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Abstract
We propose a novel method for simulating condi-
tioned diffusion processes (diffusion bridges) in
Euclidean spaces. By training a neural network
to approximate bridge dynamics, our approach
eliminates the need for computationally intensive
Markov Chain Monte Carlo (MCMC) methods
or score modeling. Compared to existing meth-
ods, it offers greater robustness across various
diffusion specifications and conditioning scenar-
ios. This applies in particular to rare events and
multimodal distributions, which pose challenges
for score-learning- and MCMC-based approaches.
We introduce a flexible variational family, par-
tially specified by a neural network, for approxi-
mating the diffusion bridge path measure. Once
trained, it enables efficient sampling of indepen-
dent bridges at a cost comparable to sampling the
unconditioned (forward) process.

1. Introduction
Diffusion processes play a fundamental role in various fields
such as mathematics, physics, evolutionary biology, and, re-
cently, generative models. In particular, diffusion processes
conditioned to hit a specific point at a fixed future time,
which are often referred to as diffusion bridges, are of great
interest in situations where observations constrain the dy-
namics of a stochastic process. For example, in generative
modeling, stochastic imputation between two given images,
also known as the image translation task, uses diffusion
bridges to model dynamics (Zhou et al., 2024; Zheng et al.,
2025). In the area of stochastic shape analysis and computa-
tional anatomy, random evolutions of biological shapes of
organisms are modeled as non-linear diffusion bridges, and
simulating such bridges is critical to solving inference and
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registration problems (Arnaudon et al., 2022; Baker et al.,
2024b; Yang et al., 2025). Additionally, diffusion bridges
play a crucial role in Bayesian inference and parameter esti-
mations based on discrete-time observations. (Delyon & Hu,
2006; van der Meulen & Schauer, 2017; 2018; Pieschner &
Fuchs, 2020)

Simulation of diffusion bridges in either Euclidean space or
manifolds is nontrivial since, in general, there is no closed-
form expression for transition densities, which is key to con-
structing the conditioned dynamics via Doob’s h-transform
(Rogers & Williams, 2000). This task has gained a great
deal of attention in the past decades (Beskos et al., 2006;
Delyon & Hu, 2006; Schauer et al., 2017; Whitaker et al.,
2016; Bierkens et al., 2021; Mider et al., 2021; Heng et al.,
2022; Chau et al., 2024; Baker et al., 2024a). Among them,
one common approach is to use a proposed bridge process
(called guided proposal) as an approximation to the true
bridge. Then either MCMC or Sequential Monte Carlo
(SMC) methods are deployed to sample the true bridge
via the tractable likelihood ratio between the true and pro-
posed bridges. Another solution is to use the score-matching
technique (Hyvarinen, 2005; Vincent, 2011) to directly ap-
proximate the intractable score of the transition probability
using gradient-based optimization. Here, a neural network is
trained with samples from the unconditioned process (Heng
et al., 2022) or adjoint process (Baker et al., 2024a), and
plugged into numerical solving schemes, for example, Euler-
Maruyama. Several recent studies deal with the extension
of bridge simulation techniques beyond Euclidean spaces to
manifolds (Sommer et al., 2017; Jensen & Sommer, 2023;
Grong et al., 2024; Corstanje et al., 2024). All of these rely
on either a type of guided proposal or score matching.

Both guided-proposal-based and score-learning-based
bridge simulation methods have certain limitations: the
guided proposal requires a careful choice of a certain “aux-
iliary process”. (Mider et al., 2021) provided various strate-
gies, but it is fair to say that guided proposals are mostly use-
ful when combined with MCMC or Sequential Monte Carlo
(SMC) methods. In case of a strongly nonlinear diffusion
or high-dimensional diffusion, the simulation of bridges us-
ing guided proposals combined with MCMC (most notably
the preconditioned Crank-Nicolson (pCN) scheme (Cotter
et al., 2013)) or SMC may be computationally demanding.
On the other hand, score-matching relies on sampling un-
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conditioned processes, and it performs poorly for bridges
conditioned on rare events, as the unconditioned process
rarely explores those regions, resulting in inaccurate esti-
mation. Additionally, the canonical score-matching loss
requires the inversion of σσ⊤ with σ denoting the diffu-
sion coefficient of the process. This rules out hypo-elliptic
diffusions, where σσ⊤ is singular. It also poses computa-
tional challenges for high-dimensional diffusions, further
exacerbating the difficulty of obtaining stable and accurate
minimization of the loss.

To address these issues, we introduce a new bridge sim-
ulation method called neural guided diffusion bridge. It
consists of the guided proposal introduced in (Schauer
et al., 2017) with an additional correction drift term that
is parametrized by a learnable neural network. The family
of laws on path space induced by such improved proposals
provides a rich variational family for approximating the law
of the diffusion bridge. Once the variational approximation
has been learned, independent samples can be generated at a
cost similar to that of sampling the unconditioned (forward)
process. The contributions of this paper are as follows:

• We propose a simple diffusion bridge simulation
method inspired by the guided proposal framework,
avoiding the need for score modelling or intensive
MCMC or SMC updates. Once the network has been
trained, obtaining independent samples from the vari-
ational approximation is trivial and computationally
cheap;

• Unlike score-learning-based simulation methods,
which rely on unconditional samples for learning, our
method is grounded to learn directly from conditional
samples. This results in greater training efficiency, es-
pecially for learning the bridges that are conditioned
on rare events.

• We validate the method through numerical experi-
ments ranging from one-dimensional linear to high-
dimensional nonlinear cases, offering qualitative and
quantitative analyses. Advantages and disadvantages
compared to the guided proposal (Mider et al., 2021)
and two score-learning-based methods, (Heng et al.,
2022) and (Baker et al., 2024a), are included.

2. Related Work
Diffusion bridge simulation: This topic has received con-
siderable attention over the past two decades and it is hard
to give a short complete overview. Early contributions are
(Clark, 1990; Chib et al., 2004; Delyon & Hu, 2006; Beskos
et al., 2006; Lin et al., 2010; Golightly & Wilkinson, 2010).
The approach of guided proposals that we use here was intro-
duced in (Schauer et al., 2017) for fully observed uniformly

elliptic diffusions and later extend to partially observed
hypo-elliptic diffusions in (Bierkens et al., 2020).

Another class of methods approximate the intractable tran-
sition density using machine learning or kernel-based tech-
niques. (Heng et al., 2022) applied score-matching to define
a variational objective for learning the additional drift in
the reversed diffusion bridge. (Baker et al., 2024a) pro-
posed learning the additional drift directly in the forward
bridge via sampling from an adjoint process. (Chau et al.,
2024) leveraged Gaussian kernel approximations for drift
estimation.

The method we propose is a combination of existing ideas.
It used the guided proposals from (Schauer et al., 2017)
to construct a conditioned process, but learns an additional
drift term parametrized by a neural network using variational
inference.

Diffusion Schrödinger bridge: The diffusion bridge prob-
lem addressed in this paper may appear similar to the diffu-
sion Schrödinger bridge (DSB) problem due to their names,
but they are fundamentally different. A diffusion bridge is a
process conditioned to start and end at specific points, often
used for simulating individual sample paths under endpoint
constraints. In contrast, a Schrödinger bridge connects two
marginal distributions over time by finding the most likely
stochastic process (relative to a reference diffusion) that
matches these marginals. While both modify the original
dynamics, the diffusion bridge imposes hard constraints on
endpoints, whereas the Schrödinger bridge enforces them
in distribution. Although DSB has gained attention for ap-
plications in generative modelling (Thornton et al., 2022;
De Bortoli et al., 2021; Shi et al., 2024; Tang et al., 2024),
it is important to recognize the distinctions between these
problems.

Neural SDE: Neural SDEs generalize neural ODEs (Chen
et al., 2018) by introducing stochasticity, enabling the model-
ing of systems with inherently random dynamics. Research
in this area can be broadly divided into two categories: (1)
modeling terminal state data (Tzen & Raginsky, 2019a;b),
and (2) modeling entire trajectories (Li et al., 2020; Kidger
et al., 2021). Our approach falls into the latter category,
leveraging trainable drift terms and end-point constraints to
capture full trajectory dynamics.

