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Abstract

Policy evaluation via Monte Carlo (MC) simulation is at the core of many MC
Reinforcement Learning (RL) algorithms (e.g., policy gradient methods). In this
context, the designer of the learning system specifies an interaction budget that the
agent usually spends by collecting trajectories of fixed length within a simulator.
However, is this data collection strategy the best option? To answer this question,
in this paper, we consider as quality index the variance of an unbiased policy return
estimator that uses trajectories of different lengths, i.e., truncated. We first derive
a closed-form expression of this variance that clearly shows the sub-optimality
of the fixed-length trajectory schedule. Furthermore, it suggests that adaptive
data collection strategies that spend the available budget sequentially might be
able to allocate a larger portion of transitions in timesteps in which more accurate
sampling is required to reduce the variance of the final estimate. Building on
these findings, we present an adaptive algorithm called Robust and Iterative Data
collection strategy Optimization (RIDO). The main intuition behind RIDO is to
split the available interaction budget into mini-batches. At each round, the agent
determines the most convenient schedule of trajectories that minimizes an empirical
and robust estimate of the estimator’s variance. After discussing the theoretical
properties of our method, we conclude by assessing its performance across multiple
domains. Our results show that RIDO can adapt its trajectory schedule toward
timesteps where more sampling is required to increase the quality of the final
estimation.

1 Introduction

In Reinforcement Learning [RL, Sutton and Barto, 2018], an agent acts in an unknown, or partially
known, environment to maximize/estimate the infinite expected discounted sum of an external reward
signal, i.e., the expected return. Monte Carlo evaluation [MC, Owen, 2013] is at the core of many
successful RL algorithms. Whenever a simulator with reset possibility is available to the learning
systems designer, a large family of approaches [Williams, 1992, Baxter and Bartlett, 2001, Schulman
et al., 2015, 2017, Cobbe et al., 2021] that can be used to solve the RL problem relies on MC
simulations for estimating performance or gradient estimates on the task to be solved. In this scenario,
since the goal is to estimate the expected infinite sum of rewards, the designer usually specifies a
sufficiently large estimation horizon T , along with a transition budget Λ = QT , so that the agent
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interacts with the simulator, via MC simulation, collecting a batch of Q episodes of length T .1 In this
sense, the agent spends its available budget Λ uniformly along the estimation horizon.

In the context of MC policy evaluation, where the goal lies in estimating the performance of a given
policy via MC simulations, Poiani et al. [2023] have recently shown that, given the discounted nature
of the RL objective, this uniform-in-the-horizon budget allocation strategy may not be the best option.
The core intuition behind their work is that, since rewards are exponentially discounted through time,
early interactions weigh exponentially more than late ones, and, consequently, a larger portion of the
available budget Λ should be dedicated to estimating the initial rewards. To theoretically validate
this point, the authors designed a non-adaptive budget allocation strategy which, by exploiting the
reset possibility of the simulator, leads to the collection of trajectories of different lengths, i.e.,
truncated. They show that this approach provably minimizes Höeffding-like confidence intervals
[Boucheron et al., 2003] around the empirical estimates of the expected return. Remarkably, this
implies a robustness w.r.t. the uniform strategy that holds for any pair of environment and policy to
be evaluated, thus, clearly establishing the theoretical benefits of the proposed method.

Nevertheless, it has to be noticed that although minimizing confidence intervals around the expected
return estimator comes with desirable theoretical guarantees (e.g., PAC-bound improvements [Even-
Dar et al., 2002]), the resulting schedule of trajectories is computed before the interaction with
the environment (being determined by the discount factor). Consequently, as the usual uniform-
in-the-horizon scheme, it fails to adapt to the peculiarities of the problem at hand, and, ultimately,
might not produce a low error estimate. For the sake of clarity, we illustrate this sub-optimality of
pre-determined schedule of trajectories with the following extreme examples.
Example 1. Consider an environment where the reward is gathered only at the end of the horizon T
(e.g., a goal-based). In this scenario, any strategy that truncates trajectories is intuitively sub-optimal,
and we expect that an intelligent agent will spend all its budget according to the uniform schedule.
Example 2. Conversely, consider a problem where the reward is different from 0 in the first interaction
step only (e.g., in the case of a highly sub-optimal policy that immediately reaches the “zero reward
region” of an environment); the uniform schedule wastes a significant portion of its budget collecting
samples without variability, and, to reduce the estimation error, we would like the agent to spend all
of its interaction budget estimating the reward of the first action.

Abstracting away from the previous examples, we realize that the main issue of existing approaches
arises from the fact that determining a schedule of trajectories before interacting with the environment
does not allow the agent to adapt it to the environment peculiarities, allocating more samples where
this is required to obtain a high-quality estimate. For this reason, in this work, we focus on designing
adaptive data collection strategies that aim directly at minimizing the error of the final estimate. Our
main intuition lies in splitting the available budget Λ into mini-batches and adapting online the data
collection strategy of the agent based on the previously collected information.

Original Contributions and Outline After introducing the necessary notation and backgrounds
(Section 2), we consider the problem of maximizing the estimation quality of a policy expected
return estimator using trajectories of different lengths collected via MC simulation with a finite
budget Λ of transitions (Section 3). More specifically, since we use an unbiased return estimator, we
consider its variance as a quality index, of which we derive a closed-form expression and analyze
it for every possible schedule of trajectories. Then, we define the optimal trajectories schedule as
the one that attains the minimum variance subject to the available budget constraint. As expected,
computing this optimal data collection strategy requires knowledge of the underlying environment
(e.g., the variance of the rewards at each timestep), which is not available to the agent prior to the
interaction. Nevertheless, as we shall see, all the quantities that define the optimal strategy can
be estimated from the data. These facts confirm our intuition about the weakness of non-adaptive
schedules of trajectories and suggest that algorithms that spend the available budget Λ iteratively
might be able to dynamically allocate their budget to minimize the variance of the final estimate.
Building on these findings, in Section 4, we present a novel algorithm, Robust and Iterative Data
collection strategy Optimization (RIDO), which splits its available budget Λ into mini-batches of
interactions that are allocated sequentially to minimize an empirical and robust estimate of the

1While another large class of RL algorithms is based on Temporal Difference [TD, Sutton and Barto, 2018]
learning, which do not require the finite horizon nor the reset possibility, Monte Carlo simulation approaches
continue to be extensively adopted. Indeed, unlike TD methods, they can be applied effortlessly to non-Markovian
environments, which is a common occurrence in real-world problems.
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objective function of interest, i.e., the variance of the estimator. Furthermore, we perform a statistical
analysis on the behavior of RIDO, and we derive theoretical guarantees expressed as upper bounds
on the variance of the policy return estimator. Our result shows that, under favorable conditions, the
variance of the return estimator computed by RIDO is of the same order as the one of the oracle’s
baseline. To conclude, in Section 5, we conduct an experimental comparison between RIDO and
non-adaptive schedules. As we verify, our method achieves the most competitive performance across
different domains, discount factor values, and budget, thus clearly highlighting the benefits of adaptive
strategies over pre-determined ones.

2 Backgrounds and Notation

This section provides the notation and necessary backgrounds used in the rest of this document.

Markov Decision Processes A discrete-time Markov Decision Process [MDP, Puterman, 2014]
is defined as a tupleM := (S,A, R, P, γ, ν), where S is the set of states, A is the set of actions,
R : S ×A → [0, 1] is the reward function the specifies the reward R(s, a) received by the agent upon
taking action a in state s, P : S ×A → ∆(S)2 is the transition kernel that specifies the probability
distribution over the next states P (·|s, a), when taking action a in state s, γ ∈ (0, 1) is the discount
factor, and ν ∈ ∆(S) is the distribution over initial states. The agent’s behavior is modeled by
a policy π : S → ∆(A), which for each state s, prescribes a distribution over actions π(·|s). A
trajectory τh of length h is a sequence of states and actions (s0, a0, s1, . . . sh−1, ah−1, sh) observed
by following π for h steps, where s0 ∼ ν, at ∼ π(·|st), and st+1 ∼ P (·|st, at) for t < h. The return
of a trajectory is defined as G(τh) =

∑h−1
t=0 γ

tRt, where Rt is shortcut for R(st, at). The agent that
is following policy π is evaluated according to expected cumulative discounted sum of rewards over
an estimation horizon T ,3, namely J(π) = Eπ

[∑T−1
t=0 γtRt

]
, where the expectation is taken w.r.t.

the stochasticity of the policy, the transition kernel, and the initial state distribution.

Data Collection Strategy Poiani et al. [2023] formalized the concept of Data Collection Strategy
(DCS) to model how the agent collects data within an environment. More specifically, given an
interaction budget Λ ∈ N such that Λ mod T = 0, a DCS is defined as a T -dimensional vector
m := (m1, . . . ,mT ) where mh ∈ N and

∑T
h=1mhh = Λ. Each element mh specifies the number

of trajectories of length h that the agent collects in the environment while following a policy π. Given
a DCS m, it is possible to compute the total number of steps n := (n0, . . . , nT−1) that will be
gathered by the agent at any step t; more specifically, the following relationship holds: nT−1 = mT ,
and nt = nt+1 +mt+1 for t < T − 1. For this reason, in the rest of the paper we will adopt the most
convenient symbol depending on the context. For any DCS m such that mT ≥ 1 holds, it is possible
to build the following unbiased estimator of J(π):

Ĵm(π) =

T∑
h=1

mh∑
i=1

T−1∑
t=0

γt

nt
R

(i)
t . (1)

The two external summations in Equation (1) sum over the collected trajectories of different lengths
a rescaled empirical trajectory return, where the reward at step t is divided by the number of samples
collected at step t.4 In the case the budget Λ is spent uniformly, i.e.,m =

(
0, . . . , 0, Λ

T

)
, Equation

(1) reduces to the usual Monte Carlo estimator of J(π), namely T
Λ

∑Λ/T
i=1

∑T−1
t=0 γtR

(i)
t .

Robust Data Collection Strategy Optimization Leveraging the estimator of Equation (2), Poiani
et al. [2023] investigated alternatives to the usual uniform-in-the-horizon DCS from the worst-case
perspective of confidence intervals [Boucheron et al., 2003]. More specifically, given m such
that mT ≥ 1, the estimator of Equation (1) enjoys the following generalization of the Höeffding

2Given a set X , we denote with ∆(X ) the set of probability distributions over X .
3As common in Monte-Carlo simulation [see e.g., Papini et al., 2022] we approximate the infinite horizon

MDP model with a finite estimation horizon T . Indeed, if T is sufficiently large, i.e., T = O
(

1
1−γ log 1

ε

)
, the

expected return computed with horizon T is ε close to the infinite-horizon one [Kakade, 2003].
4Rescaling by nt prevents the estimate from being biased towards time steps for which more samples are

available.
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confidence intervals holding with probability at least 1− δ:

|J(π)− Ĵm(π)| ≤

√√√√1

2
log

(
2

δ

) T−1∑
t=0

dt
nt
, (2)

where dt =
γt(γt+γt+1−2γT )

1−γ controls the relative importance of samples gathered at step t. Poiani
et al. [2023] designed a closed-form DCS that provably minimizes the bound of Equation (2). Since
dt is a decreasing function of time whose decay speed is governed by the discount factor γ, the
aforementioned DCS gives priority to the collection of experience at earlier time steps, i.e., it truncates
the trajectories. Note that the smaller γ, the higher the number of samples reserved for earlier time
steps. We refer the reader for Theorem 3.3 and Theorem B.10 of their work for the exact expressions
of the resulting robust DCS. However, we remark that the resulting schedule is non-adaptive (i.e., it is
computed before the interaction with the environment takes place) and its shape depends exclusively
on Λ, γ, and T .

