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Abstract

In reinforcement learning, robust policies for high-stakes decision-making prob-
lems with limited data are usually computed by optimizing the percentile criterion.
The percentile criterion is optimized by constructing an uncertainty set that contains
the true model with high probability and optimizing the policy for the worst model
in the set. Since the percentile criterion is non-convex, constructing uncertainty sets
is often challenging. Existing works use Bayesian credible regions as uncertainty
sets, but they are often unnecessarily large and result in learning overly conserva-
tive policies. To overcome these shortcomings, we propose a novel Value-at-Risk
based dynamic programming algorithm to optimize the percentile criterion without
explicitly constructing any uncertainty sets. Our theoretical and empirical results
show that our algorithm implicitly constructs much smaller uncertainty sets and
learns less conservative robust policies.

1 Introduction

Batch Reinforcement Learning (Batch RL) [18] is popularly used for solving sequential decision-
making problems using limited data. These algorithms are crucial in high-stakes domains where
exploration is either infeasible or expensive, and policies must be learned from limited data. In
model-based Batch RL algorithms, transition probabilities are learned from the data as well. Due to
insufficient data, these transition probabilities are often imprecise. Errors in transition probabilities
can accumulate, resulting in low-performing policies that fail when deployed.

To account for the uncertainty in transition probabilities, prior works use Bayesian models [10, 29]
to model uncertainty and optimize the policy to maximize the returns corresponding to the worst
α-percentile transition probability model. These policies guarantee that the true expected returns
will be at least as large as the optimal returns with high confidence. This technique is commonly
referred to as the percentile-criterion optimization. Unfortunately, the percentile criterion is NP-hard
to optimize. Thus, current work uses Robust Markov Decision Processes (RMDPs) to optimize a
lower bound on the percentile criterion. An RMDP takes as input an uncertainty set that contains the
true transition probability model with high confidence and finds a policy that maximizes the returns
of the worst model in the uncertainty set.

Unfortunately, the percentile criterion is non-convex, and therefore, constructing uncertainty sets
is a challenging problem. Existing work uses Bayesian credible regions (BCR) [29] as uncertainty
sets. However, these uncertainty sets are often unnecessarily large [12, 29] and result in learning
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conservative robust policies. Some of the recent work approximates uncertainty sets using various
heuristics [3, 29], but we show that they remain too conservative. Thus, the question of the best
possible near-optimal set that can be constructed for the percentile criterion remains unanswered.

Our Contributions In this paper, we answer two important questions: a) Are Bayesian credible
regions the most optimal ambiguity sets for optimizing the percentile criterion? b) Can we obtain a
less conservative solution to the percentile criterion without explicitly constructing ambiguity sets?
Our theoretical findings show that Bayesian credible regions can grow significantly with the number
of states and therefore, tend to be unnecessarily large, resulting in highly conservative policies. As
our main contribution, we provide a dynamic programming framework (Section 3), which we name
the VaR framework, for optimizing a lower bound on the percentile criterion without explicitly
constructing ambiguity sets. Specifically, we propose a new robust Bellman operator, the Value at
Risk (VaR) Bellman operator, for optimizing the percentile criterion. We show that it is a valid
contraction mapping that optimizes a tighter lower bound on the percentile criterion, compared to
RMDPs with BCR ambiguity sets (Section 3). We theoretically analyze and bound the performance
loss of our framework (Section 3.1). We also show that there exists directions in which the Bayesian
credible regions can grow unnecessarily large with the number of states in the MDP and possibly
result in a conservative solution. On the other hand, the ambiguity sets implicitly optimized by the
VaR Bellman operator tend to be smaller and are independent of the number of states (Section 4).
Finally, we empirically demonstrate the efficacy of our framework in several domains (Section 5).

1.1 Related Work

Several works propose different methods for solving the percentile criterion, as well as other robust
measures for handling uncertainty in the transition model estimates. Russel and Petrik [29] and Be-
hzadian et al. [3] propose various heuristics for minimizing the size of the ambiguity sets constructed
for the percentile-criterion. Russel and Petrik [29] propose a method that interleaves robust value
iteration with ambiguity set size optimization. Behzadian et al. [3] propose an iterative algorithm
that optimizes the weights of ℓ1 and ℓ∞ ambiguity sets while optimizing the robust policy. However,
these methods still construct Bayesian credible sets which can be unnecessarily large and result in
conservative policies, as we show in Section 5.

Other works consider partial correlations between uncertain transition model parameters to mitigate
the conservativeness of learned policies [4, 12, 13, 21, 22]. These approaches mitigate the conserva-
tiveness of S- and SA-rectangular ambiguity sets by capturing correlations between the uncertainty
and by limiting the number of times the uncertain parameters deviate from the mean parameters. De-
spite these heuristics, most of these works [2, 14, 29, 35] either rely on weak statistical concentration
bounds to construct frequentist ambiguity sets, or use Bayesian credible regions as ambiguity sets.
These sets still tend to be unnecessarily large [12, 29], resulting in conservative policies. Robust RL
work [2, 11, 14, 20, 24, 37] proposes other robust measures for handling uncertainty in transition
models; however, these approaches do not provide probabilistic guarantees on the expected returns,
and compute overly conservative policies.

2 Preliminaries

In the standard reinforcement learning setting, a sequential decision task is modeled as a Markov
Decision Process (MDP) [26, 33]. An MDP is a tuple ⟨S,A, P, r, d0, γ⟩ that consists of (a) a set of
states S = {1, 2, . . . , S}, (b) a set of actions A = {1, 2, . . . , A}, (c) a deterministic reward function
R : S × A × S → R, (d) a transition probability function P : S × A → ∆S , (e) an initial state
distribution p0 ∈ ∆S , where ∆S represents the S-dimensional probability simplex, and (f) a discount
factor γ ∈ [0, 1]. We use ps,a to denote the vector of transition probabilities P (s, a, ·) corresponding
to the state s and action a. Similarly, for any reward function R, we use rs,a to denote the vector of
rewards R(s, a, ·) corresponding to state s and action a. A Markovian policy π : S → ∆A maps each
state s to a distribution over actions A. In a general RL setting, the goal is to compute a policy π that
maximizes the expected discounted return ρ(π, P ) over an infinite horizon,

max
π∈Π

ρ(π, P ) = max
π∈Π

E

[ ∞∑
t=0

γtr(st, at, st+1) | s0 ∼ p0, at ∼ π(st), st+1 ∼ P (st, at, ·)

]
.
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The value of a policy π at any state s is the discounted sum of rewards received by an RL agent, if it
starts from state s, i.e., vπ(s) = E [

∑∞
t=0 γ

tr(st, at, st+1)|s0 = s, at ∼ π, st+1 ∼ P (st, at, ·)]. We
assume a batch reinforcement learning setting [18] where the reward function is known, but the true
transition probabilities P ⋆ are unknown. Following prior work on robust Bayesian RL [7, 10, 29, 36],
we use parametric Bayesian models to represent uncertainty over the true transition probabilities P ⋆.
Given a batch of sample data D, one can derive a posterior distribution over the random variable
representing transition probabilities P̃ .

We use the tilde to indicate that P̃ is a random variable. To avoid unnecessary computational
technicalities, we assume that P̃ is a discrete random variable taking on values P̃ (ω), ω ∈ Ω for
some Ω = {1, . . . , N} with a distribution f . That is, the random variable P̃ represents a discrete
approximation of the true, possibly continuous posterior, as is common in methods like Sample
Average Approximation (SAA) [31].

Percentile Criterion The α-percentile criterion is popularly used to derive robust policies under
model uncertainty [10]. It aims to compute a policy π that maximizes the returns corresponding to
the worst α-percentile model:

argmax
π∈Π, y∈R

{
y
∣∣∣ Pr
P̃∼f

[
ρ(π, P̃ ) ≥ y

]
> 1− α

}
. (1)

The value y lower-bounds the true expected discounted returns with confidence 1 − α where α ∈
(0, 0.5). Optimizing the percentile criterion is equivalent to optimizing the Value at Risk (VaRα)
of expected discounted returns when there exists uncertainty in transition probabilities P̃ and the
expected returns function ρ is lower-semicontinuous. The optimization in (1) is equivalent to

max
π∈Π

VaRα [ρ(π, P̃ )] , (2)

where VaRα of a bounded random variable X̃ with a CDF function F : R → [0, 1] is defined as [27]

VaRα[X̃] = inf {z ∈ R|F (z) > α} . (3)

A lower value of α in (1) indicates a higher confidence in the returns achieved in expectation. For
example, VaR0.05[ρ(π, P̃ )] = x indicates that the true returns will be at least equal to the robust
returns x for 95% of the transition probability models. When clear from context, we use VaR to
denote the Value at Risk at confidence level α. Unfortunately, the optimization problem in (1) is
NP-hard to optimize and is usually approximately solved using Robust MDPs.

Robust MDPs Robust MDPs (RMDPs) generalize MDPs to account for uncertainty, or ambiguity,
in the transition model. An ambiguity set for an RMDP is constructed such that it contains the true
model with high confidence. The optimal policy of a Robust MDP π⋆ maximizes the returns of
the worst model in the ambiguity set: π⋆ = argmaxπ∈Π minP∈P ρ(π, P ). General RMDPs are
NP-hard to solve [35], but they are tractable for broad classes of ambiguity sets. The simplest such
type is the SA-rectangular ambiguity set [25, 35], defined as

P =
{
P ∈ (∆S)S×A

∣∣ps,a ∈ Ps,a, ∀s ∈ S, ∀a ∈ A
}
,

for a given Ps,a ⊆ ∆S , s ∈ S, a ∈ A. SA-rectangular ambiguity sets [3, 29] assume that
the transition probabilities corresponding to each state-action pair are independent. Similarly to
MDPs, the optimal robust value function v⋆ ∈ RS for an SA-rectangular RMDP is the unique
fixed point of the robust Bellman optimality operator T : RS → RS defined as (T v)(s) =
maxa∈A minps,a∈Ps,a

pT
s,a (rs,a + γ · v).

To optimize the percentile criterion, an SA-rectangular ambiguity set P is constructed such that it
contains the true model with high probability, and thus, the following equation holds.

Pr

[
ρ(π, P̃ ) ≥ min

P∈P
ρ(π, P )

]
≥ 1− α .

Although RMDPs have been used to approximately solve the percentile criterion [3], the quality
of the robust policies it computes depends mainly on the size of the ambiguity sets. The larger the
ambiguity sets, the more conservative the robust policy [22]. SA-rectangular ambiguity sets are most
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Figure 1: Compares the asymptotic radius of BCR ambiguity sets to VaR ambiguity sets. The
asymptotic radius of the BCR ambiguity sets significantly grows with the number of states.

commonly studied; thus we focus our attention on SA-rectangular Robust MDPs. We investigate
whether Bayesian credible regions are optimal ambiguity sets for optimizing the percentile criterion.
We simply refer to SA-rectangular RMDPs and SA-rectangular ambiguity sets as Robust MDPs and
ambiguity sets respectively.