3. Preliminaries: Recap on Guided Proposals
3.1. Problem Statement

Let (Ω,F ,P) be a probability space with filtration
{Ft}t∈[0,T ], W a dw-dimensional P-Wiener process, b :

[0, T ]× Rd → Rd and σ : [0, T ]× Rd → Rd×dw the drift-
and diffusion coefficients. A d-dimensional {Ft}-adapted
diffusion process X with the law of P is defined as the
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strong solution to the stochastic differential equation (SDE):

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0 ∈ Rd. (1)

The coefficients b, σ are assumed to be Lipschitz continuous
and of linear growth to guarantee the existence of a strong
solution Xt (Øksendal, 2014, Chapter 5.2). In addition,
we impose the standing assumption that X admits smooth
transition densities p with respect to the Lebesgue measure
λ on (Rd,B(Rd)), where B(Rd) is the Borel algebra of Rd.
That is, P(Xt ∈ A | Xs = x) =

∫
A
p(t, y | s, x)λ(dy) for

0 ≤ s < t ≤ T , A ⊂ Rd.

Notation 3.1. Let P◦,P⋆ and P• be measures on (Ω,F),
we denote the laws of X on C([0, T ],Rd) under P◦,P⋆ and
P• by L◦,L⋆ and L• respectively. For notational ease, the
expectations under P◦,P⋆ and P• (and similarly L◦,L⋆ and
L•) are denoted by E◦,E⋆ and E• respectively. The process
X under L◦,L⋆ and L• is sometimes denoted by X◦, X⋆

and X• respectively. For any measure Q on (Ω,F), we
always denote its restriction to Ft by Qt.

The following proposition combines Proposition 4.4 and
Example 4.6 in (Pieper-Sethmacher et al., 2025). It shows
how the dynamics of X change under observing certain
events at time T .

Proposition 3.2. Fix t < T . Let y ∈ Rd and q(· | y) be a
probability density function with respect to a finite measure
ν. Let h(t, x) =

∫
Rd p(T, y | t, x)q(v | y)ν(dy), and define

the measure P⋆
t on Ft by dP⋆

t := h(t,Xt)
h(0,x0)

dPt. Then under
the new measure P⋆

t , the process X solves the SDE

dXt = b⋆(t,Xt) dt+ σ(s,Xs) dW
⋆
s ,

b⋆(s, x) = b(s, x) + a(s, x)r(s, x), X0 = x0.
(2)

where r(s, x) = ∇x log h(s, x), a(s, x) = σ(s, x)σ⊤(s, x)
and W ⋆ is a P⋆-Wiener process.

Furthermore, for any bounded and measurable function g
and 0 ≤ t1 ≤ ... ≤ tn < T ,

E⋆[g(Xt1 , ..., Xtn)]

=

∫
Rd

E[g(Xt1 , ..., Xtn) | XT = y] ξ(dy),
(3)

where ξ is the measure defined on (Rd,B(Rd)) via

ξ(dy) =
p(T, y | 0, x0)q(v | y)ν(dy)∫
Rd p(T, y | 0, x0)q(v | y)ν(dy)

. (4)

Remark 3.3. A Bayesian interpretation of Equation (4) can
be obtained by considering the following hierarchical model:

v | y ∼ q(v | y), (5a)
y ∼ p(T, y | 0, x0). (5b)

Here, y is considered as the parameter that gets assigned
the prior density p(T, y | 0, x0) and v is the observation.
Therefore, ξ is the posterior distribution of y and (3) shows
that sampling of the conditioned process can be done by
first sampling the endpoint xT from distribution ξ, followed
by sampling a bridge connecting x0 and xT .

Throughout the paper, we will consider q(v | y) =
ψ(v;Ly,Σ), where L ∈ Rd′×d with d′ ≤ d and L of
full (row) rank. Here, ψ(x;µ,Σ) denotes the density of
the N (µ,Σ)-distribution, evaluated at x. For example, for
a two-dimensional diffusion y =

[
y1 y2

]⊤
observing

only the first component y1 corresponds to L =
[
1 0

]
as Ly = y1. In our simulation experiments, we will assume
Σ = ϵ2I, for a small value of ϵ, which is close to observing
without error. Taking ϵ strictly positive stabilizes numerical
computations.

3.2. Guided Proposal

If pwere known in closed form, then the conditioned process
could be directly sampled from Equation (2). This is rarely
the case. For this reason, let X̃ be an auxiliary diffusion
process that admits transition densities p̃ in closed form. Let
h̃(t, x) =

∫
Rd p̃(T, y | t, x)q(v | y)ν(dy). Define

Et :=
h̃(t,Xt)

h̃(0, x0)
exp

(∫ t

0

(∂s +A)h̃
h̃

(s,Xs) ds

)
, (6)

where A is the infinitesimal generator of the process X , i.e.
for any f in its domain Af(x) =

∑
i bi(t, x)∂if(t, x) +

1
2

∑
i,j aij(t, x)∂ijf(t, x). Let t < T . Under weak condi-

tions (see e.g. (Palmowski & Rolski, 2002, Lemma 3.1)),
E[Et] = 1. Using h̃ we can define the guided proposal.

Definition 3.4. (Schauer et al., 2017) If we define the
change of measure dP◦

t = EtdPt, then, under P◦
t , the pro-

cess X solves the SDE

dXs = b◦(s,Xs) ds+ σ(s,Xs) dW
◦
s ,

b◦(s, x) = b(s, x) + a(s, x)r̃(s, x), X0 = x0,
(7)

where s ∈ [0, t], r̃(t, x) = ∇x log h̃(t, x) and W ◦ is a P◦
t -

Wiener process. The process X under the law P◦
t is known

as the guided proposal.

Intuitively, X◦ is constructed to resemble the true condi-
tioned process X⋆ by replacing r by r̃. Crucially, as its drift
and diffusion coefficients are known in closed form, the
guided proposal can be sampled using efficient numerical
SDE solvers such as Euler-Maruyama.

The definition of the guided process can be extended to
[0, T ] by continuity. Whereas Pt ≪ P◦

t for t < T the mea-
sures will typically be singular in the limit t ↑ T . Neverthe-
less, P⋆

t ≪ P◦
t may still hold under this limiting operation

3



Neural Guided Diffusion Bridges

and this is what matters for our purposes. In (Schauer et al.,
2017) and (Bierkens et al., 2020), precise conditions are
given under which P⋆

T ≪ P◦
T . In the case of condition-

ing on the event {LXT = v} –so there is no noise on the
observation– this is subtle. We postpone a short discussion
on this to Section 3.4 to argue that all numerical examples
considered in Section 5 will not break down in case the
noise level on the observation, ϵ, tends to zero. We then get
the following theorem from (Bierkens et al., 2020, Theorem
2.6) that states the change of laws from L◦ to L⋆.

Theorem 3.5. If certain assumptions (Bierkens et al., 2020,
Assumptions 2.4, 2.5) hold, then

dL⋆

dL◦ (X) =
h̃(0, x0)

h(0, x0)
ΨT (X), (8)

where

ΨT (X) = exp

(∫ T

0

(∂t +A)h̃
h̃

(s,Xs)ds

)
. (9)

3.3. Guided Proposal Induced by Linear Process

The choice of the auxiliary process X̃ , which determines
h̃ and hence the guided process, offers some flexibility, as
long as the conclusion of Theorem 3.5 applies. We now
specialize to the case where the process X̃ solves a lin-
ear SDE, as in this case h̃ can be obtained by solving a
finite-dimensional system of ordinary differential equations
(ODEs). Specifically, we assume X̃ solves

dX̃t = b̃(t, X̃t) dt+ σ̃(t) dWt,

b̃(t, x) = β(t) +B(t)x, X̃0 = x0.
(10)

Let Ã denote the infinitesimal generator of the process X̃ .
Since h̃ solves (∂t + Ã)h̃ = 0, we can replace (∂t +A)h̃
by (A− Ã)h̃. This gives

Ψt(X) = exp

(∫ t

0

G(s,Xs)ds

)
, t ≤ T, (11)

