
Time-LlaMA: Adapting Large Language Models for Time Series Modeling
via Dynamic Low-rank Adaptation

Anonymous ACL submission

Abstract

Time series modeling holds significant impor-001
tance in many industrial applications and has002
been extensively studied. A series of recent003
studies have demonstrated that large language004
models (LLMs) possess robust pattern recog-005
nition and semantic understanding capabilities006
over time series data. However, the current lit-007
erature have yet striked a high-quality balance008
between (a) effectively aligning the time series009
and natural language modalities and (b) keep-010
ing the inference efficiency for industrial de-011
ployment. To address the above issues, we now012
propose the Time-LlaMA framework. Time-013
LlaMA first converts the time series input into014
token embeddings through a linear tokeniza-015
tion mechanism. Second, the time series token016
embeddings are aligned with the text prompts.017
Third, to further adapt the LLM backbone for018
time series modeling, we have developed a019
dynamic low-rank adaptation technique (Dy-020
naLoRA). DynaLoRA dynamically chooses the021
most suitable LoRA modules at each layer of022
the Transformer backbone for each time se-023
ries input, enhancing the model’s predictive024
capabilities. Our experimental results on an025
extensive collection of challenging open and026
proprietary time series tasks confirm that our027
proposed method achieves the state-of-the-art028
(SOTA) performance and have potentials for029
wide industrial usages.1030

1 Introduction031

Time series forecasting (TSP) represents a cru-032

cial modeling endeavor (Jin et al., 2023b), span-033

ning a wide array of practical applications such034

as climate modeling, inventory management, and035

energy demand prediction. Typically, each fore-036

casting task demands specialized domain expertise037

and bespoke model architectures. This requirement038

has precluded the development of a robust founda-039

tional model (FM) capable of few-shot or zero-shot040

1Codes will be made public upon acceptance.

learning, akin to GPT-3 (Brown et al., 2020), GPT- 041

4 (OpenAI, 2023), and Claude-32, within the time 042

series domain. Despite the fact that time series 043

modeling has yet to witness similar groundbreak- 044

ing advancements, the remarkable capabilities of 045

large language models (LLMs) have fueled interest 046

in their application to time series forecasting tasks 047

(Zhou et al., 2023). 048

Despite the advancements in the literature on 049

Large Language Model (LLM)-based Time Series 050

(TS) modeling (Zhou et al., 2023; Jin et al., 2023a), 051

several limitations remain, hindering their indus- 052

trial usages. Firstly, the successful integration of 053

time series data with natural language in LLM- 054

based TS modeling depends heavily on the appro- 055

priate alignment of their respective modalities. Cur- 056

rent approaches primarily rely on text prompts and 057

cross-attention mechanisms, which do not effec- 058

tively leverage the vocabulary. Secondly, recent 059

studies adopt a methodology similar to PatchTST 060

(Nie et al., 2022), transforming a univariate time se- 061

ries into a sequence of patches that are then treated 062

as tokens input into Transformer blocks. This ap- 063

proach necessitates converting multivariate Time 064

Series Prediction (TSP) tasks into multiple univari- 065

ate TSP subtasks, leading to increased inference la- 066

tency. Lastly, the current works maintains the LLM 067

backbone in a frozen state and refrains from incor- 068

porating additional trainable components within 069

the Transformer blocks (Jin et al., 2023a), which 070

may limit the models’ ability to adapt to specific 071

tasks more effectively. 072

To address the above issues, we introduce Time- 073

LlaMA, an innovative framework designed to har- 074

ness large language models for time series forecast- 075

ing. Our approach diverges from prior methodolo- 076

gies (Zhou et al., 2023; Jin et al., 2023a) in the fol- 077

lowing aspects. First, we treat each channel within 078

multivariate time series data as an individual token. 079

Furthermore, we employ a trainable cross-attention 080

2https://claude.ai/

1

Figure 1: Schematic illustration of our Time-LlaMA framework.

