
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FASTOPOWM: FAST-SLOW LANE SEGMENT TOPOL-
OGY REASONING WITH LATENT WORLD MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Lane segment topology reasoning provides comprehensive bird’s-eye view (BEV)
road scene understanding, which can serve as a key perception module in
planning-oriented end-to-end autonomous driving systems. Current approaches
prioritize graph modeling, endpoint alignment, and multi-attribute learning, yet
they often neglect temporal modeling. This leads to inconsistent inter-frame de-
tection within scene flows and motivates our focus on temporal propagation for
lane segments. Recently, stream-based methods have shown promising outcomes
by integrating temporal cues at both the query and BEV levels. However, it re-
mains limited by over-reliance on historical queries, vulnerability to pose esti-
mation failures, and insufficient temporal propagation. To overcome these limi-
tations, we propose FASTopoWM, a novel fast-slow lane segment topology rea-
soning framework augmented with latent world models. To reduce the impact
of pose estimation failures, this unified framework enables parallel supervision
of both historical and newly initialized queries, facilitating mutual reinforcement
between the fast and slow systems. Furthermore, we introduce latent query and
BEV world models conditioned on the action latent to propagate the state repre-
sentations from past observations to the current timestep. This design substantially
improves the performance of temporal perception within the slow pipeline. Exten-
sive experiments on the OpenLane-V2 benchmark demonstrate that FASTopoWM
outperforms state-of-the-art methods in both lane segment detection and center-
line perception. Our code will be released.

1 INTRODUCTION

T-1 BEV FeatureT-1 Queries

Shared Lane Decoder

Query

World Model

Query

World Model

T BEV T Queries

Slow System Fast System

Temporal Supervision Supervision

T-1 BEV Feature
T-1 Queries

Lane Decoder

T BEV

Temporal Supervision

WarpMLP

Classical Stream Method Our Method

Fuse Fuse

-2.0

+3.2

Comparsion

(a) Improvement of Classical Stream Method and Our 

Method in Temporal Perception

(b) Degradation of Classical Stream Method & Improvement of 

Our Method in Single-frame Perception 

+1.3

+3.5

+1.3

+3.5

+2.8

+1.5

+2.8

+1.5

-3.6

+5.1

-3.6

+5.1

BEV

World Model

BEV

World Model

Figure 1: Pipeline Comparison. Existing stream-based
methods suffer significant performance degradation when
pose estimation is unavailable. Our approach addresses this
issue by incorporating fast-slow pipelines and two latent
world models.

Lane segment topology reasoning predicts
lane segments (including centerlines and
boundary lines) along with their topolog-
ical relationships to construct a compre-
hensive road network (Wang et al., 2024a;
Li et al., 2023b). This capability can be
integrated into planning-oriented end-to-
end autonomous driving systems, serving
as the perception module to provide bird’s-
eye view (BEV) road scene understanding
(Hu et al., 2023b; Jiang et al., 2023; Zhou
et al., 2025).

Current methods primarily focus on con-
structing topology graphs (Lv et al., 2025),
endpoint alignment (Fu et al., 2025a), and
multi-attribute modeling (Li et al., 2023b).
These methods enhance the topological
associations between lane-to-lane and lane-to-traffic, as well as the long-range lane segment de-
tection performance. However, they fail to leverage temporal information, leading to inconsistent
detection across scene flows. Therefore, this paper focuses on achieving temporal perception for lane
segments. Existing stream-based temporal propagation methods (Yuan et al., 2024) have proven
effective in enhancing temporal consistency in perception. They reuse high-confidence historical
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queries and BEV features as anchors for current detection. However, as illustrated in Fig. 1, cur-
rent stream-based frameworks suffer from three critical limitations: (1) Over-reliance on historical
queries. The historical queries demonstrate higher confidence levels, they are more likely to ap-
proximate the GT positions compared to the newly initialized queries. As a result, during Hungarian
matching supervision, historical queries are prioritized while newly initialized queries are often ne-
glected. However, in the first frame of a scene, only the newly initialized queries are available
for lane segment detection. If their performance is suboptimal, errors may propagate and accumu-
late across subsequent frames. (2) Vulnerability to pose estimation failures. To align historical
queries and BEV features with the current frame, stream-based approaches rely on continuous pose
estimation between adjacent frames. However, when vehicles enter tunnels or remote areas where
GPS signals are unavailable, or when IMU error accumulation prevents pose refinement, the sys-
tem degrades to single-frame detection mode. This degradation leads to significant performance
deterioration and may ultimately cause complete system failure. (3) Weak temporal propagation.
When historical BEV features are warped, the details of the features at the edges of the BEV tend to
be lost. Moreover, simply applying pose transformation to historical queries through a basic MLP
architecture fails to achieve optimal performance.

To address the aforementioned issues, we propose a novel fast-slow lane segment topology reason-
ing framework with latent world models (FASTopoWM). Inspired by recent vision-language mod-
els (VLMs) (Zhang et al., 2025; Xiao et al., 2025), we decouple our network into dual pathways: a
slow pipeline and a fast pipeline. The slow pipeline leverages temporal information to address chal-
lenging perception scenarios and improve detection performance, while the fast pipeline performs
single-frame perception to ensure the basic functionality of the system. These two systems can per-
form inference in parallel or operate independently. A key innovation lies in the unified framework
between the fast and slow systems that allowing parallel supervision of both historical and initial-
ized queries. This eliminates the need for training separate models for temporal and single-frame
detection and enables mutual reinforcement between the fast and slow pipelines. Specifically, the
slow pipeline benefits from a better initialization for temporal propagation, while the fast pipeline
implicitly leverages the temporal dynamics learned through shared weights. To improve tempo-
ral propagation, we propose latent query and BEV world models based on the principle that ”the
present represents a continuation of the past.” Conditioned on the relative poses in adjacent frames,
both latent world models propagate state representations from historical observations to the current
timestep, significantly enhancing the robustness of temporal propagation in the slow pipeline.

Contributions: (1) We identify severe performance degradation issues in existing stream-based
methods. To address this, we propose FASTopoWM, a novel fast-slow framework augmented with
latent world models for robust lane segment topology reasoning. (2) We introduce a unified fast-slow
system that enables parallel supervision of both historical and newly initialized queries. This design
facilitates mutual reinforcement and allows inference switching based on pose estimation conditions,
thereby enhancing system robustness. (3) We design two latent world models that effectively capture
temporal dynamics and enable strong temporal propagation. (4) FASTopoWM is evaluated on the
OpenLane-V2 dataset (Wang et al., 2024a), achieving state-of-the-art performance in lane topology
reasoning.