3 Toward Adaptive Data Collection Strategies

In this section, we lay down the theoretical groundings behind optimizing data collection strategies
that directly aim at minimizing the final estimation error. We stick to methods that adopt the
estimator of Equation (1), which has a simple interpretation and desirable theoretical properties.
More specifically, since the estimator is unbiased, the Mean Squared Error (MSE) simply reduces to
the variance. For this reason, to set a proper baseline for DCS optimization (i.e., an optimal strategy
according to the MSE), we first analyze the variance of the estimator of Equation (1) for an arbitrary
DCSm. The following Theorem (proof in Appendix B) summarizes our result.

Theorem 3.1. Consider a generic DCSm such that mT ≥ 1, then:

Varm

[
Ĵm(π)

]
=

T−1∑
t=0

1

nt

(
γ2tVar(Rt) + 2

T−1∑
t′=t+1

γt+t
′
Cov(Rt, Rt′)

)
=:

T−1∑
t=0

ft
nt
. (3)

Theorem 3.1 expresses, in closed form, the variance of the estimator of Equation (1) when adopted
with an arbitrary DCS that guarantees the estimation to be unbiased (i.e., mT ≥ 1). From Equation
(3), we can see that this variance results in a summation, over the different time steps, of 1

nt
, i.e., the

reciprocal of the number of samples collected underm at step t, multiplied by the variance of the
reward at step t plus the covariances between Rt and the rewards gathered at future steps. For brevity,
we shortcut this term with ft. Furthermore, Theorem 3.1 leads to a direct formulation of an optimal
DCS baseline for our setting. More specifically, given a budget Λ, we define the optimal DCS n∗ for
the estimator in Equation (1) as the solution of the following optimization problem:

min
n

T−1∑
t=0

1

nt

(
γ2tVar(Rt) + 2

T−1∑
t′=t+1

γt+t
′
Cov(Rt, Rt′)

)

s.t.
T−1∑
t=0

nt ≤ Λ

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ∈ N+, ∀t ∈ {0, . . . , T − 1},

(4)

where the constraints nt ≥ nt+1 directly encode the sequential nature of the interaction with the
environment. At this point, some comments are in order. First of all, we notice that the above
optimization problem nicely captures the intuitive examples of Section 1.

Example 1 (cont.). When the reward is different from 0 in the last interaction step only, the objective
function reduces to γ2(T−1)

nT−1
Var [RT−1], which is clearly minimized for the uniform strategy.

Example 2 (cont.). Conversely, when the reward is different from 0 in the first step only, we obtain
Var[R0]
n0

, meaning that the entire interaction budget should be dedicated to estimate R0.
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Algorithm 1 Robust and Iterative DCS Optimization (RIDO).
Require: Interaction budget Λ, batch size b, robustness level β, policy π

1: Collect D using policy π and n̂0 =
(
b
T
, . . . , b

T

)
2: Set K = Λ

b
and initialize empirical estimates

√
V̂ar1 [Rt] and Ĉov1 [Rt, R

′
t]

3: for i = 1, . . . ,K − 1 do
4: Collect Di using policy π and n̂i, where n̂i is computed solving problem (5)

5: Update empirical estimates
√

V̂ari [Rt] and Ĉovi [Rt, R
′
t] using Di and set D ← D ∪Di

6: end for

Furthermore, the formulation of problem (4) highlights the pitfalls of a non-adaptive data collection
strategies. Indeed, consider, for the sake of clarity, the two examples mentioned above. Before
executing policy π, the agent has no way of distinguishing between the two different objective
functions, i.e., γ

2(T−1)

nT−1
Var [RT−1] and Var[R0]

n0
, and, consequently, any pre-determined schedule fails

to adapt to the actual objective function. More generally, this is because the optimal strategy resulting
from the optimization problem (4) can be computed prior to the interaction with the environment only
by an oracle that knows in advance the underlying reward process induced by the agent’s policy π in
the MDP. Nevertheless, we note that all the terms appearing in the objective function, i.e., the only
unknowns in optimization problem (4), can be estimated if some interactions with the environment are
available to the agent. This suggests that strategies that sequentially allocate the available budget Λ
might successfully adapt their DCS to minimize Equation (3), i.e., the variance of the return estimator.

4 Robust and Iterative DCS Optimization

Given the findings of Section 3, we now present our algorithmic solution that aims at avoiding
the highlighted pitfalls of pre-determined DCSs. Our approach is called Robust and Iterative Data
collection strategy Optimization (RIDO), and its pseudocode is available in Algorithm 1. The central
intuition behind RIDO lies in splitting the available budget Λ into mini-batches of interactions that
the agent will allocate sequentially. At each iteration, the agent will compute the most convenient
schedule of trajectories that optimizes an empirical and robust version of the objective function
presented in (4), whose quality improves as the agent gathers more data.

We now describe in-depth the behavior of the algorithm. For simplicity of exposition and analysis,
we suppose that the size of the mini-batch b is such that b mod T = 0 and b ≥ 2T . At the beginning
(Lines 1-2 in Algorithm 1), the agent spends the first mini-batch n̂0 at collecting b

T trajectories
of length T (i.e., the uniform approach). This preliminary collection phase is a starting round
in which some initial experience is gathered to properly initialize estimates of relevant quantities
used throughout the algorithm. More specifically, at each iteration i, the agent maintains empirical
estimates of the unknown quantities that define the variance of the estimate, i.e., the standard deviation

of the reward at step t, namely
√
V̂ari [Rt], and the covariances between rewards at different steps,

namely Ĉovi (Rt, Rt′). Then, at each round (Lines 4-5 in Algorithm 1), the DCS of the current
mini-batch n̂i is computed solving the optimization problem (5) whose objective function is a robust
estimate of the objective function of the original optimization problem (4). More specifically, at each
round i, the agent aims at solving the following problem:

min
n

T−1∑
t=0

1

nt

(
γ2t

(√
V̂ari(Rt) + Cσi,t

)2

+ 2

T−1∑
t′=t+1

γt+t
′ (

Ĉovi(Rt, Rt′) + Cci,t,t′
))

s.t.
T−1∑
t=0

nt ≤ b

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ∈ N+, ∀t ∈ {0, . . . , T − 1},

(5)
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where Cσi,t and Cci,t,t′ are exploration bonuses for variances and covariances respectively, defined as:

Cσi,t :=

√
2 log (β)∑i−1
j=1 n̂j,t

, Cci,t,t′ := 3

√
2 log (β)∑i−1
j=1 n̂j,t′

, (6)

where β ≥ 1 is a hyper-parameter that specifies the amount of exploration used to solve the
optimization problem, and n̂j,t is the number of samples collected by RIDO during phase j at time
step t. We now provide further explanations on the optimization problem (5) and Equation (6). First
of all, we notice how each term in the original objective function, namely ft , is replaced with its
relative empirical estimation plus exploration bonuses, each of which is directly related to components

within ft, e.g., Var (Rt) is replaced with
(√

V̂ari(Rt) + Cσi,t

)2

and Cov (Rt, Rt′) is replaced with

Ĉovi (Rt, Rt′)+Cci,t,t′ . Intuitively, the purpose of the exploration bonus is to consider the uncertainty
that arises from replacing exact quantities with their empirical estimation. This introduces in RIDO a
source of robustness w.r.t. the noise that is intrinsically present in the underlying estimation process.
At this point, concerning the shape of Equation (6), focus for the sake of exposition on Cσi,t. First
of all, we notice that the hyper-parameter β governs the robustness which is taken into account
while replacing Var (Rt) with its empirical estimate. Larger values of β, correspond, indeed, to
larger Cσi,t, and, consequently, a higher level of robustness w.r.t. the uncertainty. Furthermore, as
we can notice, Cσi,t decreases with the number of samples collected in the previous iterations at step
t, i.e.,

∑i−1
j=1 n̂j,t. This quantity coincides with the number of samples that are used to estimate√

V̂ari [Rt].5 This formulation captures the following aspect: more data is available to the agent to
estimate Var (Rt), the more accurate its estimate will be, and, consequently, its exploration bonus
will shrink to 0. As one can expect, with this approach, the quality of the objective function used
in RIDO increases with the number of iterations. Consequently, the agent will progressively adapt
the mini-batch DCS toward time steps where more data is required to minimize Equation (3), i.e.,
the variance of the return estimator. We conclude with two remarks. First, we notice that RIDO can
be applied with γ = 1, as it does not deeply rely on the property of discounted sums. Secondly, the
optimization problem (5) is a complex integer and non-linear optimization problem. Before diving
into the statistical analysis of RIDO, we discuss how to solve (5) in the next section.

4.1 Solving the Empirical Optimization Problem

As noticed above, directly solving problem (5) requires significant effort since it is an integer,
non-linear optimization problem. In this section, we discuss how to overcome these challenges.

We first perform a continuous relaxation, replacing the integer constraint nt ∈ N+ with nt ≥ 1.
Once a solution n̄∗ to the relaxed optimization problem is found, it is possible to obtain a proper (i.e.,
integer) DCS by flooring each n̄∗t and allocating the remaining budget uniformly. As we shall see,
this approximation introduces constant terms in the theoretical guarantees of RIDO only. At this
point, the resulting optimization problem is a non-linear problem that, unfortunately, is generally
non-convex. This issue occurs when the following condition is verified for some time step t:

ft = γ2t

(√
V̂ari(Rt) + Cσi,t

)2

+ 2

T−1∑
t′=t+1

γt+t
′ (

Ĉovi(Rt, Rt′) + Cci,t,t′
)
< 0. (7)

To solve this challenge and make RIDO computationally efficient, we develop an approach based
on a hidden property of the original optimization problem (4). More specifically, we start by
noticing that even the continuous relaxation of (4) is non-convex since ft̄ < 0 might occur, for some
t̄ ∈ {0, . . . , T − 2}, in the presence of negative covariances with future steps. In this case, however,
since

∑T−1
t=t̄ ft represents a proper variance, which is always non-negative, there always exists t′ > t̄

such that
∑t′

t=t̄ ft ≥ 0. Furthermore, it is possible to show that the optimal solution of the relaxed
optimization problem is uniform in the interval {t̄, . . . , t′}, namely n∗t̄ = n∗t̄+1 = · · · = n∗t′ (proof in

5Similar comments apply to Cci,t,t′ as well. The only difference stands in the fact that to estimate the
empirical covariance between two subsequence steps t and t′, samples up to time t′ are required. For this reason,
the denominator implies the summation of the number of samples gathered at t′ over the previous iterations.
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f0

n0

ft̄
nt̄

ft̄+1

nt̄+1

ft′
nt′

fT−1

nT−1

f0

n0

ft̄+···+ft′
y

fT−1

nT−1

Figure 1: Visualization of the transformation between the optimization problems. The first row shows
the objective function of the original optimization problem, while the second one its transformation.

Appendix B). For this reason, it is possible to define a transformation of the optimization problem that
preserves the optimal solution, in which the variables nt̄, . . . , nt′ are replaced with a single variable
y. The objective function is modified accordingly, namely ft̄

nt̄
+ · · ·+ ft′

nt′
is replaced with ft̄+···+ft′

y

in the objective function. A visualization of the transformation is proposed in Figure 1. By repeating
the procedure for all the negative ft, we obtain a transformation of the original problem which is now
convex. Once the solution to this convex transformed optimization problem is found, one can quickly
recover the relaxed DCS in its T -dimensional form.

Building on these results, we apply in RIDO a similar procedure that transforms the relaxed version
of (5) into a new problem where the negative time steps (i.e., steps in which Equation (7) holds)
are “grouped” with future time steps as long as the total summation is positive. In this way, (i) the
resulting optimization problem is convex and (ii) as our analysis will reveal, this procedure has no
impact on the theoretical properties of RIDO (i.e., the result is the same as assuming access to an
oracle that can solve non-linear and non-convex problems). As a concluding remark, we refer the
reader to Appendix B for a formal description of the above-mentioned procedure.

