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Abstract

Existing video understanding benchmarks often conflate knowledge-based and
purely image-based questions, rather than clearly isolating a model’s temporal
reasoning ability, which is the key aspect that distinguishes video understanding
from other modalities. We identify two major limitations that obscure whether
higher scores truly indicate stronger understanding of the dynamic content in videos:
(1) strong language priors, where models can answer questions without watching
the video; and (2) shuffling invariance, where models maintain similar performance
on certain questions even when video frames are temporally shuffled. To alleviate
these issues, we propose VBenchComp, an automated pipeline that categorizes
questions into different domains: LLM-Answerable, Semantic, and Temporal.
Specifically, LLM-Answerable questions can be answered without viewing the
video; Semantic questions remain answerable even when the video frames are
shuffled; and Temporal questions require understanding the correct temporal order
of frames. The rest of the questions are labeled as Others. This can enable fine-
grained evaluation of different capabilities of a video LLM. Our analysis reveals
nuanced model weaknesses that are hidden by traditional overall scores, and we
offer insights and recommendations for designing future benchmarks that more
accurately assess video LLMs.
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Question: In which event did the oldest individual Olympic swimming gold medallist in the video win gold?
A. Men's 100m Butterfly. B. Men's 50m freestyle. C. Men's 200m Butterfly. D. Women's 50m freestyle.

Question: What speed is displayed on the car dashboard in the video?
A. 66 MPH. B.55 MPH. C.32 MPH. D. 22 MPH.

Question: In which order do the following topics are introduced in this video ?
(a) Spring pocket DIY. (b) Easter bucket floral DIY. (c) Farmhouse bunny in a bucket DIY.
(d) Spring tin bucket floral DIY. (e) Bunny hop decor.

A. (a)(b)(c)(d)(e). B. (a)(c) (b)(e)(d). C. (b)(e)(a)(d)(c).D. (b)(a)(d)(c)(e).

Figure 1: Examples of LLM-Answerable, Semantic and Temporal questions in VideoMME [4]: (Top) The
model uses LLM’s prior knowledge to answer correctly without the need of video; (Middle) The model relies on
semantic understanding to answer without requiring temporal comprehension; (Bottom) The model relies on
comprehensive temporal understanding to answer.

model, raising serious concerns about the computational burden of benchmarking video LLMs given
the growing number of video understanding datasets.

Beyond the computational cost, current video understanding benchmarks often conflate different
skills and fail to truly evaluate the video understanding capability. We identify two key limitations
that undermine meaningful evaluation. First, some questions can be answered correctly without
access to the video, since models rely on their pretrained language priors rather than visual evidence,
as shown in Figure 1. These questions primarily test the underlying LLM’s factual knowledge and
reasoning skills, rather than evaluating the model’s ability to process and understand visual content.
As a result, high performance on these questions can misleadingly inflate benchmark scores, giving
the false impression of strong video understanding when, in fact, the model may not be attending
to the visual input at all. Second, some questions primarily assess static semantic understanding
and do not require comprehension of the video’s temporal structure. For example, models often
achieve similar performance even when the video frames are randomly shuffled, indicating that their
predictions rely heavily on spatial or frame-level cues rather than temporal reasoning. This shuffling
invariance exposes a critical flaw: current benchmarks may significantly overestimate a model’s true
temporal understanding, conflating static visual recognition with dynamic sequence reasoning.



While many existing benchmarks claim to be comprehensive, there is currently no standardized
protocol for assessing their effectiveness. Each dataset emphasizes different aspects of video com-
prehension, yet lacks a clear metric for how well it captures temporal reasoning, which is the core
capability that distinguishes video from static images. We introduce VBenchComp, an automated
evaluation pipeline that categorizes questions into four distinct domains: LLM-Answerable, Seman-
tic, Temporal, and Other. This structured categorization disentangles the contributions of language
priors, static visual understanding, and genuine temporal reasoning, enabling a more diagnostic
and interpretable evaluation of video models. Based on this, we curate a core benchmark subset
that emphasizes both semantic and temporal understanding, and introduce a dedicated metric, the
VBenchComp Score, which provides a more focused and light-weighted evaluation protocol to better
guide model development and comparison. Importantly, we find that results obtained from this
core set are consistent with those from the full benchmark suite, while reducing computational cost
significantly.