Our work focuses on Bayesian (rather than frequentist) ambiguity sets. Bayesian ambiguity sets are
usually constructed from Bayesian credible regions (BCR) [3, 29]. Given a state s and an action a,
let ψs,a represent the size of the BCR ambiguity sets; PBCR

s,a and p̄s,a represent the mean transition
model. The set PBCR

s,a is constructed as

PBCR
s,a = Ps,a(b, ψ, q) =

{
ps,a ∈ ∆S

∣∣∥ps,a − p̄s,a∥q,b ≤ ψs,a

}
, (4)

where q ∈ {1,∞} represents the norm of the weighted ball in (4) and b ∈ RS
+ is a weight vector.

Here, b is jointly optimized with ψ ∈ R to minimize the span of the ambiguity sets such that the true
model is contained in the ambiguity set with high confidence, i.e., Pr (p̃s,a ∈ Ps,a(b, ψ, q)) ≥ 1−α.
We refer to BCR ambiguity sets with non-uniform weights as weighted BCR ambiguity sets. We
refer to the Robust Bellman optimality operator with BCR ambiguity sets TBCR as the BCR Bellman
optimality operator, and to RMDPs with BCR ambiguity sets as BCR RMDPs. For any δ ∈ (0, 1),
setting the confidence level α in TBCR to δ/SA for all state-action pairs yields 1− δ confidence on the
returns of the optimal robust policy [3]. However, we show that even span-optimized BCR RMDPs
can be sub-optimal for optimizing the percentile criterion.

We use the shorthand ws,a for any s ∈ S, a ∈ A to denote the vector of values associated with
value v ∈ RS and the one-step transition from state s and action a, i.e., ws,a = rs,a + γv. We use
p̄s,a ∈ Rs and Σs,a ∈ RS×S for any s ∈ S , a ∈ A to represent the empirical mean and covariance of
transition model p̃s,a estimated from D. We use ϕ(·) and Φ(·) to represent the probability distribution
function (PDF) and cumulative distribution function (CDF) respectively of the normal distribution
with mean 0 and variance 1. The Z-Minkowski norm ∥x∥Z for a vector x given some positive-definite
matrix Z is defined as ∥x∥Z =

√
xTZ−1x.

Example 2.1. Consider an MDP with four states {s0, s1, s2, s3} and a single action {a0}. The
state s0 is the initial state and the states s1, s2, s3 are terminal states with zero rewards. The
posterior of the transition probability p̃s0,a0 follows a Dirichlet distribution Dir(10, 10, 1) with mean
[0.48, 0.48, 0.04]. The rewards for transitions from state 0 are given by rs0,a0 = [0.25, 0.25,−1].

We wish to optimize the percentile criterion with confidence level δ = 0.2. Following the
sampling procedure proposed by Russel and Petrik [29] to construct a uniformly weighted
BCR ambiguity set for p̃s0,a with 100 posterior samples, yields an ambiguity set PBCR

s0,a ={
p ∈ ∆S

∣∣∥p− p̃s0,a∥1 ≤ 0.277
}

. In this case, the reward estimate against the worst model in
the ambiguity set p = [0.50, 0.32, 0.18] is ρBCR = 0.025. Since we have a single non-terminating
state in the MDP, the percentile returns are given by ρVaRα = VaR0.2[p̃

T
s0,ars0,a]. Computing ρVaRα

for Dirichlet distribution Dir(10, 10, 1), we get ρVaRα = 0.17 > ρBCR. Thus, this example shows
that BCR ambiguity sets can be unnecessarily large and, thus, result in conservative policies.
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3 VaR Framework

We introduce the VaR Bellman optimality operator TVaR for approximately solving the percentile
criterion. We show that TVaR is a valid Bellman operator: it is a contraction mapping and lower
bounds the percentile criterion. For any value function v ∈ RS , state s ∈ S and action a ∈ A, we
define the VaR Bellman optimality operator TVaR as

(TVaRv)(s) = max
a∈A

VaRα

[
p̃T
s,aws,a

]
. (5)

For each state s, TVaR maximizes the value corresponding to the worst α-percentile model. In
contrast to the BCR Bellman optimality operator TBCR, computing TVaR does not require constructing
ambiguity sets from confidence regions; it can simply be estimated from samples of the model
posterior distribution, as we later show.

In Proposition A.4, we formally prove that TVaR is a contraction mapping, and thus has a unique
fixed point. This fixed point is the value of the optimal policy that maximizes a tight lower bound on
the percentile criterion.

We now show that the VaR Bellman optimality operator TVaR optimizes a lower bound on the
percentile criterion. Given a policy π, a state s ∈ S, and a transition model P , let

(T πv)(s) =
∑
a∈A

π(s, a)p̃T
s,aws,a ,

represent the Bellman evaluation operator for transition model P . Furthermore, let

(T π
VaRv)(s) =

∑
a∈A

π(s, a)VaRα

[
p̃T
s,aws,a

]
,

represent the VaR Bellman evaluation operator for random transition model P̃ . We use v̂π and vπ to
denote the fixed points of T π

VaR and T π respectively, and ṽπ to represent the random value function
of policy π computed using a realization P̃ of the posterior distribution of the transition model P .
Proposition 3.1 (Lower Bound Percentile Criterion). For any δ ∈ (0, 1), if we set the confidence
level α in the operator T π

VaR to δ/S, then for every policy π ∈ Π : PrP̃ [v̂π ⪯ ṽπ|D] ≥ 1− δ, where
P̃ is a realization of the posterior distribution of the transition model P conditioned on observed
transitions D.

See Appendix B.1 for the proof. Proposition 3.1 shows that for any policy π and state s, the VaR value
at state s, v̂π(s) lower bounds the true value ṽπ(s) with high confidence. Comparing Proposition 3.1
with the definition of the percentile-criterion in (1), it is easy to see that the percentile-criterion
requires confidence guarantees only on the returns computed from the initial states, whereas the
equation in Proposition 3.1 provides confidence guarantees on the value of every state. Therefore, for
any policy π, the value pT

0 v̂
π is a lower bound on the percentile-criterion objective VaRδ[ρ(π, P̃ )].

Since TVaR finds a policy π that maximizes the value pT
0 v̂

π, it follows [26] that TVaR optimizes a
lower bound on the percentile criterion in (1).
Proposition 3.2. Suppose that p̃s,a for any state s and action a, is a multivariate sub-

Gaussian with mean p̄s,a and covariance factor Σs,a, i.e., E
[
exp

(
λ(p̃s,a − p̄s,a

)T
w
)]

≤
exp

(
λ2w

TΣs,aw/2
)
,∀λ ∈ R,∀w ∈ RS . Then, for any state s ∈ S, TVaR satisfies

(TVaRv)(s) ≥ max
a∈A

(
p̄T
s,aws,a −

√
2 ln(1/α)

√
ws,aΣs,aws,a

)
.

See Appendix B.2 for the proof. Proposition 3.2 shows that by assuming that the transition probabili-
ties are sub-Gaussian, we can easily compute a lower bound of the VaR Bellman update (TVaRv) for
a given value function using only the mean and the covariance matrix of P̃ .

In the following proposition, we provide the exact form of the VaRα Bellman optimality operator
TVaR under normal conditions, which is a special case of Proposition 3.2.
Proposition 3.3. Suppose that P̃ is normally distributed, i.e., for any state s and action a, p̃s,a

∼ N (p̄s,a,Σs,a).

Then, TVaR for any state s ∈ S takes the form

(TVaRv)(s) = max
a∈A

(
p̄T
s,aws,a − Φ−1(1− α)

√
ws,aΣs,aws,a

)
.
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3.1 Performance Guarantees

We now derive finite-sample and asymptotic bounds on the loss of the VaR framework.
Theorem 3.4 (Performance). Let v̂ be the fixed point of the VaR Bellman optimality operator TVaR,
and π⋆ be the optimal policy in (1). Let ρ⋆ = VaRα

[
ρ(π⋆, P̃ )

]
denote the optimal percentile returns

and ρ̂ = pT
0 v̂ denote the lower bound on the percentile returns computed using the Bellman operator

TVaR. For any δ ∈ (0, 1), we set the confidence level α = δ/(2SA) in TVaR. Then, with probability at
least 1− δ, the performance loss with respect to ρ⋆ is

ρ⋆ − ρ̂ ≤ 1

1− γ
max
s∈S

max
a∈A

(VaR1−α[p̃
T
s,aŵs,a]−VaRα[p̃

T
s,aŵs,a]) . (6)

See Appendix B.4 for the proof. Theorem 3.4 bounds the finite sample performance loss of the VaR
framework. The loss varies proportionally to the maximum difference between the α and 1 − α
percentile of the one-step Bellman update for the optimal robust value function v̂. As expected, the
VaR framework performs better when the uncertainty in the transition models is small.
Theorem 3.5 (Asymptotic Performance). For any δ ∈ (0, 1), set α = δ/(2SA) in TVaR. Let I(p⋆

s,a)
−1

for any state s and action a, be the Fisher Information matrix corresponding to the true transition
probabilities p⋆

s,a. Furthermore, let σmax = maxs∈S,a∈A

√
ŵT

s,aI(p
⋆
s,a)

−1ŵs,a represent the

maximum asymptotic standard deviation of the returns estimate p̃T
s,aŵs,a for any state-action pair

(s, a). Then, with probability at least 1 − δ, the asymptotic performance of the VaR framework ρ̂
w.r.t. the optimal percentile returns ρ⋆ satisfies

lim
N→∞

√
N(ρ⋆ − ρ̂) ≤ 1

1− γ

(
2Φ−1(1− α)σmax

)
≤ 1

1− γ

√
8 ln(1/α)σmax .

See Appendix B.5 for the proof. Theorem 3.5 shows that almost surely, the asymptotic loss in
performance of the VaR framework convergence to 0, i.e., limN→∞(ρ⋆ − ρ̂) = 0.

3.2 Dynamic Programming Algorithm

We provide a detailed description of the VaR value iteration algorithm (Algorithm 3.1) below. We
also bound the number of samples required to estimate the VaR Bellman update (T π

VaRv)(s) for any
given policy π and state s with high confidence 1− ζ.

Algorithm 3.1: Generalized VaR Value Iteration Algorithm
Input: Confidence α, Posterior distribution f , target Bellman residual ε
Output: Robust policy π, lower bound v

1 Initialize π with arbitrary π0, robust value-function v with arbitrary v0, k = 0 ;
2 Sample N models P̃ (ω1), P̃ (ω2), . . . , P̃ (ωN ) from posterior f ;
3 repeat
4 for s← 1 to S do
5 Initialize q ← [] ;
6 for a← 1 to A do
7 q[a]← V̂aRα[p̃

T
s,a(rs,a + γvk)] OR ;

8 q[a]← p̄T
s,aws,a − Φ−1(1− α)

√
wT

s,aΣs,aws,a (under normal Assumptions);
9 end

10 vk(s)← max(q); πk(s)← argmax(q) ;
11 end
12 k ← k + 1;
13 until ∥vk − vk−1∥∞ ≤ ε;
14 return πk,vk;

In each iteration of Algorithm 3.1, we compute the one-step VaR Bellman update TVaR(v) using the
current value function v. When P̃ is not normally distributed, we use the Quick Select algorithm [16]
to efficiently compute the empirical estimate of the α-percentile of returns for any state s and action
a, i.e., V̂aRα[p̃

T
s,a(rs,a + γv)] in O(SAN) time (Proposition 3.6). On the other hand, when P̃ is
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normally distributed, we compute the VaR Bellman update TVaR(v) using the empirical estimate of
mean (p̄s,a)s∈S,a∈A and covariance (Σs,a)s∈S,a∈A of the transition probabilities derived from the
data D (Proposition 3.3). We repeat these steps until convergence.
Proposition 3.6 (Time Complexity). The time complexity of a single iteration of the loop in line 3 of
the VaR Value Iteration (Algorithm 3.1) is in O(SAN), where N is the number of samples of the
posterior samples of P̃ .