module to align the tokenized time series data with081

the embeddings of the text prompt, rather than the082

entire vocabulary, thereby enhancing the model’s083

focus on relevant information. Notably, the text084

prompt is not passed through the Transformer back-085

bone to minimize inference delay. Additionally, we086

present DynaLoRA, a novel variant of the LoRA087

technique that incorporates a mixture-of-experts088

mechanism. DynaLoRA dynamically assigns dis-089

tinct sets of LoRA modules to various input sam-090

ples, leading to improved performance across the091

board. Extensive experimentation has proved that092

our Time-LlaMA method surpasses recent state-of-093

the-art baseline methods. The contributions of our094

work are summarized as follows:095

• We propose a novel framework Time-LlaMA.096

By aligning to text prompts and fine-tuning097

the LLMs with a novel DynaLoRA method,098

our work pushs the limit of LLM based TS099

modeling methods.100

• Time-LlaMA consistently exceeds state-of-101

the-art performance in TS forecasting tasks,102

especially in few-shot and zero-shot scenar-103

ios. Moreover, this superior performance is104

achieved while maintaining excellent infer-105

ence efficiency, making our method suitable106

for industrial usage.107

2 Related Work108

Time series modeling. The progressive advance-109

ments in natural language processing and computer110

vision have led to the development of sophisticated111

Transformer (Vaswani et al., 2017) variants tailored112

for a wide array of time series forecasting applica- 113

tions (Zhou et al., 2021; Wu et al., 2021). Central 114

to these innovations is the methodology by which 115

Transformers handle time series data. For instance, 116

I-Transformer (Liu et al., 2023b) treats each uni- 117

variate time series as a distinct token, forming mul- 118

tivariate time series into sequences of such tokens. 119

More recently, PatchTST (Nie et al., 2022) adopts 120

an assumption of channel independence, transform- 121

ing a univariate time series into multiple patches, 122

which are subsequently treated as tokens and pro- 123

cessed through a Transformer encoder. This ap- 124

proach has yielded notable results on various bench- 125

mark datasets for time series. Nevertheless, these 126

forecasting models are trained end-to-end using 127

task-specific datasets. A recent trend involves the 128

developments of Transformer-based foundational 129

models for time series analysis (Das et al., 2023; 130

Goswami et al., 2024) via pre-training, capable of 131

being swiftly adapted to diverse downstream tasks. 132

Cross-modal transfer learning using language 133

models Recent investigations have highlighted 134

the efficacy of transferring Transformer models 135

(Vaswani et al., 2017), which are pretrained on ex- 136

tensive textual corpora, to other modalities. (Lu 137

et al., 2022) employs a frozen pretrained Trans- 138

former across a spectrum of sequence classifica- 139

tion tasks encompassing numerical computation, vi- 140

sion, and protein structure prediction, training only 141

the newly introduced classification heads. ORCA 142

(Shen et al., 2023) adopts an align-then-refine work- 143

flow to adapt to target tasks. Specifically, given 144

the target input, ORCA initially learns an embed- 145

ding network that aligns the feature distribution 146

of the embedded data with that of the pretraining 147

modality. Subsequently, the pretrained model is 148

2

fine-tuned on the aligned data to harness cross-149

modal knowledge. Building upon these capabili-150

ties, recent studies have successfully adapted large151

language models (LLMs) for time series analysis152

through the use of a reprogramming module and153

a tokenization technique, while maintaining the154

LLMs in a frozen state (Zhou et al., 2023; Jin et al.,155

2023a). Our contribution to this body of research156

is twofold: (a) we conceptualize each time series157

variable as a token, enabling simultaneous predic-158

tions for all variables within a single forward pass,159

thereby enhancing efficiency. (b) We introduce a160

novel LoRA methodology that fine-tunes the LLM161

backbone in a parameter-efficient manner, advanc-162

ing the state-of-the-art in LLM-based time series163

modeling.164

Parameter efficient fine-tuning for pretrained165

Transformer models Parameter-efficient fine-166

tuning (PEFT) optimizes a small portion of added167

parameters when fine-tuning a LLM and keeps the168

backbone model frozen (Ding et al., 2022; Zhang169

et al., 2023b). LoRA (Hu et al., 2021) is inspired170

by (Aghajanyan et al., 2021) and (Li et al., 2018),171

and hypothesizes that the change of weights during172

model fine-tuning has a low intrinsic rank and opti-173

mizes the low-rank decomposition for the change174

of original weight matrices. LoRA (Hu et al., 2021)175

is proven to be effective and yield stable results176

when applied to both relatively small pretrained177

backbones and large language models (Dettmers178

et al., 2023; Zhu et al., 2023). However, the origi-179

nal LoRA paper does not specify how to add LoRA180

modules of different ranks to the Transformer back-181

bones for adapting different tasks. In this work,182

we propose a novel LoRA variant that can help183

the LLM backbone to better adapt to the time se-184

ries prediction tasks and achieve state-of-the-art185

performance.186

3 Methodology187

This section elaborates on the model architec-188

ture of our Time-LlaMA framework as illustrated189

in Figure 1. In this study, we address the chal-190

lenge of multivariate time series prediction. Given191

a sequence of historical observations X ∈ RN×TL192

consisting of N different 1-dimensional variables193

across TL time steps, we aim to adapt a large lan-194

guage model f(·) to understand the input time se-195

ries and accurately forecast the values at TP future196

time steps, denoted by Y ∈ RN×TP .197

3.1 Preliminaries 198

Transformer model As depicted in Figure 1, 199

each Transformer layer of a LLM with L layers 200

such as LlaMA-2 (Touvron et al., 2023) consists 201

of a multi-head self-attention (MHA) module and 202

a fully connected feed-forward (FFN) sub-layer. 203

MHA contains four linear modules, which are the 204

Query (Q), Key (K), Value (V), and Output (O) 205

modules. FFN contains three linear modules: Gate 206

(G), Up (U), and Down (D). For notation conve- 207

nience, we will refer to the number of modules in 208

a Transformer block as Nmod. Thus, in LlaMA-2, 209

Nmod = 7. 210

LoRA For any linear module m ∈ 211

{Q, K, V, O, G, U, D} in the Transformer layer, the 212

LoRA method adds a pair of low-rank matrices to 213

reparameterize its weights. Formally, the forward 214

calculation of module m in layer l with LoRA is: 215

x
′
= xWm,l + gm,l ∗ xWA

m,lW
B
m,l + bm,l, (1) 216

where Wm,l ∈ Rd1×d2 is the weight matrix of 217

module m, bm,l is its bias term. WA
m,l ∈ Rd1×r 218

and WB
m,l ∈ Rr×d2 are the low-rank matrices for 219

the LoRA module, and r ≪ min(d1, d2). r is the 220

rank of the two matrices and will also be referred to 221

as the rank of the LoRA module. Here, we include 222

a binary gate gm,l ∈ {0, 1} to conveniently control 223

the inclusion of LoRA m in the forward calculation. 224

For the vanilla LoRA method, all the LoRA gates 225

gm,l are set to 1. 226

3.2 Time-LlaMA 227

We now describe the forward calculation process 228

of Time-LlaMA 229

Token Embedding In order to seamlessly apply 230

the LLM to time series prediction, we consider the 231

i-th variate Xi,:’s whole series as a token (Liu et al., 232

2023b), and embed it with: 233

hTS,0
i = TSEmb(Xi,:), (2) 234

where TSEmb : RT 7→ Rdm denotes the time- 235

series token embedding module, dm denotes the 236

hidden size of the LLM backbone. And HTS,0 = 237

{hTS,0
1 , ...,hTS,0

N } denotes the whole token se- 238

quences of the input time series. 239

Modality Alignment Note that time series is 240

different from the language modality, making it dif- 241

ficult for the LLM to understanding time series. To 242

close this gap, we propose to align the time-series 243

token embeddings H0 with the prompts’ embed- 244

dings HP,0. To realize this alignment, we utilize 245

3

a multi-head cross-attention (MHCA) layer where246

H0 acts as the query tensor and HP,0 acts as the247

key and value tensor. Specifically, for each atten-248

tion head k ∈ {1, 2, ...,K}, we define the query249

tensors as Qk = H0WQ
k , the key tensors as Kk =250

HP,0WK
k , and the value tensors as Vk = HP,0W V

k ,251

where WQ
k ,WK

k ,W v
k ∈ Rdm×dhead are the weight252

matrices, dhead = dm/K is the hidden dimension253

on each head. Then the time-series token embed-254

dings are aligned to the natural language represen-255

tation via the following equations:256

Ak =Softmax(
QkK

⊺
k√

dhead
)