4.2 Theoretical Analysis

We now present theoretical guarantees on the performance of RIDO. More specifically, we derive
high-probability guarantees on the variance of the estimator of Equation (1) when used with the data
collected by RIDO. Before diving into the presentation of our results, we highlight some critical
challenges behind the result. First, in our analysis, we do not assume access to an oracle that solves
(5), but we consider the modifications discussed in Section 4.1 that make the computation tractable.
This introduces a first level of challenges in the analysis (e.g., dealing with the roundings that arise
from the relaxation and the peculiar strategy that overcomes the non-convexity of the optimization
problem). Secondly, we notice that none of the optimization problems (4) and (5), and the ones
obtained by relaxing the integer constraints, admit a closed-form solution (further details are provided
in Appendix B). This clearly results in an additional challenge in our analysis. At this point, we are
ready to state our main theoretical result (proof in Appendix B).
Theorem 4.1. Let n∗ be the optimal solution of problem (4), ft as in Equation (3), b ≥ 2T and
β = 6(T+T 2)ΛK

δ . Consider the DCS n̂ computed by Algorithm 1. Then, with probability at least
1− δ it holds that:

Varn̂

[
Ĵn̂(π)

]
≤ 192

(
b

Λ

) 3
2

log (β)

(
T−1∑
t=0

γt

)2

+ 4Varn∗

[
Ĵn∗(π)

]
+

2b

Λ

∑
t:ft<0

|ft|. (8)

Equation (8) comprises three terms which we now discuss in detail. The former is directly responsible
for taking into account the cumulative error computed during each phase i. This term shrinks to

zero with rate Õ
((

b
Λ

) 3
2 log Λ

)
. We notice that this gets smaller as we decrease b, thus suggesting to

use small batch sizes. This should come as no surprise; indeed, using smaller batch sizes intuitively
improves the adaptiveness of the algorithm, since a larger portion of the budget Λ will be allocated
following more precise estimates of the quantities of interest. In this sense, there exists a trade-off
between theoretical guarantees and computational requirements, since the number of iterations (and,
thus, the number of optimization problems to be solved) grows linearly as the batch size decreases.
The second term, instead, is the variance of the optimal DCS computed as in (4), and shrinks with a
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rate that is at most 4
Λ

∑T−1
t=0 ft. This term, as we shall show below, represents a particularly desirable

property. Finally, the last component of Equation (8) is related to the negative terms possibly present
in the objective function, and, among the three terms, it is the one with the worst dependence on
Λ. Currently, we are unsure whether this term is an artifact of the analysis, a sub-optimality of
the algorithm, or a key challenge of the setting. We leave closing this gap to future work. At this
point, we highlight a particular relevant property of Equation (8). Suppose that ft ≥ 0 holds for all
time steps t (so that the last component is not present). In this case, under the mild assumption that∑T−1
t=0 ft > 0 (i.e., the variance is different from 0), for sufficiently large budget of Λ, we have that

(formal statement and proof in Appendix B):

Varn̂

[
Ĵn̂(π)

]
≤ 5Varn∗

[
Ĵn∗(π)

]
. (9)

Thus, in this scenario, the variance of the returned DCS computed by RIDO is proportional to the
optimal one. Note that this sort of result is not possible for the uniform strategy, nor for the robust
one of Poiani et al. [2023]. Further details on this point are provided in Appendix B.

5 Numerical Validation

In this section, we propose numerical validations that aim at assessing the empirical performance of
RIDO. More specifically, we focus on the comparison between our approach, the classical uniform-
in-the-horizon strategy, and the robust DCS by Poiani et al. [2023]. We report the results across
multiple domains, values of budget Λ, and discount factor γ. As a performance index, all experiments
measure the empirical variance of the estimator in Equation (1) at the end of the data collection
process. Before discussing our results in detail, we describe our experimental settings in depth.

Experimental Setting In our experiments, we consider the following four domains. We start with
the Inverted Pendulum [Brockman et al., 2016], a classic continuous control benchmark, where the
agents’ goal is to swing up a suspended body and keep it in the vertical direction. We, then, continue
with the Linear Quadratic Gaussian Regulator [LQG, Curtain, 1997], where the agent controls a linear
dynamical system with the objective of reducing a total cost that is expressed as a quadratic function.
Then, we consider a 2D continuous navigation problem, where an agent starts at the bottom left
corner of a room and needs to reach a goal region in the upper right corner. The agent receives reward
0 everywhere except inside the goal area, where the reward is positive and sampled from a Gaussian
distribution. Finally, we consider the Ant environment from the MuJoCo [Todorov et al., 2012] suite,
where the agent controls a four-legged 3D robot with the goal of moving it forward. Further domain
details are provided in Appendix C. Concerning the policy that we evaluate for the Inverted Pendulum
and the Ant, we rely on pre-trained deep RL agents made publicly available by Raffin [2020]. For
the LQG, instead, we evaluate the optimal policy that is available in closed form by solving the
Riccati equations, and, finally, for the 2D navigation task, we roll out a hand-designed policy that
minimizes the distance of the agent’s position w.r.t. to the center of the goal region. Regarding the
performance index, as already anticipated, we report the variance of the empirical policy return at
the end of the data collection process. Given a budget and a DCS, for a single run, we estimate this
empirical variance using 100 simulations. We then average the results over 100 runs and report the
empirical mean together with 95% confidence intervals. We notice that for each considered value
of Λ, the experiment is repeated (i.e., we do not use data collected with smaller Λ’s). To conclude,
we refer the reader to Appendix C for further details on the experiments (e.g., ablations, additional
results, experiments with γ = 1, hyper-parameters, visualizations of the resulting DCSs).

Results Figure 2 reports the results varying the discount factor and the available budget. The second
row is obtained under the same experimental setting as the first one, but with lower values of γ. Let
us first focus on the sub-optimality of the non-adaptive DCSs (i.e., the uniform strategy and the
robust one of Poiani et al. [2023]). Indeed, as suggested by Theorem 3.1, being computed prior to the
interaction with the environment, these algorithms cannot adapt the collection of samples to minimize
the variance of the return estimator. This is clear by looking, for instance, at the results of Continuous
Navigation and the LQG. Indeed, in the Continuous Navigation domain, the reward is sparse and
received close to the end of the estimation horizon T . In this scenario, the robust DCS blindly
truncates trajectories, thus, avoiding the collection of experience in the most relevant timesteps.
Conversely, in the LQG experiments, the optimal policy that arises from the Riccati equation pays a
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Figure 2: Empirical variance (mean and 95% confidence intervals over 100 runs) on the considered
domains and baselines. The first row considers higher values of γ w.r.t. the second one.

stochastic control cost6 at the beginning of the estimation horizon to bring the state of the system
close to stability, after which the reward will remain almost constant. In this case, the uniform DCS
results in a highly sub-optimal behavior as most of the estimation uncertainty is related to the initial
interaction steps. RIDO, on the other hand, thanks to its adaptivity, is able to obtain the best results in
both domains. Indeed, in the Continuous Navigation problem, it achieves the same performance level
as the uniform strategy, while in the LQG it even outperforms the robust DCS of Poiani et al. [2023].
The reason is that Poiani et al. [2023] truncates trajectories solely depending on the value of γ, and,
therefore, it might waste a portion of its budget in trajectories of sub-optimal length, while RIDO,
since it aims at minimizing the variance of the final estimation, is able to focus the collection of data
in the most convenient way. Similar comments to those made for the LQG hold for the Pendulum
domain as well. Concerning the Ant environment, instead, we notice that for γ = 0.999 there is no
significant difference between any of the presented schedules. Interestingly, however, as soon as
we decrease γ to 0.99, we can appreciate the sub-optimality of the uniform strategy, which wastes
a portion of its budget in gathering samples that are significantly discounted, and, therefore, their
weight in the estimator’s variance shrinks to 0. On the other hand, the robust strategy and RIDO
avoid this pitfall thanks to the exploitation of the discount factor, thus obtaining reduced variance
estimates. Finally, we remark that RIDO has achieved the most competitive performance across
various domains, values of the discount factor, and budget, thus clearly highlighting the benefits of
adaptive strategies w.r.t. pre-determined ones.

6 Conclusions and Future Works

In this work, we studied the problem of allocating a budget Λ of transitions in the context of Monte
Carlo policy evaluation to reduce the error of the policy expected return estimate. Leveraging the
formalism of Data Collection Strategy (DCS) to model how an agent spends its interaction budget,
we started by analyzing, in closed form, the variance of an unbiased return estimator for any possible
DCS. Our result reveals that DCSs determined prior to the interaction with the environment (e.g.,
the usual uniform-in-the-horizon one and the robust one of Poiani et al. [2023]) fail to satisfy the
ultimate goal of policy evaluation, i.e., produce a low error estimate. Furthermore, it also suggests
that algorithms that spend the available budget Λ iteratively might successfully adapt their strategy to
minimize the variance of the return estimator. Inspired by these findings, we propose an adaptive

6The uncertainty, in this case, arises both from the noise of the system together with the stochasticity of the
initial state distribution.
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method, RIDO, that, by exploiting information that has already been collected, can dynamically adapt
its DCS to allocate a larger portion of transitions in time steps in which more accurate sampling is
required to reduce the variance of the final estimate. After conducting a theoretical analysis on the
properties of the proposed method, we present empirical studies that confirm its adaptivity across a
different number of domains, values of budget Λ, and discount factors γ.

Our study offers exciting possibilities for future research. For example, although in this work we
focused on the policy evaluation setting, it would be interesting to extend our ideas to policy search
algorithms (e.g., Williams [1992]), with the goal of finding DCSs that minimize the variance of
the empirical gradient that is adopted in the update rule. Furthermore, we notice that, since our
approach is purely based on MC simulation, it does not fully leverage the Markovian properties of the
underlying MDP. Combining TD techniques [Sutton and Barto, 2018] with mechanisms that truncate
trajectories is a challenging and open research question that could lead to further improvements in
the efficiency of RL algorithms.
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A Related Works

Prior to delving into our theoretical analysis, we present a comprehensive analysis and discussion of
previous works that are closely connected to our own research.

First of all, our work focuses on estimating a policy’s performance in a given MDP [Sutton and Barto,
2018]. Considering the significance of this task, reducing the variance, or more generally, the error of
the return estimator, is a problem that has received significant attention in the literature. A vast family
of approaches that can be used to solve this problem deeply exploits the Markovian properties of the
environment by relying on Temporal Difference [TD, see, e.g., Singh and Sutton, 1996, Sutton, 1988,
Lee and He, 2019, Riquelme et al., 2019, Qu et al., 2019] learning. On the other hand, our work
focuses purely on Monte Carlo simulation, which, differently from TD learning, can be transparently
applied to non-Markovian environments. Another relevant line of work deals with optimizing the
agent’s policy to collect data within an environment (i.e., behavioral policy) to reduce the variance
of an unbiased estimator for the return of a different target policy [Hanna et al., 2017, Zhong et al.,
2022, Mukherjee et al., 2022]. These techniques are referred to as off-policy evaluation methods and
usually rely on Importance Sampling [e.g, Hesterberg, 1988, Owen, 2013] techniques to guarantee
the unbiasedness of the resulting estimate (i.e., to correct the distribution mismatch between the
behavioral policy and the target one). However, we notice that these studies significantly differ from
ours in that, instead of aiming for a behavior policy that reduces the estimator variance, we aim
to directly exploit the properties of Monte Carlo data collection to reduce the on-policy estimator
variance.

In the context of RL, exploration bonuses are widely adopted in control (where the goal is learning an
optimal policy) to tackle the exploration-exploitation dilemma [e.g., Brafman and Tennenholtz, 2002,
Auer et al., 2008, Tang et al., 2017, Jin et al., 2018, O’Donoghue et al., 2018, Zanette and Brunskill,
2019]. Initially, when the agent has limited knowledge about the environment, the exploration
bonuses drive it to explore widely. As the agent’s knowledge improves, the exploration bonuses
decrease, and the agent can shift towards exploiting its learned policy more. In our work, instead, we
use exploration bonuses to introduce a source of robustness w.r.t. the objective function that we are
interested in, i.e., the variance of the return estimator for a given data collection strategy.