Proposition 3.7 (Empirical Error Bound). For any state s, action a and value function v, let
V̂aRα[p̃

T
s,aws,a] represent the empirical estimate of α-percentile of returns VaRα[p̃

T
s,aws,a] and

Φf represent the cumulative density function (CDF) of the random estimate of returns p̃T
s,aws,a.

Suppose that Φf is differentiable at the point VaRα[p̃
T
s,aws,a] and let m = Φ′(VaRα[p̃

T
s,aws,a])

represents the density of estimate of returns at point VaRα[p̃
T
s,aws,a]. Let N⋆ be the number

of posterior samples required to obtain empirical error ε ∈ R, with confidence 1 − ζ, i.e.,
Pr
[
|V̂aRα[p̃

T
s,aws,a]−VaRα[p̃

T
s,aws,a]| > ε

]
≤ ζ . Then, limε→0N

⋆ε2 = ln(2/ζ)/2m2.

4 Comparison with Bayesian Credible Regions

We are now ready to answer the question: Are Bayesian credible regions the optimal ambiguity
sets for optimizing the percentile criterion? For this, we compare the VaR framework with BCR
Robust MDPs. First, we derive the robust form of the VaR framework and show that in contrast
to the BCR Bellman operator, the VaR Bellman optimality operator implicitly constructs value
function dependent ambiguity sets and thus, these sets tend to be smaller (Proposition 4.1). Then,
we show that the solution given by the VaR operator TVaR is never worse than the solution given
by the BCR operator TBCR (Proposition 4.2). Finally, we compare the asymptotic radii of the BCR
ambiguity sets and the VaR ambiguity sets implicitly constructed by TVaR. For any given confidence
level α, the radius of the VaR ambiguity sets are asymptotically smaller than BCR ambiguity sets
(Theorem 4.4). Precisely, the ratio of the radii of VaR ambiguity sets to BCR ambiguity sets is at least√

χ2
S,1−α/Φ−1(1−α), where χ2

S,1−α is the CDF inverse of 1− α percentile of Chi-squared distribution
with degree of freedom S and Φ−1(1− α) is the 1− α percentile of N (0, 1). This implies that there
exists directions in which the BCR ambiguity sets is atleast Ω(

√
S) larger than VaR ambiguity sets.

Thus, we prove that VaR framework is better suited for optimizing the percentile criterion than BCR
RMDPs.

For any value function v, define the VaR ambiguity set PVaR,v as

PVaR,v = ×
s∈S,a∈A

PVaR,v
s,a where PVaR,v

s,a =
{
ps,a ∈ ∆S ∣∣pT

s,av ≥ VaRα

[
p̃T
s,av

]}
. (7)

Proposition 4.1 (Equivalence). Let v̂π be the fixed point of the VaR Bellman evaluation operator
TVaR for each π ∈ ΠD, i.e, v̂π = (T π

VaRv̂
π), where ΠD is the set of all deterministic policies. Then,

the optimal VaR policy π̂ solves

max
π∈ΠD

min
P∈PVaR,v̂π

ρ(π, P ) . (8)

See Appendix B.8 for the proof. Proposition 4.1 shows that the VaR Bellman optimality
operator optimizes a unique robust MDP whose ambiguity sets are SA-rectangular and pol-
icy dependent. Notice that for any state s and action a, the ambiguity set is a half-plane{
ps,a ∈ RS : pT

s,av
π ≤ VaRα

[
p̃T
s,av

π
]}

dependent on the value function vπ of the current policy π.
In contrast, BCR ambiguity sets are independent of any policy or value function and are constructed
such that they provide high-confidence guarantees on returns of all policies simultaneously. As a
result, BCR ambiguity sets tend to be unnecessarily large.
Proposition 4.2. For any policy π, the fixed point of the VaR policy evaluation operator
T π
VaR dominates the fixed point of the Bellman evaluation operator T π

BCR, i.e., T π
BCR · · · T π

BCRv ⪯
T π
VaR · · · T π

VaRv for any v. Similar results hold for policy optimization operators TVaR and TBCR, i.e.,
TBCR · · · TBCRv ⪯ TVaR · · · TVaRv for any v.

Proposition 4.2 proves that the lower bound on the percentile-criterion optimized by the VaR Bellman
operator TVaR is never worse than the lower-bound optimized by the BCR Bellman operator TBCR.

7



Although this is a weaker claim, in the results that follow, we show that asymptotically, the BCR
ambiguity sets tend to grow unnecessarily large with the number of states, and therefore, BCR
RMDPs are more susceptible to generating overly conservative solutions.

We now compute the asymptotic radii of BCR ambiguity sets and VaR ambiguity sets.

The Bernstein Von-Mises Theorem [34] establishes the asymptotic properties of the posterior distribu-
tion of P̃ constructed from N independent samples. We assume that this theorem holds for transition
probabilities P̃ for computing the asymptotic radii of the VaR and BCR ambiguity sets.
Theorem 4.3 (Asymptotic Radii of VaR Ambiguity Sets). Let P̄ = (p̄s,a)s∈S,a∈A be the Maximum
Likelihood estimate of transition probabilities computed from data D and Σ = (I(p⋆

s,a)
−1)s∈S,a∈A

be the corresponding covariance matrix. Then, ∀s ∈ S, a ∈ A,

lim
N→∞

√
N(PVaR

s,a − p̄s,a) =
{
ps,a ∈ ∆S

∣∣∣∥ps,a − p̄s,a∥Σ−1
s,a

≤ Φ−1(1− α)
}
− p̄s,a . (9)

Theorem 4.3 shows that the asymptotic form of the VaR ambiguity set is an ℓ2 ellipsoid ball with
radius Φ−1(1−α)√

N
. It is important to notice that, in contrast to the finite-sample VaR ambiguity set

PVaR,vπ

s,a in problem (7), the asymptotic VaR ambiguity set PVaR
s,a is independent of the value function

v. This is because VaRα

[
p̃T
s,av

π
]

is convex in the value function v, [28] and as a consequence, the
asymptotic ambiguity set PVaR

s,a is simply the intersection of closed half-planes in PVaR,vπ

s,a , computed
over all value functions v ∈ RS [8]. It is also worth noting that the radius of the asymptotic VaR
ambiguity set PVaR

s,a is a constant. In contrast, the asymptotic radius of the BCR ambiguity sets grows
with the number of states, as we show in the following proposition.
Theorem 4.4 (Asymptotic Radius of Bayesian Credible Regions). For any state s and action a, let
PBCR
s,a be any Bayesian credible region and p̄s,a be the maximum likelihood estimator based on data

D. Furthermore, ξ <
√

χ2
S,1−α/Φ−1(1−α). Then, ∀s ∈ S, a ∈ A,

lim
N→∞

√
N(PBCR

s,a − p̄s,a) ̸⊆ lim
N→∞

√
Nξ(PVaR

s,a − p̄s,a) . (10)

See Appendix B.11 for the proof. We note that Theorem 4.4 is an adaptation of Theorem 10 in [15]
in RL which proves that there exists directions in which the Bayesian credible regions is at least
ξ =

√
χ2
S,1−α/Φ−1(1−α) larger than VaR ambiguity sets. Since the value of ξ only grows with the

number of states, we conclude that BCR ambiguity sets are sub-optimal for optimizing the percentile
criterion. Figure 1 shows the growth in the ratio of radius of BCR to VaR ambiguity sets with an
increasing number of states.

5 Experiments

We now empirically analyze the robustness of the VaR framework in three different domains.
Specifically, we investigate if the VaRα framework learns robust policies that are less conservative
than BCR Robust MDPs.

Riverswim: The Riverswim MDP [32] consists of five states and two actions. The state represents the
coordinates of the swimmer in the river and action represents the direction of the swim. The task of
the agent is to learn a policy that would take the swimmer to the other end of the river.

Population Growth Model: The Population Growth MDP [17] models the population growth of pests
and consists of 50 states and 5 actions. The states represent the pest population and actions represent
the pest control measures. In our experiments, we use two different instantiations of the Population
Growth Model: Population-Small and Population, which vary in the number of posterior samples.

Inventory Management: The Inventory Management MDP [38] models the classical inventory
management problem and consists of 30 states and 30 actions. States represent the inventory level
and actions represent the inventory to be purchased. The sale price s, holding cost c and purchase
costs p are 3.99, 0.03, and 2.219. The demand is normally distributed with mean=s/4 and standard
deviation s/6.

Implementation details: For each domain in our experiments, we sample a dataset D consisting of
n tuples of the form {s, a, r, s′}, corresponding to the state s, the action taken a, the reward r and
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the next state s′. We construct a posterior distribution over the models using D, assuming Dirichlet
priors over the model parameters. Using MCMC sampling, we construct two datasets containing M
and K transition models, respectively.

We construct ten train datasets by randomly sampling 80% of the models from the first dataset ten
times. For any given confidence level δ, we train one RL agent per train dataset and method.

For evaluation, we consider two instances of the VaR framework: one (denoted by VaRN) that
assumes that P̃ is a multivariate normal, and another (denoted by VaR) that does not assume any
structure over P̃ . We use four baseline methods for evaluating the robustness of our framework. They
are: BCR Robust MDPs with weighted ℓ1 ambiguity sets (WBCR ℓ1), weighted ℓ∞ ambiguity sets
(WBCR ℓ∞), unweighted ℓ1 ambiguity sets (BCR ℓ1) and unweighted ℓ∞ ambiguity sets(BCR ℓ1)
ambiguity sets. See Appendix C in the appendix for more details.

We compare the mean and standard deviation of the robust performance (δ-percentile of expected
returns) of the VaR framework on the test dataset with that of other baselines for different values of
δ.

Methods Riverswim Inventory Population-Small Population
VaR 68.54 ± 2.54 457.95 ± 0.37 -3102.48 ± 214.85 -4578.84 ± 69.76
BCR l1 67.27 ± 0.0 369.67 ± 0.0 -5614.95 ± 40.14 -5971.81 ± 618.04
BCR l∞ 67.27 ± 0.0 199.41 ± 19.51 -7908.92 ± 20.8 -9020.42 ± 51.11
WBCR l1 67.9 ± 1.91 454.1 ± 2.08 -5290.38 ± 542.13 -5350.25 ± 68.34
WBCR l∞ 67.27 ± 0.0 199.4 ± 19.51 -7712.43 ± 27.98 -8378.0 ± 63.03
VaRN 67.27 ± 0.0 452.78 ± 0.01 -4005.53 ± 4.38 -4576.65 ± 0.0

Table 1: shows the mean and standard deviation of the robust (percentile) returns at δ = 0.05 achieved
by VaR, VaRN, BCR ℓ1, BCR ℓ∞, WBCR ℓ1 and WBCR in Riverswim, Inventory, Population-Small,
and Population domain.