H0 ←H0 + Concat([A1, ..., AK])WO,

(3)257

where Concat() is the concatenation operation, and258

WO ∈ Rdm×dm is the attention output projection259

matrix. Then the input for the LLM’s Transformer260

blocks H0 is obtained by projecting H0 to dimen-261

sion dmodel, the hidden dimension of the LLM.262

LLM backbone Time-LlaMA utilize a pre-263

trained LLM backbone to encode the input tokens.264

Different from the previous works, we install our265

novel DynaLoRA module on each Transformer266

layer. The details are presented in the next sub-267

section.268

Output layer and loss calculation After H0 is269

encoded by the LLM, we obtain the output repre-270

sentation HL. Then HL will go through a linear271

layer to obtain the predictions for the future TP272

time steps:273

Ŷ = HLWP + bP , (4)274

where WP ∈ Rdm×TP is the weight matrix, and275

bP ∈ R1×TP is the bias term.276

Following the standard practice for the time-277

series prediction tasks, the objective is to minimize278

the mean square errors between the ground truths279

Y and predictionsŶ:280

Lmse = ∥Y − Ŷ∥2F . (5)281

Following (Fedus et al., 2022), to better train282

our DynaLoRA module, we add a load balancing283

loss to the training loss function. Consider a train-284

ing batch B with NB samples, let f l
i represent the285

proportion of prompts assigned to the i-th LoRA286

expert in layer l,287

f l
i =

1

NB

∑
x∈B

1{argmax
j

plj(x) = i}, (6)288

where plj is the probability of expert j, output by the 289

router l. Let p̂li be the average of probability masses 290

received by the i-th expert, p̂li =
1

NB

∑
x∈B pli(x). 291

Then, the load balancing loss is given by: 292

Llb = Nmod

L∑
l=1

Nmod∑
i=1

f l
i · p̂li. (7) 293

The Llb loss term is added to the cross entropy loss 294

with a coefficient λlb ≥ 0: 295

L = Lmse + λlb ∗ Llb. (8) 296

3.3 DynaLoRA 297

In the previous works (Zhou et al., 2023; Jin 298

et al., 2023a) on applying LLM backbones to the 299

time series tasks, the LLMs are kept entirely frozen, 300

making it convenient for task adaptation. How- 301

ever, this setting restricts the expressiveness of 302

the whole model. Inspired by the recent works 303

on parameter-efficient fine-tuning in the LLM re- 304

search, we propose to fine-tune the LLM backbone 305

in a parameter-efficient manner when adapting it to 306

time-series tasks. However, through initial experi- 307

ments, we find that the vanilla LoRA method (Hu 308

et al., 2021) does not perform well on all the time- 309

series prediction tasks. We hypothesize that when 310

adapted to different time-series tasks, how to set the 311

LoRA modules should differ significantly. In this 312

work, we take a step further and propose an input- 313

adaptive dynamic LoRA (DynaLoRA) method (on 314

the right hand side of Figure 1), which dynamically 315

assign LoRA modules to the different Transformer 316

modules based on the input. 317

We now present the details of our DynaLoRA 318

method. The core of DynaLoRA is the input- 319

dependent LoRA assignment mechanism, as shown 320

in Figure 1. Under this mechanism, a LoRA router 321

takes the input’s hidden states as input and outputs 322

the assigned LoRA experts for the current layer. 323

Denote the hidden state of the input right before 324

the Transformer layer l as Hl−1 ∈ RN×dm . Then 325

a pooling operation transforms it to a single vector 326

hl
pooled ∈ R1×dm : 327

hl
pooled = Pooler(Hl−1). (9) 328

Consistent with (Radford et al., 2018) and (Lewis 329

et al., 2019), Pooler() takes the vector representa- 330

tion of the last token in the input as hl
pooled. Then, 331

hl
pooled will go through an activation function g and 332

4

then the LoRA router Rl right before layer l. Rl333

assigns the current input to the most suitable LoRA334

modules. This router contains (a) a linear layer335

that computes the probability of hl being routed336

to each LoRA module LoRAm (m ∈ {Q, K, V,337

O, G, U, D}), (b) a softmax function to model a338

probability distribution over the LoRA modules,339

and finally, (c) a Top_K(·, n) function that choose340

the top n > 0 experts with the highest probability341

masses. Formally,342

Rl(hl) = Top_K(Softmax(g(hl)W l
r), n), (10)343

where W l
r ∈ Rdm×Nmod is the router’s weight.344

Rl(hl) is a Nmod-dim vector, in which the m-th345

element is a binary value in {0, 1} and is assigned346

to gm,l to activate or deactivate LoRA m:347

gm,l ← Rl(hl)[m], (11)348

and
∑Nmod

m=1 gm,l equals n. The LoRA router dy-349

namically selects and activates the best n > 0 ex-350

perts for each input during inference.351

Different from the standard LoRA method (Hu352

et al., 2021), our work: (a) determines the assigned353

LoRA modules at the Transformer’s layer level, se-354

lecting which Transformer module should be mod-355

ified by its corresponding LoRA module. (b) The356

decision on selecting LoRA modules are condi-357

tioned on the input data, and different test samples358

could set LoRA modules differently. (c) Note that359

for a test input, different Transformer layers may360

choose to assign different LoRA modules. (d) Note361

that we can adjust the number of assigned LoRA362

modules n per layer, making inference more effi-363

cient than the vanilla LoRA method or previous364

dynamic LoRA methods (Liu et al., 2023a).365

4 Experiments366

4.1 Baselines367

We compare our Time-LlaMA method with the368