2 Related Works

Video Large Language Models (Video LLMs). Large Language Models (LLMs) have revolution-
ized natural language understanding, demonstrating exceptional ability to follow human instructions
and serving as versatile agents for general-purpose Al assistants [8, 9, 10]. Building on these ad-
vancements, Multimodal Large Language Models (MLLMs) [11, 12] have made significant strides
in vision-language learning by incorporating visual encoders with LLMs and fine-tuning on vision-
language instruction data. In addition, video Large Language Models (video LLMs) incorporate
visual encoders to extract video features, temporal modeling mechanisms to capture motion dynamics,
and large language models to generate responses [13]. For instance, Video-ChatGPT [14] employs
CLIP [15] to obtain per-frame representations, which are subsequently processed through spatial
and temporal pooling before being fed into an LLM. LLaVA-NeXT-Video [16] builds on LLaVA-
NeXT [12], adapting it for video-based tasks, while its DPO-enhanced variant [16] further refines
output quality by aligning responses with Al-generated feedback. To improve temporal consistency,
VideoLLaMB [17] incorporates memory tokens within its bridge layers, allowing the model to capture
both sequential dependencies and historical visual context. InternVideo2.5 [18] enhances multimodal
models by leveraging annotations from dense vision tasks, optimizing preferences directly, and
refining spatiotemporal representations through hierarchical token compression. This enables better
handling of detailed video content and extended temporal reasoning. Apollo [19] introduces a struc-
tured methodology for training video LLMs, while Oryx [20] proposes OryxViT, a vision transformer
pre-trained to encode images at arbitrary resolutions into representations compatible with LLMs.
Oryx also integrates a dynamic compression module that adjusts visual token density, allowing
compression levels from 1x to 16x based on task requirements. VideoLLaMA-3 [21] highlights the
importance of high-quality image-text data for both image and video comprehension.

Video Understanding Benchmarks. Traditional evaluations of video LMM:s rely on classic video
QA benchmarks such as MSRVTT-QA [22] and ActivityNet-QA [23], which assess global video
understanding through summary-based questions. However, prior work has shown that these datasets
can often be answered using only a handful of key frames, limiting their effectiveness in evaluating
true temporal reasoning [1]. More recent benchmarks, such as NeXT-QA [3] and MVBench [24],
focus on short clips (averaging 44 and 16 seconds, respectively), while Video-MME [4] spans
a diverse set of video domains and durations. LongVideoBench [1] explicitly targets referring
reasoning over long videos. While each benchmark aims to provide a comprehensive evaluation of
video understanding, there is still no standardized protocol to assess their effectiveness—particularly
in measuring temporal reasoning. A rigorous framework is needed to systematically evaluate these
benchmarks, ensuring that they go beyond static frame-based understanding and capture the core
challenges of video comprehension.

3 A Closer Look at Video Understanding Benchmarks

Evaluating the video understanding capabilities of recent video LLMs is a complex and multifaceted
task. Although many benchmarks exist, their ability to capture the depth of reasoning needed for
real-world video comprehension remains uncertain. Some focus on higher-level skills like temporal
reasoning, causal inference, and fine-grained event recognition, while others may primarily focus



on semantic understanding. To explore this, we take a closer look at several widely used video
understanding benchmarks. We select VCGBench [14] and ActivityNet-QA [23] as representative
open-ended QA benchmarks. We use NeXT-QA [3], VideoMME [4], EgoSchema [2], MLVU [5],
and LongVideoBench [1] to serve as examples of multiple-choice QA benchmarks.