Experimental Results Table 1 summarizes the performance of the VaR framework and the base-
lines for confidence level δ = 0.05 (Table 2 in the appendix summarizes the results for δ = 0.3).
We observe that for both confidence levels, δ = 0.05 and δ = 0.3, the VaR framework outperforms
the baseline methods in terms of mean robust performance in most domains. We also see that
all the baselines and the VaR framework have similar mean robust performance in the Riverswim
domain. We conjecture that this is due to the simplicity of the domain. Furthermore, as expected, we
find that the robust performance of BCR Robust MDPs with span-optimized (weighted) ambiguity
sets (WBCR ℓ1, WBCR ℓ∞) is relatively higher than the robust performance of Robust MDPs with
unweighted BCR ambiguity sets (BCR ℓ1, BCR ℓ∞). However, we find that even Robust MDPs with
span-optimized BCR ambiguity sets are unable to outperform the robust performance of our VaRα

framework.

Figure 4 shows how the robust performance of the VaR framework and the baselines varies for
different confidence level values (1− δ). As expected, the robust performance of the VaR is higher
for smaller values of confidence level (1− δ), but more importantly, we observe that in most domains,
the robust performance of VaR and VaRN dominates the robust performance of the baselines for a
wide range of values of confidence level δ.

Figure 2 compares the robust performance of the VaR framework and the baselines on both train
and test models. The trends in the robust performance of the VaR framework and the baselines are
similar on both train and test models.

6 Limitations and Conclusion

The main limitation of the VaR framework is that it does not consider the correlations in the
uncertainty of transition probabilities across states and actions [13, 21, 22]. However, due to the
non-convex nature of the percentile-criterion [3, 29], constructing a tractable VaRα Bellman operator
that considers these correlations is not feasible. One plausible solution is to use a Conditional Value
at Risk Bellman operator [9, 19] which is convex and lower bounds the Value at Risk measure. We
leave the analysis of this approach for future work. Empirical analysis of the VaRα framework in
domains with continuous state-action spaces is also an interesting avenue for future work. It would be
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valuable to rigorously test the VaRα framework in large RL domains and compare its performance
against other Robust RL methods [11, 13, 22].

In conclusion, we propose a novel dynamic programming algorithm that optimizes a tight lower-
bound approximation on the percentile criterion without explicitly constructing ambiguity sets. We
theoretically show that our algorithm implicitly constructs tight uncertainty sets that are smaller in
size than any optimized Bayesian credible region, and thus computes less conservative policies with
the same confidence guarantees on returns. We also derive finite-sample and asymptotic bounds on
the performance loss due to our approximation. Finally, our experimental results demonstrate the
efficacy of our method in several domains.
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A Additional theoretical results

Definition A.1 (Subvariance). For any function v : S → R, a scalar c and γ ∈ [0, 1), the operator T
satisfies the Translation subvariance property if

T(v + c1) = (Tv) + γc1 .

Definition A.2 (Monotonicity). For any function v : S → R and u : S → R, such that , v ⪯ u the
operator T satisfies the Monotonicity property if

Tv ⪯ Tu .

Lemma A.3 (Contraction Mapping [5]). For any two bounded functions u : S → R, v : S → R,
and γ ∈ [0, 1), the operator T is a contraction mapping if it satisfies Monotonicity and Translation
subvariance properties. In particular, for all u,v there holds

∥Tu− Tv∥∞ ≤ γ∥u− v∥∞ .

Furthermore, for any two bounded functions u : S → R, and v : S → R, the operator T is a non-
expansive mapping if it satisfies Monotonicity and Translation invariance properties. In particular,
for all u,v there holds

∥Tu− Tv∥∞ ≤ ∥u− v∥∞ .

The proof of Lemma A.3 follows directly from Proposition 2.1.3 in [5]. We re-derive the proof for
the sake of completeness.

Proof. Denote
c = max

s∈S
|u(s)− v(s)| .

Therefore for all s ∈ S,

u(s)− c ≤ v(s) ≤ u(s) + c .

Applying T to these inequalities and using the Subvariance (Definition A.1) and Monotonicity
(Definition A.2) properties, we obtain that for all s ∈ S,

(Tu)(s)− γc ≤ (Tv)(s) ≤ (Tu)(s) + γc .

It follows that for all s ∈ S,
|(Tv)(s)− (Tu)(s)| ≤ γc ,

and therefore ∥Tu− Tv∥∞ ≤ γc , proving the stated result.

Proposition A.4 (Validity). Suppose that the reward for any state s and action a, and next state s′ is
independent of the next state s′, i.e., R(s, a, s′) = R(s, a), where R(s, a) ∈ R. Then, the following
properties hold for all value functions u,v ∈ RS .

1. The operator TVaR is contraction mapping on RS : ∥TVaRu− TVaRv∥∞ ≤ γ∥u− v∥∞ .
2. The operator TVaR is monotone: u ⪰ v ⇒ TVaRu ⪰ TVaRv.
3. The equality TVaRv̂ = v̂ has a unique solution.

Proof. From Lemma A.3, we know that an operator is a contraction mapping if it satisfies Mono-
tonicity and Subvariance property.

In this proof, we will show that the VaR Bellman operator T π
VaR satisfies Monotonicity and Subvari-

ance property, and therefore, is a contraction mapping.

We will use shorthand rs,a to denote the reward corresponding to state s and action a, i.e., rs,a =
R(s, a).
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First, we show that TVaR satisfies Subvariance property. Consider any c ∈ R and state s. Then,

(TVaR(v + c1))(s) =max
a∈A

VaRα[p̃
T
s,a(rs,a + γ(v + c1))]

(a)
= max

a∈A
VaRα[p̃

T
s,a(rs,a + γv + γc1)]

(b)
= max

a∈A
VaRα[p̃

T
s,a(rs,a + γv) + γc]

(c)
= max

a∈A
VaRα[p̃

T
s,a(rs,a + γv)] + γc

(d)
= TVaRv + γc .

(a) follows from simple algebraic manipulations, (b) follows from γcp̄T
s,a1 = γc, (c) follows from

the translational invariance property of VaR measure [30], and (d) follows the definition of the VaR
Bellman operator T π

VaR.

Next, we show that TVaR satisfies Monotonicity property.

Let u and v be any two value functions such that v ⪯ u. Consider any state s ∈ S. Then,

(TVaRv)(s)− (TVaRu)(s) = max
a∈A

VaRα[p̃
T
s,a(rs,a + γv)]−max

a∈A
VaRα[p̃

T
s,a(rs,a + γu)]

(a)
= max

a∈A
VaRα[rs,a + γp̃T

s,av]−max
a∈A

VaRα[rs,a + γp̃T
s,au]

(b)
= max

a∈A
(rs,a + γVaRα[p̃

T
s,av])−max

a∈A
(rs,a + γVaRα[p̃

T
s,au])

(c)
≤ 0

(TVaRv)(s) ≤ (TVaRu)(s)

(a) follows from the fact that rs,a is independent of the next state s′, (b) follows from the translational
invariance property of the VaR measure [30], (c) follows from the fact that, for any action a,
VaRα[p̃

T
s,au] ≥ VaRα[p̃

T
s,av] because u ⪰ v and the VaR measure satisfies monotonicity property

[30]. Thus, ∀a ∈ A, rs,a + γVaRα[p̃
T
s,av] ≤ rs,a + γVaRα[p̃

T
s,au] and therefore, maxa∈A(rs,a +

γVaRα[p̃
T
s,av]) ≤ maxa∈A(rs,a + γVaRα[p̃

T
s,au]).

Thus, we prove that TVaR is a γ-contraction mapping and a monotone operator. Since TVaR is a
contraction operator on a Banach space, the Banach fixed point theorem [1] implies that the operator
TVaR has a unique solution v̂, i.e., TVaRv̂ = v̂.

Proposition A.5. Let q̂ ∈ RS×A represent the optimal action-value function corresponding to
the optimal VaR policy π̂. For any k ∈ Z, let fk represent the empirical estimate of the kth
action-value function qk in Algorithm 3.1 computed with atmost ζ error, i.e., ∥fk − qk∥∞ ≤ ζ. If

k ≥
ln( Rmax

(ε−ζ)(1−γ)
)

1−γ where Rmax = maxs∈S,a∈A,s′∈S r(s, a, s′) and ε > ζ, then,

∥q̂ − fk∥∞ ≤ ε .

Proof. Let f̂ be the empirical fixed point of the empirical VaR Bellman operator T̂VaR defined for
any value function v and state s as

(T̂VaRv)(s) = max
a∈A

V̂aRα[p̃
T
s,aws,a] .

14



To prove the result, we assume that the empirical VaR Bellman operator T̂VaR is also a contraction
mapping like the VaR Bellman operator TVaR. Then,

∥q̂ − fk∥∞
(a)
= ∥q̂ − f̂ + f̂ − fk∥
(b)
≤ ∥q̂ − f̂∥+ ∥f̂ − fk∥∞
(c)
≤ ζ + ∥T̂VaRf − T̂VaRf

k−1∥
(d)
≤ ζ + γ∥f̂ − fk−1∥
(e)
≤ γ∥T̂VaRf̂ − T̂VaRf

k−2∥+ ζ

(f)
≤ γk

Rmax

1− γ
+ ζ .

(a) follows from simply adding and subtracting f̂ , (b) follows from triangle inequality, the first term
of (c) follows from the assumption that ∥qk − fk∥∞ ≤ ζ for any k ∈ Z and the second term follows
from the properties of VaRα Bellman operator, (d) follows from the contraction property of T̂VaR,
(e) follows from applying the same procedure as in (a) to step (d), and (f) follows from unrolling
(e) over k time steps and ∥f̂ − f0∥∞ ≤ Rmax/1−γ for f0 = 0.

We find k such that ∥q̂ − fk∥∞ ≤ ε,

γk

1− γ
(Rmax) + ζ ≤ ε

k ≥
ln
(

Rmax

(ε−ζ)(1−γ)

)
1− γ

.

Given a policy π, a state s ∈ S, and a transition model P , let

(T π
P v)(s) =

∑
a∈A

π(s, a)pT
s,aws,a and (T π

VaRv)(s) =
∑
a∈A

π(s, a)VaRα

[
p̃T
s,aws,a

]
,

represent the Bellman evaluation operator corresponding to transition model P and the VaR Bellman
evaluation operator, respectively.
Lemma A.6. For any policy π, let v̂π and vπ be the fixed point of the VaR policy evaluation operator
T π
VaR and Bellman policy evaluation operator T π

P . If the VaR Bellman policy evaluation operator
T π
VaR dominates the Bellman policy evaluation operator T π

P at v̂π, i.e., T π
VaRv̂

π ⪯ T π
P v̂π, then, the

fixed point of the VaR Bellman evaluation operator T π
VaR dominates the fixed point of the Bellman

evaluation operator T π
P , i.e., v̂π ⪯ vπ .