SOTA time series models: (a) Time-LLM (Jin369

et al., 2023a), (b) GPT4TS (Zhou et al., 2023),370

(c) PatchTST (Nie et al., 2022), (d) DLinear (Zeng371

et al., 2023), and (e) TimesNet (Wu et al., 2022).372

4.2 Datasets and evaluation metrics373

For long-term time series forecasting, we as-374

sess our Time-LlaMA framework on the follow-375

ing datasets, in accordance with (Wu et al., 2022):376

ETTh1, ETTm1, Weather, ECL, and Traffic. For377

short-term time series forecasting, we employ the378

M4 benchmark (Makridakis et al., 2018). Detailed 379

introductions to data sets and evaluation metrics 380

are in the Appendix A. 381

4.3 Experimental setups 382

We use Llama-3 1B (Grattafiori et al., 2024) as 383

the default LLM backbone unless stated otherwise, 384

thus dm = 2048. We utilize the first L = 6 Trans- 385

former blocks of the LLM for our Time-LlaMA 386

framework. For the alignment module, the number 387

of attention heads is K = 8. For DynaLoRA, the 388

LoRA rank is set to r = 4, and each layer will 389

select n = 4 LoRA modules during inference. 390

The Adam optimizer (Loshchilov, 2017) is em- 391

ployed throughout all experiments. The loss ob- 392

jective is MSE for the long-term forecasting tasks, 393

and SMAPE for the short-term forecasting tasks. 394

The learning rate is denoted as LR. We utilize the 395

LlaMA-2 7B (Touvron et al., 2023) model, main- 396

taining the backbone model layers at 8 across all 397

tasks. Denote the lookback window’s length as TL, 398

the prediction horizon as TP . And the heads K 399

correlate to the multi-head cross-attention utilized 400

for time-series data reprogramming. For the LoRA 401

modules, the number of ranks r is set to 8. Each 402

Transformer block’s LoRA router activates n = 4 403

LoRA modules. We detail the configurations for 404

each task in Table 7 of Appendix A. 405

4.4 Main results 406

Results for long-term forecasting For the long- 407

term forecasting tasks, the input time series length 408

TL is set as 512, and we use four different pre- 409

diction horizons TP ∈ {96, 192, 336, 720} (H ∈ 410

{24, 36, 48, 60} for the ILI task). The evaluation 411

metrics include mean square error (MSE) and mean 412

absolute error (MAE). In Table 1, we report the av- 413

erage score over four different horizons. 414

The experimental results demonstrate that our 415

Time-LlaMA method outperforms the baselines on 416

most of the (task, prediction horizon) pairs. The 417

comparison against Time-LLM (Jin et al., 2023a) 418

and GPT4TS (Zhou et al., 2023) is particularly 419

meaningful. These two are very recent works on 420

adapting large language models to the time-series 421

forecasting tasks. When compared to the pre vious 422

state-of-the-art (SOTA) model PatchTST which is 423

trained from scratch on each task, Time-LlaMA 424

can also achieves advantages. 425

Results for short-term forecasting To demon- 426

strate that our method works in the short-term fore- 427

casting tasks, we utilize the M4 benchmark (Makri- 428

5

Methods Time-LlaMA TIME-LLM GPT4TS PatchTST DLinear TimesNet
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.377 0.398 0.386 0.409 0.376 0.397 0.378 0.405 0.375 0.399 0.384 0.402
192 0.410 0.426 0.414 0.421 0.416 0.418 0.413 0.421 0.405 0.416 0.436 0.429
336 0.421 0.437 0.423 0.436 0.442 0.433 0.422 0.436 0.439 0.443 0.491 0.469
720 0.443 0.464 0.481 0.478 0.477 0.456 0.447 0.466 0.472 0.490 0.521 0.500

ETTm1

96 0.291 0.343 0.298 0.356 0.292 0.346 0.290 0.342 0.299 0.343 0.338 0.375
192 0.326 0.366 0.334 0.377 0.332 0.372 0.332 0.369 0.335 0.365 0.374 0.387
336 0.352 0.384 0.365 0.389 0.366 0.394 0.366 0.392 0.369 0.386 0.410 0.411
720 0.405 0.416 0.413 0.418 0.417 0.421 0.416 0.420 0.425 0.421 0.478 0.450

Weather

96 0.151 0.207 0.154 0.208 0.162 0.212 0.149 0.198 0.176 0.237 0.172 0.220
192 0.193 0.240 0.198 0.247 0.204 0.248 0.194 0.241 0.220 0.282 0.219 0.261
336 0.242 0.287 0.251 0.282 0.254 0.286 0.245 0.282 0.265 0.319 0.280 0.306
720 0.313 0.332 0.317 0.338 0.326 0.337 0.314 0.334 0.333 0.362 0.365 0.359

ECL

96 0.128 0.224 0.137 0.235 0.139 0.238 0.129 0.222 0.140 0.237 0.168 0.272
192 0.152 0.247 0.158 0.242 0.153 0.251 0.157 0.240 0.153 0.249 0.184 0.289
336 0.161 0.256 0.164 0.261 0.169 0.266 0.163 0.259 0.169 0.267 0.198 0.300
720 0.198 0.292 0.204 0.293 0.206 0.297 0.197 0.290 0.203 0.301 0.220 0.320

Traffic

96 0.379 0.270 0.382 0.274 0.388 0.282 0.378 0.269 0.410 0.282 0.593 0.321
192 0.396 0.279 0.404 0.285 0.407 0.290 0.398 0.280 0.423 0.287 0.617 0.336
336 0.404 0.282 0.410 0.291 0.412 0.294 0.406 0.282 0.436 0.296 0.629 0.336
720 0.446 0.306 0.456 0.308 0.450 0.312 0.448 0.307 0.466 0.315 0.640 0.350

Table 1: Results for the long-term forecasting tasks. The prediction horizon TP is one of {24, 36, 48, 60} for ILI
and one of {96, 192, 336, 720} for the others. Lower value indicates better performance. Bold values represent the
best MSE score, while Underlined means the second best MSE score.

Methods Time-LlaMA TIME-LLM GPT4TS PatchTST DLinear TimesNet
SMAPE 11.96 12.01 12.69 12.06 13.63 12.88
MSAE 1.656 1.663 1.808 1.683 2.095 1.836
OWA 0.881 0.896 0.942 0.905 1.051 0.955

Table 2: Results for the short-term time series forecasting task, M4. The forecasting horizons are in {6, 48}. Lower
value indicates better performance. Bold values represent the best score, while Underlined means the second best.

