-DP. Furthermore, by privacy amplification by subsampling, this triplet of random
variables is (ε′, δ′), with

ε′ = ln
(
1 +

2Nt+1

n
(e3ε/32 − 1)

)
≤ 2Nt+1

n

3ε

16
, δ′ =

2Nt+1

n

3δ

16
,

where we used above that ε ≤ 1. Similarly, we have that G0(x, I) is
(

ε
16n ,

δ
16n

)
-DP. Therefore, by

the basic composition theorem of DP, we have the following privacy parameters for the tth iteration
of the algorithm

εt = (3 · 2Nt+1 + 1)
ε

16n
, δt = (3 · 2Nt+1 + 1)

δ

16n
.

This proves in particular that (εt, δt) are Ht-measurable, and that εt ≤ ε/4, and δt ≤ δ/4 almost
surely, which concludes the proof

E.2 Proof of Lemma 5.3

Proof. Let A =
∑t−1

s=0

(
3·2Ns+1+1

16n

)2
, and note that for t ≤ T + 1, A ≤ 1 almost surely. Then, we

have that

ε[0:t−1] =
√
2 ln(4/δ)ε2A+

ε2

2
A ≤ 2ε

√
2 ln(4/δ)A.

Now, by eqn. (2) and the union bound,

P[T ≤ t] ≤ P
[
2ε
√
2 ln(4/δ)A > ε/2

]
+ P

[ t−1∑
s=0

(3 · 2Nt+1 + 1) > 4n
]

≤ P
[ t−1∑
s=0

(
3 · 2Nt+1 + 1

)2
>

32n2

ln
(
4
δ

)]+ P
[ t−1∑
s=0

(3 · 2Nt+1 + 1) > 4n
]

≤
t ln

(
4
δ

)
16n2

(
9E[22(Nt+1)] + 1

)
+

t

4n
[6(M + 1) + 1]

≤
t ln

(
4
δ

)
16n2

[18n+ 1] +
t

4n
[6 log(n) + 1]

≤ 1/4,

where the third step follows from Markov’s inequality and the fact that (Ns)s are i.i.d., and the last
step follows from our choice of t = Cn/ log(4/δ) with C > 0 sufficiently small (here we use the
fact that δ < 1/n2).

For the second part, we use that by the definition of T (eqn. (2))

ε

2
<

√√√√2ε2 ln
(4
δ

) T∑
s=0

(3 · 2Ns+1 + 1)2

(16n)2
+

ε2

2

T∑
s=0

(3 · 2Ns+1 + 1)2

(16n)2
∨ 1

4
<

T∑
s=0

3 · 2Ns+1 + 1

16n

=⇒ n2 < max

{
8 ln

(4
δ

) T∑
s=0

(3 · 2Ns+1 + 1)2

(16)2
, n

T∑
s=0

3 · 2Ns+1 + 1

4

}
Taking expectations and bounding the maximum by the sum allows us to use Wald’s identity as
follows,

n2 < E[T + 1]
(
8 ln

(4
δ

)2(9n+ 1)

162
+ n

3 log(n) + 1

4

)
≤ E[T + 1] ln

(4
δ

)
(n+ 1),
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which proves the claimed bound.

The upper nound on E[T ] is obtained similarly. Again, by eqn. (2),

32n2

ln(4/δ)
≥ E

[ T−1∑
s=0

(
3 · 2Ns+1 + 1)

)2] ≥ E[T ]
9n

2
.

Re-arranging terms provides the claimed lower bound.

E.3 Excess Empirical Risk in the Convex Setting

As a first application, we study the accuracy guarantees of Algorithm 3 in the convex setting. We
remark that these rates will be slightly weaker than those provided in Section 6, but this example is
useful to illustrate the technique. Towards this goal, we analyze the cumulative regret of the algorithm,
namelyRT :=

∑T
t=0[FS(x

t)− FS(x
∗(S))]. Although this is a standard and well-studied object in

optimization, we need to obtain bounds for this object when the stopping time T is random. The
key observation here is that since T is a stopping time, the event {T ≥ t} is Ft−1-measurable (here
and throughout, Ft = σ((xs)s≤t) is the natural filtration). This permits using our bias and second
moment bounds similarly to the case where T is deterministic.5 Moreover, for the sake of analysis,
we will consider Algorithm 3 as running indefinitely, for all t ≥ 0. This would of course eventually
violate privacy. However, since our algorithm stops at time T , then privacy is guaranteed as done
earlier in this section.
Proposition E.1. Let Rt :=

∑t
t=0[FS(x

t) − FS(x
∗(S))], let T be the stopping time defined in

eqn. (2). Then

E[RT ] ≤
1

2η
∥x0 − x∗(S)∥2 + E[T + 1]

(ην2
2

+Db
)
,

where b and ν2 are defined as in Lemma 5.2.