We note that in contrast to the Bellman policy evaluation operator T π
P , the VaR Bellman policy

evaluation operator T π
VaR is a function of the random variable P̃ and is not dependent on the transition

model P assumed in this setting.

Using the assumption TVaRv̂
π ⪯ T π

P v̂π, and from v̂π = T π
VaRv̂

π and vπ = T π
P vπ, we get by

algebraic manipulations:

Proof.

v̂π − vπ = T π
VaRv̂

π − T π
P vπ ⪯ T π

P v̂π − T π
P vπ ⪯ γPπ(v̂

π − vπ) .

Here Pπ is the transition probability function corresponding to policy π. Subtracting γPπ(v̂
π − vπ)

from the above inequality gives,

(I − γPπ)(v̂π − vπ) ⪯ 0 .
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where I is the identity matrix. (I − γPπ)
−1 is monotone as can be seen from its Neumann series.

v̂π − vπ ⪯ (I − γPπ)
−10 = 0 .

which proves the result.

Proposition A.7. For any policy π, the VaR Bellman evaluation operator T π
VaR dominates the BCR

Bellman evaluation operator T π
BCR i.e., T π

VaRv ⪰ T π
BCRv . Similar results hold for policy optimization

operators, i.e., TVaRv ⪰ TBCRv.

Proof. Recall the VaR Bellman and BCR Bellman operators defined for any value function v , policy
π ∈ ΠD, confidence level α, and state s as

(T π
VaRv)(s) = VaRα[p̃

Tws,π(s)]

(T π
BCRv)(s) = min

ps,π(s)∈Ps,π(s)

p̃T
s,π(s)ws,π(s) .

Suppose that for any value function v, confidence level α, state s and action a, VaRα[p̃
Tws,a] <

minps,a∈PBCR
s,a

p̃T
s,aws,a. We know that,

Pr
(
p̃T
s,aws,a ≤ VaRα[p̃

Tws,a]
)
> α

=⇒ Pr(p̃T
s,aws,a > VaRα[p̃

Tws,a]) < 1− α

=⇒ Pr(p̃s,a ∈ PBCR
s,a ) < 1− α ,

which is a contradiction since the BCR ambiguity set PBCR is constructed such that Pr[P̃ ∈ PBCR] ≥
1− α.

Since, we proved that VaRα[p̃
Tws,a] ≥ minps,a∈Ps,a

p̃T
s,aws,a for any action a, state s and value

function v, it follows that (T π
VaRv)(s) ≥ (T π

BCRv)(s) and (TVaRv)(s) ≥ (TBCRv)(s) for all value
functions v and state s.

B Proofs

B.1 Proof of Proposition 3.1

Proposition 3.1 (Lower Bound Percentile Criterion). For any δ ∈ (0, 1), if we set the confidence
level α in the operator T π

VaR to δ/S, then for every policy π ∈ Π : PrP̃ [v̂π ⪯ ṽπ|D] ≥ 1− δ, where
P̃ is a realization of the posterior distribution of the transition model P conditioned on observed
transitions D.

Proof. Let α = δ/S. Recall that for any policy π, state s ∈ S, transition model P̃ , the Bellman
evaluation operator T π and the VaR Bellman evaluation operator T π

VaR are defined as

(T πv)(s) =
∑
a∈A

π(s, a)p̃T
s,aws,a and (T π

VaRv)(s) =
∑
a∈A

π(s, a)VaRα

[
p̃T
s,aws,a

]
,

respectively.

It is also important to note that the Bellman operator T π is defined for a random transition model P̃ .

Let v̂π be the fixed point of T π
VaR conditioned on observed transitions D, and let ṽπ be a random

variable that represents the fixed point of T π for a given realization P̃ of the posterior distribution of
the transition model P given D. Then, applying Lemma A.6 to T π

VaR and T π, we have, v̂π ⪯ vπ

implies

T π
VaRv̂

π ⪯ T πv̂π
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That is for each state s,

VaRα[p̃
T
s,π(s)v̂

π] ≤ p̃T
s,π(s)v̂

π . (11)

Using the equation (11), we can bound the probability that the VaR value function lower bounds the
true value.

Pr
P̃

[v̂π ⪯ ṽπ|D] = Pr
P̃

[
∀s ∈ S : VaRα

[
p̃T
s,π(s)v̂

π
]
≤ p̃T

s,π(s)v̂
π
∣∣∣D] . (12)

From the definition of VaR, we know that for any state s and action a,

Pr
P̃

[
VaRα

[
p̃T
s,av̂

π
]
≤ p̃T

s,av̂
π
∣∣D] ≥ 1− α, (13)

Therefore, using union bound and (12) in (13), we can write

Pr
P̃

[v̂π ≻ ṽπ|D] ≤
∑
s∈S

Pr
P̃

[
VaRα[p̃

T
s,π(s)v̂

π] > p̃T
s,π(s)v̂

π
∣∣∣D] .

Thus,

Pr [v̂π ≻ ṽπ|D] =
∑
s∈S

δ

S
= S

δ

S
= δ .

B.2 Proof of Proposition 3.2

Proposition 3.2. Suppose that p̃s,a for any state s and action a, is a multivariate sub-

Gaussian with mean p̄s,a and covariance factor Σs,a, i.e., E
[
exp

(
λ(p̃s,a − p̄s,a

)T
w
)]

≤
exp

(
λ2w

TΣs,aw/2
)
,∀λ ∈ R,∀w ∈ RS . Then, for any state s ∈ S, TVaR satisfies

(TVaRv)(s) ≥ max
a∈A

(
p̄T
s,aws,a −

√
2 ln(1/α)

√
ws,aΣs,aws,a

)
.

Proof.

(T π
VaRv)s = max

a∈A
VaRα[p̃

T
s,aws,a]

(a)
= max

a∈A
inf
{
t
∣∣Pr (p̃T

s,aws,a ≤ t
)
> α

}
(b)
= max

a∈A
inf
{
t
∣∣Pr ((p̃s,a − p̄s,a)

Tws,a ≤ (t− p̄T
s,aws,a)

)
> α

}
(c)
= max

a∈A
inf
{
t
∣∣Pr (exp((p̃s,a − p̄s,a)

Tws,a) ≤ exp(t− p̄T
s,aws,a)

)
> α

}
(d)
≥ max

a∈A
inf

{
t
∣∣ inf
λ>0

exp(λ
2wT

s,aΣs,aws,a/2)

exp(λ(t− p̄T
s,aws,a))

> α

}
(e)
= max

a∈A
inf

{
t

∣∣∣∣ exp
(
−(t− p̄T

s,aws,a)
2

2wT
s,aΣs,aws,a

)
> α

}
(f)
= max

a∈A
inf

{
t

∣∣∣∣(t− p̄T
s,aws,a)

2 < −2 ln(α)wT
s,aΣs,aws,a

}
(g)
= max

a∈A
inf

{
t

∣∣∣∣(t− p̄T
s,aws,a) ∈

(
−
√
2 ln(1/α)

√
wT

s,aΣs,aws,a,
√
2 ln(1/α)

√
wT

s,aΣs,aws,a

)}
(h)
= max

a∈A

(
p̄T
s,aws,a −

√
2 ln(1/α)

√
ws,aΣs,aws,a

)
.

Equality (a) follows from the definition of VaR, (b) follows from subtracting p̄T
s,aws,a

on both sides, (c) follows from taking exponential on both sides, (d) follows from us-
ing the upper-bound given by Chernoff bound for a sub-Gaussian distribution [6] i.e.,
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Pr
(
exp((p̃s,a − p̄s,a)

Tws,a) ≤ exp(t− p̄T
s,aws,a)

)
≤ infλ>0

exp(λ2wT
s,aΣs,aws,a/2)

exp(λ(t−p̄T
s,aws,a))

, (e) follows

from solving for λ and getting λ =
(t−p̄s,a)

wT
s,aΣs,aws,a

, (f) follows from taking ln on both sides, (g)
follows from simple algebraic manipulations and (h) follows from taking the infimum of the solution
interval of t.

Solving for t in step (g), we get t = VaRα[p̃
T
s,aws,a] = p̄T

s,aws,a −
√
2 ln(1/α)

√
ws,aΣs,aws,a)

which proves the stated result.

B.3 Proof of Proposition 3.3

Proposition 3.3. Suppose that P̃ is normally distributed, i.e., for any state s and action a, p̃s,a

∼ N (p̄s,a,Σs,a).

Then, TVaR for any state s ∈ S takes the form

(TVaRv)(s) = max
a∈A

(
p̄T
s,aws,a − Φ−1(1− α)

√
ws,aΣs,aws,a

)
.

Proof. Consider the VaR Bellman optimality operator defined for any state s and value function v as

(TVaRv)(s) = max
a∈A

VaRα

[
p̃T
s,aws,a

]
. (14)

From the theory of multivariate normal distributions [6], we know that, for any state s and ac-
tion a, since p̄s,a is normally distributed N (p̄s,a,Σs,a), p̃T

s,aws,a is also normally distributed
N (p̄T

s,aws,a,w
T
s,aΣs,aws,a). To find the VaRα[p̃

T
s,aws,a] for any state s and action a, it is sufficient

to find t such that Pr(p̃T
s,aws,a ≥ t) = 1− α.

Pr

 (p̃− p̄s,a)
Tws,a√

wT
s,aΣs,aws,a

>
t− p̄T

s,aws,a√
wT

s,aΣs,aws,a

 = 1− α

1− Φ

 t− p̄T
s,aws,a√

wT
s,aΣs,aws,a

 = 1− α

 t− p̄T
s,aws,a√

wT
s,aΣs,aws,a

 = Φ−1(α)

t = p̄T
s,aws,a +Φ−1(α)

√
wT

s,aΣs,aws,a

t = p̄T
s,aws,a − Φ−1(1− α)

√
wT

s,aΣs,aws,a ,

The first equation follows from substracting p̄T
s,aws,a and dividing by

√
wT

s,aΣs,aws,a on both sides.

The second equality follows from the definition of CDF of N (0, 1) and the third equality follows
from simple algebraic manipulations.

Substituting the value of t = VaRα[p̃
T
s,aws,a] = p̄T

s,aws,a − Φ−1(1− α)
√

wT
s,aΣs,aws,a in (14),

we obtain the stated results.