dakis et al., 2018). Table 2 reports the SMAPE,429

MSAE and OWA scores. Our experimental results430

demonstrate that our Time-LlaMA method con-431

sistently surpasses all baselines when conducting432

short-term time series predictions.433

Results for the few-shot setting Note that a434

great property of large language models is its great435

few-shot learning capability. And it is interesting436

to investigate whether this capability still stands437

when they are adapted to model time series. We438

experiment on the scenarios in which limited train-439

ing data are available for training, that is, only 5%440

of the training time steps in the original training441

set are utilized for training. We experiment with442

the Weather and ETTh1 tasks, and the results are443

presented in Table 3.444

From Table 3, we can observe that Time-LlaMA445

excels over all the strong baseline methods. The446

comparison between Time-LlaMA and the non-447

Methods Time-LlaMA TIME-LLM PatchTST
Metric MSE MAE MSE MAE MSE MAE

Weather

96 0.166 0.220 0.169 0.223 0.175 0.230
192 0.219 0.268 0.224 0.272 0.227 0.276
336 0.272 0.297 0.276 0.303 0.286 0.322
720 0.355 0.360 0.362 0.368 0.366 0.379

ETTh1

96 0.531 0.497 0.538 0.501 0.543 0.506
192 0.685 0.546 0.698 0.557 0.748 0.580
336 0.738 0.573 0.752 0.591 0.754 0.595
720 - - - - - -

Table 3: Results for the few-shot setting. The first 5% of
the training sets used in Table 1 are used for training. ’-’
means that 5% time series is not sufficient to constitute
a training set.

LLM method like PatchTST demonstrates the ad- 448

vantage of utilizing a pre-trained large language 449

model. The pre-trained LLM contains rich world 450

and semantically knowledge, thus providing a high- 451

quality model parameter initialization for the time- 452

series models. The results underscore the prowess 453

6

Full-data setting Few-shot setting
Methods Time-LlaMA Time-LLM Time-LlaMA Time-LLM

Results for Gemma 2B

Weather
96 0.153 0.157 0.169 0.173
192 0.198 0.204 0.226 0.231

ETTh1
96 0.379 0.401 0.553 0.566
192 0.421 0.432 0.706 0.718

Results for GPT-2 large (0.5B)

Weather
96 0.164 0.169 0.187 0.199
192 0.205 0.211 0.235 0.243

ETTh1
96 0.387 0.398 0.581 0.594
192 0.432 0.438 0.727 0.742

Table 4: Results on the other LLMs. For the few-shot setting, 5% of the original training set is utilized for training.
We report the MSE scores.

of LLMs as a powerful time series model. The454

comparison against Time-LLM and GPT4TS em-455

phasize our method’s advantage in both knowledge456

activation and task adaptation, which are directly457

due to the input-adaptive DynaLoRA module and458

the modality alignment module.459

4.5 Ablation studies and analysis460

Ablation on the LLM backbones To validate461

our framework’s wide applicability, we experi-462

ment on two representative backbones Gemma463

2B (Banks and Warkentin, 2024) and GPT-2 large464

(Radford et al., 2019). The results on the Weather465

and ETTh1 under the full-data and few-shot set-466

ting are reported in Table 4. The Time-LlaMA467

method also outperforms Time-LLM by clear mar-468

gins, under both the full-data and few-shot settings,469

demonstrating the effectiveness of our method with470

different LLM backbones.471

Ablation studies of our Time-LlaMA method472

In order to understand the superiority of our Time-473

LlaMA framework (as in Table Table 1, 2, and474

3), we now conduct ablation studies on our Time-475

LlaMA method. We consider the following vari-476

ants for Time-LlaMA: (a) Time-LlaMA-1, which477

removes the modality alignment module (Eq 3),478

and directly feed the time series tokens to the LLM479

backbone. (b) Time-LlaMA-2, which concatenate480

the text prompt to the left of the time-series tokens,481

serving as prefix. (c) Time-LlaMA-3 keeps the482

LLM backbone entirely frozen. (d) Time-LlaMA-483

4 substitutes our DynaLoRA mechanism to the484

vanilla LoRA method. (e) Time-LlaMA-5 substi-485

tutes DynaLoRA to a representative LoRA variant,486

AdaLoRA (Zhang et al., 2023a). (f) Time-LlaMA-487

Methods
Weather ETTh1

96 192 96 192

Time-LlaMA 0.166 0.219 0.531 0.685
Time-LlaMA-1 0.172 0.226 0.538 0.697
Time-LlaMA-2 0.165 0.221 0.533 0.685
Time-LlaMA-3 0.178 0.232 0.542 0.705
Time-LlaMA-4 0.174 0.227 0.537 0.696
Time-LlaMA-5 0.179 0.231 0.540 0.703
Time-LlaMA-6 0.171 0.227 0.536 0.695

Table 5: Results for the ablation study.

6 substitutes DynaLoRA to MOELoRA (Liu et al., 488

2023a). 489

The experiments are presented in Table 5. From 490

Table 5, we can observe that: (a) The comparison 491

between Time-LlaMA-1 and Time-LlaMA demon- 492

strates the necessity of the modality alignment mod- 493

ule. (b) Time-LlaMA-2 performs closely to Time- 494

LlaMA, demonstrating that with our modality align- 495

ment module, the text prompts containing the task 496

information are no longer needed. (c) The com- 497

parison between Time-LlaMA-3 and Time-LlaMA 498

shows that fine-tuning the LLM backbone in a 499

parameter-efficient style helps our Time-LlaMA 500

to achieve superior performance. (d) The com- 501

parisons among Time-LlaMA-4, Time-LlaMA-5, 502

Time-LlaMA-6 and Time-LlaMA demonstrate the 503

superiority of our method to the recent LoRA vari- 504

ants. Our DynaLoRA module adaptively adjust 505

which LoRA modules are used to conduct infer- 506

ence for the current test sample, achieving stronger 507

generalization capabilities. 508

Effects on the number of selected LoRA modules 509

7

Figure 2: Performances under different numbers of selected LoRAs per Transformer block.