3.1 Answering Questions without Videos

Inspired by [25], we begin by evaluating whether

questions can be answered without access to the = GPT-40
corresponding videos. To do this, we input the 55 - ng{;i;f;m
questions into various MLLMs without providing 50

the videos. As shown in Figure 2, surprisingly,
GPT-40 achieves up to 50% accuracy on both
VideoMME and NEXT-QA, despite not processing
any video data. Similarly, open-sourced models
like PLLaVA-34B also achieve 37.0% accuracy on
VideoMME without video input. For long video
understanding (LongVideoBench [1]), these mod-
els even surpass 35% accuracy without feeding in
the actual long videos. These results cast serious VideoMME Egoschema _LonguideoBench  NEXT-08
doubt on the reliability of these benchmarks in

accurately assessing a model’s video understand-
ing capabilities. The fact that models can achieve
notable performance without processing the video
data suggests that these benchmarks may be evaluating factors unrelated to true video comprehen-
sion—such as reliance on text-based cues or prior knowledge. This raises the question of whether
these benchmarks are an effective measure of multimodal models’ abilities to understand and process
video content. Figure 1 shows an example that the question can be directly answered by an LLM
without watching the video.
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Figure 2: Performance of different MLLMs without
videos as the input on four benchmarks.

3.2 Shuffled Frames but Unshaken Scores

Besides the aforementioned issues on the text, we also identify a critical concern regarding the
semantic and temporal understanding. In recent video LLMs, multiple frames are typically sampled
and fed into the model. However, many questions in these benchmarks may not adequately assess
a model’s ability to understand the temporal dynamics of videos. A natural approach to evaluating
temporal understanding would be to test whether shuffling the frames affects the model’s final
answer. If a model can still produce accurate responses despite shuffled frames, it suggests that
the question may not require a deep understanding of temporal relationships, but rather relies on
static or semantic content from the frames themselves. We conduct experiments with a variety of
representative video LLMs across different model types: 1) closed-source models such as GPT-40
and Gemini-1.5-Pro [29], which set the state-of-the-art standard for video understanding; 2) training-
free models such as SlowFast-LLaVA [26], which leverage pre-trained visual and language models
without additional fine-tuning; 3) LoRA fine-tuned models, e.g., PLLaVA [27], which demonstrate the
effectiveness of parameter-efficient adaptation; and 4) video SFT models, such as LLaVA-OneVision
(LLaVA-OV) [28], which benefit from supervised fine-tuning with video datasets. This selection
enables us to systematically assess the effect of shuffled frames on a wide range of models.

As shown in Figure 3, we apply frame shuffling twice and observe that the scores of both GPT-40
and Gemini-1.5-Pro remain remarkably stable, indicating that these models are largely unaffected
by temporal disruptions. A similar pattern is observed in open-source models such as SlowFast-
LLaVA, PLLaVA, and LLaVA-QV, despite differences in their training paradigms and architectures.
Interestingly, this insensitivity to temporal order persists across models of varying sizes. For instance,
the large model (LLaVA-OV-72B-Qwen2) and the smaller model (LLaVA-OV-7B-Qwen2) exhibit
consistent behavior across all six benchmarks. Surprisingly, in some cases, shuffling the frames
even leads to an improvement in performance. For example, Gemini-1.5-Pro achieves a higher
score on EgoSchema after frame shuffling, and GPT-40 also performs better on NExT-QA under
the same condition. This counter-intuitive result raises critical concerns about the validity of these
benchmarks in evaluating true video understanding. If models can achieve higher scores after the
temporal sequence is disrupted, it suggests that these benchmarks may not be adequately assessing
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(b) Training-free Model: SlowFast-LLaVA-7B [26]
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(c) LORA Fine-tuned Model: PLLaVA-7B [27]
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(d) Video SFT Model: LLaVA-OV-7B-Qwen2 [28]

Figure 3: After shuffling the extracted frames, the scores of each model remain unshaken across all benchmarks.
*Frame settings: (a), (d) uses 128 frames for VidleoMME-long, others use 64 frames; (b) uses 100w + 50fast
frames for all benchmarks; (c) uses 16 frames for all benchmarks.

the models’ ability to comprehend and reason over temporal information, which is a core component
of video understanding.

