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ABSTRACT

While fine-tuning large language models (LLMs) for specific tasks often yields im-
pressive results, it comes at the cost of memory inefficiency due to back-propagation
in gradient-based training. Memory-efficient Zeroth-order (MeZO) optimizers,
recently proposed to address this issue, only require forward passes during training,
making them more memory-friendly. However, compared with exact gradients,
ZO-based gradients usually exhibit an estimation error, which can significantly hurt
the optimization process, leading to slower convergence and suboptimal solutions.
In addition, we find that the estimation error will hurt more when adding to large
weights instead of small weights. Based on this observation, this paper introduces
Sparse MeZO, a novel memory-efficient zeroth-order optimization approach that
applies ZO only to a carefully chosen subset of parameters. We propose a simple
yet effective parameter selection scheme that yields significant performance gains
with Sparse-MeZO. Additionally, we develop a memory-optimized implementation
for sparse masking, ensuring the algorithm requires only inference-level memory
consumption, allowing Sparse-MeZO to fine-tune LLaMA-30b on a single A100
GPU. Experimental results illustrate that Sparse-MeZO consistently improves both
performance and convergence speed over MeZO without any overhead. For exam-
ple, it achieves a 9% absolute accuracy improvement and 3.5x speedup over MeZO
on the RTE task.

1 INTRODUCTION

Fine-tuning large language models for specific tasks or datasets has become a prevalent practice in
machine learning. However, a major obstacle in fine-tuning is the substantial memory requirements,
which escalate as models increase in size and complexity, thereby limiting the scalability and
accessibility for those with limited computational resources.

To mitigate the memory constraints, Parameter Efficient Fine-Tuning (PEFT) has been developed,
allowing for the modification of only a subset of parameters and achieving comparable results to full
model tuning (Hu et al., 2021; Lester et al., 2021; Li & Liang, 2021; Zaken et al., 2021; Zhang et al.,
2023). However, PEFT methods still necessitate the calculation of gradients for backpropagation and
caching of numerous activations during training, which introduces additional memory overhead. For
instance, Malladi et al. demonstrates that, even with PEFT, training still requires approximately 6
times more memory than the memory cost for inference. This discrepancy raises a critical question:
Can large language models be fine-tuned solely with the cost of inference?

In response to these challenges, zeroth-order (ZO) optimization presents a promising solution (Spall,
1992). ZO optimization is a gradient-free method that estimates gradients using only the forward pass
of the model, eliminating the need for backpropagation and, consequently, reducing memory usage.
MeZO (Malladi et al., 2023) is a recently proposed zeroth-order method for fine-tuning LLMs that has
demonstrated impressive performance. However, compared to exact gradients, ZO-based gradients
usually exhibit an estimation error, which can be defined as noise. This noise can significantly hurt
the optimization process, leading to slower convergence and suboptimal solutions. Moreover, we
find that the estimated ZO gradient is difficult to generalize across batches. Specifically, while it can
successfully reduce the training loss on the sampled batch with a high probability, it is more likely to
increase the loss on other batches.
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To address this challenge, we investigate the impact of gradient noise in zeroth-order optimization
for LLM fine-tuning. We measure how the noise affects optimization by evaluating its effect on
generalization performance across different data batches. Interestingly, our experiments reveal that the
noise has a more significant impact when added to large weights compared to small weights. Based
on this finding, we propose a novel sparse memory efficient zeroth-order method (Sparse-MeZO) to
selectively optimize small weights, which are more resilient to noise perturbation. By focusing on
these noise-resistant weights, we demonstrate that our method enables the use of larger learning rates,
leading to improved performance and faster convergence. Our contributions can be summarized as
follows:

• In this paper, we investigate the impact of gradient noise in zeroth-order optimization for LLM
fine-tuning. Our evaluations show that the gradient noise can make the estimated ZO gradient
difficult to generalize across batches and the noise will hurt more when adding to large weights
instead of small weights.

• Based on the above finding, we propose a sparse Memory-Efficient Zeroth-Order optimization
method Sparse-MeZO (S-MeZO) for large language model fine-tuning. We also provide theoretical
analysis to show the convergence of Sparse-MeZO.

• Different from the efficient implementation with random seed in MeZO, we propose a novel
memory-efficient implementation of Sparse-MeZO, which can compute the sparse mask and
perturb parameters in the forward pass. The technique enables fine-tuning LLaMA-30b with
Sparse-MeZO on a single A100 GPU.

• We conduct empirical studies on LLaMA, OPT, and Mistral. The experimental results demonstrate
that Sparse-MeZO can improve the fine-tuning performance and yield a faster convergence rate
compared with vanilla MeZO across a wide range of natural language processing tasks. For
example, it achieves a 9% absolute accuracy improvement and 3.5x speedup over MeZO on the
RTE task, as shown in Figure 1.

2 PRELIMINARIES

2.1 PARAMETER-EFFICIENT FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) is designed to facilitate efficient adaptation by updating only
a subset of the model’s parameters, rather than fine-tuning the entire model (Hu et al., 2021; Zaken
et al., 2021). These PEFT approaches can be categorized in various ways. We mainly focus on the
selective methods and additive methods.

Selective Methods. Selective Methods try to selectively fine-tune a portion of a model and these
methods have been explored in various studies. For example, Zaken et al.; Cai et al. focused on the
model’s bias terms, finding that fine-tuning these terms alone could rival the results of fine-tuning the
entire model. However, the effectiveness of this approach diminishes with larger datasets, as shown in
further analysis by Zaken et al.. Beyond static parameter adjustments, there has been an exploration
into dynamically modifying parts of the model (Brock et al., 2017). This concept was later applied to
language models, with AutoFreeze (Liu et al., 2021b) confirming its viability. Nevertheless, these
techniques still demand considerable computational resources and sometimes yield less optimal final
outcomes.

Additive Methods. Additive methods, as an alternative to updating existing parameters, involve
incorporating new layers into models, with the fine-tuning process focusing solely on these added
layers (Houlsby et al., 2019; Hu et al., 2021; Lin et al., 2020; Rebuffi et al., 2017). Traditional
techniques in this category, such as adapters (Houlsby et al., 2019), implemented layer additions
in a sequential manner, which unfortunately led to increased inference latency. LoRA (Hu et al.,
2021) has been proposed to mitigate this issue, which freezes the weights of the pre-trained model
and introduces trainable matrices based on rank decomposition into each layer. Then, it can directly
integrate the newly learned weights into the main model. Following this, IA3 (Liu et al., 2022)
introduced innovative methods for adding parameters, balancing parameter count with accuracy, while
LST (Sung et al., 2022) introduced a highway structure that learns only small, auxiliary channels,
aiming to decrease memory demands. Despite these advancements, additive methods generally
require meticulous design, and many fail to reduce the computational load during the backward pass.
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2.2 ZEROTH-ORDER OPTIMIZATION

Unlike traditional gradient-based optimization methods that rely on derivatives to guide the search
for optimal solutions, Zeroth-Order (ZO) optimization techniques do not require derivatives for
optimization Spall (1992); Liu et al. (2018; 2019). These methods utilize only the value of the
objective function, denoted as f(x), at any chosen point x. To estimate the gradient in the direction
of vector z, the objective function is assessed at two points in close proximity, f(x + ϵz) and
f(x− ϵz), with ϵ being a minimal value. Following this, conventional optimization algorithms, such
as gradient descent or coordinate descent, are implemented using these approximated gradient values.
Currently, ZO methods have been widely used in various applications, such as adversarial attack and
defense (Chen et al., 2017; Ilyas et al., 2018; Tu et al., 2019; Ye et al., 2018), Auto-ML (Ruan et al.,
2019; Wang et al., 2022), natural language processing (Sun et al., 2022a;b), reinforcement learning
(Vemula et al., 2019), Signal Processing (Liu et al., 2020), and on-chip training (Gu et al., 2021).