n We now alter the number of selected LoRA510

modules n to {1, 2, 3, 5, 6, 7}, and investigate511

how this hyper-parameter affects our Time-LlaMA512

method. The results are demonstrated in Figure513

2. From the experiments, one can see that when n514

changes from 1 to 7, the performance first becomes515

better, and then drops. The observations are consis-516

tent with ALoRA (Liu et al., 2024), which demon-517

strates that reduce the number of LoRA modules518

per block is beneficial for the LLM’s downstream519

adaptation.520

Efficiency analysis In our main experiments (Ta-521

ble 1), we only utilize the first 6 blocks of the522

LlaMA-3 1B model to encode the time-series in-523

formation and make predictions. Thus, its infer-524

ence speed is 10.47 test samples per second on the525

test set of the Traffic task. Note that in the indus-526

trial applications, efficiency is an important factor.527

Thus, it is of value to compare the latency of our528

method and the non-LLM method PatchTST. Note529

that PatchTST transforms the multi-variate time530

series task like Traffic into multiple single-variate531

time series tasks. Thus, it has to conduct inference532

for 862 single-variate series for a single sample533

in Traffic. Following its original implementations,534

PatchTST’s inference speed is 13.24 samples per535

second. Time-LLM (Jin et al., 2023a) also utilizes536

the patching mechanism in PatchTST. Thus, its537

inference speed is 3.51 samples per second. The538

comparisons demonstrate that through our Time-539

LlaMA method is actually very efficient, even with540

LLM backbones.541

Distributions of the selected LoRAs We now542

compare the distribution of LoRA modules across543

all Transformer layers on the Weather and ETTh1544

tasks’ test sets (with TP = 192) in Figure 3. We545

can observe that: (a) different Transformer layers546

choose to select different LoRA experts via their547

Figure 3: Distribution of activated LoRA experts.

corresponding routers, and the maximum propor- 548

tion a LoRA expert can achieve is less than 25%. 549

The results are intuitive since Transformer layers 550

of different depths represent different knowledge, 551

requiring different LoRA experts to express. (b) 552

the LoRA distributions on different tasks are differ- 553

ent. For example, more layers activate LoRA G or 554

LoRA U on the Weather task than on the ETTh1 555

task. 556

5 Conclusion 557

In this work, we propose a novel framework, 558

Time-LlaMA. First, Time-LlaMA tokenizes each 559

time series sample by considering each variate as 560

a token. Then we align the time series tokens to 561

the language modality by attending to text prompts’ 562

embeddings. Third, the LLM backbone is fine- 563

tuned by a novel LoRA method, DynaLoRA, that 564

adaptively selecting different LoRA modules for 565

different time series samples. Extensive experi- 566

ments have demonstrated that Time-LlaMA can 567

outperform the recent SOTA baselines. In addi- 568

tion, our method demonstrates inference efficiency, 569

making it applicable for the industry. 570

8

Limitations571

In this work, we introduced the Time-LlaMA572

framework to enhance the time series forecasting573

performance when using LLM backbones as en-574

coders. To address the drawbacks in the recents575

works on LLM-based time series forecasting mod-576

els, a novel LoRA method, DynaLoRA is proposed.577

We have conducted experiments on various real-578

world time series forecasting tasks, and the experi-579

mental results demonstrate that our Time-LlaMA580

method can outperform the recent baselines.581

However, we acknowledge the following limita-582

tions: (a) the more super-sized open-sourced LLMs,583

such as 7B, 14b or 30B models, are not experi-584

mented due to limited computation resources. (b)585

Other time series modeling tasks are not explored,586

like time series classification, anomaly detection.587

But our framework can be easily transferred to588

other backbone architectures and different types589

of tasks. It would be of interest to investigate if590

the superiority of our method holds for other large-591

scaled backbone models and other types of time592

series tasks. And we will explore it in future work.593

Ethical statement594

In this research, we have carefully considered the595

ethical implications of developing Time-LlaMA, a596

framework for time series forecasting using large597

language models (LLMs). We ensured data privacy598

by using only publicly available, anonymized, or599

permitted datasets, avoiding sensitive or proprietary600

information. To address potential biases, we em-601

ployed diverse datasets and rigorous testing across602

domains. We minimized environmental impact by603

using efficient training techniques like DynaLoRA604

and energy-efficient hardware. Transparency and605

reproducibility were prioritized through detailed606

methodology descriptions and plans to release code607

and model weights. We also acknowledged dual-608

use concerns, encouraging responsible application609

of our work, and fostered inclusivity through col-610

laborative and open research practices. These steps611

align our research with ethical AI development612

principles.613

References614

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-615
moyer. 2021. Intrinsic dimensionality explains the616
effectiveness of language model fine-tuning. In Pro-617
ceedings of the 59th Annual Meeting of the Associa-618

tion for Computational Linguistics and the 11th Inter- 619
national Joint Conference on Natural Language Pro- 620
cessing (Volume 1: Long Papers), pages 7319–7328, 621
Online. Association for Computational Linguistics. 622

Jeanine Banks and Tris Warkentin. 2024. Gemma: 623
Introducing new state-of-the-art open mod- 624
els. Google. Available online at: https://blog. 625
google/technology/developers/gemma-open- 626
models/(accessed 6 April, 2024). 627

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 628
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 629
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 630
Askell, et al. 2020. Language models are few-shot 631
learners. Advances in neural information processing 632
systems, 33:1877–1901. 633

Abhimanyu Das, Weihao Kong, Rajat Sen, and 634
Yichen Zhou. 2023. A decoder-only foundation 635
model for time-series forecasting. arXiv preprint 636
arXiv:2310.10688. 637

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 638
Luke Zettlemoyer. 2023. QLoRA: Efficient Fine- 639
tuning of Quantized LLMs. arXiv e-prints, page 640
arXiv:2305.14314. 641

Ning Ding, Yujia Qin, Guang Yang, Fu Wei, Zong- 642
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, 643
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, 644
Xiaozhi Wang, Zhiyuan Liu, Haitao Zheng, Jianfei 645
Chen, Yang Liu, Jie Tang, Juan Li, and Maosong 646
Sun. 2022. Delta tuning: A comprehensive study of 647
parameter efficient methods for pre-trained language 648
models. ArXiv, abs/2203.06904. 649

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 650
Switch transformers: Scaling to trillion parameter 651
models with simple and efficient sparsity. Journal of 652
Machine Learning Research, 23(120):1–39. 653

Mononito Goswami, Konrad Szafer, Arjun Choudhry, 654
Yifu Cai, Shuo Li, and Artur Dubrawski. 2024. Mo- 655
ment: A family of open time-series foundation mod- 656
els. arXiv preprint arXiv:2402.03885. 657

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 658
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 659
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 660
Alex Vaughan, et al. 2024. The llama 3 herd of mod- 661
els. arXiv preprint arXiv:2407.21783. 662

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 663
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 664
and Weizhu Chen. 2021. Lora: Low-rank adap- 665
tation of large language models. arXiv preprint 666
arXiv:2106.09685. 667