2 RELATED WORK

2.1 HD MAP AND LANE TOPOLOGY REASONING

Current high-definition (HD) map learning frameworks employ end-to-end detection pipelines to
generate vectorized representations of map elements. VectorMapNet (Liu et al., 2023) formulates
map elements as polyline to eliminate heuristic post-processing. MapTR (Liao et al., 2022; 2023)
develops permutation-equivalent modeling for lane point sets. Mask2map (Choi et al., 2024) incor-
porates mask-aware queries and BEV features to enhance semantic understanding. MapDR (Chang
et al., 2025) decomposes road networks into geometric, connectivity, and regulatory layers. For
temporal modeling, StreamMapNet (Yuan et al., 2024) implements stream-based propagation. SQD-
MapNet (Wang et al., 2024b) applies query denoising for BEV boundary consistency. Interaction-
Map (Wu et al., 2025) achieves comprehensive temporal fusion through local-to-global integration.
In contrast to HD map learning, lane topology reasoning primarily focuses on the topological rela-
tionships among lanes. TopoNet (Li et al., 2023a) establishes dual lane-to-lane and lane-to-traffic
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Figure 2: Overall Framework. (a) Encoder. Historical queries and BEV features are processed by world
models, conditioned on action latent, to predict the stream queries and stream BEV features. Multi-view images
are encoded into BEV features, which are then fused with the stream BEV features. (b) Decoder. The slow
and fast systems share the same Transformer layers and prediction heads to enable parallel supervision of both
stream and newly initialized queries. T represents the frame at timestep T.

graphs. TopoLogic (Fu et al., 2025a) and TopoPoint (Fu et al., 2025b) emphasize the critical role
of endpoints in topological connectivity. TopoMLP (Wu et al., 2023) explicitly encodes coordi-
nate information to improve topological reasoning. Topo2Mask (Kalfaoglu et al., 2024) introduces
instance masks and mask attention mechanisms to update query representations. TopoFormer (Lv
et al., 2025) proposes geometry-guided and counterfactual self-attention to enhance road topology
understanding. TopoStreamer (Yang et al., 2025b) designs temporal propagation, denoising ob-
jectives, and positional encoding injection for multiple lane-segment attributes, enabling temporal
perception of lane segments. Compared with TopoStreamer, our approach adopts a stronger dual
world-model design for temporal propagation, using pose information as guidance to achieve more
robust temporal perception. While TopoStreamer still relies on the traditional warping-based tempo-
ral propagation, it proposes streaming attribute constraints to ensure consistent propagation across
multiple lane-segment attributes. It also introduces attribute-aware denoising objectives to improve
the reliability of multi-pattern lane-segment associations. In addition, our paper identifies the sig-
nificant performance degradation that occurs when temporal perception falls back to single-frame
detection, and proposes a fast–slow system to enhance both temporal and single-frame detection
performance. This design ensures system reliability in practical applications, and constitutes one of
the key innovations that distinguishes our method from TopoStreamer.

2.2 WORLD MODEL IN AUTONOMOUS DRIVING

The world model serves as a bridge between understanding and generating future states. In au-
tonomous driving, it can predict the future state of the ego vehicle conditioned on its actions (Bar
et al., 2025). GAIA-1 (Hu et al., 2023a) leverages sequence learning to anticipate future events.
DriveDreamer (Wang et al., 2024c) introduces a two-stage diffusion training pipeline to generate
controllable driving scenes. Instead of synthesizing pixel-level content, OccWorld (Zheng et al.,
2024) forecasts 3D occupancy to simulate future scenarios. To reduce computational overhead and
modeling complexity, recent approaches have shifted toward predicting compact latent representa-
tions using world models. BEVWorld (Zhang et al., 2024) proposes a latent BEV sequence diffusion
model to forecast future scenes conditioned on multi-modal inputs. WoTE (Li et al., 2025) predicts
future BEV features to evaluate high-confidence trajectories. LAW (Li et al., 2024) employs a la-
tent world model for self-supervised learning. Motivated by prior work, we design a dual latent
world model framework that learns the transformation from past to present, enabling more effective
temporal reasoning and enhancing current lane topology prediction.
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2.3 FAST-SLOW SYSTEM

In autonomous driving scenarios, where real-time performance and reliability are essential, adding
computational burden or auxiliary cues to boost prediction accuracy is often infeasible in practice.
As a trade-off solution, fast-slow systems have recently been introduced. The fast system performs
essential predictions with minimal overhead, while the slow system leverages additional compu-
tation and auxiliary cues to handle complex scenarios. Fast-slow systems enable flexible mode
switching tailored to the varying demands of different scenarios. Chameleon (Zhang et al., 2025)
utilizes a VLM with chain-of-thought (CoT) reasoning to conduct neuro-symbolic topology infer-
ence in the slow system. FAST (Xiao et al., 2025) dynamically switches between short and long
reasoning paths based on task complexity. SlowFast-LLaVA (Xu et al., 2024) employs different
sampling rates to capture motion cues and fuses slow and fast features to efficiently represent video
information. Xu et al. (Xu et al., 2025) combine a “slow” LLM for command parsing with a “fast”
RL agent for vehicle control. FASIONAD++ (Qian et al., 2025) incorporates a VLM as the slow
system to provide feedback and evaluation for a fast end-to-end pipeline. Many existing approaches
implement fast and slow systems as separate frameworks, switching between them based on the
scenario. Our method, by contrast, integrates both pathways into a single model without requiring
additional networks. These pathways are trained under parallel supervision. It is noted that the fast
and slow systems reinforce each other, thereby enhancing overall robustness. Our architecture more
closely resembles a unified fast-slow thinking model (Zhou et al., 2025; Xiao et al., 2025), where
the inference pathway is switched by a trigger mechanism, such as scenario difficulty. For example,
using slow thinking with reasoning capabilities in challenging scenarios, and fast thinking in simpler
ones. In our case, the trigger is the status of the pose estimation; further discussion is provided in
the supplementary material.