2.2.1 MEZO
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Figure 1: Performance of MeZO and Sparse-
MeZO (S-MeZO) on RTE task. S-MeZO can
achieve 3.5x speedup compared with MeZO.

ZO-SGD employs SPSA (Spall, 1992) to es-
timate the gradient. In general, conventional
ZO-SGD algorithms utilizing SPSA consume
twice the inference memory. MeZO (Malladi
et al., 2023) is a memory-efficient variant of
ZO-SGD. It circumvents the storage of gradi-
ents by saving the random seed and resampling
the same random noise z with the seed during
forward process. More specifically, to calculate
L(θ + ϵz) − L(θ − ϵz), MeZO will sample a
noise z to perturb θ to θ+ϵz and then calculate
L(θ + ϵz). Then it resamples the same noise z
with the same seed and move the parameter back
θ − ϵz and calculates the loss. As a result, the
zeroth order gradient estimator can be computed
without any memory overhead.

2.2.2 SPARSITY
FOR ZEROTH-ORDER OPTIMIZATION

The hypothesis proposed by Frankle & Carbin,
known as the lottery ticket hypothesis, showed that within a densely connected neural network that
is randomly initialized, there exists a subnetwork of sparse yet high-quality connections. Based
on the hypothesis, model pruning aims to identify and preserve the crucial ’winning tickets’ -
sparse subnetworks within the larger neural network that can achieve comparable or even superior
performance (Sun et al., 2023; Frantar & Alistarh, 2023). In addition, Dynamic Sparse Training
(DST) has been proposed to reduce the training and inference cost in first-order optimization (Liu
et al., 2021a; Evci et al., 2020). Recently, several related works have tried to apply the sparsity to
zeroth-order optimization (Balasubramanian & Ghadimi, 2018; Cai et al., 2021; 2022; Chen et al.,
2023; Gu et al., 2021; Ohta et al., 2020; Wang et al., 2018). For example, DeepZero (Chen et al.,
2023) proposes a novel ZO training protocol with model pruning guided sparsity. However, these
methods mainly focus on the neural network training from scratch with random initialization, while
the application of sparse zeroth-order optimization in fine-tuning tasks remains an area of ongoing
exploration.

3 PROPOSED METHOD

3.1 EMPIRICAL OBSERVATION ON MEZO

For large language models, zeroth-order optimization algorithms like MeZO are often necessary when
exact gradients are unavailable or prohibitively expensive to compute. However, compared with exact
gradients, these methods inherently introduce noise in the gradient estimates used for optimization.
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Figure 2: (a) Test Accuracy with Different Learning Rates on RTE Task. We find MeZO is very
sensitive to the selection of learning rate. Even a small increase from 1× 10−6 to 2× 10−6 causes
divergence and instability. (b) Probability of Loss Increase on Different Batch. We find the estimated
ZO gradient can successfully reduce the loss on the same batch but may be difficult to decrease
the loss on the new held-out batch. (c) Continuing training from the drop point with small and
large weights. We find that optimizing only the small weights can recover and further improve test
accuracy.

Specifically, the zeroth-order gradient gz(θ) is approximated as gz(θ) =
L(θ+ϵz)−L(θ−ϵz)

2ϵ z, where
L is the loss function. As shown in Figure 2(a), MeZO exhibits extreme sensitivity to the choice of
learning rate. Even a small increase from 1× 10−6 to 2× 10−6 causes divergence and instability,
while this larger learning rate is totally fine when fintuning with first-order methods. This suggests
that the gradient noise introduced by the zeroth-order approximation, defined as δ = g(θ)− gz(θ)
where g(θ) is the exact gradient, significantly hinders the optimization process when large step sizes
are used. This motivates us to analyze the effects of this gradient noise δ and understand how it
impacts optimization performance.

To quantify how the gradient noise δ hurts the optimization process, we evaluate its effect on the
generalization performance of the estimated gradients. Specifically, we measure whether the zeroth-
order gradient estimate computed on one batch can effectively reduce the loss on other held-out
batches. For a batch Bt = {B1t ,B2t } with 32 data points, we use 16 samples to estimate the zeroth-
order gradient gz(θ;B1t ) on batch B1t , and evaluate it on the remaining 16 held-out samples B2t . The
results are shown in Figure 2. Interestingly, we find a stark contrast in performance - while the
estimated gradient gz(θ;B1t ) can reliably reduce the loss on the same batch B1t it was computed on
(90% success rate), it only manages to decrease the loss on the new held-out batch B2t around 50% of
the time. This suggests that the zeroth-order gradient estimates suffer from overfitting or noise that
makes them less generalizable to unseen data samples. The gradient noise δ, while allowing descent
on the current batch, appears to introduce errors that prevent reliable descent directions for unseen
batches. Therefore, the noise δ can be seen as hurting the optimization process by degrading the
generalization performance of the parameter updates.

Next, we aim to understand if this effect is uniform across all model parameters or if certain
parameter groups are more vulnerable to noise corruption. We notice the nature of vanilla MeZO,
where L(θ+ϵz)−L(θ−ϵz)

2ϵ is used to estimate the gradient, and all parameters share the same value of
L(θ+ϵz)−L(θ−ϵz)

2ϵ . This means not all parameters are optimized in the true gradient direction, which
could be a limitation. To analyze this, we divide the parameters into different groups based on their
magnitude - the top 20% largest weights are considered "large", while the bottom 20% are "small".
Interestingly, our experiments reveal that the gradient noise δ hurts optimization more when added to
large weights compared to small weights. As shown in Figure 2(c), when continuing training from
the point where test accuracy drops (due to noise), we find that optimizing only the small weights
can recover and further improve test accuracy. This suggests that small weights are less impacted
by noise corruption and can generalize better. Therefore, the noise δ does not impact all parameters
equally - it disproportionately disrupts the optimization of larger weights. Selectively optimizing
smaller, noise-resilient weights may be a promising direction to mitigate the effects of gradient
noise in zeroth-order optimization. In the next section, we will introduce the proposed Spare-MeZO
algorithm, which can only select small weights to perturb and update weights.
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Algorithm 1 Sparse-MeZO (S-MeZO)
Require: θ represents pre-trained LLM weight, N is the number of layers in model, learning rate
ηt, s represents sparsification interval.
Initialize random seed s
Determine threshold h = h1, . . . , hN , of each layer with the sparsification interval
for t← 1 to T do