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, 668
James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan 669
Liang, Yuan-Fang Li, Shirui Pan, et al. 2023a. Time- 670
llm: Time series forecasting by reprogramming large 671
language models. arXiv preprint arXiv:2310.01728. 672

9

https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314

Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang,673
Siqiao Xue, Xue Wang, James Zhang, Yi Wang,674
Haifeng Chen, Xiaoli Li, et al. 2023b. Large models675
for time series and spatio-temporal data: A survey676
and outlook. arXiv preprint arXiv:2310.10196.677

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan678
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,679
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-680
noising sequence-to-sequence pre-training for natural681
language generation, translation, and comprehension.682
arXiv preprint arXiv:1910.13461.683

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Ja-684
son Yosinski. 2018. Measuring the Intrinsic Dimen-685
sion of Objective Landscapes. arXiv e-prints, page686
arXiv:1804.08838.687

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,688
Derong Xu, Feng Tian, and Yefeng Zheng. 2023a.689
Moelora: An moe-based parameter efficient fine-690
tuning method for multi-task medical applications.691
arXiv preprint arXiv:2310.18339.692

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu,693
Shiyu Wang, Lintao Ma, and Mingsheng Long.694
2023b. itransformer: Inverted transformers are ef-695
fective for time series forecasting. arXiv preprint696
arXiv:2310.06625.697

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and698
Yvette Graham. 2024. Alora: Allocating low-rank699
adaptation for fine-tuning large language models.700
arXiv preprint arXiv:2403.16187.701

I Loshchilov. 2017. Decoupled weight decay regulariza-702
tion. arXiv preprint arXiv:1711.05101.703

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mor-704
datch. 2022. Frozen pretrained transformers as uni-705
versal computation engines. In Proceedings of the706
AAAI conference on artificial intelligence, volume 36,707
pages 7628–7636.708

Spyros Makridakis, Evangelos Spiliotis, and Vassilios709
Assimakopoulos. 2018. The m4 competition: Re-710
sults, findings, conclusion and way forward. Interna-711
tional Journal of forecasting, 34(4):802–808.712

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and713
Jayant Kalagnanam. 2022. A time series is worth714
64 words: Long-term forecasting with transformers.715
arXiv preprint arXiv:2211.14730.716

OpenAI. 2023. GPT-4 Technical Report. arXiv e-prints,717
page arXiv:2303.08774.718

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados,719
and Yoshua Bengio. 2019. N-beats: Neural basis720
expansion analysis for interpretable time series fore-721
casting. arXiv preprint arXiv:1905.10437.722

Adam Paszke, Sam Gross, Francisco Massa, Adam723
Lerer, James Bradbury, Gregory Chanan, Trevor724
Killeen, Zeming Lin, Natalia Gimelshein, Luca725
Antiga, et al. 2019. Pytorch: An imperative style,726

high-performance deep learning library. Advances in 727
neural information processing systems, 32. 728

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 729
Sutskever, et al. 2018. Improving language under- 730
standing by generative pre-training. 731

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 732
Dario Amodei, Ilya Sutskever, et al. 2019. Language 733
models are unsupervised multitask learners. OpenAI 734
blog, 1(8):9. 735

Junhong Shen, Liam Li, Lucio M Dery, Corey Staten, 736
Mikhail Khodak, Graham Neubig, and Ameet Tal- 737
walkar. 2023. Cross-modal fine-tuning: Align then 738
refine. In International Conference on Machine 739
Learning, pages 31030–31056. PMLR. 740

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter 741
Albert, Amjad Almahairi, Yasmine Babaei, Niko- 742
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, 743
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris- 744
tian Cantón Ferrer, Moya Chen, Guillem Cucurull, 745
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin 746
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, 747
Naman Goyal, Anthony S. Hartshorn, Saghar Hos- 748
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor 749
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V. 750
Korenev, Punit Singh Koura, Marie-Anne Lachaux, 751
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai 752
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, 753
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew 754
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan 755
Saladi, Alan Schelten, Ruan Silva, Eric Michael 756
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross 757
Taylor, Adina Williams, Jian Xiang Kuan, Puxin 758
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An- 759
gela Fan, Melanie Kambadur, Sharan Narang, Aure- 760
lien Rodriguez, Robert Stojnic, Sergey Edunov, and 761
Thomas Scialom. 2023. Llama 2: Open foundation 762
and fine-tuned chat models. ArXiv, abs/2307.09288. 763

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob 764
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 765
Kaiser, and Illia Polosukhin. 2017. Attention is all 766
you need. ArXiv, abs/1706.03762. 767

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin 768
Wang, and Mingsheng Long. 2022. Timesnet: Tem- 769
poral 2d-variation modeling for general time series 770
analysis. arXiv preprint arXiv:2210.02186. 771

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng 772
Long. 2021. Autoformer: Decomposition transform- 773
ers with auto-correlation for long-term series fore- 774
casting. Advances in neural information processing 775
systems, 34:22419–22430. 776

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 777
2023. Are transformers effective for time series fore- 778
casting? In Proceedings of the AAAI conference 779
on artificial intelligence, volume 37, pages 11121– 780
11128. 781

10

https://doi.org/10.48550/arXiv.1804.08838
https://doi.org/10.48550/arXiv.1804.08838
https://doi.org/10.48550/arXiv.1804.08838
https://doi.org/10.48550/arXiv.2303.08774
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin,782
Pengcheng He, Yu Cheng, Weizhu Chen, and783
Tuo Zhao. 2023a. Adaptive budget alloca-784
tion for parameter-efficient fine-tuning. ArXiv,785
abs/2303.10512.786

Yuming Zhang, Peng Wang, Ming Tan, and Wei-Guo787
Zhu. 2023b. Learned adapters are better than man-788
ually designed adapters. In Annual Meeting of the789
Association for Computational Linguistics.790

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai791
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.792
2021. Informer: Beyond efficient transformer for793
long sequence time-series forecasting. In Proceed-794
ings of the AAAI conference on artificial intelligence,795
volume 35, pages 11106–11115.796

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al.797
2023. One fits all: Power general time series analysis798
by pretrained lm. Advances in neural information799
processing systems, 36:43322–43355.800

Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen,801
and Buzhou Tang. 2023. PromptCBLUE: A Chinese802
Prompt Tuning Benchmark for the Medical Domain.803
arXiv e-prints, page arXiv:2310.14151.804