Proof. By Proposition D.1 (see Appendix D),

E[RT ]

≤ E
( 1

2η
∥x0 − x∗(S)∥2 +

T∑
t=0

[η
2
∥G(xt)∥2 + ⟨∇F (xt)− G(xt), xt − x∗(S)⟩

])
= E

( 1

2η
∥x0 − x∗(S)∥2

+

∞∑
t=0

{η

2
E[1{T≥t}∥G(xt)∥2|Ft−1] + E[1{T≥t}⟨∇F (xt)− G(xt), xt − x∗(S)⟩|Ft−1]

})
= E

( 1

2η
∥x0 − x∗(S)∥2

+

∞∑
t=0

{η1{T≥t}

2
E[∥G(xt)∥2|Ft−1] + 1{T≥t}E[⟨∇F (xt)− G(xt), xt − x∗(S)⟩|Ft−1]

})
where in the first equality we used the tower property of the conditional expectation, and in the second
equality we used that {T ≥ t} = {T ≤ t− 1}c is Ft−1-measurable.

Now, by Lemma 5.2, E[⟨∇F (xt) − G(xt), xt − x∗(S)⟩|Ft−1] ≤ Db and E[∥G(xt)∥2|Ft−1] ≤ ν2

(note that Ft−1 does not include the randomness of Nt, and therefore the bias and moment estimates
as in the mentioned lemma hold), thus

E[RT ] ≤
1

2η
∥x0 − x∗(S)∥2 + E[T + 1]

(ην2
2

+Db
)
.

We conclude with the constant probability guarantee for the biased and randomly stopped SGD,
Algorithm 3.

5This idea is related to the Wald identities [16]; however, we provide a direct analysis for the sake of clarity.
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Theorem E.2. Consider a (SO) problem under convexity (Item (A.3)), initial distance (Item (A.1)),
Lipschitzness (Item (A.5)) and gradient sparsity (Item (A.7)) assumptions. Let τ = C′n

ln(2/δ) , where
C ′ > 0 is an absolute constant. Let η = D

ν
√
τ

, U = CD[ν
√
τ + bτ ], where C > 0 is an absolute

constant. Then Algorithm 3 satisfies

P
[
FS(x̄)− FS(x

∗(S)) ≤ U

τ

]
≥ 1/2.

Proof. We start by noting that

P
[
FS(x̄)− FS(x

∗(S)) >
U

τ

]
≤ P

[
{T ≤ τ} ∪ {RT > U}

]
≤ P

[
T ≤ τ ] + P[RT > U ].

For the first event, by Lemma 5.3, we have that P[T ≤ τ ] ≤ 1/4 (which determines C ′). On the other
hand, using Proposition E.1 and Lemma 5.3, we have that for our choice of η, we have that

E[RT ] ≤
Dν
√
τ

2
+ E[T + 1]D

( ν

2
√
τ
+ b

)
≲ D[ν

√
τ + τb].

In particular, for our choice of U (with C > 0 sufficiently large),

P[RT > U ] ≤ E[RT ]

U
≤ 1

4
.

The above result implies a nearly optimal empirical excess risk rate for DP-SCO,

O
(
LD

√
lnn[s ln(d/s) ln3(1/δ)]1/4√

εn

)
,

but only with constant probability. We defer to the next section how to boost this guarantee to hold
with arbitrarily high probability.

E.3.1 Near Stationary Points for the Empirical Risk

For nonconvex objectives it is known that obtaining vanishing excess risk is computationally difficult.
Hence, we study the more modest goal of approximating stationary points, i.e., points with small
norm of the gradient. By combining known analyses of biased SGD with our bias-reduced oracle, we
can establish bounds on the success probability of the algorithm.