Proposition 3.3 is useful when the Bernstein von Mises theorem holds for transition probability P̃ ,
i.e., as the number of posterior samples N goes to ∞, the posterior distribution of p̃s,a for any state s
and action a converges to a multivariate normal centered at the maximum likelihood true transition
model p̄s,a with covariance matrix given by the Fisher information matrix I(p⋆

s,a)
−1
/N of the true

transition probabilities p⋆
s,a [34].
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B.4 Proof of Theorem 3.4

Theorem 3.4 (Performance). Let v̂ be the fixed point of the VaR Bellman optimality operator TVaR,
and π⋆ be the optimal policy in (1). Let ρ⋆ = VaRα

[
ρ(π⋆, P̃ )

]
denote the optimal percentile returns

and ρ̂ = pT
0 v̂ denote the lower bound on the percentile returns computed using the Bellman operator

TVaR. For any δ ∈ (0, 1), we set the confidence level α = δ/(2SA) in TVaR. Then, with probability at
least 1− δ, the performance loss with respect to ρ⋆ is

ρ⋆ − ρ̂ ≤ 1

1− γ
max
s∈S

max
a∈A

(VaR1−α[p̃
T
s,aŵs,a]−VaRα[p̃

T
s,aŵs,a]) . (6)

Proof. We prove this theorem in three parts.

Let v̂ ∈ RS be the fixed point of the VaRα Bellman operator TVaR, i.e., v̂ = TVaRv̂. Recall that the
VaRα returns is given by ρ̂ = pT0 v̂. Furthermore, let T π

P represent the Bellman evaluation operator
for a given policy π ∈ Π and a transition probability model P . Then, T π

P is defined for each s ∈ S as

(T π
P v)s = pT

s,π(s)ws,π(s) ,

where ws,π(s) = rs,π(s) + γ · v.

It is well known that the Bellman operator T π
P is a contraction mapping, monotone, and has a unique

fixed point. Let π̃ ∈ argmaxπ∈Π ρ(π, P̃ ). Let ṽ be the unique fixed point of T π̃
P̃

:

ṽπ̃ = T π̃
P̃
ṽπ̃ .

Note that it is well-known that:
pT
0 ṽ = ρ(π̃, P̃ ) .

First, we show that the lower bound on the percentile returns computed by the VaR Bellman
operator TVaR, i.e., p0

Tv̂ is less than than the returns corresponding to policy π̃, i.e., p0
Tṽ with high

confidence 1− δ.

We can write ρ̂ = pT
0 v̂ as

pT0 v̂
(a)
≤ VaRα[ρ(π̂, P̃ )]

(b)
≤ ρ(π̂, P̃ )

(c)
≤ ρ(π̃, P̃ ) = pT

0 ṽ .

Inequality (a) follows because the VaR Bellman optimality operator optimizes a lower bound on the
percentile criterion with high confidence 1− δ. Inequality (b) follows from the definition of VaR.
Inequality (c) follows because π̃ is optimal for P̃ . The above equation implies

0 ≤ pT
0 (v̂ − ṽ) ≤ ∥v̂ − ṽ∥∞

Now, we establish the probabilistic bound based on bounding the Bellman residual. We will use the
following result to establish an upper bound on ∥v̂ − ṽ∥∞.

(T π̃
P̃
v̂ − v̂)s

(a)
= (T π̃

P̃
v̂ − TVaRv̂)s

(def)
= p̃T

s,π̃(s)ẑs,π̃(s) −VaRα

[
p̃T
s,π̂(s)ẑs,π̂(s)

]
(b)
≤ p̃T

s,π̃(s)ẑs,π̃(s) −VaRα

[
p̃T
s,π̃(s)ẑs,π̃(s)

]
(c)
≤ max

a∈A

(
p̃T
s,aẑs,a −VaRα

[
p̃T
s,aẑs,a

])
(d)
≤ max

a∈A

(
VaR1−α

[
p̃T
s,aẑs,a

]
−VaRα

[
p̃T
s,aẑs,a

])
with probability 1− 2αA .

(15)
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(a) follows from v̂ being the fixed point of TVaR, (b) follows from the optimality of π̂, (c) follows
from simple algebraic manipulations, and (d) follows from p̃T

s,aẑs,a ≥ VaR1−α[p̃
T
s,aẑs,a] with

probability α, p̃T
s,aẑs,a ≤ VaRα[p̃

T
s,aẑs,a] with probability α, and finally, taking a union bound over

the set of actions A yields the given probabilistic bound.

For any state s, let ĉs = maxa∈A
(
VaR1−α

[
pT
s,aŵs,a

]
−VaRα

[
pT
s,aŵs,a

])
. Applying the inequal-

ity in (15) to all states, we get

(T π̃
P̃
v̂ − v̂) ⪯ ĉ .

We can now use the standard dynamic programming bounding technique to bound ∥ṽ − v̂∥∞ as
follows:

0
(a)
⪯ ṽ − v̂

(b)
⪯ ṽ − T π̃

P̃
v̂ + T π̃

P̃
v̂ − v̂

(c)
⪯ ṽ − T π̃

P̃
v̂ + ĉ

ṽ − v̂ ⪯ T π̃
P̃
ṽ − T π̃

P̃
v̂ + ĉ .

We have (a) because v̂ ⪯ ṽ because TVaRṽ ⪯ ṽ and thus, ṽ ⪰ TVaRTVaRṽ ⪰ · · · ⪰
TVaR . . . TVaRṽ ⪰ v̂ because v̂ is the fixed point of TVaR and TVaR is monotone. We have (b)
from simply adding and subtracting T π̃

P̃
v̂ and (c) follows from (15).

Applying the ℓ∞ norm on both sides (i.e., taking the max over all states s ∈ S), we get

∥ṽ − v̂∥∞ ≤ ∥T π̃
P̃
ṽ − T π̃

P̃
v̂ + ĉ∥∞

(a)
≤ γ∥ṽ − v̂∥∞ + ∥ĉ∥∞

∥ṽ − v̂∥∞
(b)
≤ maxs∈S ĉs

1− γ
with probability (1− 2αSA) .

Inequality (a) follows by the triangle inequality, and inequality (b) follows from applying the results
in equation (15) and taking a union bound over all states in S.

Thus, setting α = δ/2SA, we get Pr
[
∥ṽ − v̂∥∞ ≤ maxs∈S ĉs

1−γ

]
≤ 1− δ.

Finally, to prove the bound on ρ⋆ and ρ̂ = pT
0 v̂, we need to show ρ⋆ ≤ η, where η = ρ̂+ maxs∈S ĉs

1−γ .
Suppose that the contradiction ρ⋆ > η holds true. Realize that ρ⋆ is optimal in (1), and therefore,
must satisfy

Pr

[
max
π∈Π

ρ(π, P̃ ) ≥ ρ⋆
]
≥ 1− δ .

Recall from the statement of the theorem that

Pr

[
max
π∈Π

ρ(π, P̃ ) ≥ η

]
≤ δ .

We can now derive a contradiction.

δ ≥ Pr

[
max
π∈Π

ρ(π, P̃ )
(a)
≥ η

]
≥ Pr

[
max
π∈Π

ρ(π, P̃ ) ≥ ρ⋆
]
≥ 1− δ .

where inequality (a) follows from the assumption ρ⋆ ≥ η. Thus, we get δ ≥ 1 − δ, which is a
contradiction for δ < 0.5. The lower bound 0 ≤ ρ⋆ − ρ̂ follows from the optimality of ρ⋆ and
Proposition 3.1, which proves the proposition.

B.5 Proof of Theorem 3.5

Theorem 3.5 (Asymptotic Performance). For any δ ∈ (0, 1), set α = δ/(2SA) in TVaR. Let I(p⋆
s,a)

−1

for any state s and action a, be the Fisher Information matrix corresponding to the true transition
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probabilities p⋆
s,a. Furthermore, let σmax = maxs∈S,a∈A

√
ŵT

s,aI(p
⋆
s,a)

−1ŵs,a represent the

maximum asymptotic standard deviation of the returns estimate p̃T
s,aŵs,a for any state-action pair

(s, a). Then, with probability at least 1 − δ, the asymptotic performance of the VaR framework ρ̂
w.r.t. the optimal percentile returns ρ⋆ satisfies

lim
N→∞

√
N(ρ⋆ − ρ̂) ≤ 1

1− γ

(
2Φ−1(1− α)σmax

)
≤ 1

1− γ

√
8 ln(1/α)σmax .

Proof. To prove this theorem, we assume that Berstein von Mises theorem [34] holds for P̃ , i.e., the
posterior distribution of transition probabilities p̃s,a for any state s and action a converges in the limit
to a multivariate normal N (p̄s,a, I(p

⋆
s,a)) centered at the maximum likelihood estimator of the true

transition model p⋆
s,a with covariance matrix given by the Fisher information matrix I(p⋆

s,a)/N of the
true transition probabilities p⋆

s,a.

Therefore, for any state s and action a, limN→∞
√
N(p̃T

s,aws,a − p̄T
s,aws,a) ⇝

N (0,wT
s,aI(p

⋆
s,a)ws,a).

We know from Proposition 3.3, that Value at risk of a univariate normal random variableX ∼ N (µ, σ)
can be written as VaRα[X] = µ + Φ−1(α)σ. Therefore, applying this result to the R.H.S of
Equation (6) gives

lim
N→∞

√
N(ρ⋆ − ρ̂) ≤ lim

N→∞

1

1− γ
max
s∈S

max
a∈A

(√
N p̄T

s,aws,a +Φ−1(1− α)
√
wT

s,aI(p
⋆
s,a)

−1ws,a

−
(√

N p̄T
s,aws,a +Φ−1(α)

√
wT

s,aI(p
⋆
s,a)

−1ws,a

))
=

1

1− γ
max
s∈S

max
a∈A

(
Φ−1(1− α)

√
wT

s,aI(p
⋆
s,a)

−1ws,a

−Φ−1(α)
√
wT

s,aI(p
⋆
s,a)

−1ws,a

)
= max

s∈S
max
a∈A

(
Φ−1(1− α)

√
wT

s,aI(p
⋆
s,a)

−1ws,a

−Φ−1(α)
√

wT
s,aI(p

⋆
s,a)

−1ws,a

)
= max

s∈S
max
a∈A

(
(Φ−1(1− α)− Φ−1(α))

√
wT

s,aI(p
⋆
s,a)

−1ws,a

)
= max

s∈S
max
a∈A

(
2Φ−1(1− α)

√
wT

s,aI(p
⋆
s,a)

−1ws,a

)
.

(16)

We prove the second inequality in Theorem 3.5, by leveraging the sub-Gaussian bounds for a standard
normal distribution N (0, σ) to show that Φ−1(1− α) ≤

√
2 ln(1/α).

We know that for a standard normal distribution X ∼ N (0, σ) where σ ∈ R, the follow sub-Gaussian
bounds holds true [6].

Pr
(
−
√
2 ln(2/α)σ ≤ X ≤

√
2 ln(2/α)σ

)
≥ 1− α . (17)

It is well known that for a standard normal distribution N (0, σ), the following equation holds.

Pr
(
−Φ−1(1− α/2)σ ≤ X ≤ Φ−1(1− α/2)σ

)
= 1− α (18)

Comparing equation (17) and (18), we get

Φ−1(1− α/2) ≤
√
2 ln(2/α)

≡Φ−1(1− α) ≤
√

2 ln(1/α) .
(19)

Substituting equation (19) in equation (16), proves the second inequality of the theorem.
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B.6 Proof of Proposition 3.6

Proposition 3.6 (Time Complexity). The time complexity of a single iteration of the loop in line 3 of
the VaR Value Iteration (Algorithm 3.1) is in O(SAN), where N is the number of samples of the
posterior samples of P̃ .