The work that is most related to ours is Poiani et al. [2023], where, the concept of truncating
trajectories has been analyzed in the context of Monte Carlo RL. More specifically, the authors
derived a non-adaptive schedule of trajectories that provably minimizes confidence intervals around
the return estimator. In this work, on the other hand, we have shown the sub-optimality of pre-
determined schedules, and we designed an adaptive algorithm that aims at minimizing the variance
of the final estimate. The concept of truncating trajectories has also received some attention in
other fields of research such as model-based policy optimization [Nguyen et al., 2018, Janner et al.,
2019, Bhatia et al., 2022, Zhang et al., 2023], multi-task RL [Farahmand et al., 2016] and imitation
learning [Sun et al., 2018]. However, in all these works, the motivation, the method, and the analysis
completely differ w.r.t. what has been considered here. Finally, it is worth to mention that the concept
of truncating trajectories in Monte Carlo RL drew inspiration from a recent work in the field of
multi-fidelity bandit [Poiani et al., 2022], where the authors considered the idea of cutting trajectories
while interacting with the environment to obtain a biased estimate of the return of a policy in planning
algorithms such as depth-first search.

B Proofs and Derivations

In this section, we provide complete proofs of our theoretical results. More specifically, Section B.1
contains the proof of Theorem 3.1; Section B.2 the proof of Theorem 4.1, and Section B.3 proofs
and details of additional statements that have been made in the main text (i.e., formal description
of the transformation between optimization problems and how we applied this technique in RIDO,
difficulties in deriving closed-form solutions for the optimization problems of interest, formal
statement and proof of Equation (9), sub-optimality examples of non-adaptive methods whose
variance cannot scale with the variance of the optimal DCS, as RIDO, instead, does).
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B.1 Proof of Theorem 3.1

Theorem 3.1. Consider a generic DCSm such that mT ≥ 1, then:
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=
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′
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)
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t=0

ft
nt
. (3)

Proof. Given that the different trajectories are independent, we have that:
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where the first step follows from the fact that different trajectories are independent, the sec-
ond one from the variance of the sum of dependent random variable, namely Var [

∑n
i=1Xi] =∑n

i=1 Var[Xi] +
∑
i6=j Cov(Xi, Xj), and the third one by the fact that Var[aX] = a2Var[X] for

some scalar a ∈ R and Cov(aX, bY ) = abCov(X,Y ) for scalars a, b ∈ R.

At this point, focus on:

T∑
h=1

mh

h−1∑
t=0

γ2t

n2
t

Var[Rt],

and fix t̄ ∈ {0, . . . , T − 1}. By unrolling the summation, we notice that its contribution appears only
in all h such that h > t̄, thus leading to:
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However, given the relationship between n andm, we have that:

T∑
h=t+1

mh = nt − nt+1 + nt+1 − nt−2 + · · ·+ nT−2 − nT−1 + nT−1 = nt. (10)

Therefore:
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Now, let us focus on:
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h=1

mh
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t=0
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2
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Fix the the index of the outer summation over time by considering t̄ ∈ {0, . . . , T − 2}. By unrolling
the summation, we notice that its contribution appears only in all h such that h > t̄ + 1. For this
reason, Equation (12) can be rewritten as:
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At this point, fix again t̄ ∈ {0, . . . , T−2} as the index of the outer summation, and consider t′ ≥ t̄+1.
By unrolling the summation, we notice that t′ appears only for h > t′. For this reason, we can rewrite
Equation (13) as:
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T∑
h=t+2

mh

h−1∑
t′=t+1

2γt+t
′

ntnt′
Cov (Rt, Rt′) =

T−2∑
t=0

T−1∑
t′=t+1

2γt+t
′

ntnt′
Cov (Rt, Rt′)

(
T∑

h=t′+1

mh

)
.

(14)

However, by Equation (10), we obtain that:
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thus leading to:
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Combining Equation (11) and (15) concludes the proof.

B.2 Proof of Theorem 4.1

To prove Theorem 4.1, we first provide some preliminaries lemmas on the properties of the optimiza-
tion problems that we are considering, togheter with some technical results that will be used in our
proofs. Then, we will move towards the analysis of RIDO.

B.2.1 Preliminaries for the proof of Theorem 4.1

We begin by proving the fact that for any timestep t in which ft is negative, that there exists some
future timestep t′ such that

∑t′

i=t fi ≥ 0.

Lemma B.1 (Variance function property). Consider ft = γ2tVarRt+2
∑T−1
t′=t+1 γ

t+t′Cov(Rt, Rt′).

For any t ∈ {0, . . . , T − 2} such that ft < 0, there exists t̄ > t such that
∑t̄
i=t ft ≥ 0.

Proof. We proceed by contradiction. Suppose the claim to be false, then we would have:
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i=t

fi < 0.

However, by manipulating
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i=t fi, we obtain:
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which is always greater or equal than 0, thus concluding the proof.

We then continue by proving the result of Section 4.1 that justifies the transformation between
optimization problems. However, rather than considering directly the optimization problem we are
interested in (i.e., the one defined with ft), we focus on a generalization that consider arbitrary vectors
that satisfy the same properties as the one of Lemma B.1.

Lemma B.2 (Optimization of Variance-like functions). Let c = (c1, . . . , ck) with ci ∈ R, such that
c1 < 0,

∑k̄
i=1 ci ≤ 0 for all k̄ < k, and

∑k
i=1 ci ≥ 0. Let Λ ≥ k and consider the following

15



optimization problem:

min
x
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(16)

Then, x̄ =
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Λ
k , . . . ,

Λ
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)
is an optimal solution of (16).

Proof. If x̄ is an optimal solution of (16), for all x = (x1, . . . , xk) that belongs to the feasible region
it holds that:
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At this point, we notice that Λ ≥ kxk for any x that belongs to the feasible region. Furthermore,∑k
i=1 ci ≥ 0, implies that ck ≥ −

∑k−1
i=1 ci ≥ 0. Therefore, a sufficient for Equation (17) to hold is
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that can be rewritten as:
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or equivalently:
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However, as we shall show, Equation (18) is always satisfied. Indeed, since
∑k−1
i=1 ci ≤ 0 and

xk ≤ xk−1 we have that:
k−1∑
i=1

ci ≤
k−1∑
i=1

ci
xk
xk−1

= ck−1
xk
xk−1

+

k−2∑
i=1

ci
xk
xk−1

.

Moreover, since
∑k−1
i=1 ci ≤ 0 and since xk−1 ≤ xk−2,

ck−1
xk
xk−1

+

k−2∑
i=1

ci
xk
xk−1

≤ ck−1
xk
xk−1

+ ck−2
xk
xk−2

+

k−2∑
i=1

ci
xk
xk−2

.

The properties that xi ≥ xi+1 together with the fact that
∑k̄
i=1 ci ≤ 0 for any k̄ < k allows to iterate

the process, thus concluding the proof.

As one can see, applying multiple times Lemma B.2, to the problem we are considering, we obtain a
transformed problem that is convex, since the objective function will be composed of summation
of convex functions. We will provide additional details on this point later on. We now continue by
studying the properties of optimization problems whose objective function satisfies the condition
of Lemma B.2. More specifically, the following Lemma allows us to quantify the difference in the
optimal solution when changing the budget constraint.
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Lemma B.3 (Budget sensitivity analysis). Let ct ∈ R for each t ∈ {0, . . . , T − 1}. Define
Y = {i ∈ {0, . . . , T − 1} : ci < 0}. Let y ∈ Y , and define q(y) as the smallest integer in
{y + 1, . . . , T − 1} such that

∑q(y)
i=y ci ≥ 0. Suppose that q(y) is well-defined for any y ∈ Y .

Consider the following optimization problems:

min
x

T−1∑
t=0

ct
xt

s.t.
T−1∑
t=0

xt = Λ

xt ≥ xt+1, ∀t ∈ {0, . . . , T − 2}
xt ≥ 0, ∀t ∈ {0, . . . , T − 1}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y,

(19)

and,

min
x

T−1∑
t=0

ct
xt

s.t.
T−1∑
t=0

xt = Λ′

xt ≥ xt+1, ∀t ∈ {0, . . . , T − 2}
xt ≥ 0, ∀t ∈ {0, . . . , T − 1}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y,

(20)

where Λ,Λ′ ∈ R such that Λ ≥ T and Λ′ ≥ T . Define α = Λ′

Λ and consider x∗ an optimal solution
of (19). Then, αx∗ is an optimal solution of (20).

Proof. First of all, it is important to notice that both problems takes finite and positive value. This
directly follow from the equality constraints, together with the fact that q(y) is well-defined for any
y ∈ Y .

We now continue in proving the claim. Proceed by contradiction and suppose that αx∗ is not an
optimal solution of (20), and let x̄ be an optimal solution of (20).

At this point, first of all, we notice that αx∗ is a feasible solution of (20). Indeed, we have that
αx∗t ≥ 0, αx∗t ≥ αx∗t+1, α

∑T−1
t=0 x∗t = αΛ = Λ′

Λ Λ = Λ′, and for all y ∈ Y , αx∗y = αx∗y+1 =
· · · = αx∗q(y).

Therefore, we can write:

T−1∑
t=0

ct
x̄∗t

<

T−1∑
t=0

ct
αx∗t

=
1

α

T−1∑
t=0

ct
x∗t
.

From which it follows that:

T−1∑
t=0

ct
x∗t

>

T−1∑
t=0

ct
x̄∗t /α

.

However, for similar reasoning w.r.t. to the ones presented above,
(
x̄∗1/α, . . . , x̄

∗
T−1/α

)
is a feasible

solution for (19), from which it follows that x∗ would not be optimal, which is impossible.

The following result, instead, is a technical Lemma that will be used to analyze the error that RIDO
accumulates in each optimization round.
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Lemma B.4 (Technical lemma). Consider a sequence of K ∈ N elements (a1, . . . , aK) such that
ai ∈ R and ai > 0 for all i ∈ [K]. Then:

1∑K
i=1 ai

≤ 1

K2

K∑
i=1

1

ai
. (21)

Proof. We begin with some notation. Consider K ∈ N such that K > 1, we denote with VK the
subset of entry-wise strictly positive vectors of RK , namely:

VK =
{

(a1, . . . , aK) ∈ RK |ai > 0 for all i ∈ [K]
}
.

We now proceed by induction on K.

Consider K = 1 and v = (a1) ∈ V1. In this case, Equation (21) holds for all v ∈ V1 since it reduces
to:

1

a1
≤ 1

a1
.

At this point, suppose that:

1∑K
i=1 ai

≤ 1

K2

K∑
i=1

1

ai
,

holds for K and for all vectors vK ∈ VK , and consider:

1∑K+1
i=1 ai

≤ 1

(K + 1)2

K+1∑
i=1

1

ai
,

for any vector vK+1 = (a1, . . . aK+1) ∈ VK+1. At this point, notice that, for all vK+1 ∈ VK+1 the
vector vK,−i that is obtained from vK+1 by removing the i-th component belongs to VK . At this
point, focus on:

1

(K + 1)2

K+1∑
i=1

1

ai
=

1

(K + 1)2

(
K∑
i=1

1

ai
+

1

ak+1

)
.

Thanks to the inductive hypothesis and some algebraic manipulations, we have that:

1

(K + 1)2

(
K∑
i=1

1

ai
+

1

ak+1

)
=

K2

K2(K + 1)2

K∑
i=1

1

ai
+

1

(K + 1)2

1

ak+1

≥ K2

(K + 1)2

(
1∑K
i=1 ai

)
+

1

(K + 1)2aK+1

=
K2

(K + 1)2

(
1∑K
i=1 ai

+
1

aK+1K2

)
.