Sample Minibatch B from X and random seed s.
m← GetMask(θt,h)
θt ← PerturbParameters(θt, ϵ, s,m)
l+ = L(θt;B)
θt ← PerturbParameters(θt,−2ϵ, s,m)
l− = L(θt;B)
θt ← PerturbParameters(θ, ϵ, s,m)
proj_grad← (l+ − l−)/(2ϵ)
Reset random seed s
for θi ∈ θ do

zi ∼ N (0, 1)
θi ← θi − ηt ∗ proj_grad ∗mi ∗ z

end for
end for

3.2 SPARSE-MEZO

Consider a labelled dataset D = {(xi,yi)}i∈[|D|] and let L(θ;B) denotes the loss on a mini-
batch B. We can define a sparse mask m ∈ {0, 1}d to selectively sample the random noise
z ∈ Rd with z ∼ N (0, Id) on the sub-net of pre-trained model. A sparsified version of random
perturbation can be defined as ẑ ∈ Rd:

ẑ = m⊙ z. (1)

Based on this sparse perturbation ẑ, we can redefine MeZO algorithm on Section 2.2.1 as Sparse-
MeZO. The main difference is from the estimated gradient gẑ(θ), which can be defined as :

gẑ(θ) =
L(θ + ϵẑ;B)− L(θ − ϵẑ;B)

2ϵ
ẑ

=
L(θ + ϵm⊙ z;B)− L(θ − ϵm⊙ z;B)

2ϵ
ẑ,

(2)

where ϵ represents the perturbation scale.

Based on the observations from our motivation, we can create a sparse mask, m, determined by
parameter magnitudes. Specifically, we only update parameters of smaller magnitude. These targeted
parameters are defined as θ̂ = m⊙ θ. It’s important to note that we still preserve the complete set of
parameters, but we apply sparse perturbations and gradient estimations only to the selected ones. This
approach allows us to integrate the sparse mask into the standard MeZO method as a straightforward,
adaptable tool. Then, we will introduce when and how to calculate the mask.

• Constant Mask: Setting the Mask Before Training. We compare the parameter values to a
threshold for each layer to set the mask before training begins. However, a significant downside
of this approach is the extra memory required to store a sparse mask, which is as large as the
pre-trained model itself. Our goal is for our method to enhance performance without using more
GPU memory or causing extra overhead.
• Dynamic Mask: Determining Mask at Each Iteration. We can establish a threshold for each

layer before training and then generate the mask by comparing parameter values to this threshold
during each iteration. This method avoids the necessity of storing a large mask, m.

In this paper, we’ll employ a dynamic mask to choose which parameters to perturb and update,
addressing the issue of memory constraints. In addition, we determine thresholds using a principled
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sparsity-based approach. Specifically, we use a percentile-based method where the threshold is set
based on a target sparsity level.

The pseudo-code is provided in Algorithm 1. This algorithm outlines that we first establish the
threshold hi for each layer before beginning training. We then use GetMask (Algorithm 3) to
compare each parameter against its threshold hi and create the mask m. Following this, we introduce
the function PerturbParameters (Algorithm 2) to generate a Gaussian noise sample z ∼ N (0, Id)
and apply the mask m to produce a sparse perturbation ẑ = m⊙ z. With ẑ, we perturb the current
parameters θt to get new parameters θt + ϵẑ and θt − ϵẑ. This allows us to compute two distinct
loss values: l+ = L(θt + ϵẑ) and l− = L(θt − ϵẑ). From these losses, we calculate the estimated
sparse gradient gm(θt) = proj_grad ∗ ẑ, where proj_grad = l+−l−

2ϵ . Finally, this gradient can be
used with a learning rate ηt to update θt.

3.3 MEMORY-EFFICIENT IMPLEMENTATION OF SPARSE-MEZO

In this paper, our primary aim is to introduce an efficient method for fine-tuning language models
using zeroth-order optimization, enhancing performance on downstream tasks. As outlined in
Algorithm 1, our approach involves perturbing the parameters θt twice to generate two distinct sets
of parameters, θ′

t = θt + ϵz and θ′′
t = θt − ϵz. We then use the estimated gradient to update the

original parameters θt. This step typically requires storing two separate sets of parameters, leading
to increased memory usage during fine-tuning.

Recently proposed MeZO, conserves memory by saving random seeds s and using it to resample z
for calculating θ′

t, θ
′′
t , and reconstructing θt without needing extra memory. However, applying a

sparse mask m for calculating sparse perturbation ẑ in MeZO poses a memory issue. We cannot
simply reconstruct ẑ by saving the random seed because the sparse mask, determined by parameter
magnitudes, changes when parameters are altered by the perturbation. To address this, we propose
potential solutions for the memory issue.

1-bit Quantization: We can apply 1-bit quantization to store the mask m, as it consists solely of 0s
and 1s. However, this method still increases memory usage, which isn’t our goal. As a solution, we
introduce a novel, memory-saving approach for zeroth-order optimization that calculates the mask m
on the fly during the forward pass.

Calculating the Mask During the Forward Pass: By computing the mask and perturb parameters
in the forward pass, we eliminate the need to store perturbed parameters θ′

t and θ′′
t . This means

we only have to keep the original parameters θt throughout training. For vanilla implementation,
we first need to calculate the perturbed parameters with mask m: θ′

t = θt + ϵm ⊙ z. After that,
we can use perturbed parameters θ′

t to calculate the loss value l+ with the forward process. For
example, the output of layer i can be defined as y(i) = θ

′(i)
t x(i) + b(i). Noted that we need to

save the vanilla parameters θt and mask m for vanilla implementation. However, for our proposed
efficient implementation, we only need to save vanilla parameters θt. More specially, we can
calculate the mask m(i) of layer i during the forward process and then obtain the output of this layer:
y(i) = (θ

(i)
t + ϵm(θt)z

(i))x(i) + b(i), where m(·) represents the function GetMask to calculate
mask m(i). Then, we can release the memory of mask m(i) and calculate the output and mask of the
next layer.

4 EXPERIMENTS

Following a similar setting to MeZO, we evaluate the performance of our proposed method on
SuperGLUE Wang et al. (2019). The experimental results show that our proposed method can achieve
better performance while also attaining faster convergence.

4.1 EXPERIMENTAL SETTING

Datasets. To verify the performance gain of our proposed method, we conduct experiments on
various fine-tuning tasks include SST-2 (Socher et al., 2013), RTE (Bentivogli et al., 2009; Dagan
et al., 2005; Giampiccolo et al., 2007; Haim et al., 2006), BoolQ (Clark et al., 2019), WIC (Pilehvar &
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Camacho-Collados, 2018), MultiRC (Khashabi et al., 2018)) and multi-class task COPA (Roemmele
et al., 2011).

Models. We primarily use pre-trained LLaMA-7b Touvron et al. (2023) to evaluate the performance
of our proposed method on downstream tasks. To further demonstrate our method’s versatility, we
also test it with Mistral-7B-v0.1 Jiang et al. (2023) and OPT-13b Zhang et al. (2022). We provide
more details about the results in the Appendix E. Additionally, to examine our method’s scalability,
we evaluate it on larger models, such as LLaMA-30b.