Theorem E.3. Consider a (nonconvex) (SO) problem, under the following assumptions: Lipschitz-
ness (Item (A.5)), smoothness (Item (A.6)), gradient sparsity (Item (A.7)), and the following initial
suboptimality assumption: namely, that given our initialization x0 ∈ Rd, we know Γ > 0 such that

FS(x
0)− FS(x

∗(S)) ≤ Γ. (5)

Let τ = C′n
ln(2/δ) with C ′ > 0 an absolute constant. Let η =

√
Γ

Htν2 and U = C
(√

ΓHτν + Lτb
)

with C > 0 an absolute constant. Then Algorithm 3 satisfies P
[
∥∇FS(x

t̂)∥22 ≤ U
τ

]
≥ 1/2, and

U

τ
≲

(√
ΓHL

√
ln(n) ln(1/δ) + L2

) [s ln(d/s) ln(1/δ)]1/4√
εn

.

Proof. First, given any U > 0, we have that

P
[
∥∇FS(xt̂)∥2 >

√
U

τ

]
≤ P[T < τ ] + P[T∥∇FS(xt̂)∥

2
2 > U ] ≤ 1

4
+

E[T∥∇FS(x
t̂)∥22]

U
,
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where the last step follows by Lemma 5.3 and Chebyshev’s inequality, respectively. Next, by definition
of t̂ and Proposition D.2 (see Appendix D.2),

E[(T + 1)∥∇F (xt̂)∥22] = E
[ T∑

t=0

∥∇F (xt)∥22
]

≤ Γ

η
+

ηH

2
E
[ T∑

t=0

∥G(xt)∥22
]
− E

[ T∑
t=0

⟨∇F (xt),G(xt)−∇F (xt)⟩
]

≤ Γ

η
+

ηH

2

∞∑
t=0

E[1{T≥t}∥G(xt)∥22]−
∞∑
t=0

E[1{T≥t}⟨∇F (xt),G(xt)−∇F (xt)⟩]

≤ Γ

η
+

ηH

2

∞∑
t=0

P[T ≥ t]E
(
E[∥G(xt)∥22|Ft−1]

)
−

∞∑
t=0

P[T ≥ t]E
(
E[⟨∇F (xt),G(xt)−∇F (xt)|Ft−1⟩]

)
≤ Γ

η
+

ηH

2
E[T + 1]ν2 + E[T + 1]Lb

≲
√
ΓHτν + τLb,

where the third inequality holds since {T ≥ t} is Ft−1-measurable (see the proof of Theorem E.1 for
details), and the fourth inequality follows from Theorem 5.2, used the upper bound on E[T ] from
Lemma 5.3, and our choice for η. Selecting U = C

(√
ΓHτν + Lτb

)
with C > 0 sufficiently large,

we get E[T∥∇F (xt̂)∥22]/U ≤ 1/4, concluding the proof.

F Boosting the Confidence for the Bias-Reduced Stochastic Gradient Method

We conclude by providing a boosting method to amplify the success probability of our bias-reduced
method. This private boosting method is a particular instance of a private selection method [17], and
it is based on running a random number of independent runs of Algorithm 3 with noisy evaluations
of their performance. Among the independent runs, we select the best performing one based on the
noisy evaluations. This particular implementation sharpens some polylogarithmic factors that would
appear for other private selection methods, such as Report Noisy Min [18, 1].

Algorithm 6 Boosting_Bias-Reduced_SGD(S, ε, δ,K)

Require: Dataset S ∼ Dn, ε, δ > 0 privacy parameters, random stopping parameter γ ∈ (0, 1)
K = 1

γ ln
(
2
δ

)
for k = 1, . . . ,K do

Run Algorithm 3 with privacy budget (ε/12, (δ/[4K])2), x̂k its output and
if f(·, z) convex then

Set sk = [FS(x̂k) + ξk], where ξk ∼ Lap(λ), and λ = 12B
nε .