G(s, x) :=
〈
b(s, x)− b̃(s, x), r̃(s, x)

〉
−1

2
tr
(
[a(s, x)− ã(s)]

[
H̃(s)− (r̃r̃⊤)(s, x)

])
. (12)

Here, H̃(s) is the negative Hessian of log h̃(s, x), which
turns out to be independent of x, ã(s) = (σ̃σ̃⊤)(s). Under
the choice of q(v | y) = ψ(v;Ly,Σ) and X̃ , H̃ and r̃ are
given by

H̃(t) = L⊤(t)M(t)L(t), (13)

r̃(t, x) = L⊤(t)M(t)(v − u(t)− L(t)x), (14)

where M(t) = (M†(t))−1 and L, M† and u satisfy the sys-
tem of backward ODEs (See (Mider et al., 2021, Theorem

2.4)):

dL(t) = −L(t)B(t) dt, L(T ) = L, (15a)

dM†(t) = −L(t)ã(t)L⊤(t) dt, M†(T ) = Σ, (15b)
du(t) = −L(t)β(t) dt, u(T ) = 0. (15c)

Remark 3.6. A simple choice of X̃ is a scaled Brownian
motion, i.e. X̃t = σ̃Wt. If σ̃σ̃⊤ is invertible, then

∇x log p̃(T, v | s, x) = (σ̃σ̃⊤)−1 v − x
T − s . (16)

Therefore, the guided proposal has drift b(s, x) +
σ(s, x)σ⊤(s, x)(σ̃σ̃⊤)−1(v − x)/(T − s). If σ(s, x) = σ̃
this reduces to the guiding term proposed in (Delyon & Hu,
2006).

3.4. Choice of Linear Process

The linear process is defined by the triplet of functions
(β,B, σ̃). In choosing this triplet, two considerations are of
importance:

1. In case of conditioning on the event {LXT = v} –so
no extrinsic noise on the observation– the triplet needs
to satisfy certain “matching conditions” (see (Bierkens
et al., 2020, Assumption 2.4)) to ensure P⋆ ≪ P◦. For
uniformly elliptic diffusions, this only affects σ̃. In
case L = Id, so the conditioning is on the full state, σ̃
should be chosen such that ã(T ) = a(T, xT ). Hence,
for this setting, we can always ensure absolute conti-
nuity. For the partially observed case, it is necessary
to assume that a is of the form a(t, x) = s(t, Lx) for
some matrix values map s. In that case, it suffices
to choose ã such that Lã(T )L⊤ = Ls(T, v)L⊤. In
case the diffusivity does not depend on the state, a
natural choice is to take σ̃ = σ to guarantee absolute
continuity.

For hypo-elliptic diffusions, the restrictions are a bit
more delicate. On top of conditions on σ̃, it is also re-
quired to match certain properties in the drift by choice
of B. With the exception of the FitzHugh-Nagumo
(FHN) model studied in Section 5.3, in all examples
that we consider in Section 5 we have ensured these
properties are satisfied. The numerical simulation re-
sults for FHN model presented in (Bierkens et al.,
2020) strongly suggest that the conditions posed in
that paper are actually more stringent than needed for
absolute continuity. For this reason, we chose the aux-
iliary process just as in (Bierkens et al., 2020).

2. Clearly, the closer b̃ to b and ã to a, the more the
guided proposal resembles the true conditioned pro-
cess. This can for instance be seen from logΨT (X) =
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0
(A−Ã)h̃

h̃
(s,Xs)ds, which vanishes if the coeffi-

cients are equal. As proposed in (Mider et al., 2021),
a practical approach is to compute the first-order Tay-
lor expansion at the point one conditions on, i.e.,
β(t) = b(t, v), B(t)x = Jb(t, v)(x − v), where Jb
is the Jacobian of b(t, x) with respect to x. Compared
to simply taking a scaled Brownian motion, this choice
can result in a guided proposal that better mimics true
conditioned paths.

3.5. Strategies for Improving upon Guided Proposals

Although the guided proposal takes the conditioning into
account, its sample paths may severely deviate from true
conditioned paths. This may specifically be the case for
strong nonlinearity in the drift or diffusivity. There are
different ways of dealing with this.

• If we write the guided path as functional of the driving
Wiener process, one can update the driving Wiener in-
crements using the pCN within a Metropolis-Hastings
algorithm. Details are provided in Appendix A.1, see
also the discussion in (Mider et al., 2021).

• Devising better choices for B, β and σ̃.

• Adding an extra term to the drift of the guided pro-
posal by a change of measure, where a neural network
parametrizes this term. We take this approach here and
further elaborate on it in the upcoming section.

4. Methodology
4.1. Neural Guided Diffusion Bridge

For a specific diffusion process, it may be hard to specify
the maps B, β and σ̃, which may lead to a guided pro-
posal whose realizations look rather different from the ac-
tual conditioned paths. For this reason, we propose to adjust
the dynamics of the guided proposal by adding a learnable
bounded term σ(s, x)ϑθ(s, x) to the drift. Specifically, let
ϑθ : [0, T ] × Rd → Rd be a function parameterized by
θ ∈ Θ, where Θ denotes the parameter space. Define:

κt := exp

(∫ t

0

ϑ⊤θ (s,Xs)dW
◦
s −

1

2

∫ t

0

∥ϑθ(s,Xs)∥2ds
)
.

(17)
We impose the following assumption on ϑθ:

Assumption 4.1. The map ϑθ is bounded and x 7→ ϑθ(s, x)
is Lipschitz continuous, uniformly in s ∈ [0, T ].

The Lipschitz continuity ensures κt is a martingale with
E[κT ] = 1. Define a new probability measure P• on
(Ω,FT ) by

dP• := κTdP◦ (18)

Then by Girsanov’s theorem, the process W •
t := W ◦

t −∫ t

0
ϑθ(s,Xs)ds is a P•-Wiener process. We now define a

new diffusion process X• under P•:

Definition 4.2. The neural guided diffusion bridge is a
diffusion process that is defined as the strong solution to the
SDE:

dXt = b•θ(t,Xt) dt+ σ(t,Xt) dW
•
t ,

b•θ(s, x) = b◦(s, x) + σ(s, x)ϑθ(s, x), X0 = x0,
(19)

where b◦(s, x) = b(s, x)+a(s, x)r̃(s, x) is defined in Equa-
tion (7).

A unique strong solution X• to Equation (19) is guaranteed
due to Assumption 4.1.

We propose to construct ϑθ as a learnable neural network,
whose goal is to approximate the difference of drift coeffi-
cients. When ϑθ = σ⊤(r − r̃), the discrepancy between P•

and P⋆ vanishes. Lipschitz continuity of the neural net can
be achieved by employing sufficiently smooth activation
functions and weight normalization. Gradient clipping can
prevent extreme growth on x. In our numerical experiments,
we use either tanh or LipSwish (Chen et al., 2019) activa-
tions and gradient clipping by the norm of 1.0 to fulfill such
conditions.

To learn the map ϑθ, we propose a loss function derived
from a variational approximation where the set of mea-
sures {P•

θ; θ ∈ Θ} provides a variational class for approxi-
mating P⋆. The following theorem shows that minimizing
θ 7→ DKL(P•

θ||P⋆) is equivalent to minimizing L as defined
below.

Theorem 4.3. If we define the loss function by

L(θ) := E•
∫ T

0

{
1

2
∥ϑθ(s,Xs)∥2 −G(s,Xs)

}
ds, (20)

then

DKL(P•
θ||P⋆) = L(θ)− log

h̃(0, x0)

h(0, x0)
, (21)

with G(s, x) as defined in Equation (12).

The proof is given in Appendix A.2. Note that under P•,
the law of X depends on θ and therefore the dependence
of L on θ is via both ϑθ and the samples from X under θ-
parameterized P•. If θopt is a local minimizer of L and

L(θopt) = log h̃(0,x0)
h(0,x0)

, then θopt is a global minimizer.
This implies DKL(P•

θopt
||P⋆) = 0 from which we obtain

P•
θopt

= P⋆. (Heng et al., 2022) applied a similar varia-
tional formulation. However, contrary to our approach, in
this work the drift of the bridge proposal is learned from
unconditional forward samples. Not surprisingly, this can
be inefficient when conditioning on a rare event.
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It can be seen that L is low bounded by log h̃(0,x0)
h(0,x0)

. In gen-
eral, h is not known in closed form, but in some simple
settings it is. In such settings, we can directly inspect the
value of the lower bound and assess whether the trained neu-
ral network is optimal. In Section 5.1, we provide examples
for such sanity checks.