Baselines. First, we compare our method to the vanilla MeZO to demonstrate how sparsification
enhances MeZO’s convergence speed and overall performance. Additionally, to show that our
proposed S-MeZO effectively identifies and modifies crucial parameters, we contrast it with R-
MeZO (a version of MeZO applying a random mask to select parameters for optimization). In
addition, we also explore the impact of zero-shot optimization on improving a pre-trained language
model’s capabilities through experiments with zeroth-shot learning and in-context learning techniques
(Brown et al., 2020). Lastly, to understand the performance gap between zeroth-order and first-order
optimization in fine-tuning large language models, we present results from conventional full-parameter
fine-tuning (FT) using the Adam optimizer, the most widely used method for such tasks. In addition,
we also compare MeZO and its variants against LoRA, the most widely adopted PEFT method.

Training Procedure. We adopt most of the training hyperparameters from the standard MeZO,
including dataset configuration, batch size, training epochs, epsilon value, and task prompts, with
the key difference being a higher learning rate for S-MeZO due to updating only a subset of the
parameters. The primary goal of our training is the next token prediction. For the dataset, we use
MeZO’s approach, randomly selecting 1,000 examples for training and testing the model on another
set of 1,000 examples (Zhou et al., 2023). We perform the experiments using three different seeds
and report the average of the outcomes. In addition, the total training steps for LLaMA, Mistral and
OPT is 20,000 and we evaluate its performance on the test dataset every 100 steps.

Model Method BoolQ RTE WIC MultiRC SST-2 COPA Average

LLaMA-7b Zero-Shot 65.1 49.5 50.6 55.8 79.7 59.7 60.1

LLaMA-7b ICL 67.4 54.5 52.7 58.7 81.2 84.4 66.5

LLaMA-7b LoRA 84.5 82.3 67.6 78.3 95.0 86.0 82.3
LLaMA-7b FT 84.5 83.6 68.4 80.2 95.7 85.0 82.9

LLaMA-7b MeZO 75.9 71.7 61.4 69.8 94.6 86.3 76.6

LLaMA-7b MeZO - LoRA 77.9 74.9 60.8 72.6 95.0 84.3 77.6

LLaMA-7b R-MeZO 76.9 75.2 62.1 68.1 94.6 84.3 76.9

LLaMA-7b S-MeZO 80.9 80.7 64.9 73.3 95.0 86.7 80.3

Table 1: Accuracy of Fine-Tuning LLaMA-7b on SuperGLUE (1,000 examples). ICL: In-Context
Learning, FT: full-parameter fine-tuning with Adam, R-MeZO: MeZO with Random Mask.

Model Method BoolQ RTE WIC MultiRC SST-2 COPA Average

Mistral-7b Zero-Shot 69.3 55.2 50.0 57.1 55.5 84.0 61.85
Mistral-7b ICL 76.7 78.0 61.4 71.3 94.6 90.0 78.66
Mistral-7b LoRA 84.8 87.4 68.2 83.9 95.6 91.0 85.15
Mistral-7b FT 86.7 87.1 71.2 86.1 95.6 91.2 86.31

Mistral-7b MeZO 81.6 80.9 63.2 82.7 93.8 86.7 81.48
Mistral-7b MeZO - LoRA 83.5 80.1 60.7 82.6 93.8 86.9 81.26
Mistral-7b R-MeZO 84.0 78.7 63.2 83.1 92.4 84.1 80.91
Mistral-7b S-MeZO 85.3 84.5 64.3 84.9 94.2 86.1 83.21

Table 2: Accuracy of Fine-Tuning Mistral-7b on SuperGLUE (1,000 examples). ICL: In-Context
Learning, FT: full-parameter fine-tuning with Adam, R-MeZO: MeZO with Random Mask.
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Figure 3: Convergence Curves of Fine-Tuning LLaMA-7b with MeZO and Sparse-MeZO (S-MeZO)
on (a) RTE, (b) BoolQ, (c) WIC tasks.

4.2 PERFORMANCE

To evaluate the performance of our proposed method S-MeZO, we initially tested it on the SuperGLUE
benchmark using the LLaMA-7b model. The fine-tuning results, presented in Table 10, reveal that
our S-MeZO method outperforms other zero-order (ZO) techniques like MeZO and R-MeZO. For
instance, S-MeZO boosts MeZO’s accuracy from 71.7% to 80.7% on RTE (↑ 9%) and from 75.9% to
80.9% on BoolQ (↑ 5%). Furthermore, all zeroth-order-based methods surpassed the performance of
Zero-shot learning and in-context learning, demonstrating that zeroth-order optimization significantly
enhances the pre-trained model’s effectiveness on downstream tasks. Finally, we can find that S-
MeZO significantly bridges the performance gap between zero-order and first-order optimization
methods.

To further verify the generality of our proposed S-MeZO, we also evaluate it on Mistral-7B-v0.1. The
performance is shown in Table 2. We can find that S-MeZO can consistently improve the performance
of vanilla MeZO and narrow down the performance gap between zeroth-order optimization and
first-order optimization. For example, S-MeZO can improve the accuracy of vanilla MeZO from 81.6
to 85.3 on BoolQ and then achieve a comparable performance with full fine-tuning.

4.3 CONVERGENCE RATE

To verify that S-MeZO converges faster than MeZO, we carried out multiple experiments for compar-
ison. The accuracy over steps is plotted in Figure 3, which shows that S-MeZO can use fewer steps
to achieve a better performance than vanilla MeZO. For example, S-MeZO only needs about 5,000
steps to achieve 70% accuracy but vanilla MeZO needs 17,500 steps. Finally, S-MeZO can achieve
about 3.5x speedup on RTE and 3x speedup on BoolQ.

Method SST-2 RTE BoolQ WIC MultiRC COPA Average

FT 114.7 123.7 128.7 115.3 158.6 119.1 128.2

LoRA 15.7 19.5 25.5 16.1 34.2 23.1 22.4

MeZO 14.6 14.6 14.6 14.6 14.6 14.6 14.6

S-MeZO 28.3 28.3 28.3 28.3 28.3 28.3 28.3

S-MeZO-EI 14.6 14.6 14.6 14.6 14.6 14.6 14.6

Table 3: Memory Usage (batch size = 1) of Fine-Tuning LLaMA-7b on SuperGLUE (1,000 examples).
EI represents the Efficient Implementation in section 3.3.

4.4 MEMORY USAGE

Table 3 shows the memory consumption for MeZO, S-MeZO, and traditional full-parameter fine-
tuning of LLaMA-7b. The data reveal that S-MeZO does not require more memory than MeZO and
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offers a substantial saving of roughly 12 times less GPU memory compared to full-parameter fine-
tuning. For instance, S-MeZO with Efficient Implementation (S-MeZO-EI) cuts down the memory
needed from 158.6 GB for full tuning to just 14.6 GB on MultiRC task. In addition, S-MeZO with
efficient implementation can reduce the memory cost from 28.3 GB of vanilla S-MeZO to 14.6 GB
across all five tasks, which also illustrates the efficiency of our proposed implementation method:
Calculating the Mask During the Forward Pass. As a result, we can use only inference memory cost
to fine-tune large language models.