3.3 Potentially Misleading Scores in Current Video Benchmarks

Based on the above analysis, we find that a single final score reported by current video benchmarks
may not accurately reflect a model’s true capability in video understanding: many of the tasks may
be overly relying on prior language knowledge or semantic understanding rather than requiring
genuine video understanding across dynamic frames. As a result, models might excel by leveraging
spatial correlations and semantic associations within individual frames, bypassing the need to process
temporal dependencies. This raises the possibility that benchmark scores could be misleading,
potentially leaving the impression that models possess a more profound understanding of video
content than they actually do. Moreover, these results suggest that current video benchmarks
inadvertently prioritize evaluating the LLM’s language proficiency and semantic understanding over
its temporal comprehension of video content. This overemphasis can lead to biased evaluations, where
models with strong language priors or frame-level understanding receive inflated scores, despite
having limited capability to capture complex temporal dynamics. Such biases introduce the risk of
drawing erroneous conclusions about a model’s progress in video understanding, potentially giving a
false sense of achievement in the field thus making community risk overestimating the robustness
and real-world applicability of these models. Therefore, we advocate for the development of more
comprehensive evaluation protocols that disentangle language knowledge, semantic, and temporal
understanding, ensuring a more accurate and holistic assessment of video models.



{18 {28 =3B -~

[ - MLL;;I-A: Gl:T-4o - ] [ MLLM-B Gemi;;-LS-P;; ]

I 8 ®E ® D B B ®

for both A and B: for both A and B: for either A or B:
[1] is correct wo [mm[¥areallcorrect wo [m] correct but ([mwrong or[Mwrong)
l ¥ l ! NO
[ LLM-Answerable Semantic Temporal Others ]

Figure 4: An overview of our standardized protocol: benchmark questions are categorized into four groups.
Questions answerable by both GPT-40 and Gemini without video are classified as LLM-Answerable. For the
remaining questions, we apply random shuffles to the extracted frames twice: if both models answer correctly
before and after shuffling, the question is classified as Semantic. If one model answers correctly before but fails
after shuffling, the question is classified as Temporal. All other questions are categorized as Others.

4 A Standardized Protocol for Breaking Down Video LLM Benchmarks

In this section, we propose a standardized protocol (as shown in Figure 4) for decomposing video
LLM benchmarks into four distinct domains: (1) LLM-answerable questions to focus on the prior
language capabilities of the LLM backbone, (2) semantic understanding questions to evaluate the
model’s ability to understand semantic content, (3) temporal understanding questions to measure the
model’s capacity to capture temporal dependencies and dynamic changes, and (4) Other questions
that may either require overly advanced comprehensive reasoning or are poorly constructed and thus
lack sufficient distinctiveness. Our goal is to disentangle these question types to provide a more
precise and comprehensive evaluation of video LLMs. It will also assist future benchmarks in refining
their question design strategies and focusing more on authentic video-understanding questions.

4.1 LLM-Answerable Questions

Answer leakage is a critical issue in image-QA benchmarks, where MLLMs can often generate
correct answers without relying on the image itself. Instead of genuinely integrating visual and
textual information, these models leverage their pre-trained knowledge from LLM to infer answers
based solely on the text [25]. This undermines the intended goal of evaluating a model’s multimodal
understanding capabilities. Multimodal answer leakage can be summarized into two categories: 1)
text-answerable questions, where the question itself provides sufficient information for the model
to answer, rendering the associated visual input unnecessary; 2) memorized questions, where the
MLLM has previously encountered the same question during training and recalls the corresponding
answer from memory rather than reasoning from the given image. As a result, certain questions can
be answered solely by a text-based LLM without requiring visual input. To assess this, we perform a
text-only evaluation using both GPT-40 and Gemini-1.5-Pro. As shown in Figure 4, if both models
correctly answer a given question without the video, we classify the corresponding QA pair as an
LLM-Answerable question. We then analyze the entire benchmark and compute the proportion of
such questions relative to the total, denoted as a.