4.2. Reparameterization and Numerical
Implementation

Optimizing L by gradient descent requires sampling from
a parameterized distribution P• and backpropagating the
gradients through the sampling. To estimate the gradient,
We use the reparameterization trick proposed in (Kingma
& Welling, 2022). Specifically, the existence of a strong
solution X• to Equation (19) means that there is a measur-
able map ϕθ : C([0, T ],Rdw) → C([0, T ],Rd), such that
X• = ϕθ(W

•). Here, we have dropped the dependence of
ϕθ on the initial condition x0 as it is fixed throughout. The
objective Equation (20) can be then rewritten as:

L(θ) = E•
∫ T

0

{
1

2
∥ϑθ(t, ϕθ(Wt)∥2 −G(t, ϕθ(Wt))

}
dt.

(22)
Choose a finite discrete time grid T := {tm}m=0,1,...,M ,
with t0 = 0, tM = T . Let X•

tm ,W
•
tm be the evaluations

of X•,W • at t = tm respectively, {x•(n)tm }, {w
•(n)
tm }, n =

1, . . . , N be collections of samples of X•
tm ,W

•
tm , and

x
•(n)
t0 = ϕθ(w

•(n)
t0 ) = x0. Then Equation (22) can be

approximated by the Monte Carlo approximation:

L(θ) ≈ 1

N

N∑
n=1

M∑
m=1

{
1

2
∥ϑθ(tm−1, ϕθ(w

•(n)
tm−1

))∥2

−G(tm−1, ϕθ(w
•(n)
tm−1

))
}
δt. (23)

In practice, x•(n)tm = ϕθ(w
•(n)
tm ) is implemented as a numeri-

cal SDE solver fθ(w
•(n)
tm , tm−1, x

•(n)
tm−1

) that takes the previ-

ous step (tm−1, x
•(n)
tm−1

) as additional arguments. As x•(n)tm−1

also depends on θ, the gradient with respect to θ needs to be
computed recursively. Leveraging automatic differentiation
frameworks, all gradients can be efficiently recorded in an
acyclic computational graph during the forward integration,
enabling the backpropagation for updating θ. While the
complexity of backpropagation scales linearly with M and
quadratically with d—a property inherent to gradient-based
optimization methods—our approach remains highly effi-
cient for moderate-dimensional problems and provides a
robust foundation for further scalability improvements. Fur-
ther details about the gradient computation can be found
in Appendix A.3 and the numerical algorithm is shown as
Algorithm 1

Algorithm 1 Neural guided bridge training

Input: Discrete time grid T := {tm}m=0,1...,M , initial
θ, number of iterations K
Solve Equation (15) on T backwards, obtain and store
{H̃(tm)},{r̃(tm, ·)} using Equations (13) and (14).
repeat

for n = 1, . . . , N do
Sample w•(n) = {w•(n)

tm } on T .
Solve Equation (19) on T with w•(n) = {w•(n)

tm },
obtain {x•(n)tm }.

end for
Approximate L(θ) by Equation (23).
Backpropagate∇θL(θ) and update ϑθ by gradient de-
scent.

until Iteration count > K

5. Experiments
5.1. Linear Processes

We consider one-dimensional linear processes with ana-
lytically tractable conditional drifts, including Brownian
motion with constant drift and the Ornstein–Uhlenbeck pro-
cess. For these models, the lower bound of θ 7→ L(θ) can
be explicitly computed, serving as a benchmark to assess
whether the neural network reaches this bound. Additional
details are provided in Appendix B.2.

Brownian bridge: Consider a one-dimensional Brownian
motion with constant drift: dXt = γdt + σdWt. As its
transition density p(t, xt | s, xs) is Gaussian, the fully-
observed process conditioned on {XT = v}, satisfies the
SDE:

dX⋆
t =

v −X⋆
t

T − t dt+ σdWt. (24)

We construct the guided proposal using the auxiliary process
X̃t = σWt. It is easy to see that X• solves the SDE:

dX•
t =

{
γ +

v −X•
t

T − t + σϑθ(t,X
•
t )

}
dt+ σdWt. (25)

By comparing X• with X⋆, it is clear that the optimal map
ϑ is given by ϑθopt(t, x) = −γ/σ. Additionally, the lower

bound on L, log h̃(0,x0)
h(0,x0)

, is analytically tractable since the

transition densities p̃ of X̃ are Gaussian. In Figure 6a, we
track how the training varies over iterations under different
settings of γ and σ, which leads to different lower bounds. It
can be seen that all the trainings converge to corresponding
theoretical lower bounds. Figure 2 compares the trained map
ϑθ with the optimal map ϑθopt . The neural network matches
the optimal map in regions well supported by the training
data, but the approximation error grows outside these re-
gions—a common limitation of neural network training.
Figure 3 shows the empirical marginal densities of the neu-
ral bridge alongside the analytical densities obtained from

6
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independent simulations of Equations (24) and (25). The
learned and analytical distributions are in close agreement.

Ornstein-Uhlenbeck bridge: We now consider the
Ornstein-Uhlenbeck (OU) process:

dXt = γ(µ−Xt)dt+ σdWt, (26)

which requires a t, x-dependent ϑθopt to correct the guided
proposal. Upon choosing X̃t = σWt, the neural bridge
satisfies the SDE:

dX•
t =

{
γ(µ−X•

t ) +
v −X•

t

T − t + σϑθ(t,X
•
t )

}
dt+σdWt.

(27)
As with Brownian motion, the OU process has Gaussian

transition densities and is therefore analytically tractable.
Using this property, we derive the optimal map ϑθopt and the
corresponding lower bound on L, given in Equations (46)
and (47). We vary the parameters γ, µ, and σ and plot
the resulting training-loss curves alongside the analytical
lower bound in Figure 6b; in every case the loss converges
to its respective bound. Figure 4 compares the outputs of
the trained network with the optimal map, and Figure 5
shows the empirical marginal densities of the learned neural
bridge with those of the analytical bridge obtained from
independent simulations of Equations (27) and (44).

From the above two experiments, we conclude that the
neural network is able to learn the optimal drift with the
proposed loss function and that the neural guided bridge
is very close to the true bridge in terms of KL divergence
(reflected by the very small differences between training
losses and analytical lower bounds). In the remaining nu-
merical examples no closed form expression is available for
h(0, x0) and therefore performance can only be assessed
qualitatively.

5.2. Cell Diffusion Model

(Wang et al., 2011) introduced a model for cell differentia-
tion which serves as a test case for diffusion bridge simu-
lation in (Heng et al., 2022; Baker et al., 2024a). Cellular
expression levels Xt =

[
Xt,1 Xt,2

]⊤
are governed by the

2-dimensional SDE:

dXt =

 X4
t,1

2−4+X4
t,1

+ 2−4

2−4+X4
t,2
−Xt,1

X4
t,2

2−4+X4
t,2

+ 2−4

2−4+X4
t,1
−Xt,2

dt+σdWt, (28)

driven by a 2-dimensional Wiener process W . The highly
nonlinear drift makes this a challenging case. The guided
neural bridge is constructed as an OU process:

dX̃t = {1− X̃t}dt+ σdWt, (29)

with 1 =
[
1 1

]⊤
. We study three representative fully-

observed cases that result in distinct dynamics for the condi-
tional processes: (1) events that are likely under the forward

process, which we refer to as “normal” events; (2) rare
events; and (3) events that cause trajectories to exhibit multi-
ple modes, where the marginal probability at certain times is
multimodal. We compare our method to (a) the guided pro-
posal (Schauer et al., 2017); (b) bridge simulation via score
matching (Heng et al., 2022); and (c) bridge simulation
using adjoint processes (Baker et al., 2024a). The topleft
panel of Figure 1 shows realisations of forward samples
of the process. The other panels show performance of the
neural guided bridge upon conditioning on various events,
that we detail below. Further details on these experiments
are presented in Appendix B.3.
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(a) Unconditioned
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(c) Rare event
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(d) Multi-modality

Figure 1. Top left (a): 30 realisations from the unconditioned cell
diffusion model (Cf. Equation (28)). Top right (b): 30 realisations
from the learned conditional process on a “normal event” v =[
2.0 −0.1

]⊤; Bottom left (c): 30 realisations from the learned
conditional process on a rare event v =

[
1.0 −0.1

]⊤; Bottom
right (d): 30 realisations from the learned conditional process on
event v =

[
−1.0 −1.0

]⊤ that causes multi-modality. Except
in panel (d), all processes start from x0 =

[
0.1 −0.1

]⊤ and
run up to time T = 4.0. In (d), the process starts from x0 =[
−1.0 −1.0

]⊤ and runs up to time T = 5.0.