else
Set sk = [∥∇FS(x̂k)∥2 + ξk], where ξk ∼ Lap(λ), and λ = 24L

nε .
end if
Flip a γ-biased coin: with probability γ, return x̂ = x̂k̂, where k̂ = argminl≤k sl

end for
Return x̂ = x̂K̂ , where K̂ = argmink≤K sk

Theorem F.1. Let ε, δ > 0 such that δ ≤ ε/10. Then Algorithm 6 is (ε, δ)-DP. Let 0 < β < 1 and

γ = min{1/2, 3β/4}. In the convex case, Algorithm 6 attains excess risk P
[
FS(x̂)− FS(x

∗(S)) ≤

α
]
≥ 1− β, where

α ≲ LD

√
lnn[s ln(d/s) ln3

(
ln(1/δ)/[βδ]

)
]1/4

√
εn

+
B

nε
ln

( 1

β
ln
(2
δ

))
.
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On the other hand, in the nonconvex case, P
[
∥∇FS(x̂)∥22 ≤ α

]
≥ 1− β, where

α ≲
(√

ΓHL

√
ln(n) ln

( ln(1/δ)
βδ

)
+ L2

) [s ln(d/s) ln(ln(1/δ)/[βδ])]1/4√
εn

+
L

nε
ln

( 1

β
ln

(2
δ

))
.

Proof. The privacy analysis follows easily from [17]. First, by basic composition, we have that for
each k the pair (x̂k, sk) is (ε1, δ1)-DP, with ε1 = ε/6, and δ1 = (δ/[4K])2. By [17, Thm 3.4], the
private selection with random stopping used in Algorithm 6 is such that x̂ is (3ε1+3

√
2δ1,
√
2δ1K+

δ/2)-DP; notice that

3ε1 + 3
√
2δ1 ≤

ε

2
+ 3
√
2
δ

K
≤ ε,

and √
2δ1K + δ/2 ≤ δ,

due to our choices of ε1, δ1. This proves that the algorithm is (ε, δ)-DP.

The accuracy of the algorithm closely follows [17, Theorem 3.3]. First, let κ be the number of runs
the algorithm makes before stopping, and let α > 0 to be determined. Conditioning on κ

P
[
FS(x̂)− FS(x

∗(S)) > α
]
=

K∑
k=1

P
[
FS(x̂)− FS(x

∗(S)) > α
∣∣κ = k

]
P[κ = k]

=

K∑
k=1

P
[
FS(x̂)− FS(x

∗(S)) > α
∣∣κ = k

]
(1− γ)k−1γ.

We will now bound the conditional probability above. By the subexponential tails of the Laplace
distribution, we have that letting E := {(∀j ∈ [κ]) : |ξj | ≤ α′} (here, α′ > 0 is arbitrary),

P[Ec|κ = k] = P
[
(∃j ∈ [κ]) |ξk| > α′

∣∣∣κ = k
]
≤ 2k exp

{
− nεα′

12B

}
.

Hence

P
[
FS(x̂)− FS(x

∗(S)) > α
∣∣∣κ = k

]
≤ P

[{
FS(x̂)− FS(x

∗(S)) > α
}
∩ E

∣∣∣κ = k
]
+ P[Ec|κ = k].

Next we have

P
[{

FS(x̂)− FS(x
∗(S)) > α

}
∩ E

∣∣∣κ = k
]
≤ P

[{
FS(x̂k̂) + ξk̂ − FS(x

∗(S)) > α− α′} ∩ E∣∣∣κ = k
]

= P
[{

min
k∈[κ]

[
FS(x̂k) + ξk

]
− FS(x

∗(S)) > α− α′} ∩ E∣∣∣κ = k
]

≤ P
[
min
k∈[κ]

[
FS(x̂k)− FS(x

∗(S))
]
> α− 2α′

∣∣∣κ = k
]

≤
(
P
[
FS(x̂1)− FS(x

∗(S)) > α− 2α′
])k

,

where in the last step we used that the runs are i.i.d.

We now choose α, α′ such that α− 2α′ = U/τ (where U, τ are those from Theorem E.2). Hence,

P
[
FS(x̂)− FS(x

∗(S)) > α
∣∣∣κ = k

]
≤ 2−k + 2k exp

{
− nεα′

12B

}
.