3 METHOD

3.1 PROBLEM FORMULATION

Lane Segment Topology Reasoning. Given surround-view images captured by vehicle-mounted
cameras, our goal is to infer lane segments {Lc,Ll,Lr} and their topological connectivity A in the
bird’s-eye view (BEV). Each lane segment consists of a centerline Lc = (P,Class), a left boundary
Ll = (P,Type), and a right boundary Lr = (P,Type). Here, P = {(xi, yi, zi)}|Mi=1 denotes a
set of vectorized 3D points, where M is the number of points. Class represents the semantic class
of the lane segment (e.g., road line or pedestrian crossing), and Type indicates the boundary type,
such as dashed, solid, or non-visible. The adjacency matrix A encodes the topological connectivity
between lane segments. In the following formulation, T denotes the current frame, and T-1 denotes
the previous frame.

Latent World Model. Given the observation from camera OT at time T, the conventional world
model forecasts the information about the next observation OT+1. The details an be summarized as
follows:

FT
latent = E(OT) FT+1

latent = M(FT
latent,Action) OT+1 = D(FT+1

latent) (1)

where E and D denote the encoder and decoder for the images, while the world model M maps
the latent feature FT

latent to FT+1
latent based on the action. Compared to traditional driving world

models, our approach has two key differences. First, we shift the prediction sequence of the world
model backward along the timeline, enabling it to predict the current state based on historical data.
Second, we employ a latent world model, eliminating the need to reconstruct observations from
latent features. This allows the model to focus solely on temporal propagation in BEV space and
query space, resulting in a more compact architecture and reduced learning complexity compared
to image-based world models (Wang et al., 2024c; Hu et al., 2023a). Therefore, our latent world
models follow the workflow of OT−1 → FT−1

latent → FT
latent → lane segments.

3.2 OVERVIEW

Fig. 2 illustrates the framework of FASTopoWM. The overall architecture can be briefly divided
into encoder and decoder parts. Both the slow and fast systems are integrated into a unified network.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The PV-to-BEV encoder (Li et al., 2022; He et al., 2016; Lin et al., 2017) extracts BEV features
FT

bev ∈ RH×W×C , where C, H, W represent the number of feature channels, height, and width,
respectively. The initialized queries QT ∈ RN×C are derived from a learnable embedding space.
N is the number of queries. The relative ego poses between adjacent frames are encoded into an
action latent Ψ. We employ memories for world models to store the historical queries. Conditioned
on this action latent, the query world model and the BEV world model transform the historical
queries QT−1 and BEV features FT−1

bev , respectively, to generate the stream queries Q̃T and stream
BEV features F̃T

bev for the current frame. The stream BEV features are then fused with the BEV
features extracted from the current frame. The first transformer layer takes the initialized queries
QT and the BEV features FT

bev from the current frame as input. The subsequent transformer layers
share weights and receive parallel inputs from both the slow and fast systems. The slow system
incorporates temporal information, whereas the fast system does not. During training, both systems
are supervised jointly. At inference time, the prediction from the slow system is used as the final
output when reliable pose information is available. Otherwise, when such information is missing or
inaccurate, the prediction from the fast system is adopted. This design improves robustness while
leveraging temporal cues to enhance performance when conditions permit.

3.3 TEMPORAL PROPAGATION VIA LATENT WORLD MODELS

Temporal propagation leverages detection results from previous frames as auxiliary information to
assist prediction in the subsequent frame (Yuan et al., 2024). In contrast to existing latent world
model methods (Li et al., 2024), our approach eliminates the need for future trajectory prediction.
Instead, grounded in the principle that “the present represents a continuation of the past,” we utilize
known relative poses to infer the current state based on past observations.

Input of World Models. We flatten the relative pose, which includes both relative rotation and
translation, to obtain the action latent Ψ. Then, the action-aware query and BEV latent features are
obtained by:

Q̃T−1 = MLP([QT−1,Ψ])

F̃T−1
bev = MLP([FT−1

bev ,Ψ])
(2)

where Ψ is duplicated and concatenated with the query and BEV feature along the channel dimen-
sion.

Future Latent Prediction. Latent world models leverage the historical action-aware latent from
timestep T-1 to predict the stream features at the next timestep T:

Q̃T = QueryWorldModel(Q̃T−1)

F̃T
bev = BEVWorldModel(F̃T−1

bev )
(3)

where query world model is composed of Transformer blocks, containing self-attention modules
and feed-forward modules. Similarly, the BEV world model comprises Transformer blocks that
incorporate temporal self-attention modules (Li et al., 2022) and feed-forward modules.

Then, the stream BEV feature are fused with extracted BEV feature using gated recurrent unit
(Chung et al., 2014) to enrich temporal cues.

Future Latent Supervision. Unlike previous methods that rely on warping and often lose infor-
mation at the BEV boundary (Wang et al., 2024b), our BEV world model imagines the evolution
of the next-frame BEV representation based on historical BEV features and relative poses. Since
dense BEV annotations are difficult to obtain, we adopt a self-supervised learning strategy based on
BEV features from temporally adjacent frames. We use mean squared error (MSE) loss to align the
stream BEV features with the extracted BEV features of the current frame:

Lbev =
∥∥∥F̃T

bev − FT
bev

∥∥∥
2

(4)

For queries, we employ transformation loss (Yang et al., 2025b) to supervise consistency of coordi-
nate, category, and semantic BEV mask:
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Lcoord = LL1(L̃T ,LT )

Lcls = LFocal( ˜ClassT ,ClassT ) + LCE( ˜TypeT ,TypeT )

Lmask = LCE(M̃T ,MT ) + LDice(M̃T ,MT )

Lquery = Lcoord + Lcls + Lmask

(5)

where L̃T , ˜ClassT , ˜TypeT and M̃T are coordinates of lane segment, classes of centerline, boundary
types and semantic BEV mask predicted from stream queries Q̃T. LT , TypeT , ClassT and MT

are GT annotations transformed from T-1 frame to T frame. For brevity, we omit the weights for
each loss term. More details can be found in appendix. The overall future latent supervision can be
expressed as:

Llatent = Lbev + Lquery (6)

In this way, the BEV world model is trained using self-supervised learning on BEV representa-
tions from adjacent frames to capture temporal cues in the BEV space. Simultaneously, the query
world model is trained with temporally continuous annotations, enabling it to transform historical
observations into reference anchors (e.g., stream queries) for the current frame.