At this point, we need to show that:

K2

(K + 1)2

(
1∑K
i=1 ai

+
1

aK+1K2

)
≥ 1∑K

i=1 ai + aK+1

,

holds. Set, for the sake of exposition c =
∑K
i=1 ai and d = aK+1. Then, we can rewrite the previous

inequality as:

K2

(K + 1)2

(
1

c
+

1

K2d

)
≥ 1

c+ d
.

Rearranging the terms we obtain:

K2

(K + 1)2

(
K2d+ c

cdK2

)
≥ 1

c+ d
.
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Which, in turns, lead to:

K2(K2d+ c)(c+ d) ≥ (K + 1)2cdK2.

Multiplying each term and dividing by K2 leads to:

d2K2 − cdK + c2 ≥ 0,

which holds for any value of K > 0, and d, c > 0, thus concluding the proof.

Finally, the following Lemma will be used to take into account the rounding effect that comes from
solving a continuous relaxation rather than an integer optimization problem.
Lemma B.5 (Rounding effect error). Consider a generic T -dimensional vector n = (n0, . . . nT−1)

such that ni ≥ 1 for all i ∈ {0, . . . , T − 1}. Let q =
∑T−1
t=0 nt, and define k = q −∑T−1

t=0 bntc.
Consider the vector n̄ = (n̄0, . . . n̄T−1) such that:

n̄t = bntc+ 1 {t < k} .

Define g(n) =
∑T−1
t=0

ct
nt

for some vector c = (c0, . . . , cT−1) with ct ∈ R. Then, the following
holds: ∑

t:ct≥0

ct
n̄t
≤ 2

∑
t:ct≥0

ct
nt
, (22)

∑
t:ct≤0

ct
n̄t
≤ 1

2

∑
t:ct≤0

ct
nt
. (23)

Proof. We begin by proving Equation (22). First of all, let us notice that:∑
t:ct≥0

ct
nt
≥
∑
t:ct≥0

ct
n̄t + 1

≥
∑
t:ct≥0

ct
2n̄t

, (24)

where in the first inequality we have used ct ≥ 0 together with |nt − n̄t| ≤ 1, while in the second
one we have used ct ≥ 0 together with n̄t ≥ 1. Equation (22) directly follows from Equation (24).

We continue by proving Equation (23). Similar to Equation (24), it is possible to obtain:∑
t:ct≤0

ct
n̄t
≤
∑
t:ct≤0

ct
nt + 1

≤
∑
t:ct≤0

ct
2nt

=
1

2

∑
t:ct≤0

ct
nt
, (25)

where in the first step we have used ct ≤ 0 together with ct ≤ 0, while in the second one we have
used ct ≤ 0 together with nt ≥ 1.

B.2.2 RIDO analysis

We begin with some concentration inequalities. We report for completeness the result (Theorem
10) of Maurer and Pontil [2009] that we use to construct confidence intervals around the standard
deviation.
Lemma B.6 (Standard deviation confidence intervals). Let n ≥ 2 and consider X1, . . . , Xn be i.i.d.
random variables with values in [0, 1]. Define:

σ̂ =

√
1

n(n− 1)

∑
i<j

(Xi −Xj)2.

Then, for δ ∈ (0, 1), with probability at least 1− δ we have that:

|σ̂ − σ| ≤
√

2 ln(1/δ)

n− 1
,

where σ = Eσ̂.

We then continue with similar results for the estimation of the covariances between random variables.

19



Lemma B.7 (Covariance confidence intervals). Consider (X1, Y1), . . . (Xn, Yn) i.i.d. random vari-
ables with values in [0, 1] sampled from the joint distribution fX,Y . Moreover, let Xn+1, . . . , Xn+k

be k i.i.d. random variables with values in [0, 1] sampled from distribution fX = EY [fX,Y ]. Define,
for all i ∈ [n], Zi = XiYi, and let ẑ = 1

n

∑n
i=1 Zi, x̂ = 1

n+k

∑n+k
i=1 Xi and ŷ = 1

n

∑n
i=1 Yi. Then,

for δ ∈ (0, 1), we have that:

|Eẑ − Ex̂Eŷ − (ẑ − x̂ŷ)| ≤ 3

√
2 log(6/δ)

n
.

Proof. By Hoeffding Inequality Boucheron et al. [2003], we have that, for some confidence level δ′,
the following holds with probability at least 1− δ′:

|ẑ − Eẑ| ≤
√

2 log(2/δ′)
n

,

and, similarly for x̂ and ŷ. Therefore, by Boole’s inequality, it follows that, with probability at least
1− δ, we have that:

|ẑ − Eẑ| ≤
√

2 log(6/δ)

n
, (26)

and, similarly, for x̂ and ŷ. 7

Therefore, with probability at least 1− δ we have that:
|Eẑ − Ex̂Eŷ − (ẑ − x̂ŷ)| ≤ |Eẑ − ẑ|+ |Ex̂Eŷ − x̂ŷ|

≤
√

2 log(6/δ)

n
+ |Ex̂Eŷ − ŷEx̂+ ŷEx− x̂ŷ|

≤
√

2 log(6/δ)

n
+ |Ex̂(Eŷ − ŷ)|+ |ŷ(Ex̂− x̂)|

≤ 2

√
2 log(6/δ)

n
+ |ŷ|

√
2 log(6/δ)

n

≤ 3

√
2 log(6/δ)

n
.

where we combined Equation (26) together with triangular inequalities.

At this point, before diving into the presentation of the good event under which we will conduct our
analysis, we provide a formal definition of our estimators. Consider a generic dataset of trajectories
of different lenght. Define, for each t ∈ {0, . . . , T − 1}:√

V̂ar (Rt) =

√
1

nt(nt − 1)

∑
1≤i<j≤n

(
R

(i)
t −R(j)

t

)2

, (27)

where R(i)
t denotes the reward gathered at step t in some trajectory whose length is at least t + 1.

Moreover, for t, t′ such that t < t′, define:

Ĉov(Rt, R
′
t) =

1

nt′

nt′∑
i=1

R
(i)
t R

(i)
t′ −

(
1

nt

nt∑
i=1

R
(i)
t

)(
1

nt′

nt′∑
i=1

R
(i)
t′

)
. (28)

Lemma B.8 (Good event). The following conditions holds for all phases of RIDO, with probability
at least 1− δ:

∣∣∣√Var (Rt)−
√
V̂ari (Rt)

∣∣∣ ≤
√√√√2 log

(
6(T+T 2)ΛK

δ

)
nt

= Cσi,t. (29)

and:

∣∣∣Cov (Rt, Rt′)− Ĉovi (Rt, Rt′)
∣∣∣ ≤ 3

√√√√2 log
(

6(T+T 2)ΛK
δ

)
nt′

= Cci,t,t′ . (30)

7For x̂ the confidence intervals holds with
√

2 log(6/δ)
n+k

, which is possibly smaller since n ≤ n+ k.
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Proof. The proof follows by combining Lemma B.7 and Lemma B.6, and by taking the union bound
over the different time steps, optimization rounds, and possible ways in which the budget can be
spent.

At this point, first we show that, with high probability, the objective function of the empirical opti-
mization problem (5) satisfies the same property of the objective function of the original optimization
problem (4), i.e., Lemma B.1. Consequently, it holds that the procedure described in the main text in
Section 4.1 leads to a transformed convex optimization problem that preserves the optimal solution.
For this reason, in the rest of this section, under the good event of Lemma B.8, we assume that RIDO
has actually access to an optimal solution of the continuous relaxation of (5), which can be obtained
in a computational efficient way by transforming the optimization problem.

Lemma B.9 (High probability property of the empirical problem). Let β = 6(T+T 2)ΛK
δ and consider

a generic phase i of Algorithm 1. Define:

f̂t,i = γ2t

(√
V̂ari (Rt) + Cσi,t

)2

+ 2

T−1∑
t′=t+1

γt+t
′ (

Ĉovi(Rt, Rt′) + Cci,t,t′
)
.

Suppose that f̂t,i < 0. Then, with probability at least 1− δ, for any t ∈ {0, . . . , T − 2} there exists
t̄ > t such that

∑t̄
j=t f̂j,i ≥ 0 holds.

Proof. We proceed by contradiction. Suppose that f̂t,i < 0 and
∑t̄
j=t f̂j,i < 0 for all t̄ > t, and,

thus, also for t̄ = T − 1. Due to Lemma B.8, we have that:

T−1∑
j=t

f̂j,i ≥
T−1∑
j=t

γ2jVar (Rj) + 2

T−1∑
t′=j+1

γi+t
′
Cov (Rj , Rt′) = Var

T−1∑
j=t

γjRj

 ,

which, however, is always greater or equal than 0, thus leading to a contradiction and concluding the
proof.

To analyze the performance of Algorithm 1, we will study the following quantity:

Varn̂

[
Ĵn̂(π)

]
− Varn∗

[
Ĵn∗(π)

]
=

T−1∑
t=0

ft∑K−1
i=0 n̂t,i

−
T−1∑
t=0

ft
n∗t
. (31)

More specifically, by upper bounding Equation (31) we implicitly upper-bound also the variance of
the DCS computed by RIDO. At this point, we proceed by analyzing this quantity. The first step,
which is presented in the following Lemma, stands in deriving a first errro decomposition on Equation
(31).

Lemma B.10 (Error decomposition). Let ft = γ2tVar (Rt) + 2
∑T−1
t′=t+1 γ

t+t′Cov (Rt, Rt′). Let

y ∈ Y , and define q(y) as the smallest integer in {y + 1, . . . , T − 1} such that
∑q(y)
i=y fi ≥ 0.

Equation (31) can be upper bounded by:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
+

2

K2

K∑
i=1

∑
t:ft<0

|ft|
n̄t,i
−
∑
t:ft<0

|ft|∑k
i=1 n̂t,i

+
2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
.

(32)
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where n̄i is the optimal solution of the continuous relaxation (5), n̂i is the rounding DCS obtained
from n̄i, and x̃∗ is the optimal solution of the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = b− T

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y.

(33)

Proof. Let us start by analyzing Equation (31):

R =

T−1∑
t=0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t

=
∑
t:ft≥0

ft∑k
i=1 n̂t,i

+
∑
t:ft<0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t
.

Due to Lemma B.4, we can upper the previous Equation obtaining:

R ≤ 1

K2

K∑
i=1

∑
t:ft≥0

ft
n̂t,i

+
∑
t:ft<0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t

≤ 2

K2

K∑
i=1

∑
t:ft≥0

ft
n̄t,i

+
∑
t:ft<0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t

=
2

K2

K∑
i=1

T−1∑
t=0

ft
n̄t,i
− 2

K2

K∑
i=1

∑
t:ft<0

ft
n̄t,i

+
∑
t:ft<0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t
.

where in the first step, we have used Lemma B.4, in the second one Lemma B.5, and in the third
one we have added and subtracted 2

K2

∑K
i=1

∑
t:ft<0

ft
n̄t,i

. The proof directly follows by adding and
subtracting:

2

K2

K∑
i=1

T−1∑
t=0

ft
x̃∗t + 1

=
2

K

T−1∑
t=0

ft
x̃∗t + 1

.

At this point, the following Lemma provides an upper bound on Equation (32). More specifically, we
focus on the first term, that is:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
,

which can be interpreted as the error that RIDO cumulates in its rounds.

Lemma B.11 (Cumulative error). Let β = 6(T+T 2)ΛK
δ . Let y ∈ Y , and define q(y) as the smallest

integer in {y + 1, . . . , T − 1} such that
∑q(y)
i=y fi ≥ 0. Let x̃∗ be the solution of the following

optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = b− T

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y,

(34)
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and let n̄i be the solution of the continuous relaxation of (5) during phase i. Then, with probability
at least 1− δ, the following holds:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
≤ 192

K
3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

(35)

Proof. The proof is split into 3 parts. In particular, we will analyze:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
first for a generic phase i > 1, then for i = 1, and finally we will put everything together.