4.2 Semantic Questions: Shuffling Frames but Consistent Answer

After filtering for LLM-answerable questions, we further identify a subset of questions that focus
specifically on semantic understanding. To achieve this, we introduce a diagnostic procedure: for
each video-question pair, we first generate answers using Gemini-1.5-Pro and GPT-40. We then
shuffle the extracted frames and query the models again - repeating this process twice. If both models
consistently provide correct answers despite the disrupted temporal order (before and after shuffling
the extracted frames), we classify the question as semantic, indicating that static visual information
from a single or a certain group of frames alone are sufficient for answering. By applying this
procedure across the benchmark, we compute the proportion of such questions, denoted as /3, to
quantify the prevalence of questions relying solely on semantic understanding. A high 5 suggests that
the benchmark may be biased toward spatial or appearance-based cues, potentially inflating a model’s
perceived temporal reasoning capability. This highlights the need to construct more temporal-related
questions that explicitly require sequential understanding to ensure a more rigorous and targeted
evaluation of video LLMs.

4.3 Temporal Questions

After classifying questions into LLM-Answerable and Semantic categories, the remaining questions
are further divided into Temporal and Others. To identify Temporal questions, we apply the following
criterion: if GPT-40 or Gemini-1.5-Pro answers the question correctly when provided with frames in
their original order but fails to do so after the frames are shuffled, we classify the question as Temporal,
indicating that the right sequential information is crucial for the answering process. Unlike semantic
or frame-independent tasks, these questions assess whether the model can correctly infer event
progression and temporal consistency over time. By introducing a controlled perturbation—shuffling
the frame order, we isolate the questions for temporal understanding capacity, distinguishing them
from purely visual or semantic understanding.

4.4 Others

Lastly, the remaining questions will be labeled as Others. This category includes questions that are
either too difficult to answer for all SOTA models or are so comprehensive that they may require
additional modalities, such as audio, to resolve. Questions may depend on recognizing spoken
dialogue, distinguishing between environmental sounds, or interpreting non-visual context cues
like tone or timing. For example, in VideoMME [4], answering certain questions may depend on
recognizing spoken dialogue, distinguishing between environmental sounds, or interpreting non-visual
context cues like tone or timing.

4.5 VBenchComp: Quantifying Video Benchmark Composition

To systematically analyze and quantify the composition of video LLM benchmarks, we introduce
VBenchComp, a diagnostic tool that applies our standardized protocol (Figure 4) to decompose
the benchmark into its four key domains. VBenchComp computes the ratios of LLM-Answerable,
Semantic, Temporal, and Others questions, denoted as «, 3, 7y, and J respectively.

Benchmark profiling and skill gap identification. VBenchComp not only quantifies benchmark
composition but also identifies potential gaps in coverage. For instance, an overrepresentation of
LLM-Answerable questions («) suggests that the benchmark may underestimate the need for genuine
multimodal understanding. Conversely, an excess of Semantic questions () could create an illusion
of strong temporal understanding, when in reality, the model might rely primarily on static frame
information. A low proportion of Temporal questions () may indicate inadequate assessment of
dynamic event comprehension.

5 Experimental Results

5.1 An Overview of VBenchComp

We apply the standardized categorization protocol described in Section 4.5 to seven widely-used video
question answering benchmarks, quantifying their distributions across four diagnostic categories:



Table 2: Compositions of question types across different video understanding benchmarks. Each cell
(except Total) shows the count and its percentage of the total.

Dataset Total Text Semantic Temporal Others

LongVideoBench [1] 1337 363/27.15% 308 /23.03% 235/17.58% 431/32.24%
Egoschema [2] 500 133/26.60% 182 /36.40% 45/9.00% 140/ 28.00%
NextQA [3] 4996  1738/34.79% 1880/37.63% 43718.75% 941/ 18.83%
VideoMME [4] 2700 841/31.15% 810/30.00% 371/13.74% 678/25.11%
MLVU [5] 2174 621/28.57% 643/29.57% 383/17.62% 527/24.23%
LVBench [6] 1549 140/9.04% 321/20.72% 355/22.92% 733/47.32%
PerceptionTest [7] 19140 3642/19.03% 6283/32.82% 3117/16.29% 6098 /31.86%