4.5 SPARSE RATE

For S-MeZO, we need to define the sparsity of the pre-trained model before starting to fine-tune it.
To analyze the effects of sparsity value on the performance, we conduct experiments with various
sparsity values (from 0.0 to 0.85). Figure 4 summarizes these experimental results with different
sparsity values. We can find that a significant performance gain can be obtained when we use the
sparsity value from 0.5 to 0.8. In addition, for most tasks, a sparsity value of 0.8 or 0.75 usually
means a better performance. For example, S-MeZO can improve the accuracy from 71.7% (when
r = 0.0) to 82.3% (when r = 0.8). It can also obtain a performance gain of 6.6% for WIC (from
75.9% to 82.5%).

Model Method BoolQ RTE WIC

LLaMA-7b MeZO 75.9 71.7 61.4

LLaMA-7b S-MeZO 80.9 80.7 64.9

LLaMA-30b MeZO 83.8 76.9 63.3

LLaMA-30b S-MeZO 85.7 82.1 67.3

Table 4: Accuracy of Fine-Tuning LLaMA-7b and LLaMA-30b on SuperGLUE (1,000 examples).

4.6 SCALABILITY
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Figure 4: The effects of Sparsity for Fine-tuning
LLaMA-7b with S-MeZO.

In Table 10, we mainly introduce the perfor-
mance of our methods on LLaMA-7b. A direct
question is whether our proposed method can
scale to larger language models. Therefore, in
this section, we further explore our proposed
method S-MeZO on LLaMA-30b. As shown in
Table 4, we can see that the a larger model usu-
ally can obtain a better fine-tuned performance.
For example, the accuracy on RTE with MeZO
can be improved from 71.1% on LLaMA-7b to
76.9% on LLaMA-30b. Our method S-MeZO
can further improve the performance on RTE to
82.1% on LLaMA-30b. In addition, S-MeZO
can further improve the accuracy on BoolQ to
85.7% on LLaMA-30b.

4.7 THE ANALYSIS ABOUT EFFICIENT
IMPLEMENTATION

In section 3.3, we present the efficient implementation of S-MeZO, which enables our proposed
method to require only the inference memory cost for fine-tuning large language models. To analyze
the actual GPU memory usage during the training process, we provide these results in Table 3. We
can find that S-MeZO needs the same GPU memory for all five tasks, which can also save about
50% memory compared to sparse-mezo. That also illustrates the efficiency of our proposed efficient
implementation.
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5 CONCLUSION

In this paper, we propose a novel memory-efficient zeroth-order fine-tuning method Sparse-MeZO,
which can use a similar memory cost to the inference process. We evaluate the performance of
fine-tuning LLaMA and OPT with Sparse-MeZO on SuperGULE benchmark and the experimental
results illustrate that Sparse-MeZO can achieve a higher accuracy and faster convergence. Finally, we
can fine-tune LLaMA-30b on a single A100 GPU.

Limitation: There is still a performance gap between our proposed method Sparse-MeZO and
first-order fine-tuning methods. We plan to address these limitations and enhance Sparse-MeZO’s
capabilities in our future research.
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A APPENDIX

B THE PROMPTS IN LLAMA AND OPT

Dataset Type Prompt

SST-2 cls. {premise}
Does this mean that “{hypothesis}” is true? Yes or No?
Yes/No

RTE cls. Suppose “{premise}” Can we infer that “{hypothesis}”? Yes, No, or Maybe?
Yes/No/Maybe

BoolQ cls. {passage} {question} ?
Yes/No

WIC cls. Does the word “{word}” have the same meaning in these two sentences? Yes, No?
{sent1}
{sent2}
Yes/No

MultiRC cls. {paragraph}
Question: {question}
I found this answer “{answer}”. Is that correct? Yes or No?
Yes/No

COPA mch. {premise} so/because {candidate}

Table 5: The prompts of the datasets we used in our LLaMA experiments.

C HYPERPARAMETERS

C.1 HYPERPARAMETERS

We will introduce the hyperparameters searching grids in Table 7, which can help people reproduce
our results.

Experiment Hyperparameters Values

MeZO Batch size 16
Learning rate {5e−7, 1e−6, 2e−6}

ϵ 1e−3

MeZO-Random Batch size 16
Learning rate {1e−6, 2e−6, 3e−6, 4e−6, 5e−6}

ϵ 1e−3

S-MeZO Batch size 16
Learning rate {1e−6, 2e−6, 3e−6, 4e−6, 5e−6}

ϵ 1e−3

FT with Adam Batch size 8
Learning Rates {1e−5, 5e−5, 8e−5}

Table 6: The hyperparameter searching grids for LLaMA-7b experiments.

C.2 THE SETTING OF THRESHOLD

We determine thresholds using a principled sparsity-based approach. Specifically, we use a percentile-
based method where the threshold is set based on a target sparsity level. For example, with 80%
sparsity, we sort the weight values of each layer and set the threshold at the 80th percentile. Impor-
tantly, this threshold is determined once before training begins and remains fixed throughout the
optimization process.
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Experiment Hyperparameters Values

MeZO Batch size 16
Learning rate {1e−8, 2e−8, 3e−8, 5e−8, 1e−7, 5e−7, 1e−6, 2e−6}

ϵ 1e−3

MeZO-Random Batch size 16
Learning rate {1e−6, 2e−6, 3e−6, 4e−6, 5e−6}

ϵ 1e−3

S-MeZO Batch size 16
Learning rate {1e−6, 2e−6, 3e−6, 4e−6, 5e−6}

ϵ 1e−3

FT with Adam Batch size 8
Learning Rates {1e−5, 5e−5, 8e−5}

Table 7: The hyperparameter searching grids for Mistral-7b experiments.
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Figure 5: (a) Probability of Loss Increase with MeZO on Different Batch. (b) Probability of Loss
Increase with SGD on Different Batch. We calculate the probability of loss increment for each epoch.

We then introduce the sparsity of each task in SuperGULU when we fine-tune LLaMA-7b. The
setting is shown in the Table 8.

Method SST-2 RTE BoolQ WIC MultiRC

LLaMA + Sparse MeZO 0.70 0.75 0.80 0.80 0.80

Mistral + Sparse MeZO 0.70 0.60 0.60 0.70 0.60

Table 8: Sparsity in SuperGULU when we fine-tune LLaMA-7b and Mistral.

D COMPARISON BETWEEN MEZO AND SGD

E THE EXPERIMENTAL RESULTS ON OPT

We also provide the experimental results on OPT. As shown in the Table 9, Sparse MeZO can
consistently improve the performance of vanilla MeZO on the three tasks of SuperGULE.
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Model Method BoolQ RTE WIC

OPT-13b Zero Shot 59.0 59.6 55.0

OPT-13b ICL 66.9 62.1 50.5

OPT-13b MeZO 72.1 75.5 62.2

OPT-13b R-MeZO 72.3 75.2 61.7

OPT-13b S-MeZO 73.8 77.6 63.7

Table 9: Accuracy of Fine-Tuning OPT on SuperGLUE (1,000 examples). ICL: In-Context Learning,
R-MeZO: MeZO with Random Mask.