In all the experiments in the following we take σ = 0.1.

Normal event: We set x0 =
[
0.1 −0.1

]⊤
, T = 4 and

v =
[
2.0 −0.1

]⊤
. From the topleft panel in Figure 1

it is clear that this corresponds to a normal event: balls
around v at time T get non-negligible mass under the un-
conditioned process. In Figure 1b, we show 30 sample
paths obtained from sampling the trained neural bridge and
Figure 7 shows a comparison to the three baseline meth-
ods mentioned above. Since the true conditional process
is analytically intractable, we generated 100, 000 samples
from the forward (unconditional) process Equation (28), and
obtained 172 samples that satisfy ∥LXT − v∥ ≤ 0.01, and
only show first 30 samples in the figure. Those samples can
be treated as samples close to true bridges. Overall, all four
methods successfully recover the true dynamics. The perfor-
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mance of all four methods considered is comparable.Note
that the adjoint bridge sample paths appear slightly more
dispersed.

Rare event: We set x0 =
[
0.1 −0.1

]⊤
and T = 4 as

before but now we take v =
[
1.0 −0.1

]⊤
, which is a rare

event. Unlike the “normal event” case, the true dynamics
cannot be recovered by forward sampling from the uncondi-
tioned process, as it is highly improbable that paths end up
in a small ball around v. In Figure 1c, we show 30 sample
paths obtained from sampling the trained neural bridge and
Figure 7 shows a comparison to the three baseline methods
mentioned above. All methods except the adjoint forward
approach capture the correct trajectory dynamics, consistent
with findings in (Baker et al., 2024a). Among the remaining
three, trajectories from the neural bridge align more closely
with those from the guided proposal than those from score
matching. In the score matching method, samples of Xt,1

show higher variance prior to t = 3.5, suggesting less ac-
curate score estimates. This is expected, as score matching
learns its drift from samples of the unconditioned process
which rarely reaches small balls around v, leading to poor
approximation quality.

Multi-modality: In both of the previous cases, each com-
ponent’s marginal distribution at times (0, T ] is unimodal.
However, with some special initial conditions, multimodal-
ity can arise, which poses a challenging task where one
would like to recover all modes. Specifically, let x0 =[
−1.0 −1.0

]⊤
, T = 5.0 and v =

[
−1.0 −1.0

]⊤
. In

Figure 1d, we show 30 sample paths obtained from sampling
the trained neural bridge and Figure 7 shows a comparison
to the three baseline methods mentioned above. Both the
adjoint bridge and score matching fail to model the dynam-
ics accurately. In contrast, the neural bridge and guided
proposal yield similar marginal distributions. However,
good performance of the guided proposal may take many
MCMC iterations, or possibly the use of multiple (interact-
ing) chains. Once trained, the neural bridge can generate
independent samples, at a cost comparable to unconditioned
forward simulations, while maintaining sampling quality
close to that of the guided proposal.

Across all three tasks, the neural bridge shows strong adapt-
ability and achieves performance comparable to the guided
proposal, with the added benefit of faster independent sam-
pling. In contrast, the other two methods exhibit limitations
under specific settings.

5.3. FitzHugh-Nagumo Model

We consider the FitzHugh-Nagumo model, which is a pro-
totype of an excitable system, considered for example in
(Ditlevsen & Samson, 2019; Bierkens et al., 2020). It is

described by the SDE:

dXt =

{[ 1
χ − 1

χ

γ −1

]
Xt +

[
s−X3

t,1

χ

α

]}
dt+

[
0
σ

]
dWt

(30)
We condition the process by the value of its first component
by setting L =

[
1 0

]
and hence condition on the event

LXT = v ∈ R. We construct the guided proposal as pro-
posed in (Bierkens et al., 2020) using the Taylor expansion
−x3 ≈ 2v3 − 3v2x at x = v. Thus, X̃ satisfies the SDE

dX̃t =

{[
1−3v3

χ − 1
χ

γ −1

]
X̃t +

[
2v3+s

χ

α

]}
dt+

[
0
σ

]
dWt

(31)
Suppose {χ, s, γ, α, σ} = {0.1, 0, 1.5, 0.8, 0.3}. We ex-
amine the conditional behaviour of X within t ∈ [0, 2.0]
under two scenarios: (1) conditioning on a normal event
v = −1.0; and (2) conditioning on a rare event v = 1.1. As
the score-matching and adjoint-process methods have not
been proposed in the setting of a partially observed state,
we only compare our method to the guided proposal.

Normal event: Figure 11 compares sample trajectories
generated by the neural bridge and guided proposal. As
a reference, paths obtained by unconditional sampling are
added, where any path not ending close to the endpoint has
been rejected. Both methods capture the key features of
the conditioned dynamics, closely matching the reference
trajectories. However, the neural bridge achieves this using
independently drawn samples after training, whereas the
guided proposal requires a long MCMC chain. The simi-
larity between the neural bridge and the guided proposal
confirms that the neural bridge effectively approximates the
conditioned distribution, indicating accurate modeling of
the dynamics under normal event conditioning.

Rare event: In Figure 12 we redo the experiment under
conditioning on a rare event. Both the neural bridge and the
guided proposal successfully capture the bimodal structure
in the trajectories, as reflected by the two distinct clusters
in the Xt,1 paths, particularly evident after t ≈ 0.5. How-
ever, the guided proposal matches the reference distribution
more closely, especially in the concentration and spread of
trajectories beyond time t = 1.5.

5.4. Stochastic Landmark Matching

Finally, we present a high-dimensional stochastic nonlinear
conditioning task: stochastic landmark matching, see for
instance (Arnaudon et al., 2022). We consider a stochastic
model that describes the evolution of n distinct landmarks
in Rd of a closed nonintersecting curve in Rd. The state
at time t, Xt, consists of the concatenation of each of the
n landmark locations at time t. Hence, Xt takes values in
Rdn. The stochastic landmark model defined in (Arnaudon
et al., 2022), for ease of exposition considered without mo-
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OU (d = 1) Cell (d = 2) FHN (d = 2) Landmark (d = 20)
Methods #Params Time #Params Time #Params Time #Params Time

Adjoint forward (Baker et al., 2024a) 21, 969 162.68s 22, 114 265.06s N/A N/A 114, 744 543.80s
Score matching (Heng et al., 2022) 26, 353 65.55s 26, 498 103.38s N/A N/A 26, 766 353.05s

Neural guided bridge (ours) 921 44.12s 2, 306 94.79s 3, 362 113.77s 15, 188 122.48s

Table 1. Benchmarks with two other deep-learning based methods. Neither adjoint forward nor score matching is available for the FHN
partially observed conditioning case (denoted as “N/A”, not applicable in the table). All the experiments are conducted with the parameters
described in Appendix B.

mentum variables, defines the process (Xt, t ∈ [0, T ]) as
the solution to the SDE

dXt = Q(Xt)dWt, Q(Xt)ij := k(X
(i)
t , X

(j)
t )Id. (32)

Here Id is the d-dimensional identity matrix, W is a dn-
dimensional Wiener process and k is a kernel function
Rd × Rd → R. In our numerical experiments we chose the
Gaussian kernel k(s, y) = 1

2α exp
(
−∥x−y∥2

2κ2

)
. The kernel

parameters are chosen to be α = 0.3, κ = 0.5 to ensure
a strong correlation between a wide range of landmarks.
Note that the diffusion coefficient Q is state-dependent.
To demonstrate the necessity of constructing such a state-
dependent diffusion coefficient, consider the process X̃
solving the SDE

dX̃t = Q(v)dWt, (33)

where the diffusion constant is constant. As a result, the
system becomes linear. The processes defined by Equa-
tion (32) and Equation (33) are fundamentally different. In
particular, Equation (32) guarantees that t 7→ Xt gener-
ates a stochastic flow of diffeomorphisms (Sommer et al.,
2021). This diffeomorphic setting preserves the shape struc-
ture during evolution, whereas the linear process defined by
Equation (33) does not. As illustrated in Figure 13, a vi-
sual comparison (using identical driving Wiener processes)
reveals that the linear process disrupts the shape topology,
leading to overlaps and intersections. The diffusion process
defined by Equation (33) can however be used as auxiliary
process in the construction of guided proposals. We opted
for this choice in our numerical experiments.