LLM-Answerable, Semantic, Temporal, and Others. Table 2 summarizes the raw counts and their
corresponding percentages relative to the total number of questions in each benchmark. Across all
benchmarks, we observe a considerable variation in the proportion of question types, which reflects
their differing emphases on language, semantic, and temporal capabilities. For instance, NextQA [3],
LongVideoBench [1], MLVU [5], Egoschema [2], and VideoMME [4] contain a significant portion of
LLM-Answerable questions, which indicates potential answer leakage and reliance on language priors.
In contrast, benchmarks like LVBench [6] contains relatively fewer LLM-Answerable questions. On
the other hand, with the exception of LongVideoBench and LVBench, all other benchmarks have more
than 30% of Semantic questions, where frame shuffling has minimal impact on the model’s ability to
produce correct answers.

Table 3: Benchmarking public models under VBenchComp categorization. (All settings use 64
frames, except for VideoMME-long, which uses 128.)
(a) Egoschema [2] (b) NextQA [3]

Size Model | Overall | LLM ~ Semantic Temporal ~Others Size Model | Overall | LLM  Semantic Temporal ~Others
Qwen2-VL [30] 65.8 85.0 83.5 37.8 33.6 Qwen2-VL [30] 81.3 88.7 90.9 70.0 54.1
7B LLaVA-OV [28] 66.2 75.2 83.5 57.8 379 7B LLaVA-OV [28] 80.3 89.8 91.1 65.7 48.2
LLaVA-Video [31] 61.8 722 82.4 46.7 30.0 LLaVA-Video [31] 84.4 92.8 92.3 73.7 56.7
Qwen2-VL [30] | 774 | 872  95. 64.4 493 Qwen2-VL [30] | 840 | 9.1 926 709 60.0
72B LLaVA-OV [28] 65.2 78.9 84.6 40.0 35.0 72B LLaVA-OV [28] 83.2 93.4 93.9 66.6 50.6
LLaVA-Video [31] 70.4 81.2 90.7 533 39.3 LLaVA-Video [31] 85.4 94.0 94.7 73.7 56.6

(c) VideoMME [4] (d) MLVU [5]

Size Model | Overall | LLM  Semantic Temporal ~Others Size Model | Overall | LLM  Semantic Temporal ~Others
Qwen2-VL [30] 60.6 71.8 78.4 36.7 31.1 Qwen2-VL [30] 62.5 77.8 79.5 43.6 374
7B LLaVA-OV [28] 59.0 76.3 76.8 37.2 28.2 7B LLaVA-OV [28] 65.2 77.1 88.0 475 36.1
LLaVA-Video [31] 63.9 79.3 82.0 42.6 34.7 LLaVA-Video [31] 63.7 71.8 83.1 49.6 33.6
Qwen2-VL [30] 68.2 86.8 86.3 49.6 338 Qwen2-VL [30] 67.9 81.8 85.4 52.5 414
2B LLaVA-OV [28] 68.7 87.2 86.3 52.6 33.6 72B LLaVA-OV [28] 74.2 88.1 92.5 62.7 44.0
LLaVA-Video [31] 70.8 88.1 88.9 51.8 38.1 LLaVA-Video [31] 74.2 874 92.5 64.0 43.8

(e) LongVideoBench [6] (f) PerceptionTest [7]

Size Model | Overall | LLM ~ Semantic ~Temporal ~Others Size Model | Overall | LLM  Semantic ~Temporal ~Others
Qwen2-VL [30] 52.8 74.4 70.5 42.6 27.6 Qwen2-VL [30] 60.7 71.9 84.2 49.7 35.3
7B LLaVA-OV [28] 58.9 79.1 82.1 49.8 30.2 7B LLaVA-OV [28] 58.0 66.0 84.9 459 31.9
LLaVA-Video [31] 59.8 81.3 84.4 49.8 29.7 LLaVA-Video [31] 68.3 75.4 87.9 60.8 47.8
Qwen2-VL [30] 58.0 82.4 76.0 46.4 30.9 Qwen2-VL [30] 68.1 77.7 92.1 62.7 40.5
72B LLaVA-OV [28] 59.8 87.3 84.4 49.8 329 72B LLaVA-OV [28] 62.5 75.6 89.8 50.6 32.8
LLaVA-Video [31] 62.8 873 85.7 52.8 313 LLaVA-Video [31] 69.6 76.0 92.1 61.2 47.0