F CONVERGENCE ANALYSIS OF SPARSE-MEZO

In this section, we will explain why Sparse-MeZO can accelerate the convergence, which is based
on the theory from (Ohta et al., 2020). We can define a sub-network in pre-trained large language
models, which is determined by the sparse mask m. The main idea of our proof is that if we follow
the updated role in Sparse-MeZO, the gradient norm on the sub-network can be smaller than σ2 after
O( d̂Lσ2 ) steps, where d̂ is the number of parameters in the sub-network. Therefore, ZO can use fewer
steps to converge when we only focus on a sub-network. Some related work has illustrated that only
tuning the sub-network can achieve comparable performance, which will be empirically verified in
our experiments.

Firstly, we assume the loss function L(θ;x) is Lipschitz Continuous:
Assumption 1 (Lipschitz Continuous).

∥∇L(θ;x)−∇L(θ′,x)∥ ≤ L(l)

2
∥θ − θ′∥2, (3)

where ∇L(θ;x) denotes the true first-order gradient of θ on x and L(l) represents the Lipschitz
constant of L(·). Given Lẑ(θ) = Eẑ[L(θ + ϵẑ)] and the above Assumption 1, we can obtain the
relationship between sparse gradient ∇̂θLẑ(θ) and the expectation of estimated sparse ZO gradient
gẑ(θ):

Lemma 1. ZO gradient gẑ(θ) is unbiased estimation of ∇̂θLẑ(θ):

∇̂θLẑ(θ) = m⊙∇θLẑ(θ)

= m⊙∇θEẑ[L(θ + ϵẑ)]

= Eẑ[
L(θ + ϵẑ)− L(θ − ϵẑ)

2ϵ
ẑ]

= Eẑ[gẑ(θ)],

(4)

where gẑ(θ) = L(θ+ϵẑ)−L(θ−ϵẑ)
2ϵ ẑ. We can find that gẑ(θ) is unbiased estimation of ∇̂θLẑ(θ).

Then, based on the equation ∇̂θLẑ(θ) = Eẑ[gz(θ)] in Lemma 1, we can use the distance
∥∇̂θLẑ(θ)−∇θLm(θ)∥ to analyze the the relationship between the true sparse gradient∇θLm(θ) =

m⊙∇θL(θ) and sparse gradient ∇̂θLẑ(θ):
Lemma 2. Let L be Lipschitz Continuous, we have:

∥∇θLm(θ)∥2 ≤ 2∥∇̂θLẑ(θ)∥2 +
ϵ2L2(l)

2
(d̂+ 4)3. (5)

where∇θLm(θ) = m⊙∇θL(θ), d̂ =
∑i=d

i=1 mi is the number of selected parameters in mask m,
L(l) represents the Lipschitz constant. Finally, we can obtain the convergence rate of Sparse-MeZO.
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Theorem 1. Assuming a sequence of generated parameters {θt}t≥0 in Sparse-MeZO. We can have:

Eẑ,x[∥∇θLm(θT )∥2] ≤ σ2 (6)

for any T = O( d̂Lσ2 )

where L(l) ≤ L for all L(θt). This theorem illustrates that the presence of pronounced sparsity
patterns, along with the smoothness of the objective function, can significantly enhance the rate of
convergence, potentially achieving a linear acceleration.

G THE PROOF OF LEMMA 1

Let Lz(θ) be the expectation of L(θ + ϵm⊙ z):

Lẑ(θ) : = Ez[L(θ + ϵm⊙ z)]

= Eẑ[L(θ + ϵẑ)]
(7)

We can obtain the Lemma:

∇̂θLẑ(θ) = m⊙∇θLẑ(θ)

= m⊙ Ez[∇θL(θ + ϵm⊙ z)]

= Ez[
L(θ + ϵm⊙ z)− L(θ − ϵm⊙ z)

2ϵ
m⊙ z]

= Eẑ[
L(θ + ϵẑ)− L(θ − ϵẑ)

2ϵ
ẑ]

(8)

Proof:

∇̂θLẑ(θ) = ∇̂θEẑ[L(θ + ϵẑ)]

= ∇̂θ

∫
ẑ

pdfẑ(z)L(θ + ϵz)dz

= m⊙∇θ

∫
ẑ

pdfẑ(z)L(θ + ϵz)dz

= m⊙
∫
ẑ

∇θpdfẑ(z)L(θ + ϵz)dz

=
1

k
m⊙

∫
ẑ

∇θe
− 1

2∥z∥
2

L(θ + ϵz)dz

=
1

k
m⊙

∫
ŷ

∇θe
− 1

2∥
y−θ
ϵ ∥2

L(y) 1
ϵn

dy

=
1

k
m⊙

∫
ŷ

y − θ

ϵ2
e−

1
2ϵ2

∥y−θ∥2

L(y) 1
ϵn

dy

=
1

k
m⊙

∫
ẑ

z

ϵ
e−

1
2∥z∥

2

L(θ + ϵz)dz

= m⊙
∫
ẑ

pdfẑ(z)L(θ + ϵz)
z

ϵ
dz

= Eẑ[m⊙
L(θ + ϵẑ)

ϵ
ẑ]

= Eẑ[
L(θ + ϵẑ)

ϵ
ẑ]

(9)

where we can define y = θ + ϵz, ŷ = θ + ϵm⊙ z, k =

√
(2π)d̂ and d̂ is the number of 1 in m.

Therefore, we can obtain the gradient∇θLm(θ) is equal to Eẑ[
L(θ+ϵẑ)

ϵ ẑ].
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In addition, we will prove Eẑ[
L(θ+ϵẑ)

ϵ ẑ] is also equal to Eẑ[
L(θ+ϵẑ)−L(θ)

ϵ ẑ]:

Eẑ[
L(θ + ϵẑ)− L(θ)

ϵ
ẑ]

=
1

k

∫
ẑ

L(θ + ϵz)− L(θ)
ϵ

ze−
1
2∥z∥

2

dz

=
1

k

∫
ϵ̂

L(θ + ϵz)

ϵ
ze−

1
2∥z∥

2

dz − L(θ)
ϵk

∫
ẑ

ze−
1
2∥z∥

2

dz

= Eẑ[
L(θ + ϵẑ)

ϵ
ẑ]

(10)

After that, we can get the relationship between Eẑ[
L(θ)−L(θ−ϵẑ)

ϵ ẑ] and Eẑ[
L(θ+ϵẑ)

ϵ ẑ]:

Eẑ[
L(θ)− L(θ − ϵẑ)

ϵ
ẑ] = Eẑ[

L(θ + ϵ(−ẑ))− L(θ)
ϵ

(−ẑ)]

= Eẑ[
L(θ + ϵẑ − L(θ))

ϵ
ẑ]

= Eẑ[
L(θ + ϵẑ)

ϵ
ẑ].