Proof. The proposition follows from the fact that any quantile of an array of real values can be
computed in linear time using the Quick Select algorithm [16] and a single iteration of the loop in
line 3 of Algorithm 3.1 computes quantile of returns SA times.

B.7 Proof of Proposition 3.7

Proposition 3.7 (Empirical Error Bound). For any state s, action a and value function v, let
V̂aRα[p̃

T
s,aws,a] represent the empirical estimate of α-percentile of returns VaRα[p̃

T
s,aws,a] and

Φf represent the cumulative density function (CDF) of the random estimate of returns p̃T
s,aws,a.

Suppose that Φf is differentiable at the point VaRα[p̃
T
s,aws,a] and let m = Φ′(VaRα[p̃

T
s,aws,a])

represents the density of estimate of returns at point VaRα[p̃
T
s,aws,a]. Let N⋆ be the number

of posterior samples required to obtain empirical error ε ∈ R, with confidence 1 − ζ, i.e.,
Pr
[
|V̂aRα[p̃

T
s,aws,a]−VaRα[p̃

T
s,aws,a]| > ε

]
≤ ζ . Then, limε→0N

⋆ε2 = ln(2/ζ)/2m2.

Proof. To prove this theorem, we first compute the derivative of the inverse of the CDF ∂Φ−1
/∂α

as follows. From the definition of the cdf Φf and VaR, we know that, for any α ∈ (0, 0.5),
Φ−1

f (α) = VaRα[p̃
T
s,aws,a].

From the inverse-function theorem, we get,

(Φ−1
f (α))′ =

1

Φ
′
f (VaRα[p̃T

s,aws,a])

=
1

Φ
′
f (Φ

−1
f (α))

=
1

m
.

Equipped with the above result, we can now proceed to prove the main result.

To prove the result, we need to find N⋆ such that

Pr
[
VaRα[p̃

T
s,aws,a]− ε ≤ V̂aRα[p̃

T
s,aws,a] ≤ VaRα[p̃

T
s,aws,a] + ε

]
≥ 1− ζ

(a)
= Pr

[
Φ−1

f (α− εm) ≤ V̂aRα[p̃
T
s,aws,a] ≤ Φ−1

f (α+ εm)
]
≥ 1− ζ .

(20)

Equation (a) follows from applying a first order Taylor expansion to Φ−1
f around the point α. We

apply the following results to obtain a bound on N⋆.

Let F̂ and F represent the empirical CDF and the true CDF of a random variable Z̃. Suppose that the
empirical estimate of the CDF F̂ is estimated using N⋆ samples from the true distribution of Z̃ and
0 < ζ < 1 represents the desired level of confidence guarantees, Then, from DWK inequality [23],
we know that

Pr
(
∥F̂ − F∥∞ ≥

√
ln(2/ζ)/2N⋆

)
≤ ζ

The above equation implies that

Pr
(
∃p ∈ (0, 1) : F−1(p) < F̂−1(p− lt)or F−1(p) > F̂−1(p+ ut)

)
≤ ζ (21)

where lt = ut =
√

ln(2/ζ)/2N⋆.

Thus, applying equation (21) to (20), i.e., lt =
√

ln(2/ζ)/2N⋆ = εm gives N⋆ = ln(2/ζ)/2ε2m2.
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B.8 Proof of Proposition 4.1

Proposition 4.1 (Equivalence). Let v̂π be the fixed point of the VaR Bellman evaluation operator
TVaR for each π ∈ ΠD, i.e, v̂π = (T π

VaRv̂
π), where ΠD is the set of all deterministic policies. Then,

the optimal VaR policy π̂ solves

max
π∈ΠD

min
P∈PVaR,v̂π

ρ(π, P ) . (8)

Proof. Consider the VaR Bellman optimality operator.

∀s ∈ S, v ∈ RS , (T π
VaRv)s =max

a∈A
VaRα

[
p̃T
s,aws,a

]
. (22)

Notice that VaRα

[
p̃T
s,aws,a

]
is convex in p̃s,a. Thus, using the definition of support functions of

convex functions [8], we can write Equation (22) as

∀s ∈ S, v ∈ RS , (T π
VaRv)s = max

a∈A
min

P∈PVaR,v
s,a

pT
s,aws,a ,

where PVaR,v
s,a =

{
ps,a ∈ ∆S

∣∣pT
s,aws,a ≥ VaRα

[
pT
s,aws,a

]}
.

(23)

Equation (23) represents the VaR Bellman operator T π
VaR (policy evaluation) as a Robust Bellman

operator with a special ambiguity set that is dependent on the value function v. Thus, from Equation
23 and theory of value iteration in RL, we get that the fixed point of VaR Bellman optimality operator
TVaR (policy optimization) is the value function of the optimal policy that solves the following
optimization problem.

argmax
π∈ΠD

min
P∈PVaR,vπ

ρ(π, P )

PVaR,vπ

=×PVaR,vπ

s,a , PVaR,vπ

s,a =
{
ps,a ∈ ∆S

∣∣pT
s,av

π ≥ VaRα

[
p̃T
s,av

π
]}

.

B.9 Proof of Proposition 4.2

Proposition 4.2. For any policy π, the fixed point of the VaR policy evaluation operator
T π
VaR dominates the fixed point of the Bellman evaluation operator T π

BCR, i.e., T π
BCR · · · T π

BCRv ⪯
T π
VaR · · · T π

VaRv for any v. Similar results hold for policy optimization operators TVaR and TBCR, i.e.,
TBCR · · · TBCRv ⪯ TVaR · · · TVaRv for any v.

We prove the first part of the proposition using induction. First, we verify that (T π
VaRv) ⪰ (T π

BCRv)
fo any v.

Proof.

T π
VaRv

(a)
⪰ T π

BCRv ∀v ∈ RS

(a) follows from the definition of T π
VaR and T π

BCR since the constraints of BCR ambiguity sets
encompass the constraints of the ambiguity sets implicitly constructed by T π

VaR (Proposition A.7).

Suppose that for for any v ∈ RS and k ∈ Z , applying T π
VaR and T π

BCR k times to v yields, (T π
VaR)

kv ⪰
(T π

BCR)
kv. Then,

(T π
VaR)

k+1v
(a)
⪰ T π

VaR(T π
BCR)

kv

(T π
VaR)

k+1v
(b)
⪰ T π

BCR(T π
BCR)

kv

(T π
VaR)

k+1v ⪰ (T π
BCR)

k+1v .

(a) follows from the monotonicity property of T π
VaR, (b) follows from the fact that T π

VaRw ⪰ T π
BCRw

for any w which in turn, follows from the definition of T π
VaR and T π

BCR. Therefore, T π
VaR(T π

BCR)
kv ⪰

T π
BCR(T π

BCR)
kv. Thus, by induction, it follows that T π

VaR · · · T π
VaRv ⪰ T π

BCR · · · T π
BCRv for any v.
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Now, we prove the second part of the proposition. Let , v̂ and vBCR be the fixed points of TVaR and
TBCR respectively. Supposed that vBCR ≻ v̂, then

TVaRv
BCR (a)

≻ TVaRv̂

TVaRTVaRv
BCR (b)

≻ TVaRTVaRv̂

TVaR . . . TVaRTVaRv
BCR (c)

≻ TVaR . . . TVaRTVaRv̂

v̂
(d)
≻ v̂ .

(a), (b), (c) follows from the monotonicity property of TVaR and (d) follows from the fact that v̂ is the
unique fixed point of TVaR. The last equation is a contradiction. therefore, it must be that vBCR ⪯ v̂.

B.10 Proof of Theorem 4.3

Theorem 4.3 (Asymptotic Radii of VaR Ambiguity Sets). Let P̄ = (p̄s,a)s∈S,a∈A be the Maximum
Likelihood estimate of transition probabilities computed from data D and Σ = (I(p⋆

s,a)
−1)s∈S,a∈A

be the corresponding covariance matrix. Then, ∀s ∈ S, a ∈ A,

lim
N→∞

√
N(PVaR

s,a − p̄s,a) =
{
ps,a ∈ ∆S

∣∣∣∥ps,a − p̄s,a∥Σ−1
s,a

≤ Φ−1(1− α)
}
− p̄s,a . (9)

To prove this theorem, we first establish some primary results.

We note that to prove this theorem, we assume that Bernstein von Mises theorem holds for transition
probabilities P̃ .

For any state s, action a and value function v, consider the 1-step VaRα Bellman update

fs,a(v) = VaRα

[
p̃T
s,a(rs,a + γv)

]
, (24)

Furthermore, let ws,a = rs,a + γv. If the posterior of transition probability p̃s,a has mean
p̄s,a ∈ RS and covariance matrix Σs,a = I(p⋆

s,a)
−1 ∈ RS×S and Bernstein von Mises

theorem [34] holds for posterior of transition probability p̃s,a, then as N −→ ∞, the returns

p̃T
s,aws,a ∼ N

(
p̄T
s,aws,a,

wT
s,aI(p

⋆
s,a)ws,a

N

)
. Then, we can write equation (24) as

fs,a(v) =
(
p̄T
s,aws,a − Φ−1(1− α)∥ws,a∥Σ−1

s,a

)
, (25)

where Φ−1(1−α) represents the 1−α percentile of standard normal distribution. (25) follows from
the analytical form of VaR of a normal random variable, i.e., for any normal random variable Ỹ with
mean µ, variance matrix σ and confidence level α, VaRα[Ỹ ] = µ− Φ−1(1− α)σ.

Since fs,a(v) is convex in v when p̃s,a is normally distributed, we can use the definition of support
functions of a closed convex set [8] to construct a unique ambiguity set PVaR

s,a of the form

PVaR
s,a =

{
ps,a

∣∣∣p̄s,a ≤ p̄T
s,aws,a − Φ−1(1− α)∥ws,a∥Σ−1

s,a
, ∀v ∈ RS

}
. (26)

The above equation implies that

∀v, min
ps,a∈PVaR

s,a

pT
s,aws,a = VaRα

[
p̃T
s,aws,a

]
.

Using basic algebraic manipulations as shown in Proposition B.1, we can alternatively express the
ambiguity set PVaR

s,a in the form of a semi-ellipsoidal ball with radius Φ−1(1− α).

PVaR
s,a =

{
ps,a

∣∣∣∣ 1√
N

∥p̄s,a − ps,a∥Σ−1
s,a

≤ Φ−1(1− α)√
N

}
. (27)

We note that although Σs,a are invertible, we can proceed as described in Section 3.1 in [15] to find
an approximation of their inverses.
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Proposition B.1. Consider the two ambiguity sets given in equations (26) and (27). These two
representations are equivalent.

Proof. We begin with equation (26),

pT
s,aws,a

(a)
≤ p̄T

s,aws,a − Φ−1(1− α)∥ws,a∥Σ−1
s,a

pT
s,aws,a − p̄T

s,aws,a

(b)
≤ −Φ−1(1− α)∥ws,a∥Σ−1

s,a

wT
s,a(ps,a − p̄s,a)(ps,a − p̄s,a)

Tws,a

(c)
≤ Φ−1(1− α)2wT

s,aΣs,aws,a .