3.4 UNIFIED FAST-SLOW DECODER

Previous methods incorporate historical information into the decoder to improve performance. How-
ever, stream queries enriched with historical cues typically exhibit higher confidence than newly ini-
tialized queries. Consequently, during Hungarian assignment, GT annotations are more likely to be
matched with stream queries. This bias leads to performance degradation when historical informa-
tion is unavailable, as the model relies solely on the initialized queries. To overcome this limitation,
we propose a unified fast-slow decoder that decouples the forward path into fast and slow branches,
allowing parallel supervision of both stream and initialized queries.

As shown in Fig. 2 (b), the inputs of the first transformer layer are initialized queries and extracted
BEV feature:

QT
1 = TransLayer0(Q

T
0 ,F

T
bev) (7)

where TransLayer0 denotes the first transformer layer, consisting of a self-attention module, a lane-
attention module (Li et al., 2023b), and a feed-forward network. According to the classification
confidence of QT

1 , the lowest-ranked N −K queries of QT
1 are substituted with stream queries Q̃T.

The slow branch of the remaining transformer layer is then formulated as:

Q̃T
i+1 = TransLayeri(Q̃

T
i , F̃

T
bev) (8)

where i denotes the index of the Transformer layer. Notably, the input query to the second Trans-
former block, Q̃T

1 , comprises K instances of Q̃T and N−K instances of QT
1 . For brevity, we reuse

the notation F̃T
bev to represent the fused BEV features obtained by combining the stream BEV fea-

tures F̃T
bev with the extracted BEV features FT

bev. Similarly, the fast branch of the second Transformer
layer is formulated as:

QT
i+1 = TransLayeri(Q

T
i ,F

T
bev) (9)

Then, shared-weight heads are employed to generate predictions at each layer from QT
i+1 and Q̃T

i+1,
with Hungarian matching-based supervision applied in parallel.

In this manner, the historical queries and the newly initialized queries are supervised concurrently,
preventing the model from becoming overly reliant on historical queries. The temporal propaga-
tion in the slow system benefits from well-trained initialized queries, particularly at the first frame.
Meanwhile, the fast system’s initialized queries implicitly gain from temporal dynamics through
shared decoder parameters with the slow system. More details about prediction heads can be found
in the appendix.
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Table 1: Comparison with the state-of-the-arts on OpenLane-V2 subsetA on lane segment. All models adopt
ResNet-50 as the backbone network and are trained for 24 epochs. †: Our enhanced model employ GeoDist
strategy from TopoLogic (Fu et al., 2025a).

Method Venue Temporal mAP ↑ APls ↑ APped ↑ TOPlsls ↑ Accb ↑ FPS
MapTR (Liao et al., 2022) ICLR23 No 27.0 25.9 28.1 - - 14.5

MapTRv2 (Liao et al., 2023) IJCV24 No 28.5 26.6 30.4 - - 13.6
TopoNet (Li et al., 2023a) Arxiv23 No 23.0 23.9 22.0 - - 10.5

LaneSegNet (Li et al., 2023b) ICLR24 No 32.6 32.3 32.9 25.4 45.9 14.7
TopoLogic (Fu et al., 2025a) NIPS24 No 33.2 33.0 33.4 30.8 - -

Topo2Seq (Yang et al., 2025a) AAAI25 No 33.6 33.7 33.5 26.9 48.1 14.7
FASTopoWM (ours) - No 34.1 33.9 34.4 26.6 48.2 14.0
FASTopoWM† (ours) - No 34.2 34.0 34.4 28.4 48.2 14.0

StreamMapNet (Yuan et al., 2024) WACV24 Yes 20.3 22.1 18.6 13.2 33.2 14.1
SQD-MapNet (Wang et al., 2024b) ECCV24 Yes 26.0 27.1 24.9 16.6 39.4 14.1
TopoStreamer (Yang et al., 2025b) - Yes 36.6 35.0 38.1 28.5 50.0 13.6

FASTopoWM (ours) - Yes 37.4 36.4 38.4 29.6 51.2 11.4
FASTopoWM† (ours) - Yes 37.2 36.2 38.1 31.6 51.3 11.2

4 TRAINING LOSS

The loss function for slow system and fast system are defined as:

Lslow = α1Lls + α2Llatent (10)

Lfast = Lls (11)

where Lls denotes the lane segment loss, which supervises the predicted lane segments using Hun-
garian matching (Li et al., 2023b). The details of Lls can be found in the appendix.

Table 2: Comparison with the state-of-the-arts on OpenLane-V2 sub-
setB on centerline perception. All models adopt ResNet-50 as the back-
bone network and are trained for 24 epochs. TopoFormer⋆ adopts a
staged training strategy that utilizes a pretrained lane detector for topol-
ogy reasoning training. While this leads to better detection performance,
it offers only slight advantage in topology prediction.

Method Venue Temporal OLS ↑ DETl ↑ TOPll ↑
VectorMapNet (Liu et al., 2023) ICML23 No - 3.5 -

STSU (Can et al., 2021) ICCV21 No - 8.2 -
MapTR (Liao et al., 2022) ICLR23 No - 15.2 -
TopoNet (Li et al., 2023a) Arxiv23 No 25.1 24.3 6.7

TopoMLP (Wu et al., 2023) ICLR24 No 36.2 26.6 19.8
LaneSegNet (Li et al., 2023b) ICLR24 No 38.7 27.5 24.9
TopoLogic (Fu et al., 2025a) NIPS24 No 36.2 25.9 21.6

TopoFormer⋆ (Lv et al., 2025) CVPR25 No 41.5 34.8 23.2
FASTopoWM (ours) - No 41.8 31.6 27.1

StreamMapNet (Yuan et al., 2024) WACV24 Yes 26.7 18.9 11.9
SQD-MapNet (Wang et al., 2024b) ECCV24 Yes 29.1 21.9 13.3
TopoStreamer (Yang et al., 2025b) - Yes 42.6 30.9 29.4

FASTopoWM (ours) - Yes 46.3 35.1 33.0

The overall loss function in
FASTopoWM is defined as fol-
lows:

L = Lslow + Lfast (12)

5 EXPERIMENTS

5.1 DATASETS
AND METRICS

Datasets. We evaluate our
method on the multi-view lane
topology benchmark OpenLane-
V2 (Wang et al., 2024a), which
comprises two subsets. Sub-
setA is re-annotated from Ar-
goverse2 (Wilson et al., 2023),
while SubsetB is re-annotated
from nuScenes (Caesar et al., 2020). Both subsets contain surround-view images collected from
1,000 scenes. SubsetA features seven camera views, whereas SubsetB includes only six. SubsetA
provides annotations for both lane segments and their topology, while SubsetB contains annota-
tions only for centerlines and topology. To generate boundary annotations for SubsetB, we apply
a standardized lane width perpendicular to the centerline. For centerline perception evaluation on
SubsetB, we approximate centerlines by averaging the coordinates of the left and right boundary
lines. We re-train LaneSegNet, StreamMapNet, and SQD-MapNet with the same configuration to
obtain their results on SubsetB.