Let us start by considering a generic phase i > 1, and focus on:

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
(36)

First of all, focus on
∑T−1
t=0

ft
x̃t+1 . Let us define g̃ = (g̃0, . . . , g̃T−1) as the solution to the following

optimization problem:

min
g

T−1∑
t=0

ft
gt

s.t.
T−1∑
t=0

gt = b

gt ≥ gt+1, ∀t ∈ {0, . . . , T − 2}
gt ≥ 1, ∀t ∈ {0, . . . , T − 1}.

(37)

It is easy to see that: 8

T−1∑
t=0

ft
g̃t
≤
T−1∑
t=0

ft
x̃∗t + 1

.

Plugging this result into Equation (36) leads to:

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
≤
T−1∑
t=0

ft

(
1

n̄t,i
− 1

g̃∗t

)
. (38)

Due to Lemma B.8, with probability at least 1− δ, we can further upper bound Equation (38) with:

T−1∑
t=0

γ2t

(√
V̂ari (Rt) + Cσi,t

)2

n̄t,i
+ 2

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
(
Ĉov(Rt, Rt′) + Cci,t,t′

)
n̄t,i

−
T−1∑
t=0

ft
g̃t
,

However, since g̃ is a feasible solution of the continuous relaxation of (5), and since n̄t,i is the
minimizer of the continuous relaxation of (5) at phase i, we can further bound the previous equation
with:

T−1∑
t=0

γ2t

(√
V̂ari (Rt) + Cσi,t

)2

g̃t
+ 2

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
(
Ĉov(Rt, Rt′) + Cci,t,t′

)
g̃t

−
T−1∑
t=0

ft
g̃t
.

8This step follows by considering the optimization problem that defines g̃. With a change of variable
gt = xt + 1, we can notice that x̃∗t + 1 is indeed a feasible solution of the same optimization problem.
Furthermore, notice that due to Lemma B.2, we can neglect the constraints on y.
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Moreover, due to Lemma B.8, we can further upper-bound the previous Equation with:

T−1∑
t=0

γ2t
(√

Var [Rt] + 2Cσi,t
)2

g̃t
+ 2

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′ (Cov(Rt, Rt′) + 2Cci,t,t′

)
g̃t

−
T−1∑
t=0

ft
g̃t
,

Let us now focus on:

T−1∑
t=0

γ2t
(√

Var [Rt] + 2Cσi,t
)2

g̃t
+ 2

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′ (Cov(Rt, Rt′) + 2Cci,t,t′

)
g̃t

. (39)

Equation (39) can be decomposed into:
T−1∑
t=0

γ2t4
√
Var [Rt]Cσi,t + 4γ2t

(
Cσi,t
)2

g̃t
+ 4

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
Cci,t,t′
g̃t

(40)

and,
T−1∑
t=0

ft
g̃t
. (41)

Thus leading to:

R ≤
T−1∑
t=0

γ2t4
√

Var [Rt]Cσi,t + 4γ2t
(
Cσi,t
)2

g̃t
+ 4

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
Cci,t,t′
g̃t

(42)

We now proceed by bounding each term in Equation (42). Define, for brevity hi,t =
∑i−1
j=0 n̂t,j . Let

us first focus on:

T−1∑
t=0

4γ2t
√

Var [Rt]Cσi,t
g̃t

≤
T−1∑
t=0

4γ2t

g̃t

√√√√2 log
(

2(T+T 2)ΛK
δ

)
hi−1,t

≤ 8

√
log

(
2(T + T 2)ΛK

δ

) T−1∑
t=0

γ2t

g̃t
√
i− 1

≤ 16

√
log

(
2(T + T 2)ΛK

δ

) T−1∑
t=0

γ2t

√
i
.

where the first step follows from the definition of the confidence intervals, together with the fact that
rewards are bounded in [0, 1], the second one by recalling that hi−1,t =

∑i−1
j=1 n̂t,j ≥ i− 1, and the

third one by noticing that
√
i ≤ 2

√
i− 1.

Similary, for what concerns:

T−1∑
t=0

4γ2t
(
Cσi,t
)2

g̃t
≤
T−1∑
t=0

4γ2t

g̃t

2 log
(

2(T+T 2)ΛK
δ

)
hi−1,t

≤ 8 log

(
2(T + T 2)ΛK

δ

) T−1∑
t=0

γ2t

g̃t(i− 1)

≤ 16 log

(
2(T + T 2)ΛK

δ

) T−1∑
t=0

γ2t

√
i

Finally, what is left is:

4

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
Cci,t,t′
g̃t

≤ 24

√
log

(
6(T + T 2)ΛK

δ

) T−2∑
t=0

T−1∑
t′=t+1

γt+t
′

g̃t
√
i− 1

≤ 48

√
log

(
6(T + T 2)ΛK

δ

) T−2∑
t=0

T−1∑
t′=t+1

γt+t
′

√
i
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For what concerns phase i = 1, instead, the budget is allocated uniformly. Therefore, we have that:

T−1∑
t=0

ft

(
1

b/T
− 1

g̃t

)
≤
T−1∑
t=0

ft
b/T

≤
T−1∑
t=0

ft ≤
(
T−1∑
t=0

γt

)2

At this point, plugging these results into Equation (38) leads to:

2

K2

K∑
i=1

48 log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2
 1√

i
(43)

To conclude the proof, we notice that
∑n
i=1

1√
i
≤ 2
√
n− 1, thus leading to:

192

K
3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

which is the desired result.

We now continue by upper bounding another term of Equation (31), that is:

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
.

Lemma B.12 (Exploration error). Let y ∈ Y , and define q(y) as the smallest integer in
{y + 1, . . . , T − 1} such that

∑q(y)
i=y fi ≥ 0. Let x̃∗ be the solution of the following optimization

problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = b− T

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y.

(44)

Then,

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
≤ c+ 1

c− 1

T−1∑
t=0

ft
x∗t
,

where c is such that cT = b, and x∗ is the solution of the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = Λ

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y.

(45)
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Proof. Consider the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = K(b− T )

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K},
xy = xy+1 = · · · = xq(y), ∀y ∈ Y

(46)

and let x̄∗ be its optimal solution. Then, due to Lemma B.3, Kx̃∗ = x̄∗. Therefore, we have that:

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t

= 2

T−1∑
t=0

ft
x̄∗t +K

−
T−1∑
t=0

ft
n∗t

Furthermore, due to the fact that x̄∗y = x̄∗y+1 = · · · = x̄∗q(y) for all y ∈ Y , we have that:

2

T−1∑
t=0

ft
x̄∗t +K

−
T−1∑
t=0

ft
n∗t
≤ 2

T−1∑
t=0

ft
x̄∗t
−
T−1∑
t=0

ft
n∗t

At this point, we proceed by lower bounding:

T−1∑
t=0

ft
n∗t
.

More specifically, consider the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = Λ

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K},
xy = xy+1 = · · · = xq(y), ∀y ∈ Y,

(47)

and let x∗ be its optimal solution. Then, we have that:

T−1∑
t=0

ft
n∗t
≥
T−1∑
t=0

ft
x∗t
. (48)

To prove Equation (48), it is sufficient to drop the integer constraints from the (4), then, due to Lemma
B.2, we can impose the equality constraints on the resulting optimization problem, and finally, we
enlarge the feasible region by setting the constraints xi ≥ 0.

At this point, we have:

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
≤ 2

T−1∑
t=0

ft
x̄∗t
−
T−1∑
t=0

ft
x∗t
. (49)

By Lemma B.3, we have that:

x̄∗t =
K(b− T )

Λ
x∗t =

K(b− T )

Kb
x∗t =

b− T
b

x∗t =
cT − T )

cT
x∗t =

c− 1

c
x∗t
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Plugging this result into Equation (49), we obtain:

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
≤
(

2c

c− 1
− 1

) T−1∑
t=0

ft
x∗t

=
c+ 1

c− 1

T−1∑
t=0

ft
x∗t
.

At this point, we are ready to prove Theorem 4.1.
Theorem 4.1. Let n∗ be the optimal solution of problem (4), ft as in Equation (3), b ≥ 2T and
β = 6(T+T 2)ΛK

δ . Consider the DCS n̂ computed by Algorithm 1. Then, with probability at least
1− δ it holds that:

Varn̂

[
Ĵn̂(π)

]
≤ 192

(
b

Λ

) 3
2

log (β)

(
T−1∑
t=0

γt

)2

+ 4Varn∗

[
Ĵn∗(π)

]
+

2b

Λ

∑
t:ft<0

|ft|. (8)

Proof. From Lemma B.10, we can upper bound Equation (31) with:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
+

2

K2

K∑
i=1

∑
t:ft<0

|ft|
n̄t,i
−
∑
t:ft<0

|ft|∑k
i=1 n̂t,i

+
2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
.

(50)

At this point, we notice that:

2

K2

K∑
i=1

∑
t:ft<0

|ft|
n̄t,i
−
∑
t:ft<0

|ft|∑k
i=1 n̂t,i

≤ 2

K

∑
t:ft<0

ft

Plugging this result into Equation (50), we obtain:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
+

2

K

∑
t:ft<0

|ft|+
2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
. (51)

Due to Lemma B.11, this can be further upper-bounded with:

192

(
b

Λ

) 3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

+
2

K

∑
t:ft<0

|ft|+
2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
.

Moreover, due to Lemma B.12, we can further bound the previous Equation with:

192

(
b

Λ

) 3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

+
2

K

∑
t:ft<0

|ft|+
c+ 1

c− 1

T−1∑
t=0

ft
x∗t
, (52)

where x∗t is the solution of the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = Λ

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K},
xy = xy+1 = · · · = xq(y), ∀y ∈ Y,

(53)
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Moreover, since:

T−1∑
t=0

ft
n∗t
≥

T1∑
t=0

ft
x∗t
,

Equation 52 reduces to:

192

(
b

Λ

) 3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

+
2

K

∑
t:ft<0

|ft|+
c+ 1

c− 1

T−1∑
t=0

ft
n∗t
,

At this point, the results follows by noticing that:

c+ 1

c− 1
=
b+ T

b− T ≤ 3,

and, by isolating Varn̂

[
Ĵn̂(π)

]
in Equation (31).

B.3 Additional Technical Details

In this section, we provide additional techincal details that have been mentioned in the main text. More
specifically, we provide (i) a formal description of the transformation between optimization problems
and how we applied this technique in RIDO, (ii) difficulties in deriving closed-form solutions for
the optimization problems of interest, (iii) a formal statement and proof of Equation (9), (iv) and
theoretical evidence for the sub-optimality of non-adaptive methods whose variance cannot scale
with the variance of the optimal DCS).

B.3.1 Additional Details on solving the empirical optimization problem

We begin with a more in-depth discussion of the transformation between optimization problems. Let
ct ∈ R for each t ∈ {0, . . . , T − 1}, and define Y = {i ∈ {0, . . . , T − 1} : ci < 0}. Let y ∈ Y , and
define q(y) as the smallest integer in {y + 1, . . . , T − 1} such that

∑q(y)
i=y ci ≥ 0. Due to Lemma B.1

we know that, if (c0, . . . , cT−1) = (f0, . . . , fT−1), then q(y) is always well-defined. At this point,
consider the continuous relaxation of the original optimization problem, namely:

min
n

T−1∑
t=0

1

nt

(
γ2tVar(Rt) + 2

T−1∑
t′=t+1

γt+t
′
Cov(Rt, Rt′)

)

s.t.
T−1∑
t=0

nt = Λ

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ≥ 1, ∀t ∈ {0, . . . , T − 1}.