A Appendix: Experimental settings805

Now we provide more details for the experi-806

ments presented in the main contents.807

A.1 Implementation808

We mainly follow the experimental configura-809

tions in (Jin et al., 2023a) across all baselines within810

a unified evaluation pipeline in the Time-Series-811

Library3 for fair comparisons. We use Llama-2812

7B (Touvron et al., 2023) as the default backbone813

model, unless stated otherwise. All our experi-814

ments are repeated three times and we report the815

averaged results. Our method is implemented on816

PyTorch (Paszke et al., 2019) with all experiments817

conducted on NVIDIA L20 GPUs (48 GB RAM).818

A.2 Datasets819

We evaluate the long-term forecasting (ltf) per-820

formance on the well-established eight different821

benchmarks, including four ETT datasets (includ-822

ing ETTh1, ETTh2, ETTm1, and ETTm2) from823

(Zhou et al., 2021), Weather, Electricity, Traffic,824

and ILI from (Wu et al., 2021). For short-term825

time series forecasting (STF), we employ the M4826

benchmark (Makridakis et al., 2018).827

ETT The Electricity Transformer Temperature828

(ETT) is a crucial indicator in the electric power829

long-term deployment. This dataset consists of 2830

3https://github.com/thuml/Time-Series-Library

years data from two separated counties in China. 831

To explore the granularity on the Long sequence 832

time-series forecasting (LSTF) problem, different 833

subsets are created, ETTh1, ETTh2 for 1-hour-level 834

and ETTm1 for 15-minutes-level. Each data point 835

consists of the target value ”oil temperature” and 836

6 power load features. The train/val/test is 12/4/4 837

months. 838

ECL Measurements of electric power consumption 839

in one household with a one-minute sampling rate 840

over a period of almost 4 years. Different electrical 841

quantities and some sub-metering values are avail- 842

able.This archive contains 2075259 measurements 843

gathered in a house located in Sceaux (7km of Paris, 844

France) between December 2006 and November 845

2010 (47 months). 846

Traffic Traffic is a collection of hourly data from 847

California Department of Transportation, which 848

describes the road occupancy rates measured by 849

different sensors on San Francisco Bay area free- 850

ways. 851

Weather Weather is recorded every 10 minutes for 852

the 2020 whole year, which contains 21 meteoro- 853

logical indicators, such as air temperature, humid- 854

ity, etc. 855

ILI The influenza-like illness (ILI) dataset contains 856

records of patients experiencing severe influenza 857

with complications. 858

M4 The M4 benchmark comprises 100K time se- 859

ries, amassed from various domains commonly 860

present in business, financial, and economic fore- 861

casting. These time series have been partitioned 862

into six distinctive datasets, each with varying sam- 863

pling frequencies that range from yearly to hourly. 864

These series are categorized into five different do- 865

mains: demographic, micro, macro, industry, and 866

finance. 867

The datasets’ statistics are presented in Table 6. 868

A.3 Evaluation metrics 869

We now specify the evaluation metrics we used 870

for comparing different models. We utilize the 871

mean square error (MSE) and mean absolute er- 872

ror (MAE) for long-term forecasting. For the 873

short-term forecasting task on M4 benchmark, we 874

adopt the symmetric mean absolute percentage er- 875

ror (SMAPE), mean absolute scaled error (MASE), 876

and overall weighted average (OWA), following 877

(Oreshkin et al., 2019). The calculations of these 878

11

https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151

Tasks Dataset Dim. Series Length Dataset Size Frequency Domain

Long-term Forecasting

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature
ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature
Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Transportation
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather
ILI 7 {24, 36, 48, 60} (617, 74, 170) 1 week Illness

Short-term Forecasting

M4-Yearly 1 6 (23000, 0, 23000) Yearly Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Quarterly Finance
M4-Monthly 1 18 (48000, 0, 48000) Monthly Industry
M4-Weakly 1 13 (359, 0, 359) Weakly Macro
M4-Daily 1 14 (4227, 0, 4227) Daily Micro
M4-Hourly 1 48 (414, 0, 414) Hourly Other

Table 6: Dataset statistics. The dimension indicates the number of time series (i.e., channels), and the dataset size is
organized in (training, validation, testing).

metrics are as follows:879

MSE =
1

H

T∑
h=1

(Yh − Ŷh)
2, (12)880

MAE =
1

H

H∑
h=1

|Yh − Ŷh|, (13)881

SMAPE =
200

H

H∑
h=1

|Yh − Ŷh|
|Yh|+ |Ŷh|

, (14)882

MAPE =
100

H

H∑
h=1

|Yh − Ŷh|
|Yh|

, (15)883

MASE =
1

H

H∑
h=1

|Yh − Ŷh|
1

H−s

∑H
j=s+1 |Yj −Yj−s|

,

(16)

884

OWA =
1

2

[
SMAPE

SMAPENaive
+

MASE
MASENaive

]
,

(17)

885

(18)886

where s is the periodicity of the time series data.887

H denotes the number of data points (i.e., pre-888

diction horizon in our cases). Yh and Ŷh are889

the h-th ground truth and prediction where h ∈890

{1, · · · , H}.891

A.4 Configurations for training892

We detail the configurations for each task in Ta-893

ble 7.894

12

Task-Dataset
Model Hyperparameter Training Process

Layers TL TP K r n LR* Loss Batch Size Epochs

LTF - ETTh1 8 512 {96, 192, 336, 720} 8 8 4 10−3 MSE 16 20
LTF - ETTm1 8 512 {96, 192, 336, 720} 8 8 4 10−3 MSE 16 20
LTF - Weather 8 512 {96, 192, 336, 720} 8 8 4 10−3 MSE 16 20
LTF - Electricity 8 512 {96, 192, 336, 720} 8 8 4 10−2 MSE 16 20
LTF - Traffic 8 512 {96, 192, 336, 720} 8 8 4 10−2 MSE 12 20
LTF - ILI 8 96 {24, 36, 48, 60} 8 8 4 10−2 MSE 16 20
STF - M4 8 2× TP {6, 48} 8 8 4 10−3 SMAPE 32 30

Table 7: An overview of the experimental configurations for TIME-LlaMA. LTF and STF denote long-term and
short-term forecasting, respectively.

13