Metrics. We conduct evaluations on two tasks: lane segment perception on SubsetA and centerline
perception on SubsetB. To assess lane quality, we adopt Chamfer Distance and Fréchet Distance
under fixed thresholds of {1.0, 2.0, 3.0} meters. For lane segments, APls and APped are employed
to evaluate the detection performance of road lanes and pedestrian crossings, respectively. The mean
average precision (mAP) is calculated as the average of APls and APped. To evaluate topology
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GT

BL

Ours

Figure 3: Qualitative results of baseline and our FASTopoWM. The baseline (BL) is LaneSegNet with stream-
based temporal propagation. For better viewing, zoom in on the image.

reasoning, we report TOPlsls. Lane boundary classification accuracy is measured by Accb (Yang
et al., 2025b). The evaluation protocol for centerline perception follows a similar approach as lane
segments. Additionally, OLS (Wang et al., 2024a) is computed between DETl and TOPll.

5.2 IMPLEMENTATION DETAILS

Table 3: Ablation studies on different modules. The
baseline is the non-temporal framework LaneSegNet.
Stream refers to the baseline augmented with temporal
propagation. FS denotes the fast-slow system. QWM
and BWM represent the query world model and BEV
world model, respectively. Tem. and Sin. indicate tem-
poral and single-frame detection.

Modules Tem. Sin.
Stream FS QWM BWM mAP TOPlsls mAP TOPlsls

- - 32.6 25.4
✓ 34.0 28.1 29.8 23.4
✓ ✓ 35.3 28.4 33.2 25.8
✓ ✓ ✓ 36.3 29.0 33.7 26.3
✓ ✓ ✓ 36.4 29.1 33.6 26.2
✓ ✓ ✓ ✓ 37.4 29.6 34.1 26.6

The PV-to-BEV encoder is composed of a pre-
trained ResNet-50 (He et al., 2016), an FPN
(Lin et al., 2017), and BevFormer (Li et al.,
2022). The BEV features has a resolution of
200×100, covering a perception area of ±50m
× ±25m. The decoder follows the Deformable
DETR architecture, where the standard cross-
attention module is substituted with lane atten-
tion (Li et al., 2023b). It consists of 6 trans-
former layers. A total of 200 queries are used,
with 30% reserved for temporal propagation in the slow system. Both the query and BEV world
models employ 2 transformer layers each. To optimize memory usage on the GPU, we introduce
average pooling within the BEV world model to reduce the input BEV resolution from 200×100
to 100×50. Then, we use bilinear interpolation to restore the output resolution to 200×100. The
centerline, left boundary, and right boundary are ordered sequence of 10 points. Training is per-
formed over 24 epochs with a batch size of 8 on NVIDIA V100 GPUs. To stabilize the streaming
process, the first 12 epochs are trained using single-frame inputs. More details about stream-based
training can be found in the appendix. The learning rate is initialized at 2× 10−4 and follows a co-
sine annealing schedule throughout training. We use the AdamW optimizer (Kingma & Ba, 2015).
The loss weights α1 and α2 are set to 1.0 and 0.3, respectively. During inference, the fast and slow
systems can operate in parallel to generate predictions, or alternatively, inference can be performed
using only one of the systems.

5.3 MAIN RESULTS

Results on Lane Segment. The results are displayed in Tab. 1. Without incorporating temporal
information, our fast system achieves detection performance comparable to current state-of-the-art
(SOTA) methods. Furthermore, our original and enhanced model establishes a new SOTA perfor-
mance in mAP and topology accuracy.

Results on Centerline Perception. The results are presented in Tab. 2. Our fast system surpasses
LaneSegNet by 3.1% in OLS. Our slow system outperforms TopoStreamer by 3.7% in OLS. By
introducing world models to capture temporal information, our slow system achieves a 4.5% im-
provement in OLS over the fast system.

5.4 ABLATION STUDIES

The ablation studies are mainly conducted on SubsetA.
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Table 4: The ablation studies of different configurations in the proposed FASTopoWM. The experiments are
conducted on OpenLane-V2 subset A. We bold the best scores.

(a) Different training methods. The baseline is Lane-
SegNet with stream-based temporal propagation.

Method Tem. Sin.

mAP TOPlsls mAP TOPlsls

BaseLine 34.0 28.1 29.8 23.4
Random+WMs 35.3 28.5 33.9 26.2
FastSlow+WMs 37.4 29.6 34.1 26.6

(b) Different action condition the world models.

Action Tem.

mAP APls APped TOPlsls

None 36.5 35.1 37.9 28.5
Traj. 31.2 30.8 31.5 24.5
Pos. 37.4 36.4 38.4 29.6

(c) Different architecture of world models.

Arch. Tem.

mAP APls APped TOPlsls

Linear 35.2 34.2 36.2 28.5
MLPs 36.2 35.9 36.2 28.9

Transformer 37.4 36.4 38.4 29.6

(d) Different number of layers in the world models.

No. QWM Tem. No. BWM Tem.

mAP TOPlsls mAP TOPlsls

2 37.4 29.6 2 37.4 29.6
4 37.1 29.9 4 37.7 29.9
6 37.3 29.5 6 37.8 30.2

(e) Different memory length of BEV world
model.

Length Tem.

mAP APls APped TOPlsls

1 37.4 36.4 38.4 29.6
2 37.5 36.7 38.5 29.8
4 37.7 36.4 39.0 29.6
6 37.6 36.8 38.4 29.8
8 37.5 36.6 38.4 29.9

(f) Diferent number of queries for temporal propagation in
query world model.

TopK Tem.

mAP APls APped TOPlsls

20 (10%) 35.2 36.1 34.3 28.7
66 (30%) 37.4 36.4 38.4 29.6
100 (50%) 36.7 35.4 38.0 29.2
150 (75%) 34.9 34.5 35.3 27.4

(g) Effect of latent supervision.