(54)

Due to Lemma B.1 and Lemma B.2, we know that the following optimization problem:

min
n

T−1∑
t=0

1

nt

(
γ2tVar(Rt) + 2

T−1∑
t′=t+1

γt+t
′
Cov(Rt, Rt′)

)

s.t.
T−1∑
t=0

nt = Λ

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ≥ 1, ∀t ∈ {0, . . . , T − 1}
ny = ny+1 = · · · = nq(y), ∀y ∈ Y,

(55)

has the same optimal solution of (55). At this point, to define the transformed problem it is sufficient
to introduce additional variables yi for any contiguous timesteps where ni = ni+1 = · · · = ni+k
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holds for some integers i, k.9 The optimization variables ni, ni+1, . . . , ni+k+1 will be substituted
with yi. The objective function will be modified accordingly, namely:

fi
ni

+ · · ·+ fi+k
ni+k

,

is replaced with:

fy + · · ·+ fq(y)

yi
. (56)

Consequently, any numerator in the resulting objective function of the transformed problem will
be greater or equal than 0. It is easy to verify that, in this case, the resulting objective function
is convex in the considered optimization domain. Finally, as a last remark, we notice that the
constraint

∑T−1
t=0 nt = Λ needs to be modified. More specifically, if yi substitutes li variables, then

its contribution within the budget constraint summation will be given by yili.

As discussed in Section 4.1, in RIDO we adopt a procedure that is inspired by the aforementioned
theoretical properties of the continuous relaxation of the optimization problem (4). Nevertheless, it
has to be noticed that a modification needs to be taken into account when replacing exact quantities
(i.e., ft) with their estimation and exploration bonuses (which, in the following, we refer to as f̂t for
brevity). More specifically, in general, contrary to what highlighted in Lemma B.1 for the original
objective function, when using f̂t it might happen that q(y) is not well-defined for every possible y.
Indeed, due to the noise that is present in the estimation process, there might exists t̄ such that f̂t̄ < 0

and
∑t′

t=t̄ f̂t < 0 for all t′ > t̄. Whenever this condition is verified, we adopt the following heuristic
to make the computation tractable. If t̄ = 0, then we just set the DCS of the current mini-batch to the
uniform-in-the-horizon one. When t̄ 6= 0, instead, we group together nt̄, . . . , nT−1 and we introduce
a new variable y that will divide, in the objective function, f̂t̄−1. As a final remark, however, we
notice that these modifications do not impact on the theoretical properties of RIDO. Indeed, Lemma
B.9, shows that, with probability at least 1− δ, the aforementioned ill-conditions do not happen. As
a consequence, we can study the high-probability behavior of RIDO assuming access to the solution
of the transformed optimization problem discussed at the beginning of this section (that preserves the
optimal solution of the continuous relaxation of (5)).

B.3.2 On closed-form solutions

We now continue by discussing the closed-form solutions of the optimization problems of interests.
First of all, optimization problems (4) and (5) are integer and non-linear problems. Even neglecting
the non-linear dependency on n, we remark that solving integer and linear problem is NP-hard. At
this point, one might resort to study their continuous relaxations. In the following, we focus on the
continuous relaxation of (4) (indeed, as noticed at the end of the previous section, the continuous
relaxation of (5) requires additional effort). As mentioned above, whenever ft < 0 holds for some
t ∈ {0, . . . , T − 1}, the continuous relaxation of ft is non-convex. Nevertheless, from Lemma
B.2, we know that we can always derive an equivalent convex problem (where the numerator in
the objective function is always greater or equal than 0) that preserves the optimal solution. For

9More precisely, we notice that ni = ni+1 = · · · = ni+k might involve multiple constraints in the
formulation of (55). In this sense, we need to refer to the largest intervals in which these constraints are enforced,
otherwise we might introduce multiple variables that refer to the same original optimization variable.
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this reason, we now report the KKT conditions under the assumption that ft ≥ 0 holds for all
t ∈ {0, . . . , T − 1}.10



− ft
n2
t

+ η − ξt − µt1 {t < T − 1}+ µt−11 {t > 0} = 0 ∀t ∈ {0, . . . , T − 1}
ξt(1− nt) = 0 ∀t ∈ {0, . . . , T − 1}
µt(nt+1 − nt) = 0 ∀t ∈ {0, . . . , T − 2}
η(
∑T−1
t=0 nt − Λ) = 0∑T−1

t=0 nt − Λ = 0

µt ≥ 0 ∀t ∈ {0, . . . , T − 2}
ξt ≥ 0 ∀t ∈ {0, . . . , T − 1}

. (57)

At this point, we notice that a similar problem has been solved in Poiani et al. [2023] for deriving
a closed-form solutions that minimizes confidence intervals around the return estimator. In that
situation, however, the constraints nt ≥ nt+1 were not present since they were automatically satisfied
by any optimal solution (and, consequently, they were removed from the optimization problem of
interest). The main challenge in our setting is, indeed, the presence of µt(nt+1 − nt), together
with the terms related to µt in the first Equation of (57). These additional components within (57)
prevented us to derive a closed-form solutions of the continuous relaxation (4) (and, (5)).

B.3.3 Proof of Equation (9)

We now continue with providing a formal statement and proof of Equation (9).

Corollary B.13. Suppose that ft ≥ 0 for all t ∈ {0, . . . , T − 1}, and
∑T−1
t=0 ft > 0. Let:

Λ ≥ Λ0 :=

55296

b
3
2

δ

(∑T−1
t=0 γt

)2

∑T−1
t=0 ft


3

. (58)

Let β = 6(T+T 2)ΛK
δ . Then, with probability at least 1− δ, it holds that:

Varn̂

[
Ĵn̂(π)

]
≤ 5Varn∗

[
Ĵn∗(π)

]
. (59)

Proof. The proof follows by analyzing, under the condition provided by Equation (58), the upper
bound provided in Theorem 4.1. More specifically, since ft ≥ 0 holds, Theorem 4.1 reduces to:

Varn̂

[
Ĵn̂(π)

]
≤ 192

(
b

Λ

) 3
2

log(β)

(
T−1∑
t=0

γt

)2

+ 4Varn∗

[
Ĵn∗(π)

]
.

To prove Equation (59) it is thus sufficient to show that, under Λ ≥ Λ0, the following holds:

192

(
b

Λ

) 3
2

log(β)

(
T−1∑
t=0

γt

)2

≤ Varn∗

[
Ĵn∗(π)

]
. (60)

We proceed by lower bounding the right hand side of Equation (60).

Varn∗

[
Ĵn∗(π)

]
=

T−1∑
t=0

ft
n∗t
≥
T−1∑
t=0

ft
Λ

=
1

Λ

T−1∑
t=0

ft,

where, the inequality follows from the fact that n∗t ≤ Λ and ft ≥ 0. Given this result, Equation (60)
holds whenever the following holds:

192

(
b

Λ

) 3
2

log(β)

(
T−1∑
t=0

γt

)2

≤ 1

Λ

T−1∑
t=0

ft. (61)

10Under the assumption that ft ≥ 0 holds, the problem is convex, and the KKT conditions provides necessary
and sufficient conditions for optimality.
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Therefore, we now focus on Equation (61), and proceed by upper-bounding its left hand side. More
specifically, we have that:

192

(
b

Λ

) 3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

≤ 192

(
b

Λ

) 3
2

log

(
12Λ4

δ

)(T−1∑
t=0

γt

)2

≤ 768

(
b

Λ

) 3
2

log

(
12Λ

δ

)(T−1∑
t=0

γt

)2

≤ 55296
b

3
2

δ
Λ−

4
3

(
T−1∑
t=0

γt

)2

,

where, in the first step we have used T ≤ Λ and K ≤ Λ, in the second one we have used logarithm

properties and in the last one we have used log x ≤ x
1
6

1
6

. At this point, Equation (61) holds whenever
the following holds:

55296
b

3
2

δ
Λ−

4
3

(
T−1∑
t=0

γt

)2

≤ 1

Λ

T−1∑
t=0

ft,

which can be rewritten as:

Λ
1
3 ≥ 55296

b
3
2

δ

(∑T−1
t=0 γt

)2

∑T−1
t=0 ft

(62)

Equation (62) is clearly satisfied for Λ ≥ Λ0, thus concluding the proof.

B.3.4 Theoretical Sub-optimality of pre-determined schedules

Finally, we conclude by providing theoretical evidence on the reasons why claims similar to the one
of Corollary (B.13) does not hold for pre-determined schedules (i.e, the uniform-in-the-horizon one
and the robust DCS of Poiani et al. [2023]).
Proposition B.14 (Sub-optimality of the Uniform Strategy). Let f0 6= 0 and fi = 0 for all i ≥ 1.
Let T > 2. Let nu =

(
T
Λ , . . . ,

T
Λ

)
. For any value of budget Λ, it does not exist a universal constant

c > 0 for which the following holds:

Varnu

[
Ĵnu(π)

]
≤ cVarn∗

[
Ĵn∗(π)

]
. (63)

Proof. Under the assumption that f0 6= 0 and fi = 0 for all i ≥ 1, we have that:

Varnu

[
Ĵnu(π)

]
=
T

Λ
f0, (64)

and, from Theorem 3.1:

Varn∗

[
Ĵn∗(π)

]
=

1

Λ− (T − 1)
f0. (65)

Furthermore, if T > 2, the variance of the optimal DCS can be upper bounded by:

Varn∗

[
Ĵn∗(π)

]
=

1

Λ− (T − 1)
f0 ≤

2

Λ
f0. (66)

At this point, proceed by contradiction and suppose that Equation (63) holds. Then, it follows that
the following equation should holds as well for some universal constant c:

T

Λ
f0 ≤ c

2

Λ
f0. (67)

Equation (67) reduces to:

c ≥ T

2
, (68)

which contradicts the claim, thus concluding the proof.
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Proposition B.15 (Sub-optimality of the Robust Strategy of Poiani et al. [2023]). Let f0 6= 0
and fi = 0 for all i ≥ 1. Let ñ be the robust DCS of Poiani et al. [2023]. Let T > 2 and

dt = γt(γt+γt+1−2γT )
1−γ and suppose that Λ ≥ Λ0 :=

∑T−1
t=0

√
dt√

dT−1

. For any value of budget Λ ≥ Λ0, it

does not exist a universal constant c > 0 for which the following holds

Varñ

[
Ĵñ(π)

]
≤ cVarn∗

[
Ĵn∗(π)

]
. (69)

Proof. Under the assumption that f0 6= 0, fi = 0 for all i ≥ 1, and Λ ≥ Λ0 we have that:11

Varñ

[
Ĵñ(π)

]
≥ f0

2Λ

∑T−1
t=0

√
dt√

d0

. (70)

From Theorem 3.1:

Varn∗

[
Ĵn∗(π)

]
=

1

Λ− (T − 1)
f0. (71)

Furthermore, if T > 2, the variance of the optimal DCS can be upper bounded by:

Varn∗

[
Ĵn∗(π)

]
=

1

Λ− (T − 1)
f0 ≤

2

Λ
f0. (72)

At this point, proceed by contradiction and suppose that Equation (69) holds. Then, it follows that
the following equation should hold as well for some universal constant c:

f0

Λ

∑T−1
t=0

√
dt√

d0

≤ c 2

Λ
f0. (73)

Equation (73) can be rewritten as:

c ≥ 1

2

∑T−1
t=0

√
dt√

d0

. (74)

However, if Equation (74) holds, then, also the following holds:

c ≥ 1

4

T−1∑
t=0

√
γt (γt + γt+1 − γ2T ), (75)

which, however, contradicts the claim 12, thus concluding the proof.

Proposition B.14 and B.15 shows that the variance of both schedules cannot attain the minimum
variance up to multiplicative constant factors as RIDO, instead, does (notice, indeed, that the
assumptions on ft fits the ones of Corollary B.13). These results complements, in this sense, what
has been presented in the main text, and highlights the theoretical benefits of adaptive DCSs.

C Experiment Details and Additional Results

In this section, we provide further details on our experimental settings and additional results. Sec-
tion C.1 contains descriptions on the environments, Section C.2 contains details regarding hyper-
parameters, and Section C.3 contains additional results.