(11)

Based on the Equation 10 and Equation 11, we can obtain:

Eẑ[
L(θ + ϵẑ)− L(θ − ϵẑ)

2ϵ
ẑ]

=
1

2
(Eẑ[
L(θ + ϵẑ)

ϵ
ẑ − L(θ)

ϵ
ẑ +
L(θ)
ϵ

ẑ − L(θ − ϵẑ)

ϵ
ẑ])

=
1

2
(Eẑ[
L(θ + ϵẑ)− L(θ)

ϵ
ẑ] + Eẑ[

L(θ)− L(θ − ϵẑ)

ϵ
ẑ])

=
1

2
(Eẑ[
L(θ + ϵẑ)

ϵ
ẑ] + Eẑ[

L(θ + ϵẑ)

ϵ
ẑ])

= Eẑ[
L(θ + ϵẑ)

ϵ
ẑ]

= ∇̂θLẑ(θ)

(12)

Finally, we can obtain the relationship between Eẑ[
L(θ+ϵẑ)−L(θ−ϵẑ)

2ϵ ẑ] and ∇̂θLẑ(θ) and finish the
proof.

H THE PROOF OF LEMMA 2

∥∇θLm(θ)∥2 ≤ 2∥∇̂θLẑ(θ)∥2 +
ϵ2L2(l)

2
(d̂+ 4)3. (13)

Proof:

We can first define the distance between ∇̂θLẑ(θ) = Eẑ[gẑ(θ)] and sparse FO gradient ∇Lm(θ) as:
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∥∇̂θLẑ(θ)−∇θLm(θ)∥

= ∥1
k

∫
z

(
L(θ + ϵz)− L(θ − ϵz)

2ϵ
− ⟨∇θLm(θ), z⟩)ze− 1

2∥z∥
2

dẑ∥

= ∥1
k

∫
z

(
L(θ + ϵz)− L(θ)

ϵ
− ⟨m⊙∇θL(θ), z⟩)ze−

1
2∥z∥

2

dẑ∥

≤ 1

kϵ

∫
z

|L(θ + ϵz)− L(θ)− ϵ⟨∇θL(θ), ϵ⟩|∥m⊙ z∥e− 1
2∥z∥

2

dẑ

≤ ϵL(l)

2k

∫
ϵ

∥z∥2∥m⊙ z∥e− 1
2∥z∥

2

dẑ

=
ϵL(l)

2
Eẑ[∥ẑ∥3]

≤ ϵL(l)

2
(d̂+ 3)

3
2

(14)

where d̂ is the number of selected parameters with mask m. In addition, ∥a+ b∥2 ≤ 2∥a∥2+2∥b∥2,
we can define a = a − b and obtain that ∥a∥2 ≤ 2∥a − b∥2 + 2∥b∥2. Let a = ∇θLm(θ) and
b = ∇̂θLẑ(θ), we can obtain:

∥∇θLm(θ)∥2 ≤ 2∥∇̂θLẑ(θ)−∇θLm(θ)∥2 + 2∥∇̂θLẑ(θ)∥2

≤ ϵ2L2(l)

2
(d̂+ 3)3 + 2∥∇̂θLẑ(θ)∥2

≤ ϵ2L2(l)

2
(d̂+ 4)3 + 2∥∇̂θLẑ(θ)∥2

(15)

I THE PROOF OF THEOREM 1

Proof:

Lẑ(θ)− L(θ) = Eẑ[L(θ + ϵẑ)− L(θ)]
= Eẑ[L(θ + ϵẑ)− L(θ)− ϵ⟨∇L(θ), ẑ⟩]

=
1

k

∫
ẑ

[L(θ + ϵz)− L(θ)− ϵ⟨∇L(θ), z⟩]e− 1
2∥z∥

2

dz

≤ 1

k

∫
ẑ

ϵ2L(l)

2
∥z∥2e− 1

2∥z∥
2

dz

=
ϵ2L(l)

2
Eẑ[∥ẑ∥2]

≤ ϵ2L(l)

2
d̂

(16)

The first inequality holds because Lipschitz Continuous: |L(θ′) − L(θ) − ⟨∇L(θ), θ′ − θ⟩| ≤
L(l)
2 ∥θ

′ − θ∥2, where θ′ = θ + ϵz. The second inequality holds because Eẑ[∥ẑ∥2] = d̂, where d̂ is
the number of 1 in mask m.

[(Lẑ(θ)− L(θ))− (Lẑ(θ + ϵẑ)− L(θ + ϵẑ))]2

≤ 2[Lẑ(θ)− L(θ)]2 + 2[Lẑ(θ + ϵẑ)− L(θ + ϵẑ)]2

≤ ϵ4L2(l)

2
d̂2 +

ϵ4L2(l)

2
d̂2

= ϵ4L2(l)d̂2

(17)
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The first inequality is due to ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2, where a = Lẑ(θ) − L(θ), b = Lẑ(θ +
ϵẑ)− L(θ + ϵẑ). The second inequality is due to the Equation 16.

[Lẑ(θ + ϵẑ)− Lẑ(θ)]
2 ≤ 2[Lẑ(θ + ϵẑ)− Lẑ(θ)− ϵ⟨∇̂θLẑ(θ), ẑ⟩]2 + 2[ϵ⟨∇̂θLẑ(θ), ẑ⟩]2

≤ ϵ4L2(l)

2
∥ẑ∥4 + 2ϵ2⟨∇̂θLẑ(θ), ẑ⟩2

≤ ϵ4L2(l)

2
∥ẑ∥4 + 2ϵ2∥∇̂θLẑ(θ)∥2∥ẑ∥2

(18)

The first inequality is due to ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2. The second inequality holds because
Lipschitz Continuous: |L(θ′)− L(θ)− ⟨∇L(θ), θ′ − θ⟩| ≤ L(l)

2 ∥θ
′ − θ∥2, where θ′ = θ + ϵẑ.

[L(θ + ϵẑ)− L(θ)]2

≤ 2[(Lẑ(θ)− L(θ))− (Lẑ(θ + ϵẑ)− L(θ + ϵẑ))]2 + 2[Lẑ(θ + ϵẑ)− Lẑ(θ)]
2

≤ 2ϵ4L2(l)d̂2 + ϵ4L2(l)∥ẑ∥4 + 4ϵ2∥∇̂θLẑ(θ)∥2∥ẑ∥2
(19)

The first inequality is due to ∥a+ b∥2 ≤ 2∥a∥2 +2∥b∥2. The last inequality holds because Equation
17 and Equation 18.