In our numerical experiments, we chose one ellipse as the
starting point and another ellipse as the endpoint of the
bridge. Each ellipse is discretized by 50 landmarks, leading
to the dimension of Xt being 100. We took T = 1.0. In
the leftmost column of Figure 14 we fix a Wiener process
and show on the top- and middle row the guided proposal
and neural bridge using this Wiener process. We observed
that due to the very simple choice of auxiliary process, the
guided proposal has difficulty reaching the final state. In
fact, we had to increase ϵ2 to 2e − 3 for not running into
numerical instabilities. Here, one can see that the additional
learning by the neural bridge gives much better performance.
In the bottom row, we used the guided proposal with the
same Wiener process as initialization, augmented by running

5000 pCN iterations and plotted the final iteration. From
this, one can see that these iterations provide another way to
improve upon the guided proposal in the top row. The other
columns repeat the same experiment with different Wiener
process initializations. Due to the high-dimension of the
problem, repeated simulation required for pCN steps may
be computationally expensive.

We benchmarked our method on the four test cases described
above, comparing it to two other deep learning-based ap-
proaches in Table 1. The comparison considers the number
of network parameters and total training time, with all meth-
ods trained using the same number of gradient descent steps
and batch sizes. Our method outperforms both alternatives
in terms of model size and training efficiency.

6. Conclusions and Limitations
We propose the neural guided diffusion bridge, a novel
method for simulating diffusion bridges that enhances
guided proposals through variational inference, eliminat-
ing the need for MCMC or SMC. This approach enables
efficient independent sampling with comparable quality in
challenging tasks where existing score-learning-based meth-
ods struggle. Extensive experiments, including both quanti-
tative and qualitative evaluations, validate the effectiveness
of our method. However, as the framework is formulated
variationally and optimized by minimizing DKL(P•

θ||P⋆),
it exhibits mode-seeking behaviour, potentially limiting its
ability to explore all modes compared to running multiple
MCMC chains. Despite this limitation, our method provides
a computationally efficient alternative to guided proposals,
particularly in generating independent samples from the
conditioned process.

Our approach focuses on better approximating the drift of
the conditioned process while keeping the guiding term that
ensures the process hits v at time T relatively simple. In
future work, an interesting direction to obtain improved re-
sults consists in trying to jointly learn ϑθ and the parameters
of the linear process (σ̃, B, β). Also, as the gradient updat-
ing relies on backpropagating through the whole numeri-
cal SDE solvers, techniques such as the stochastic adjoint
sensitivity method (Li et al., 2020) and adjoint matching
(Domingo-Enrich et al., 2025) can be introduced to improve
the efficiency of the computation. Another venue of future
research consists of extending our approach to conditioning
on partial observations at multiple future times.
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A. Theoretical Details
A.1. Preconditioned Crank-Nicolson

Algorithm 2 is a special case of Algorithm 4.1 of (Mider et al., 2021).

Algorithm 2 Preconditioned Crank-Nicolson scheme for guided proposals

1: Input: Discrete time grid T := {tm}m=0,1,...,M , tuning parameter η ∈ [0, 1), number of required samples K
2: Solve Equation (15) on T , obtain {H̃(tm)}, {r̃(tm, ·)} using Equations (13) and (14).
3: Sample w = {wtm} on T .
4: Solve Equation (7) on T with w = {wtm}, obtain y = {ytm}.
5: repeat
6: Sample new innovations z = {ztm} on T independently.
7: Set w◦ = ηw +

√
1− η2z.

8: Solve Equation (7) on T with z = {ztm}, obtain y◦ = {y◦tm}.
9: Compute A = Ψ(y◦)/Ψ(y) with {y◦tm} and {ytm} using Equation (11).

10: Draw U ∼ U(0, 1).
11: if U < A then
12: y ← y◦ and w ← w◦

13: end if
14: Save y.
15: until Sample counts > K.

A.2. Proof of Theorem 4.3

Proof. Consider the KL divergence between P•
θ and P⋆:

DKL(P•
θ||P⋆) = E•

[
log

(
dL•

θ

dL⋆

)
(X)

]
= E•

[
log

(
dL•

θ

dL◦ ·
dL◦

dL⋆

)
(X)

]
= E•

[
log

(
dL•

θ

dL◦ (X)

)]
− E•

[
log

(
dL⋆

dL◦ (X)

)]
. (34a)

By Girsanov’s theorem,

E•
[
log

(
dL•

θ

dL◦ (X)

)]
= E•

[
log

dP•
θ

dP◦

]
(35a)

= E•

[∫ T

0

ϑθ(t,Xt)dW
◦
t −

1

2

∫ T

0

∥ϑθ(t,Xt)∥2dt
]

= E•

[∫ T

0

ϑθ(t,Xt)dW
•
t +

1

2

∫ T

0

∥ϑθ(t,Xt)∥2dt
]

= E•

[
1

2

∫ T

0

∥ϑθ(t,Xt)∥2dt
]
, (35b)

where the stochastic integral vanishes because of the martingale property of the Itô integral. The first equality follows from
Equation (18). By Equation (8)

E•
[
log

(
dL⋆

dL◦ (X)

)]
= E•

[∫ T

0

G(t,Xt)dt

]
+ log

h̃(0, x0)

h(0, x0)
. (36)

Substituting Equation (35b) and Equation (36) into Equation (34a) gives

DKL(P•
θ||P⋆) = E•

∫ T

0

{
1

2
∥ϑθ(t,Xt)∥2 −G(t,Xt)

}
dt− log

h̃(0, x0)

h(0, x0)
= L(θ)− log

h̃(0, x0)

h(0, x0)
≥ 0, (37)

with L(θ) as defined in Equation (20).
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A.3. SDE Gradients

We now derive the gradient of Equation (23) with respect to θ, on a fixed Wiener realization w•(n) = {w•(n)
tm }. As discussed,

x
•(n)
tm = ϕθ(w

•(n)
tm ) is implemented as a numerical SDE solver fθ(w

•(n)
tm , tm−1, x

•(n)
tm−1

),m ≥ 1 that takes the previous step

(tm−1, x
•(n)
tm−1

) as additional arguments. As x•(n)tm−1
also depends on θ, the gradient with respect to θ needs to be computed

recursively. Specifically, with x•(n)tm = fθ,m = fθ(w
•(n)
tm , tm−1, x

•(n)
tm−1

)

∇θ

(
1

2
∥ϑθ(tm−1, ϕθ(w

•(n)
tm−1

)∥22
)

= ∇θ

(
1

2
∥ϑθ(tm−1, fθ,m−1)∥22

)
(38a)

= [∇θϑθ(tm−1, fθ,m−1))]
Tϑθ(tm−1, fθ,m−1) (38b)

=

[
∂ϑθ(tm−1, fθ,m−1)

∂θ
+
∂ϑθ(tm−1, fθ,m−1)

∂fθ,m−1
· ∇θfθ,m−1

]T
ϑθ(tm−1, fθ,m−1) (38c)