Method Tem.

mAP APls APped TOPlsls

FASTopoWM (without latent.) 36.6 35.8 37.5 29.0
FASTopoWM (with latent.) 37.4 36.4 38.4 29.6

(h) Different temporal propagation modules.

Method Tem.

mAP APls APped TOPlsls

Baseline+Warp 34.0 33.3 34.7 28.1
Baseline+WMs 36.5 35.6 37.4 28.9

Ablation Study on Modules. As shown in Tab. 3, integrating the baseline with temporal propaga-
tion improves performance by 1.4% mAP and 2.7% TOPlsls. However, its performance of single-
frame detection drops by 2.8% mAP and 2.0% TOPlsls. This is because the temporal framework
tends to over-rely on historical queries. When the lack of pose information makes temporal propa-
gation unavailable, the model falls back to single-frame detection, where its localization capability
is poor due to the reliance on the initialized queries as anchors. By integrating the fast-slow system
with world models, we address the performance degradation issue of single-frame detection within
temporal frameworks. This is because we decouple the supervision of initialized queries from that
of historical queries, allowing the initialized queries to receive direct supervision from the ground
truth. The proposed model achieves substantial improvements, surpassing the baseline by 3.4% and
1.5% mAP in temporal and single-frame detection, respectively.

Ablation Study on Training Methods. As shown in Tab. 4a, the baseline method shows a signif-
icant drop in single-frame detection performance. PrevPredMap (Peng et al., 2025) addresses this
issue by randomly alternating between single-frame and temporal training modes. However, this
alternating training reduces the effectiveness of temporal feature learning. In contrast, our fast-slow
system enables parallel training of both modes, achieving improvements of 2.1% mAP and 1.1%
TOPlsls in temporal detection.

Ablation Study on World Models. Tab. 4b examines the impact of different action conditions.
Without action conditioning, the world model can still predict future states, but localization accuracy
degrades. Inspired by end-to-end driving methods, we also condition on future trajectories, which
provide future positions and could reduce reliance on pose estimation. However, this leads to clear
performance drops, likely due to limited trajectory regression accuracy and the model’s lack of
agent-awareness and dynamics inputs (e.g., speed, steering). Conditioning on relative ego pose
yields the best results. Tab. 4c compares network architectures: linear layers and MLPs fail to
capture temporal dependencies, while stacked transformers achieve the best performance. As shown
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T T+1 T+2 T+3 T+4

(a)

T T+1 T+2 T+3 T+4

(b)

Figure 4: Visualization of topology predictions across consecutive 5 frames. The results of FASTopoWM are
shown on the top, and the results of temporal baseline are shown on the bottom. The temporal baseline is
LaneSegNet (Li et al., 2023b) with stream-based temporal propagation. For better viewing, zoom in on the
images.

in Tab. 4d, we fix the number of transformer layers in one world model while varying it in the
other. The model performance is relatively insensitive to the number of query world model layers.
While deeper models offer slight gains, they reduce inference efficiency. We use two layers as a
trade-off. In the Tab. 4e, we investigate the impact of different memory lengths in the BEV world
model on performance. We transform BEV features extracted from longer-term historical frames
to the current frame using the BEV world model, averaged them, and then fuse the result with the
BEV feature of the current frame. The results show that increasing the memory length only yields
marginal performance improvements. As shown in Tab. 4f, we explore the impact of the number
of queries used for temporal propagation in the query world model. Experiments demonstrate that
the configuration employed by FASTopoWM, which propagates the top 30% (i.e., 66) of queries,
achieves the optimal results. Tab. 4g shows that employing the latent supervision from Eq. 6 yields
an improvement of 0.8% mAP. Tab. 4h demonstrates that compared to traditional warping methods,
our world models enable more robust temporal propagation, achieving a 2.5% improvement in mAP.

5.5 QUALITATIVE RESULTS

Fig. 3 provides a qualitative result comparison between baseline method and our FASTopoWM
under different road structures. The baseline method produces more misaligned endpoints, which
confuses topology reasoning. It also suffers from missed detections and hallucinated results. In
contrast, our method yields good lane segment perception with accurate topology reasoning. Fig. 4
visualizes the comparison of temporal detection results across 5 frames. The baseline method fails
to maintain temporal topological consistency, resulting in false detections, missed detections, and
hallucinated topologies. Our method demonstrates robust temporally consistent topology reasoning
results.

6 CONCLUSION

In this paper, we propose FASTopoWM, a novel fast-slow lane segment topology reasoning frame-
work enhanced with latent world models. To overcome the limitations of existing stream-based
methods, we integrate fast and slow systems into a unified architecture that enables parallel super-
vision of both historical and newly initialized queries, fostering mutual reinforcement. The slow
pipeline exploits temporal information to enhance detection performance, while the fast pipeline
conducts single-frame perception to ensure the system’s basic functionality. To further strengthen
temporal propagation, we introduce latent query and BEV world models conditioned on the action
latent, allowing the system to propagate state representations from past observations to the current
timestep. This design significantly boosts the performance of the slow pipeline. Extensive exper-
iments on the OpenLane-V2 benchmark demonstrate that our model achieves SOTA performance
and validate the effectiveness of our proposed components.
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A APPENDIX

A.1 POSE ESTIMATION

Poses provide dynamic information for autonomous vehicles and are typically obtained via GPS
(Global Positioning System) and IMU (Inertial Measurement Unit). Specifically, GPS determines
position through satellite-based ranging (absolute coordinates), while the IMU derives position and
orientation by integrating acceleration and angular velocity (relative motion). The advantage of
GPS is its absence of long-term cumulative errors, whereas the IMU offers high frequency, short-
term stability, and continuity. The integration of these two methods for pose estimation has been
widely adopted in many public datasets, like KITTI (Geiger et al., 2012), ApolloScape (Huang et al.,
2018), Cityscapes (Cordts et al., 2016), H3D (Patil et al., 2019), etc. However, this approach also has
limitations. For instance, in the KITTI dataset, the localization system is susceptible to GPS signal
interruptions, particularly in urban canyons or tunnels where interference is common (Brossard et al.,
2020). In such cases, the IMU can be used for compensation, but it suffers from error accumulation
that increases exponentially over time (drift), resulting in poor long-term stability. In the nuScenes
(Caesar et al., 2020), to mitigate this issue, carefully collected detailed high-definition LiDAR point
cloud maps are employed. However, in practice, it is not feasible to create such point cloud maps
for all scenarios.