We can now bound the failure probability as follows:

P
[
FS(x̂)− FS(x

∗(S)) > α
]
≤

K∑
k=1

(
2−k + 2K exp

{
− nεα′

12B

})
(1− γ)k−1γ

=
1

2

γ

1− γ2
+

2

γ
ln

(2
δ

)
exp

{
− nεα′

12B

}
≤ β

2
+

2

γ
ln

(2
δ

)
exp

{
− nεα′

12B

}
,
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where in the last step we used that γ = min{1/2, 3β/4}. It is clear then that α′ =
12B
nε ln

(
16
3β2 ln

(
2
δ

))
makes the probability above at most β. These choices lead to a final bound

α =
U

τ
+ 2α′ ≲ LD

√
lnn[s ln(d/s) ln3

(
ln(1/δ)/[βδ]

)
]1/4

√
εn

+
B

nε
ln
( 1

β
ln
(2
δ

))
.

For the nonconvex case, we need to replace B by 2L in the Laplace concentration bound. Further, we
consider the event {∥∇F (x̂k)∥2 > α} (as opposed to the optimality gap event). This implies that we
need to set α > 0 such that α− 2α′ ≥

√
U/τ from Theorem E.3. This leads to

P
[
∥FS(x̂)∥2 > α

]
≤

K∑
k=1

(
2−k + 2K exp

{
− nεγ

24L

})
(1− γ)k−1γ.

The rest of the derivations are analogous.

G Missing Proofs and Results from Section 6

G.1 Proof of Theorem 6.1

Proof. We proceed by cases:

• Case δ = 0. First, we prove that privacy of the algorithm. To do this, we first establish a bound
on the ℓ1-sensitivity of the (quadratically) regularized ERM. Note that the first-order optimality
conditions in this case correspond to

x∗
λ(S) = −

1

λ
∇FS(x

∗
λ(S)).

Therefore, if S ≃ S′, where S = (z1, . . . , zn) and S = (z′1, . . . , z
′
n) only differ in one entry,

∥x∗
λ(S)− x∗

λ(S
′)∥1 ≤

1

λ
∥∇FS(x

∗
λ(S))−∇FS′(x∗

λ(S
′))∥1

≤ 1

λn

n∑
i=1

∥∇f(x∗
λ(S), zi)−∇f(x∗

λ(S
′), z′i)∥1

≤ 1

λn

[
(n− 1)

√
2sH∥x∗

λ(S)− x∗
λ(S

′)∥2 + 2
√
2sL

]
≤ 1

λn

(
4
√
2sHL

n− 1

λn
+ 2
√
2sL

)
≤ 2
√
2sL

λn

(2H
λ

+ 1
)
.

Above, in the third inequality we used the gradient sparsity (A.7), and the smoothness (A.6),
assumptions. In the fourth inequality we used that the regularized ERM has ℓ2-sensitivity 4L

λn
[44, 45, 46]. We conclude the privacy then by Theorem A.1(a).

We also remark that by Theorem A.2(a)-(i), ∥ξ∥∞ ≲ L
√
s ln(d/β)
λnε

(
H
λ +1

)
, with probability 1−β.

• Case δ > 0. The privacy guarantee follows from the fact that the ℓ2-sensitivity of x∗
λ(S) is 4L

λn
[44, 45, 46], together with Theorem A.1(b).

Moreover, by Theorem A.2(b)-(i), ∥ξ∥∞ ≲
L
√

ln(d/β)

λnε , with probability 1− β.

We continue with the accuracy analysis, making a unified presentation for both pure and approximate-
DP. First, by the optimality conditions of the regularized ERM,

FS(x
∗
λ(S))− FS(x

∗(S)) ≤ λ

2
∥x∗(S)∥2 ≤ λ

2
D2. (6)
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We need the following key fact, which follows by the definitions of x̂ and x̃,

∥x̂− x∗
λ(S)∥∞ ≤ ∥x̂− x̃∥∞ + ∥x̃− x∗

λ(S)∥∞ ≤ 2∥ξ∥∞. (7)

Using these two bounds, we proceed as follows

FS(x̂)− FS(x
∗(S)) ≤ FS(x̂)− FS(x

∗
λ(S)) +

λ

2
D2 ≤ ⟨∇FS(x̂), x̂− x∗

λ(S)⟩+
λ

2
D2

≤ ∥∇FS(x̂)∥1∥x̂− x∗
λ(S)∥∞ +

λ

2
D2

≤
√
2sL∥ξ∥∞ +

λ

2
D2,

where the second inequality follows by convexity of FS , and the fourth one by the gradient sparsity
assumption and (7).