=

[
∂ϑθ(tm−1, fθ,m−1)

∂θ
+
∂ϑθ(tm−1, fθ,m−1)

∂fθ,m−1
·
(
∂fθ,m−1

∂θ
+
∂fθ,m−1

∂fθ,m−2
· ∇θfθ,m−2

)]T
ϑθ(tm−1, fθ,m−1) (38d)

=

∂ϑθ(tm−1, fθ,m−1)

∂θ
+
∂ϑθ(tm−1, fθ,m−1)

∂fθ,m−1
·

∂fθ,m−1

∂θ
+

m−2∑
i=1

 m−1∏
j=i+1

∂fθ,j
∂fθ,j−1

 ∂fθ,i
∂θ

T

ϑθ(tm−1, fθ,m−1),

(38e)

Similiarly, the gradient of G with respect to θ can also be computed recusively:

∇θG(tm−1, ϕθ(w
•(n)
tm−1

)) =
∂G(tm−1, fθ,m−1)

∂fθ,m−1
·

∂fθ,m−1

∂θ
+

m−2∑
i=1

 m−1∏
j=i+1

∂fθ,j
∂fθ,j−1

 ∂fθ,i
∂θ

 . (39)

The gradient of L(θ) can be approximated by:

∇θL(θ) ≈
1

N

N∑
n=1

M∑
m=1

{
∇θ

(
1

2
∥ϑθ(tm−1, ϕθ(w

•(n)
tm−1

))∥22
)
−∇θG(tm−1, ϕθ(w

•(n)
tm−1

))

}
δt. (40)

The realization of fθ depends on the chosen numerical integrator. We choose Euler-Maruyama as the integrator used for all
the experiments conducted in Section 5. Under this scheme, fθ is:

fθ(w
•(n)
tm , tm−1, x

•(n)
tm−1

) = x
•(n)
tm−1

+ (b+ ar̃ + σϑθ)(tm−1, x
•(n)
tm−1

) + σ(tm−1, x
•(n)
tm−1

)w
•(n)
tm , (41)

with w•(n)
tm ∼ N (0, (tm − tm−1)Id). The derivatives can be computed accordingly:

∂fθ,m
∂θ

= σ(tm−1, x
•(n)
tm−1

)
∂ϑθ(tm−1, x

•(n)
tm−1

)

∂θ
(42a)

∂fθ,m
∂fθ,m−1

= 1 +
∂(b+ ar̃ + σϑθ)

∂x
•(n)
tm−1

(tm−1, x
•(n)
tm−1

) +
∂σ

∂x
•(n)
tm−1

(tm−1, x
•(n)
tm−1

)w
•(n)
tm . (42b)

The automatic differentiation can save all the intermediate Equation (42a) and Equation (42b), which enables to compute
∇θL(θ).

B. Experiment Details
B.1. Code Implementation

The codebase for reproducing all the experiments conducted in the paper is available in https://github.com/
bookdiver/neuralbridge
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B.2. Linear Processes

Brownian bridges: If dXt = γdt+ σdWt, then

log h(t, x) = log p(T, v | t, x) = −1

2
log(2πσ2(T − t))− (v − x− γ(T − t))2

2σ2(T − t) . (43)

If dX̃t = σdWt, then log h̃(t, x) is obtained by taking γ = 0 in the preceding display.

Therefore, in this case we can compute the lower bound on the loss: L(θ) ≥ log h̃(0,x0)
h(0,x0)

= (v−x−γT )2−(v−x)2

2σ2T . Moreover,

the optimal map ϑθopt is given by ϑθopt(t, x) = σ(∂x log h(t, x)− ∂x log h̃(t, x)) = − γ
σ .

In the numerical experiment, we took ϵ = 10−5. The map ϑθ is modeled by a fully connected neural network with 3 hidden
layers and 20 hidden dimensions for each layer. The model is trained with 25,000 independently sampled full trajectories of
X•. The batch size was taken to be N = 50 and the time step size δt = 0.002, leading to in total M = 500 time steps. The
network was trained using the Adam (Kingma & Ba, 2017) optimizer with learning rate 0.001.
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Figure 2. Evaluations of trained neural networks ϑθ(t, x) against the optimal maps ϑθopt(t, x) under different settings of γ, σ, where the
background colour intensities indicate the absolute error |ϑθ − ϑθopt |. In each panel, 10 independent samples from the guided proposal are
shown in grey to indicate the sampling regions where one expects the error to be smallest.
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Figure 3. Comparison of marginal distributions at different time slices of the learned neural bridge (n.b.) and analytical true Brownian
bridge (t.b.) under the setting γ = 1.0, σ = 1.0, conditioned on v = 0.0. The purple bars show the absolute error (abs. error) of each bin
between the learned neural bridge and the histograms obtained by forward sampling from the true bridge process, which are expected to
be low when two distributions are close in terms of their shapes. The histograms are made from 50,000 independent trajectory samples.

Ornstein-Uhlenbeck bridge: When conditioning Equation (26) on v, the conditioned process X⋆ satisfies the SDE

dX⋆
t =

{
γ(µ−X⋆

t ) +
2γe−γ(T−t)

1− e−2γ(T−t)

[
(v − µ)− e−γ(T−t)(X⋆

t − µ)
]}

dt+ σdWt, (44)
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which is obtained from the transition density given byEquation (26) is:

p(T, y | t, x) = 1√
2πΣ2

t,T

exp

(
− (v −mt,T (x))

2

2Σ2
t,T

)
, (45a)

ms,t(x) = µ+ (x− µ)e−γ(t−s), (45b)

Σ2
s,t =

σ2

2γ

(
1− e−2γ(t−s)

)
. (45c)

Since the auxiliary process is chosen the same as the Brownian case, one can easily show the optimal value of ϑθ(t, x) to be

ϑθopt(t, x) =
2γe−γ(T−t)

σ(1− e−2γ(T−t))

[
(v − µ)− e−γ(T−t)(x− µ)

]
+

(v − x)
σ(T − t) . (46)

Therefore, the lower bound on θ 7→ L(θ) is given by

log
h̃(0, x0)

h(0, x0)
= −1

2
log(2πσ2(T − t))− (v − x)2

2σ2(T − t) +
1

2
log(2πΣ2

t,T ) +
(v −mt,T (x))

2

2Σ2
t,T

. (47)

We repeated the same numerical and experimental settings as the previous Brownian example, except for training with
50,000 samples to obtain better results.
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Figure 4. Evaluations of trained neural networks ϑθ(t, x) against the optimal maps ϑθopt(t, x) under different settings of γ, µ, σ, where
the background colour intensities indicate the absolute error |ϑθ − ϑθopt |. In each panel, 10 independent samples from the guided
proposal are shown in grey to indicate the sampling regions where one expects the error to be smallest. Except the rightmost setting with
γ = 1.7, µ = 0.0, σ = 0.3, all the processes are conditioned on v = 1.0, whereas in the rightmost case, the process is conditioned on
v = 0.0.
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Figure 5. Comparison of marginal distributions at different time slices of the learned neural bridge (n.b.) and analytical true OU bridge
(t.b.) under the setting γ = 1.7, µ = 1.0, σ = 0.3, conditioned on v = 1.0. The purple bars show the absolute error (abs. error) of each
bin. The histograms are made from 50,000 independent trajectory samples.

B.3. Cell Diffusion Process

For the benchmark tests, we adapt the published guided proposal implementations of the corresponding methods to fit into our
test framework with possibly minor modifications. Specifically, the original guided proposal codebase is implemented with
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Figure 6. Loss curves of training Brownian and OU bridges. For Brownian bridges, the SDE parameters are taken as γ = 1.0, σ = 1.0,
for the OU bridges, the parameters are taken as γ = 1.7, µ = 1.0, σ = 0.3 unless any of them is specified.

Julia in 1, we rewrite it in JAX (Bradbury et al., 2018); the score matching bridge repository is published in 2. additionally, as
also reported by the authors, (Heng et al., 2022) introduces two score-matching-based bridge simulation schemes, reversed
and forward simulation, and the forward simulation relies on the reversed simulation, and learning from approximated
reversed bridge can magnifies the errors due to progressive accumulation. Therefore, we only compare our method with the
reversed bridge earning to avoid error accumulations; the adjoint bridge is implemented in 3.