How to define missing or inaccurate pose?

From a localization and sensor-fusion perspective, it refers to cases where the estimated vehicle
position or orientation (pose) cannot be reliably determined due to signal loss, sensor drift, or incon-
sistency between different measurements. It can be characterized and measured differently for GPS
and IMU systems.

GPS. Pose information is considered missing or inaccurate when the satellite-based positioning
solution fails to meet required quality thresholds. In our practical experience, commonly observed
issues include: 1. RTK (Real-Time Kinematic) status deteriorates from FIX → FLOAT →
DGPS → Single. This indicates a gradual degradation in positioning accuracy. 2. Poor geometric
precision. High HDOP (Horizontal Dilution of Precision)/PDOP (Position Dilution of Precision)
values (e.g., HDOP > 4) reflect poor satellite geometry. 3. Weak or unstable satellite signals. Low
C/No (carrier-to-noise ratio < 30 dB-Hz) or fewer than 6 visible satellites.

IMU. Pose is considered inaccurate when integration of accelerations and angular rates accumulates
error beyond acceptable limits. Since IMU data are relative and drift over time, accuracy degrades
when not corrected by GPS or other sensors. In our practical experience, commonly observed issues
include: 1. Rapid drift of position or orientation. A drift is identified if the position drift meets
or exceeds 0.1 m per second without external correction, or if the yaw/roll bias accumulation meets
or exceeds 0.1° per minute. 2. Dynamic inconsistency. Pose-derived velocity or acceleration
inconsistent with wheel odometry or CAN bus data. 3. Time synchronization error.

How to measure inaccurate pose?

To evaluate the accuracy of the current pose estimated from IMU and GPS, one can perform consis-
tency and residual checks across the three data sources—CAN bus (vehicle kinematics), IMU, and
GPS. The core idea is to compare physical quantities derived from the estimated pose with indepen-
dent measurements from the vehicle and sensors. 1. Consistency between IMU and CAN bus. If
the IMU is well calibrated, its measured yaw-rate and acceleration should match the CAN yaw-rate
and acceleration within small tolerance. 2. GPS residual analysis. When fusing GPS and IMU,
we can validate pose accuracy by examining the residual between the fused result and the raw GPS
measurement:

r = PGPS − Pfusion (1)
where PGPS is the observed GPS position and Pfusionis the predicted position obtained from IMU
integration combined with the previous state estimate. We then determine whether the magnitude of
r exceeds a predefined threshold.

Trigger. GPS plays a primary role in positioning because it also provides the reference needed to
correct the IMU. Consider the following scenario: before entering a tunnel, GPS and IMU fusion
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operates normally. Inside the tunnel, GPS becomes unavailable and the system relies solely on the
IMU, causing the drift to grow over time. After exiting the tunnel, GPS becomes available again and
corrects the accumulated IMU drift, restoring normal behavior. Therefore, we monitor both GPS
signal quality and GPS residuals as triggers for detecting inaccurate pose.

In traditional temporal methods, when pose information becomes unreliable, the system must fall
back to single-frame detection and stop temporal propagation. In this case, as validated in Table 3
of the main text, the performance of the single-frame detector drops by 2.8% in mAP and 2.0% in
TOPlsls compared with a well-trained single-frame model. Alternatively, an autonomous driving
system would need to carry both temporal and single-frame models, which introduces additional
computational and memory overhead.

However, with our fast–slow architecture that shares weights and performs parallel supervision for
both single-frame and temporal branches, this problem is resolved. Moreover, the single-frame
detection performance is improved, achieving gains of approximately 1.5% in mAP and 1.2% in
TOPlsls. In addition, introducing the world model further boosts the temporal detection perfor-
mance, improving the baseline temporal method by 3.4% in mAP and 1.5% in TOPlsls.

A.2 ACTION LATENT

In the ablation study, we try to use both relative pose and trajectory as conditions for the world
models. Ultimately, conditioning on relative poses achieve the best performance.

Related Pose. The relative pose is defined as the transformation matrix that maps the rotation matrix
R and translation vector t from the coordinate system of the previous frame to that of the current
frame. It can be formulated as:

Tglobal
prev =

[
Rprev tprev
0 1

]
(2)

Trelated
global =

[
R⊤

curr −R⊤
currtcurr

0 1

]
(3)

Tcurr
prev = Trelated

global ·Tglobal
prev (4)

Ψ = Flatten(Tcurr
prev) (5)

Trajectory. The trajectory represents the future positions of the ego vehicle. We extract positions
over a 3-second horizon (equivalent to 6 frames) and transform them into the current BEV coordinate
system to generate 6 waypoints Wt = {w1

t ,w
2
t , · · · ,w6

t } (Li et al., 2024). In the final five frames
of a scene, some future positions may be unavailable; in such cases, interpolation is applied to
complete the trajectory. The trajectory query is randomly initialized and refined via cross-attention
with the BEV features and lane segment queries. A MLP is used to predict the trajectory from
trajectory query. Then, the loss for trajectory prediction can be formulated as:

Ltraj =
1

M

M∑
i=1

∥∥wi
t − w̃i

t

∥∥
1

(6)

We concatenate the predicted waypoints with the query and BEV features along the channel dimen-
sion, and use the world model to predict the state of the next frame.

A.3 TRANSFORMATION LOSS

Transformation losses are applied to supervise both the stream query and the query world model,
with the goal of minimizing projection errors across frame transitions. We employ MLPs to predict
lane segment coordinate, lane segment class, boundary class and BEV mask from stream queries
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Q̃T:

L̃c
t = MLPreg(Q̃

T) + InSigmod(RS
C)

L̃c
t = Denorm(sigmoid(L̃c

t))

offset = MLPoffset(Q̃
T)

L̃l
t = L̃c

t + offset, L̃r
t = L̃c

t − offset

L̃t = Concat(L̃c
t , L̃

l
t, L̃

r
t )

˜Classt = MLPcls(Q̃
T)

T̃t = MLPbcls(Q̃
T)

M̃t = Sigmoid(MLPmask(Q̃
T)⊗ F̃

t

bev)

(7)

where RS
C indicates the centerline reference points for stream queries. InSigmod refers to the inverse

sigmoid function, while Denorm stands for denormalize. offset represents the lateral distance from
the centerline to both the left and right lanes. L̃t, ˜Classt, ˜Typet and M̃t are coordinates of lane
segment, classes of centerline, boundary types and semantic BEV mask. Then, the transformation
losses are represented as:

LStream
coord = LL1(L̃t,Lt)

LStream
cls = κ1LFocal( ˜Classt,Classt) + κ2LCE( ˜Typet,Typet)

LStream
mask = κ3LCE(M̃t,Mt) + κ4LDice(M̃t,Mt)

Lquery = κ5LStream
coord + κ6LStream

cls + κ7LStream
mask

(8)

where the values of κ1, κ2, κ3, κ4, κ5, κ6, and κ7 are 1.0, 0.01, 1.0, 1.0, 0.025, 1.0 and 3.0.