The conclusion follows by plugging in the respective bounds of λ and ∥ξ∥∞, for both pure- and
approximate-DP cases.

G.2 Proof of Theorem 6.3

Remark G.1. Note first that in the proof below we are not addressing the privacy of Algorithm 4, as
this has already been proven in Theorem 6.1.

On the other hand, note that the same proof below—using the in-expectation generalization guarantees
of uniformly stable algorithms [44]— provides a sharper upper bound for the expected excess risk
for the pure and approximate-DP cases, which would hold w.p. 1− β over the algorithm internal
randomness

ES [FD(x̂)− FD(x
∗(D))] ≲ L2/3H1/3D4/3

(s log(d/β)
εn

)1/3

,

ES [FD(x̂)− FD(x
∗(D))] ≲ LD

[s ln(1/δ) log(d/β)]1/4√
εn

.

Proof. Using the ℓ2-sensitivity of x∗
λ(S), ∆2 = 4L

λn , we have the following generalization bound
[47]: with probability 1− β/2

FD(x
∗
λ(S))− FS(x

∗
λ(S)) ≲

L2

λn
ln(n) ln

( 1

β

)
+B

√
ln

(
1
β

)
n

=: γ.

The bound of (6) can be obviously modified by comparison with the population risk minimizer,
x∗(D): in particular, the event above6 implies that

FD(x
∗
λ(S))− FD(x

∗(D)) ≲ FS(x
∗
λ(S))− FS(x

∗(D)) + γ ≤ λ

2
∥x∗(D)∥22 + γ ≲ λD2 + γ.

On the other hand, the bound (7) works exactly as in the proof of Theorem 6.1. Hence, we have that
with probability 1− β/2,

FD(x̂)− FD(x
∗(D)) ≲ FD(x̂)− FD(x

∗
λ(S)) + λD2 + γ

≲ ⟨∇FD(x̂), x̂− x∗
λ(S)⟩+ λD2 + γ

≲ 2L
√
s∥ξ∥∞ +

L2

λn
ln(n) ln

( 1

β

)
+ λD2 +

B√
n

√
ln
( 1
β

)
,

where in the last step we used that ∥∇FD(x̂)∥1 = ∥Ez[∇f(x̂, z)]∥1 ≤ Ez[∥∇f(x̂, z)∥1] ≤ L
√
s

(the last step which follows by the gradient sparsity), inequality (7), and the definition of γ.

We proceed now by separately studying the different cases for δ:
6We also need concentration to upper bound FS(x

∗(D)) − FD(x∗(D)). However, this is easy to do by
e.g., Hoeffding’s inequality, leading to a bound ≲ γ.
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• Case δ = 0. The bound above becomes

FD(x̂)− F (x∗(D)) ≲ L2

λn

(s ln(d/β)
ε

(H
λ

+ 1
)
+ lnn ln(1/β)

)
+ λD2 +B

√
ln(1/β)

n
.

Our choice of λ provides the claimed bound.

• Case δ > 0. Here, the upper bound takes the form

FD(x̂)− F (x∗(D)) ≲ L2

λn

(√s ln(d/β) ln(1/δ)

ε
+ ln(n) ln(1/β)

)
+ λD2 +B

√
ln(1/β)

n
.

The proposed value of λ leads to the bound below that holds with probability 1− β,

FD(x̂)− FD(x
∗(D)) ≲ B

√
ln(1/β)

n
+ LD

√
lnn ln(1/β)

n
+

√
s ln(1/δ) log(d/β)

εn

≲ (LD
√
lnn+B)

√
ln(1/β)

n
+ LD

[s ln(1/δ) log(d/β)]1/4√
εn

.