Our results have been produced using 100 Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz cpus and
256GB of RAM. The total time taken to have all the results is around 2 weeks of computation.

C.1 Environment Details

In this section, we provide additional details on the environments that we used in our experiments.
11Notice that the requirement Λ ≥ Λ0 provides a simple closed-form expression for the robust DCS of Poiani

et al. [2023]. The reader can refer to Theorem 3.3 and Appendix B of Poiani et al. [2023].
12Indeed, it is sufficient to take T → +∞, and γ → 1, to show that Equation (75) tends to +∞.
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Ablation Domains In Setion C.3, the reader can find results and ablations that involve the scenarios
described as examples in Section 1, namely Examples 1 and 2. We now provide a precise description
of these domains. We start with Example 1, where the reward is gathered only at the end of the
estimation horizon T . The state space is described by a 1-dimensional vector that contains only the
interaction timestep t; the action space is a discrete set {0, 1}. The agent receives reward 0 in the first
9 timesteps. In the last step, instead, it receives r ∼ N (3, 10) for action 0, and r ∼ N (2, 10) for
action 1. Concerning Example 2, instead, the setup is identical to the one of Example 1, with the only
different that the non-zero reward is receives in the first interaction step. The policy that we evaluate
is the uniform random.

Continuous Navigation Here, we describe in more details the 2D continuous navigation environ-
ment that we used in our experiments. The state space S is 2-dimensional vector s = (s0, s1) ∈ R2

such that si ∈ [0, 92] for all i. Similarly, the action space A is a 2-dimensional vector a = (a0, a1)
such that ai ∈ [−1, 1] for all i. When the agent takes action a in state s, it transitions to a new state
s′ such that:

s′0 = max {0,min {s0 + q0, 92}} , s′1 = max {0,min {s1 + q1, 92}} ,
where q0 ∼ N (a0, 0.1), q1 ∼ N (a1, 0.1), and the max-min operations simply guarantees that the
resulting state lies within the desired state space S. The agent receives rewards egual to 0 at every
time step, except when the resulting state s′ falls within a goal region. More specifically, the goal is
defined as a 2-dimensional vector g = (91, 91). Whenever ||s′ − g||2 ≤ 1 the reward received by
the agent is sampled from the following Gaussian distribution: N (1, 1). The agent starts in a random
position that is sampled from a uniform distribution in the area [0, 5]× [0, 5]. The agent policy that
we evaluate in our experiments is an hand-coded expert policy that minimizes the distance between
the agent’s position and the center of the goal area. More specifically, given the agent position s, a is
computed in the following way.

a0 = max {−1,min {g0 − s0, 1}} , a1 = max {−1,min {g1 − s1, 1}} ,
where the max-min operation guarantees that a belongs to A.

LQG Concerning the LQG, we consider the following 1-dimensional case (i.e., the dimension of
the state and action spaces is 1). The initial state is drawn from a uniform distribution in [−80,+80].
Upon taking action a ∈ A, the agent transitions to a new state s′ = s + (a + ξ) + η, where
η ∼ N (0, 0.1) models the noise in the system, and ξ ∼ N (0, 0.1) denotes the controller’s noise.
The reward for taking action a in state s is computed as s2 + (a+ ξ)2. The policy that we evaluate is
the optimal one and it is computed by solving the Riccati equations.

MuJoCo suite In the main text, we presented results on the Ant environment of the MuJoCo
suite. In the appendix, we present additional experiments on the HalfCheetah and Swimmer domains
[Todorov et al., 2012]. In all cases, we adopted trained deep RL agents made publicly available by
Raffin [2020] (MIT License).

C.2 Hyper-parameters

Table 1 reports the hyper-parameters that we used in our experiments. To select the robustness level
β we tried different values in [1, 3], while for the batch-size we tried different values in [2T, 10T ].
We then report the results using the best hyper-parameters configuration.

C.3 Additional Results

C.3.1 Ablations

In this section, we present ablations on RIDO on the two environments (described in Section C.1) that
models Examples 1 and 2. More specifically, we conduct the following two ablations to understand
the behavior of RIDO according to changes in its hyper-parameters, i.e., the robustness level β and
the mini-batch size. To properly assess the effect of these designer’s choices, we report and discuss
both the average variance and the resulting DCSs. We test our method using γ = 1, but similar results
can be obtained varying the discount factor.
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Table 1: Hyper-Parameters

Environment β Mini-batch size

Pendulum 1.01 500
LQG 2.0 400
2D Continuous Navigation 1.0 1000
Ant 1.5 3000
HalfCheetah 2 3000
Swimmer 1.0 1000
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Figure 3: Ablations on different values of β on Examples 1 (top) and 2 (bottom). Empirical variance
(mean and 95% confidence intervals over 100 runs) (left). DCS visualiaztion (mean and 95%
confidence intervals over 100 runs) using Λ = 10000 (right).

Ablations on β We begin by performing an ablation on the robustness parameter β.
More specifically, we analyze the behavior of RIDO for the following values of β:
{1, 1.1, 5.0, 10.0, 20.0, 100.0, 1000.0} (the value of the mini-batch size here is fixed to b = 100).
Figure 3 reports the results. Let us first focus on Example 1 (i.e., the top row). In this case, the reward
is gathered at the end of the estimation horizon. As we can see, increasing the value of β, leads to a
larger amount of data spent in the first interaction steps (i.e., top-right in Figure 3). Indeed, when
higher values of β are used, the cumulative sum of exploration bonuses in the early steps is larger
w.r.t. the late ones. For this reason, RIDO spends a larger portion of its budget to decrease these
exploration bonuses. As a consequence, given that the reward process of the underlying environment,
this results in a higher empirical variance (i.e., top-left in Figure 3). Furthermore, given that the
reward is 0 everywhere except at t = T − 1, even using the smallest value of β (i.e., β = 1) allows
the algorithm to quickly adapt its DCS toward the most relevant timestep (i.e., t = T − 1). Similar
comments hold for Example 2 as well (i.e., bottom row in Figure 3). Finally, we notice that the
behavior changes almost unsgnificantly for values of β larger than 5.0.
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Figure 4: Ablations on different mini-batch sizes on Examples 1 (top) and 2 (bottom). Empirical
variance (mean and 95% confidence intervals over 100 runs) (left). DCS visualiaztion (mean and
95% confidence intervals over 100 runs) using Λ = 1000 (right).

Ablations on mini-batch size b We now continue by presenting an ablation on the batch
size. More specifically, we analyze the behavior of RIDO for the following values of b:
{50, 100, 200, 300, 400, 500} (the value of β here is fixed to 5.0). Figure 4 reports the results.
First of all, as we can notice, in both Examples 1 and 2 the mini-batch size impacts the performance
in a less significant way w.r.t. to the value of β (compare the left column of Figure 4 and 3). Secondly,
let us focus on the the top-row (i.e., Example 1, where the reward is gathered at the end of the
episode). For the smallest value of Λ of Figure 4 (i.e., Λ = 1000, that is the only for which there is
some difference in performance), we notice that the best configuration is not b = 50 (i.e., the smallest
batch-size among the presented ones). This is confirmed also by its corresponding DCS, which is
not the one that allocates the highest number of data at T − 1. We conjecture that the reason behind
this phenonema are numerical instabilities that might arise while solving the empirical problem with
the use of convex solvers.13 Concerning Example 2 (where the reward is gathered only at t = 0),
we notice that smaller values of b performs better (this is confirmed by the corresponding DCS, that
allocates more data to the first interaction step). In this case, the aformentioned problem is not present.
We conjecture that the reason is that, even in the case of numerical instabilities, errors that arise
from converting the continuous DCS to its integer version provably minimizes the variance, since the
remaining budget is allocated uniformly starting from t = 0 (i.e., the most relevant timestep from

13We notice that even small imprecisions can result in DCSs that differ by 1 when converting the continuous
relaxation to its integer version. For smaller values of b, this behavior might happen multiple times w.r.t. larger
values of b.
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Figure 5: Empirical variance (mean and 95% confidence intervals over 100 runs) on the considered
domains and baselines using γ = 1.

the point of view of the estimation quality). Finally, we notice that, whatever value of b we use, the
behavior of RIDO is stable under reasonable variations of the mini-batch size.

C.3.2 Experiments with γ = 1

In this section, we present results under the experimental setting of Figure 2 but using γ = 1. Figure 5
reports the comparison between RIDO and the uniform-in-the-horizon strategy. Notice that these
experiments highlight a particular beneficial feature of RIDO w.r.t. the schedule of Poiani et al. [2023].
Indeed, when γ = 1 their robust DCS does not formally exists (i.e., the method requires γ < 1, and
when γ → 1, their strategy tends to the uniform one). RIDO, on the other hand, does not heavily rely
on the property of discounted sum and can be applied as-is also when γ = 1. Furthermore, Figure 5
confirms the adaptivity of RIDO that has already been highlighted in the main text. Namely, it does
not underperform the uniform-in-the-horizon strategy when long trajectories are required, while it
reduces the return estimator’s variance when truncated trajectories are convenient.

C.3.3 DCS Visualizations for Figure 2

In this section, we present visualizations of the DCSs for the experiments presented in Figure 2 and 5.
Figure 6 and 7 reports our results (mean and 95% confidence intervals over 100 runs). For γ = 1,
the robust DCS is missing since it coincides with the uniform-in-the-horizon one (further details on
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Figure 6: DCS visualiaztion for Pendulum and LQG (mean and 95% confidence intervals over 100
runs). The x axis reports the timestep t, while the y axis nt. We consider Λ = 10000 both for the
Pendulum and the LQG.

this point are available in Appendix C.3.2). The resulting visualizations reinforce the adaptivity of
RIDO. Indeed, depending on the domain, the behavior of RIDO changes significantly, resulting in
behaviors that are similar to the uniform strategy (i.e., Navigation), to the robust strategy (i.e., Ant),
or significantly different from both pre-computed schedules (i.e., Pendulum and LQG).

C.3.4 Results on Additional Environments

In this section, we present results on additional environments from the MuJoCo suite, namely
HalfCheetah and Swimmer. Figure 8 reports our results, and Figure 9 the DCSs visualization in the
considered domain. In these cases, RIDO confirms its adaptivity achieving a satisfying performance
level. For HalfCheetah similar comments w.r.t. made for the Ant in Figure 2. In the Swimmer domain,
on the other hand, the robust DCS shows sub-optimal performance w.r.t. the uniform schedule and
RIDO.

37



0 20 40 60 80
0

100

200

Timestep

D
a
ta

C
o
ll
e
c
ti
o
n

S
tr
a
te
g
y

Navigation (γ = 0.95, T = 100)

0 20 40 60 80
0

100

200

Timestep

Navigation (γ = 0.99, T = 100)

0 20 40 60 80 100
0

100

200

Timestep

Navigation (γ = 1.0, T = 100)

0 200 400
0

100

200

300

Timestep

D
a
ta

C
o
ll
e
c
ti
o
n

S
tr
a
te
g
y

Ant (γ = 0.99, T = 500)

0 200 400
0

50

100

150

Timestep

Ant (γ = 0.999, T = 500)

0 200 400
0

50

100

150

Timestep

Ant (γ = 1.0, T = 500)

Uniform Robust RIDO

Figure 7: DCS visualization for 2D Continuous Navigation and Ant (mean and 95% confidence
intervals over 100 runs). The x axis reports the timestep t, while the y axis nt. For 2D Continuous
Navigation we consider Λ = 10000, while for the Ant we consider experiments using Λ = 28000.
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Figure 8: Empirical variance (mean and 95% confidence intervals over 100 runs) on the Swimmer
and HalfCheetah for the considered baselines.
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Figure 9: DCS visualization for Swimmer and HalfCheetah (mean and 95% confidence intervals
over 100 runs). The x axis reports the timestep t, while the y axis nt. For Swimmer we consider
Λ = 12000, while for the HalfCheetah we consider experiments using Λ = 28000.
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