A.4 PREDICTION HEADS

After the decoder, we employ MLPs to predict lane segment coordinate, lane segment class, bound-
ary class and BEV mask from the updated queries Q:

Rc = SigmoidMLPpe(PE)

L̃c = MLPreg(Q) + InSigmod(Rc)

L̃c = Denorm(Sigmoid(L̃c))

offset = MLPoffset(Q)

L̃l = L̃c + offset, L̃r = L̃c − offset

L̃ = Concat(L̃c, L̃l, L̃r)

˜Class = MLPcls(Q)

˜Type = MLPbcls(Q)

M̃ = Sigmoid(MLPmask(Q)⊗ F̃bev)

Q
′
= MLPpre(Q),Q

′′
= MLPsuc(Q)

Ã = Sigmoid(MLPtopo(Concat(Q
′
,Q

′′
)))

(9)

where Rc denotes centerline reference points and PE indicates positional embedding. Ã denotes
the adjacency matrix that encodes the topological associations. The confidence threshold for the
adjacency matrix is set at 0.5

A.5 LANE SEGMENT LOSS

Lane segment loss is proposed by LaneSegNet (Li et al., 2023b):

Lls = ω1Lvec + ω2Lseg + ω3Lcls + ω4Ltype + ω5Ltopo (10)
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Table 1: Comparison of computational costs.

Method mAP APls APped TOPlsls FPS FLOPs Param. Training memory cost inference memory cost

LaneSegNet 32.6 32.3 32.9 25.4 14.7 639.1G 30.9M 21.8GB 4.0GB
FASTopoWM 37.4 36.4 38.4 29.6 11.4 671.0G 45.9M 22.5GB 4.2GB

where the hyperparameters are defined as: ω1 = 0.025, ω2 = 3.0, ω3 = 1.5, ω4 = 0.01, and
ω5 = 5.0. Lvec is the L1 loss computed between the predicted vectorized lanes and the ground truth
lanes. Lseg = Lce+Ldice consists of a Cross-Entropy loss and a Dice loss used to supervise the BEV
semantic mask. The classification losses Lcls and Ltype are used for lane segment classification.
Ltopo is a focal loss applied to supervise the topological relationship prediction.

A.6 HUNGARIAN MATCHING

The cost function and weighting scheme used for the fast–slow system remain identical during
parallel training. The cost function is defined as:

Lmatching = β1Lvec + β2Lseg + β3Lcls + β4Ltype (11)

where Lvec, Lseg , Lcls, and Ltype follow the same definitions as in Eq. 10. The weights β1, β2, β3,
and β4 are set to 0.025, 3.0, 1.5, and 0.01, respectively.

A.7 STREAMING TRAINING

We adopt the streaming training strategy for temporal fusion. For each training sequence, we ran-
domly divide it into 2 splits at the start of each training epoch to foster more diverse data sequences.
During inference, we use the entire sequences. Suppose a batch contains N samples, each from a
different scene, read in chronological order. Temporal fusion is performed by determining whether
the current data and the previously read data belong to the same scene. To facilitate temporal fusion,
we introduce several memory modules, including stream query memory, stream BEV memory, and
stream reference point memory, which store the predictions from the preceding frame.

A.8 COMPUTATIONAL COST ANALYSIS

Tab. 1 shows the comparison of computational costs between our baseline method and our method.
During inference on the OpenLane-V2 Subset A, our baseline model LaneSegNet requires 639.1G
FLOPs and has 30.9M parameters. FASTopoWM integrates the powerful fast-slow branches and
two world models on top of this baseline, resulting in 671.0G FLOPs and 45.9M parameters. As
a trade-off, our method exhibits a slight decrease in FPS in exchange for a 4.6% mAP and a 4.2%
TOPlsls improvement over the baseline. Additionally, the GPU memory usage of the baseline is
21.8 GB during training and 4.0 GB during inference per GPU card when the batch size is set to
2, while for FASTopoWM, it is 22.5GB and 4.2GB. The increase in training memory footprint for
FASTopoWM is due to the parallel training of the dual-branch decoder. However, the inference
memory usage of FASTopoWM is very close to that of the baseline.

A.9 FRONT-VIEW VISUALIZATION

Fig. 1 presents the front-view visualization results. FASTopoWM detects the intersection faster than
the temporal baseline model while maintaining temporally consistent and accurate detection results.
In contrast, the baseline method exhibits poor temporal consistency in detection, leading to missed
detections.
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T T+1 T+2 T+3 T+4 T+5 T+6

Figure 1: Front-view visualization of baseline and our FASTopoWM. The results of FASTopoWM are shown
on the top, and the results of temporal baseline are shown on the bottom. For better viewing, zoom in on the
images.
A.10 DEMO

See the supplementary material vis.gif file for details. The visualization results demonstrate that our
predictions maintain robust temporal consistency, reflected in the stable alignment of lane segment
coordinates and topological structures as the ego vehicle moves.

A.11 LIMITATION AND FUTURE WORK

World models demonstrate strong capability in predicting the next-timestep BEV and transforming
query information for common driving scenarios, such as stationary states, straight-line driving, and
gentle turns. However, their generalization may be inadequate for rare scenarios involving rapid
changes in ego-vehicle pose, such as high-curvature turns. To address this, we plan to introduce
noise to simulate diverse ego-vehicle pose variations, thereby enhancing the temporal transforma-
tion capability of world models in such corner cases. Furthermore, we intend to integrate Vision
Language Models (VLMs) to aggregate world model outputs for improved detection, and leverage
linguistic descriptions to enhance lane topology reasoning and interpretability. Finally, we aim to es-
tablish rules based on lane topology to provide actionable safety recommendations for autonomous
driving.

A.12 USE OF LLM

In this paper, Large Language Model is used only for writing enhancement purposes.
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