G.3 A Pure DP-ERM Algorithm for Nonsmooth Losses

We now prove that the rates of pure DP-ERM in the convex case above can be obtained without
the smoothness assumption, albeit with an inefficient algorithm. This algorithm is based on the
exponential mechanism, and it leverages the fact that the convex ERM with sparse gradient always
has an approximate solution which is sparse. This result requires an additional assumption on the
feasible set: (

x ∈ X ∧ P ⊆ [d]
)

=⇒ x|P ∈ X , (8)

where x|P ∈ Rd is the vector such that xP,j = xj if j ∈ P , and xP,j = 0 otherwise. We will say
that X is sparsifiable if (8) holds. Note this property holds e.g., for ℓp-balls centered at the origin.
Lemma G.2. Let X be a convex sparsifiable set. Consider the problem (ERM) under convex-
ity (Item (A.3)), bounded diameter (Item (A.2)), Lipschitzness (Item (A.5)) and gradient sparsity
(Item (A.7)), assumptions. If x∗(S) is an optimal solution of (ERM) and τ > 0, then there exists
x̃ ∈ X such that ∥x̃∥0 ≤ 1/τ2, and

FS(x̃)− FS(x
∗(S)) ≤ L

√
sτ.

Proof. Let x̃ ∈ Rd be defined as

x̃j =

{
xj if |x∗

S,j | ≥ τ
0 otherwise.

Note that x̃ ∈ X since x∗(S) ∈ X and X is sparsifiable. Now we note that

∥x̃∥0 ≤
∑

j: |x∗
S,j |≥τ

(x∗
S,j)

2

τ2
≤ 1

τ2
.

Finally, for the accuracy guarantee, we use convexity as follows,

FS(x̃)− FS(x
∗(S)) ≤ ⟨∇FS(x̃), x̂− x∗(S)⟩

≤ ∥∇FS(x̃)∥1∥x̃− x∗(S)∥∞
≤ L
√
sτ,

where in the last step we used that∇f(x̂, zi) ∈ Sds and the definition of x̃.

We present now the sparse exponential mechanism, which uses the result above to approximately
solve (ERM) with nearly dimension-independent rates.
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Algorithm 7 Sparse_Exponential_Mechanism
Require: Dataset S = {z1, . . . , zn} ⊆ Z , ε privacy parameter, f(·, z) L-Lipschitz convex function

with s-sparse gradients and range bounded by B, 0 < β < 1 confidence parameter
Let τ > 0 be such that τ3

ln(d/[τβ]) =
L
√
sεn
B

Let Nτ be a τ -net of 1/τ2-sparse vectors over X with |Nτ | ≤
(

d
1/τ2

)(
3
τ

)1/τ2

Let x̂ be a random variable supported on Nτ such that P[x̂ = x] ∝ exp
{
− B

εnFS(x)
}

Return x̂

Remark G.3. The bound on |Nτ | claimed in Algorithm 7 follows from a standard combinatorial

argument (e.g., [39]). Moreover, it follows that |Nτ | ≲
(

d
τ

)1/τ2

.

Theorem G.4. Let X be a convex sparsifiable set. Consider a problem (ERM) under bounded
diameter (Item (A.2)), convexity (Item (A.3)), bounded range (Item (A.4)), Lipschitzness (Item (A.5))
and gradient sparsity (Item (A.7)), assumptions. Then Algorithm 7 satisfies with probability 1− β

FS(x̂)− FS(x
∗(S)) ≲ L2/3B1/3

( s

εn
ln

(L√sεn
B

d

β

))1/3

.

Proof. Let x̃ be the vector whose existence is guaranteed by Theorem G.2. By the high probability
guarantee of the exponential mechanism [1] with probability 1− β,

FS(x̂)− FS(x̃) ≤
B

εn

(
ln |Nτ |+ ln(1/β)

)
≲

B

εn

ln
(

d
τβ

)
τ2

.

Hence, using Theorem G.2 with the upper bound above,

FS(x̂)− FS(x
∗(S)) ≤ FS(x̂)− FS(x̃) + FS(x̃)− FS(x

∗(S))

≲
B

εn

ln(d/[τβ])

τ2
+ L
√
sτ

≲
(
L2B

s

εn
ln
(L√sεn

B

( d
β

)3))1/3

,

where we used our choice of τ .
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
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Answer: [NA] .
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
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models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
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Justification: The paper poses no such risks.
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properly respected?
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Justification: The paper does not use existing assets.
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• The answer NA means that the paper does not use existing assets.
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Question: Are new assets introduced in the paper well documented and is the documentation
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