5.2 Benchmarking Public Models Under VBenchComp Categorization

Table 3 benchmarks recent public video-language models under our proposed VBenchComp frame-
work, which categorizes questions into LLM-answerable, Semantic, and Temporal types. This
fine-grained categorization provides a more diagnostic view of model capabilities compared to a
single overall score. As shown in Table 3(a), Qwen2-VL-7B slightly outperforms LLaVA-Video-7B in
terms of the traditional overall score on Egoschema. However, this superficial advantage is misleading.
A breakdown of the scores shows that the performance gain is almost entirely due to LLM-answerable
questions that do not require visual or temporal understanding. However, the two models perform
similarly on Semantic questions, and Qwen2-VL-7B even lags behind on Temporal questions, which
indicates a weaker grasp of fine-grained video temporal understanding. These findings suggest that
Qwen2-VL-7B’s advantage is largely attributable to its stronger language model backbone, rather
than superior visual or temporal reasoning. In contrast, LLaVA-Video-7B, though slightly behind
overall, demonstrates more balanced capabilities across semantic and temporal dimensions.



Interestingly, the comparison flips in VideoMME (Table 3(c)), where LLaVA-Video-7B outperforms
Qwen2-VL-7B not just overall, but more meaningfully across both vision-dependent axes. While the
two models perform similarly on LLM-answerable questions, LLaVA-Video-7B achieves notably
higher scores on both Semantic (82.0 vs. 78.4) and Temporal (42.6 vs. 36.7) categories. This demon-
strates that LLaVA-Video-7B possesses stronger visual and temporal understanding, reinforcing the
claim that strong language knowledge alone are insufficient for robust video understanding.

These results collectively demonstrate a core limitation of traditional evaluation: a single overall score
fails to capture specific model strengths and weaknesses. Only through our VBenchComp catego-
rization can we identify crucial gaps in semantic or temporal understanding that would otherwise be
masked. This insight is not only critical for fair benchmarking but also for guiding the development
of next-generation video LLMs, where improvement must go beyond language modeling and target
true temporal understanding.

5.3 VBenchComp Score: Fewer Questions, Deeper Video Understanding
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Figure 5: VBenchComp scores are aligned with the original scores but they can better evaluate the
overall video LLM performance with less questions. The temporal video understanding capability of
models under the trend line can be potentially over-estimated in the original benchmarks.

Based on the above analysis, we retain only the Semantic and Temporal questions from each
benchmark to compute a focused evaluation score, denoted as the VBenchComp score. The results
across models are shown in Figure 5. Despite removing nearly 50% of the original questions
(as detailed in Table 2), the model rankings remain highly consistent with those based on the
original scores. This strong correlation indicates that Semantic and Temporal questions alone are
sufficient to preserve the discriminative power of the benchmark. It further suggests that many of the
remaining questions may be redundant or less critical for evaluating core model capabilities, and that
VBenchComp can serve as a more focused yet reliable metric for model comparison.

6 Discussion

VBenchComp provides a structured and interpretable framework for dissecting the capabilities of
video LLMs, highlighting whether models rely on language priors, static semantics, or genuine
temporal reasoning. This diagnostic lens not only clarifies what current benchmarks actually measure,
but also helps researchers identify blind spots in model behavior. However, our approach is not
without limitations. First, while our categorization pipeline is automated and scalable, it heavily
relies on GPT-40 and Gemini, which may introduce biases. Second, our core benchmark subset,
while compute-efficient and representative in aggregate, may omit edge cases that appear in the full
benchmark suite. Finally, VBenchComp focuses primarily on question-answering tasks; generalizing
this framework to other video understanding tasks like captioning, retrieval, or grounding remains an
important avenue for future work.
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