Normal event: We took ϵ2 = 10−10 and ϑθ is modeled as a fully-connected network with 3 hidden layers and 32 hidden
dimensions per layer, activated by LipSwish. We trained the model for 5,000 gradient descent updating iterations. In each
step, we sampled a batch of 100 independent trajectories of X• under the current θ. The numerical sampling time step size
is δt = 0.01. Therefore, in total M = 400 discrete steps of a single trajectory. The Adam optimizer with learning rate of
1e− 3 was used for optimization. For the guided proposal, we set η = 0.98, and ran one MCMC chain for 10,000 iterations.
This resulted in an acceptance percentage of 21.38%. The initial 5, 000 iterations were considered as burn-in samples. After
burn-in, we collected the samples and subsampled them by taking every 133 samples to obtain 30 samples. In the following
experiments, if not explicitly stated, all the samples from the guided proposal are similarly obtained from one MCMC chain
by subsampling from the outputs. For the score matching and adjoint forward methods, we deployed the given network
structures provided in their codebases. As a reference, we sampled from the forward process until we obtained 30 samples
satisfying the inequality ∥LXT − v∥ ≤ 0.01. These samples are shown in grey.
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Figure 7. Visualization of 30 simulated bridge trajectories under normal event conditioning, using various sampling methods. All samples
are independently drawn, except those generated by the guided proposal. As a reference, in grey, we added trajectories from the
unconditional forward process, with samples that satisfy the condition ∥LXT − v∥ > 0.01 rejected.

Rare event: The setups for conditioning on rare events of the neural guided bridge are replicated from the previous normal
event case, except for the MCMC is running with sightly increased tuning parameter η = 0.99 and for 20,000 iterations and
the first 10,000 iterations is discarded as the burn-in period. The acceptance percentage is 22.29%. For the score matching,

1https://juliapackages.com/p/bridge
2https://github.com/jeremyhengjm/DiffusionBridge
3https://github.com/libbylbaker/forward_bridge
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since we only use the reversed bridge, where learning is independent of the event we condition on , we directly deploy the
trained score approximation from the previous case. For the adjoint forward, we fix the neural network architecture and
training scheme, changing only the conditioned target.

As a reference, we sampled the forward process 100, 000 times. This time however, none of the samples ended near the
point we condition on, confirming we are dealing with a rare event.
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Figure 8. Visualization of 30 simulated bridge trajectories under rare event conditioning, using various sampling methods. All samples
are independently drawn, except those generated by the guided proposal. Contrary to Figure 7, no reference trajectories were added as
extensive forward simulation of the process did not yield any samples satisfying ∥LXt − v∥ < 0.01.

Multi-modality: All neural network architectures and training settings match those used in previous examples. We set
δt = 0.01 and M = 500. For the guided proposal, a single chain is run for 50, 000 iterations with η = 0.9, discarding the
first 20, 000 as burn-in. The acceptance percentage is 26.81%. As in the rare event case, no valid samples were found from
forward simulating 100, 000 times the (unconditioned) forward process.

Figure 10 shows marginal distributions for both unconditioned and conditioned processes, using the guided proposal and the
neural bridge. At t = 3.0 and t = 4.0, multiple peaks appear in the marginal densities, suggesting multi-modality. This is
consistent with the unconditioned sampling, where multiple modes are also visible. However, neither score matching nor the
adjoint forward method captures these modes. In contrast, the neural bridge and guided proposal yield similar marginals that
accurately reflect the multi-modal nature of the process.
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Figure 9. Visualization of 30 simulated bridge trajectories under multi-modal event conditioning, using various sampling methods. All
samples are independently drawn, except those corresponding to the guided proposal.

B.4. FitzHugh-Nagumo Model

Normal event: We set δt = 0.005, which leads to M = 400 time steps. We took ϵ2 = 1e− 8. For the neural guided bridge,
ϑθ(t, x) is constructed as a fully connected neural network with 4 hidden layers and 32 hidden dimensions at each layer,
activated by LipSwish functions. The training is done for 5,000 gradient descent steps. In each step, we generated N = 100
independent samples from the current X• for Monte Carlo estimation. The network is optimized by Adam with a learning
rate of 1e− 3. For the guided proposal, we set η = 0 as suggested in (Bierkens et al., 2020) and ran one chain for 50, 000
iterations with a burn-in of 20, 000 steps, obtaining 64.41% acceptance percentage. The reference is obtained by sampling
the (unconditional) forward process filtering samples with ∥LXT − v∥ ≤ 0.01, as v =

[
1.0
]

is an event around which the
process is likely to reach a small ball, one can expect to easily obtain sufficient samples that meets the filtering condition, it
turns out that we only need to sample the forward process for 10, 000 to obtain 450 vaild samples, and we only show the
first 30 in the figure.
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Figure 10. Marginal distributions of X at selected time points for three settings: the unconditioned process (unc.), the neural bridge (n.b.),
and the guided proposal sampled with pCN (g.p.). All trajectories start at x0 =

[
−1 −1

]⊤ and, The neural bridge and the guided
proposal are conditioned to reach v =

[
−1 −1

]⊤ at the terminal time T = 5. Each histogram is based on 10,000 samples—independent
draws for unc. and n.b. and subsampled MCMC draws for g.p. The first and second components of X are displayed in the top and bottom
rows, respectively.
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Figure 11. Visualization of 30 simulated bridge trajectories under normal event conditioning from the learned neural bridge and pCN
sampling of the guided proposal. The reference trajectories in (c) are obtained by forward sampling the unconditioned process, keeping
only samples that satisfy the condition ∥LXT − v∥ ≤ 0.01.

Rare event: We duplicate the neural network training setting as before, including the used network structure and training
hyperparameters. For the guided proposal we set the pCN-parameter to η = 0.9 and ran one chain for 50,000 iterations
which yielded a Metropolis-Hastings acceptance percentage equal to 22.46%. The initial 20,000 iterations are considered
burnin samples. As a reference, we forward sampled 200, 000 paths of the unconditioned process. Of those, 35 samples
satisfied ∥LXt − v∥ < 0.01, which is about 0.02% of the samples. As expected, in the “normal event” case, this percentage
was higher (4.5%).
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Figure 12. Visualization of 30 simulated bridge trajectories under rare event conditioning from the learned neural bridge and pCN sampling
of the guided proposal. The reference trajectories in (c) are obtained by forward sampling the unconditioned process, and filtered the
results by the condition ∥LXT − v∥ ≤ 0.01.

B.5. Stochastic Landmark Matching
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Figure 13. Comparison of unconditioned samples from the linear process (Equation (33)) and the nonlinear process (Equation (32)). Top
row: 4 independent samples from Equation (33). Bottom row: corresponding samples from Equation (32), each using the same Wiener
process realization as in the top row.

The observation noise variance is set as ϵ2 = 2e− 3, as we find too small values of ϵ will cause numerical instability. We
deploy the neural network architecture suggested in (Heng et al., 2022) to model ϑθ, whose encoding part is a two-layer
MLP with 128 hidden units at each layer, and the decoding part is a three-layer MLP with hidden units of 256, 256, and 128
individually. The network is activated by tanh, and trained with 240,000 independent samples from X• with batch size
N = 8, optimized by Adam with an initial learning rate of 7.0e− 4 and a cosine decay scheduler. For the guided proposal,
we run 4 chain for 5, 000 iterations each and drop the first 1, 000 iterations as the burn-in, with η = 0.95 and obtain 12.62%
acceptance percentage on average over the 4 chains.
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Figure 14. 4 realizations of sampling from the guided proposal, the trained neural bridge and the final iteration after updating the guided
proposal with 5, 000 pCN-steps. Top row: 4 samples of the guided proposal using 4 independent Wiener process realisations; middle row:
4 samples from the trained neural bridge using the same Wiener realisations as the top row; Bottom row: the final outputs of 4 independent
chains updating the guided propsals using pCN-steps. The chains are initialised with the same Wiener realisations as the top row.

21