The first and second equation follow from the definition of PVaR
s,a and simple algebraic manipulations.

The third equation follows by squaring on both sides.

Equation (c) is obtained by simply squaring Equation (b) on both sides. Using the basic properties of
semi-positive definite matrices, we can write the above equation as(

Φ−1(1− α)2Σs,a − (ps,a − p̄s,a)(ps,a − p̄s,a)
T
)
⪰ 0

(Σs,a)
T
(
Φ−1(1− α)2Σs,a − (ps,a − p̄s,a)(ps,a − p̄s,a)

T
)
Σs,a ⪰ 0

(ps,a − p̄s,a)(Σ
−1
s,a)

T
(
(Φ−1(1− α))2Σs,a − (Ps,a − p̄s,a)(ps,a − p̄s,a)

T
)
Σ−1

s,a(ps,a − p̄s,a)
(1)
⪰ 0

Φ−1(1− α)2(ps,a − p̄s,a)
TΣ−1

s,a(ps,a − p̄s,a)− ((ps,a − p̄s,a)
TΣs,a(Ps,a − p̄s,a))

2 ⪰ 0

Equation (1) holds since UTMU ⪰ 0 ∀ U ,M ⪰ 0.

(ps,a − p̄s,a)
TΣs,a(ps,a − p̄s,a) ≤ Φ−1(1− α)2

∥(ps,a − p̄s,a)∥Σ−1
s,a

≤ Φ−1(1− α) .

The proof for the other direction is simply the reverse of this proof and hence we omit it.

B.11 Proof of Theorem 4.4

Theorem 4.4 (Asymptotic Radius of Bayesian Credible Regions). For any state s and action a, let
PBCR
s,a be any Bayesian credible region and p̄s,a be the maximum likelihood estimator based on data

D. Furthermore, ξ <
√

χ2
S,1−α/Φ−1(1−α). Then, ∀s ∈ S, a ∈ A,

lim
N→∞

√
N(PBCR

s,a − p̄s,a) ̸⊆ lim
N→∞

√
Nξ(PVaR

s,a − p̄s,a) . (10)

This theorem follows directly from Theorem 10 in [15]. For the sake of clarity, we re-derive the
theorem below.

We note that to prove this theorem, we assume that Bernstein von Mises theorem holds for transition
probabilities P̃ .
Lemma B.2. For any positive semidefinite matrices A, B, and any v, the following inequality holds
true.

|∥v∥A−1 − ∥v∥B−1 | ≤
√

|vT(A−B)v| ≤ ∥v∥A−1

√
∥A−B∥F .

This proof of this lemma can be found in Lemma C.2 in [15]. We will use this lemma to prove the
theorem.

For any state-action pair (s, a), we will use the shorthand µN and ΣN to represent the mean p̄s,a and
the covariance matrix Σs,a of transition probabilities p̃s,a for any state s and action a, such that p̄s,a

and Σs,a are estimated using N samples from the posterior distribution of transition probabilities f .
We will also use the shorthand p̃ to represent p̃s,a and p⋆ to represent p⋆

s,a.

Define P(D, τ) for any τ ∈ R and dataset D, as

P(D, τ) =
{
p ∈ ∆S

∣∣∣∣ 1N ∥p− µN∥ΣN
≤ τ

}
.
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Notice that P(D,Φ−1(1−α)/
√
N) is the asymptotic ambiguity set PVaR in Theorem 4.3. Let P(D)

represent a Bayesian credible region for any dataset D. Consider any D such that P(D) − µN ⊆
ξ(P(D,Φ−1(1−α)/

√
N)− µN ). Since P(D) is a credible region,

1− ε ≤ Pr
p̃|D

(p̃− µN ∈ P(D)− µN )

≤ Pr
p̃|D

(p̃− µN ∈ ξ
(
P(D,Φ−1(1−α)/

√
N)− µN

)
= Pr

p̃|D

(
N−1(p̃− µN )TΣ−1

N (p̃− µN ) ≤ ξ2Φ−1(1−α)2/N
)
.

Since ξ ≤
√

χ2
S,1−α

Φ−1(1−α) , there exists δ ≥ 0, such that ξ2Φ−1(1− α)
2 ≤ χ2

S,1−δ−α − δ. Fix such δ.
Then,

Pr
p̃|D

(
N−1(p̃− µN )TΣ−1

N (p̃− µN ) ≤ ξ2Φ−1(1−α)2/N
)

≤ Pr
p̃|D

(
N−1(p̃− µN )TΣ−1

N (p̃− µN ) ≤ (χ2
S,1−δ−α−δ)/N

)
≤ Pr

p̃|D

(
N−1(p̃− µN )TI(p⋆

s,a)(p̃− µN ) ≤ (χ2
S,1−δ−α)/N

)
+ Pr

p̃|D

(
N−1(p̃− µN )T(N−1Σ−1

N − I(p⋆))(p̃− µN ) ≤ −δ/N
)

≤ Pr
p̃|D

(∥
√
N(p̃− µN )∥2

I(p⋆)−1 ≤ χ2
S,1−α−δ) + Z(D)

≤ Pr
p̃|D

(∥ζ∥2I(p⋆)−1 ≤ χ2
S,1−α−δ) +RN (D) + Z(D) .

where ζ ∼ N (0, I(p⋆)
−1

), RN (D) = supA |Prp̃|D(
√
N(p̃− µN ))− Prp̃|D(ζ ∈ A)| denotes the

total variational distance for the realization D , where A is a measurable subset of ∆S (see Bernstein
von Mises theorem in Theorem 6 in [15]), I(p⋆) is the Fisher information matrix of PrD|p⋆ , and
Z(D) = Pr((p̃ − µN )T(N−1Σ−1

N − I(p⋆
s,a))(p̃ − µN )| > δ

N ). The first probability is atmost
1− α− δ. Thus, for any D such that the theorem statement does not hold, RN (D) + S(D) > δ.

Fix t > 0 such that Pr(∥ζ∥I(p⋆)−1 > t) ≤ 0.5δ. From, the second inequality in Lemma B.2,

Z(D) ≤ Pr
p̃|D

(∥p̃− µN∥I(p⋆)−1

√
∥N−1Σ−1

N − I(p⋆)∥F >
√

δ/N)

≤ Pr
p̃|D

(∥p̃− µN∥I(p⋆)−1 > t/
√
N) + I(

√
∥N−1Σ−1

N − I(p⋆)∥F >
√
δ/t)

≤ Pr(∥ζ∥I(p⋆)−1 > t) +R(D) + I(
√
∥N−1Σ−1

N − I(p⋆)∥F >
√
δ/t)

0.5δ +RN (D) + I(
√

∥N−1Σ−1
N − I(p⋆)∥F >

√
δ/t) .

Thus, for any randomly drawn D̃,

Pr
D̃
(Theorem does not hold) ≤ Pr

D̃
(RN (D̃) + Z(D̃) > δ)

≤ Pr
D̃
(2RN (D̃) + I(

√
∥N−1Σ−1

N − I(p⋆)∥F >
√
δ/t) > 0.5δ)

≤ Pr
D̃
(2RN (D̃) > 0.25δ) + Pr(I(

√
∥N−1Σ−1

N − I(p⋆)∥F >
√
δ/t) > 0.25δ) .

From the assumption that the Bernstein-Von-Mises theorem holds for P̃ , the first probability tends
to zero, and since NΣN → I(p⋆)−1 for a large number of samples, the second probability tends to
zero as well. This proves the theorem.
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Methods Riverswim Inventory Population-Small Population
VaR 100.27 ± 8.62 483.08 ± 0.2 -1117.57 ± 120.01 -1856.06 ± 83.74
BCR l1 108.9 ± 10.56 391.39 ± 17.14 -2578.25 ± 52.02 -2956.65 ± 432.84
BCR l∞ 95.96 ± 0.0 254.43 ± 22.41 -5437.67 ± 23.13 -6422.09 ± 13.44
WBCR l1 108.9 ± 10.56 481.07 ± 2.29 -2251.96 ± 342.54 -2468.16 ± 90.22
WBCR l∞ 95.96 ± 0.0 239.76 ± 0.0 -5133.85 ± 42.72 -5917.99 ± 69.29
VaRN 123.78 ± 7.67 482.92 ± 0.59 -1514.44 ± 12.31 -1806.12 ± 1.77

Table 2: Shows the mean and standard deviation of the robust (percentile) returns at δ = 0.30
achieved by different robust methods in Riverswim, Inventory, Population-Small and Population
domains.
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Figure 2: Comparison of test and train robust returns achieved by VaR, VaRN, BCR ℓ1, BCR ℓ∞,
WBCR ℓ1 and WBCR ℓ∞ agents at confidence level δ = 0.05 in Inventory, Population-Small and
Population domain. VaR framework achieves the highest robust returns in all the domains on test
and train datasets. All the RL agents are trained on the original train dataset.
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Figure 3: Comparison of robust lower bound value achieved by VaR, VaRN, BCR ℓ1, BCR ℓ∞, WBCR
ℓ1 and WBCR ℓ∞ ambiguity sets for different confidence levels δ in Inventory, Population-Small and
Population domain. VaRα achieves the highest robust returns in all the domains.
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Figure 4: Comparison of robust returns on test dataset achieved by VaR, VaRN, BCR ℓ1, BCR ℓ∞,
WBCR ℓ1 and WBCR ℓ∞ agents (trained on the original train dataset) for different confidence levels δ
in Inventory and Population and Population-Small domain.
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(a) VaR Policy
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(b) WBCR ℓ1 policy
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(c) WBCR ℓ∞ policy

Figure 5: Comparison of robust policies corresponding to VaR, WBCR ℓ1, WBCR ℓ∞ ambiguity
sets at confidence level δ = 0.1 in Inventory domain.
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(a) VaR Policy
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(b) WBCR ℓ1 policy
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(c) WBCR ℓ∞ policy

Figure 6: Comparison of robust policies corresponding to VaR, WBCR ℓ1, WBCR ℓ∞ ambiguity
sets at confidence level δ = 0.1 in Population-Small domain.
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(a) VaR Policy
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(b) WBCR ℓ1 policy
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(c) WBCR ℓ∞ policy

Figure 7: Comparison of robust policies corresponding to VaR, WBCR ℓ1, WBCR ℓ∞ ambiguity
sets at confidence level δ = 0.1 in Population domain.

C Experiments

D Implementation Details

Hyperparameters for Riverswim Domain
Number of train models 200
Number of test models 200

Hyperparameters for Inventory Domain
Number of train models 100
Number of test models 100

Hyperparameters for Population-Small Domain
Number of train models 50
Number of test models 50

Hyperparameters for Population Domain
Number of train models 1000
Number of test models 1000
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D.1 Code

We have provided the code in the supplementary materials. Since the dataset for the population
domain is very large, we were unable to add it to the supplementary materials. We will make the
dataset publicly available after the paper is published.

D.2 Machine Specifications

We ran all the experiments on MacBook Air (M2 2022) with 16GB Memory and 8 cores. The total
computational time ∼3 hours.
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