Ez,x[∥gẑ(θ)∥2] = Eẑ[∥
L(θ + ϵẑ)− L(θ − ϵẑ)

2ϵ
ẑ∥2]

= Eẑ[∥
L(θ + ϵẑ)− L(θ)

2ϵ
ẑ +
L(θ)− L(θ − ϵẑ)

2ϵ
ẑ∥2]

≤ Eẑ[2∥
L(θ + ϵẑ)− L(θ)

2ϵ
ẑ∥2 + 2∥L(θ)− L(θ − ϵẑ)

2ϵ
ẑ∥2]

= Eẑ[
1

2ϵ2
[L(θ + ϵẑ)− L(θ)]2 · ∥ẑ∥2 + 1

2ϵ2
[L(θ)− L(θ − ϵẑ)]2 · ∥ẑ∥2]

≤ Eẑ[2ϵ
2L2(l)d̂2∥ẑ∥2 + ϵ2L2(l)∥ẑ∥6 + 4∥∇̂Lẑ(θ)∥2∥ẑ∥4]

≤ 2ϵ2L2(l)d̂3 + ϵ2L2(l)(d̂+ 6)3 + 4(d̂+ 4)2∥∇̂Lẑ(θ)∥2

≤ 3ϵ2L2(l)(d̂+ 4)3 + 4(d̂+ 4)2∥∇̂Lẑ(θ)∥2

(20)

The first inequality holds because ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2, where a = L(θ+ϵẑ)−L(θ)
2ϵ ẑ, b =

L(θ)−L(θ−ϵẑ)
2ϵ ẑ. The second inequality is due to the Equation 19. The third inequality holds because

Eẑ[∥ẑ∥2] = d̂, Eẑ[∥ẑ∥p] ≤ (d̂+ p)
p
2 for p ≥ 2. The last inequality holds because 2d̂3 + (d̂+ 6)3 ≤

3(d̂+ 4)3.

Based on the assumption about Lipschitz Continuous, we can obtain: |L(θt+1) − L(θt) −
⟨∇L(θt), θt+1 − θt⟩| ≤ L(l)

2 ∥θt+1 − θt∥2.

Then, we can obtain:

Lẑ(θt+1)− Lẑ(θt)− ⟨∇̂Lẑ(θt), θt+1 − θt⟩ ≤ |Lẑ(θt+1)− Lẑ(θt)− ⟨∇̂Lẑ(θt), θt+1 − θt⟩| ≤
L(l)

2
∥θt+1 − θt∥2

(21)

Based on the equation, we can follow the update rule: θt+1 = θt − ηtgẑ(θt) and we can find:

Lẑ(θt+1) ≤ Lẑ(θt) + ⟨∇̂Lẑ(θt), θt+1 − θt⟩+
L(l)

2
∥θt − θt+1∥2

= Lẑ(θt)− ηt⟨∇̂Lẑ(θt), gẑ(θt)⟩+
(ηt)

2L(l)

2
∥gẑ(θt)∥2

(22)
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where ηt represents the learning rate at step t. Then, we can take the expectation of Equation 22 for ẑ
and input x:

Eẑ,x[Lẑ(θt+1)]

≤ Eẑ,x[Lẑ(θt)]− ηtEẑ,x[∥∇̂Lẑ(θt)∥2] +
(ηt)

2L(lz)

2
Eẑ,x[∥gz(θt)∥2]

≤ Eẑ,x[Lẑ(θt)]− ηtEẑ,x[∥∇̂Lẑ(θt)∥2] +
(ηt)

2L(l)

2
(4(d̂t + 4)Eẑ,x[∥∇̂Lẑ(θt)∥2] + 3ϵ2L2(l)(d̂t + 4)3)

(23)

The first inequality is due to the Equation 8 and Equation 22. The second inequality holds because
Equation 20 provides the result about Eẑ,x[∥gz(θt)∥2.

Then, we can select learning rate ηt =
1

4(d̂t+4)L(l)
and obtain:

Eẑ,x[Lẑ(θt+1)] ≤ Eẑ,x[Lẑ(θt)]−
1

8(d̂t + 4)L(l)
Eẑ,x[∥∇̂Lẑ(θt)∥2] +

3ϵ2

32
L(l)(d̂t + 4) (24)

Then, taking the sum of Equation 24 over the index from T + 1 to 0, we can have that :

Eẑ,x[∥∇̂Lẑ(θT )∥2] ≤ 8(d̂+ 4)L[
Lẑ(θ0)− L∗

ẑ

T + 1
+

3ϵ2

32
L(d̂+ 4)] (25)

where L(l) ≤ L for all L(θt). Thus, based on Lemma 2, we can have:

Eẑ,x[∥∇Lm(θT )∥2] ≤
ϵ2L2

2
(d̂+ 4)3 + 2Eẑ,x[∥∇̂Lẑ(θT )∥2]

≤ 16(d̂+ 4)L
Lẑ(θ0)− L∗

ẑ

T + 1
+

ϵ2L2

2
(d̂+ 4)2(d̂+

11

2
)

(26)

The second inequality is due to the Equation 25. To obtain σ-accurate solution: Eẑ,x[∥∇Lm(θT )∥2] ≤
σ2, we can define ϵ = Ω( σ

d̂
3
2 L

).

16(d̂+ 4)L
Lẑ(θ0)− L∗

ẑ

T + 1
+O(ϵ2L2d̂3) = 16(d̂+ 4)L

Lẑ(θ0 − L∗
ẑ)

T + 1
+O(σ2)

T = O( d̂L
σ2

)

(27)

Finally, we can finish the proof of the theorem. This theorem illustrates that the presence of
pronounced sparsity patterns, along with the smoothness of the objective function, can significantly
enhance the rate of convergence, potentially achieving a linear acceleration.

Model Method BoolQ RTE WIC MultiRC SST-2 COPA Average

LLaMA-7b Zero-Shot 65.1 49.5 50.6 55.8 79.7 59.7 60.1

LLaMA-7b ICL 67.4 54.5 52.7 58.7 81.2 84.4 66.5

LLaMA-7b FT 84.5 ± 0.0 83.6 ± 0.9 68.4 ± 1.3 80.2 ± 1.4 95.7 ± 0.3 85.0 ± 0.8 82.9 ± 0.8

LLaMA-7b MeZO 75.9 ± 1.1 71.7 ± 1.5 61.4 ± 1.8 69.8 ± 0.7 94.6 ± 0.3 86.3 ± 0.9 76.6 ± 1.1

LLaMA-7b R-MeZO 76.9 ± 0.7 75.2 ± 1.7 62.1 ± 0.4 68.1 ± 2.0 94.6 ± 0.2 84.3 ± 1.7 76.9 ± 1.1

LLaMA-7b S-MeZO 80.9 ± 1.6 80.7 ± 1.4 64.9 ± 1.5 73.3 ± 1.2 95.0 ± 0.3 86.7 ± 0.7 80.3 ± 1.2

Table 10: Accuracy of Fine-Tuning LLaMA-7b on SuperGLUE (1,000 examples). ICL: In-Context
Learning, FT: full-parameter fine-tuning with Adam, R-MeZO: MeZO with Random Mask.
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Algorithm 2 PerturbParameters
Input: θ represents pre-trained LLM weight, perturbation scale ϵ, random seed s, mask m.
Reset random seed s
for θi ∈ θ do
zi ∼ N (0, 1)
θi ← θi +mi ∗ ϵzi

end for

Algorithm 3 GetMask
Input: θ represents pre-trained LLM weight, threshold h (hi represents threshold of each layer).
Output: Mask m
for i← Layer 1 to Layer N do

for θi,j ∈ θi do
if θi,j ≤ hi then

θi,j = 1
else
θi,j = 0

end if
end for

end for
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