
Learning SQL Like a Human: Structure-Aware Curriculum Learning for
Text-to-SQL Generation

Anonymous ACL submission

Abstract001

The Text-to-SQL capabilities of large language002
allow users to interact with databases using nat-003
ural language. While current models struggle004
with handling complex queries, especially in-005
volving multi-table joins and reasoning. To ad-006
dress this gap, we propose to construct a model,007
namely SAC-SQL, with synthetic training sam-008
ples followed by a structure-aware curriculum009
learning framework for enhancing SQL gener-010
ation. Our approach begins with a supervised011
fine-tuning (SFT) stage, where we train open-012
source models on a synthetically constructed,013
cross-domain SQL dataset with diverse struc-014
tural patterns. Moreover, we introduce a unified015
structure difficulty scoring function to parti-016
tion the training samples into non-overlapping017
curriculum phases, guiding the model progres-018
sively learning from simpler to more complex019
SQL structures. Extensive experiments are020
conducted and the results show that SAC-SQL021
achieves better results than the baselines, and022
significantly narrows the performance gap be-023
tween open-source and close-source models on024
Spider and Bird benchmarks.025

1 Introduction026

Text-to-SQL generation task aims to automati-027

cally translate natural language questions into exe-028

cutable SQL queries, allowing users to interact with029

databases using plain language(Li et al., 2023c).030

This task reduces the technical barrier for data ac-031

cess and plays a key role in natural language inter-032

faces to structured data (Qin et al., 2022a).033

Several methods have been proposed to achieve034

the goal. Some methods adopt prompt engineer-035

ing to solve this task. Besides, some method036

adopt agent-based methods, and divide the task037

into multiple subtasks. Besides, some methods038

propose to collect many related data, and adopt039

instruction tuning to train models. Among them,040

closed-source GPT-4(OpenAI et al., 2024) and041

open-source CodeLLaMA(Rozière et al., 2024)042

Figure 1: Distribution of error types for complex SQL
queries (total errors = 60).

have led to remarkable progress on Text-to-SQL 043

generation task, 044

However, existing methods still struggle with 045

handling complex queries that involve multi-table 046

joins and reasoning. According to our statistics, 047

CodeLLaMA achieves an execution accuracy of 048

86% for easy queries compared to only 40% for 049

complex queries1. Furthermore, we performed an 050

error analysis on the 30 incorrectly predicted com- 051

plex samples (totaling 60 individual errors, with 052

some examples containing multiple issues). As 053

shown in Figure 1, the distribution of error types 054

revealed that Incorrect JOINs accounted for the 055

largest share (30%), followed by NESTED Query 056

Errors (23.3%), Aggregation Misuse (16.7%), In- 057

correct WHERE Clause (13.3%), Syntax Errors 058

(10%), and Ambiguous Column References (6.7%). 059

These findings clearly indicate that these LLMs 060

struggle particularly with structurally complex 061

queries such as JOIN operations and nested queries. 062

To overcome this challenge, in this paper, we 063

proposed a novel model, SAC-SQL, which adopts 064

synthetic training samples followed by a structure- 065

aware curriculum learning framework for enhanc- 066

ing SQL generation. Our model builds upon two 067

1We randomly sampled 100 examples from existing Text-
to-SQL datasets and categorized them into easy and complex
queries based on their structural complexity.

1



Dataset #Examples #Databases Avg Token Avg JOIN NESTED Ratio

Spider 7000 140 37.3 0.54 5.6%
Bird 9428 69 64.0 1.02 12.3%

Ours 12134 674 56.7 1.26 18.7%

Table 1: Comparison of dataset properties across Spider, Bird, and our synthetic dataset.

key insights: First, text-to-SQL difficulty is gov-068

erned by query structure, and current models fail to069

generalize well to complex structures when trained070

in a uniform manner(Shi et al., 2024). Second,071

high-quality real-world Text-to-SQL datasets are072

scarce and difficult to obtain, limiting the diversity073

and complexity of training examples. Thus, we074

propose to construct a high-quality, synthetically075

generated SQL dataset that covers a wide variety076

of query structures and schema domains.077

Besides, we propose a two-stage training strat-078

egy to train the models. At the first stage, the079

synthesized dataset is used to supervise fine-tune080

open-source language models to provide them with081

essential SQL syntax and schema grounding. By082

explicitly controlling the composition of SQL struc-083

tures during generation, we ensure that more ex-084

amples contain low-frequency but high-difficulty085

patterns. This helps alleviate the long-tail distribu-086

tion problem and enhances the model’s ability to087

generalize to rare but semantically important query088

types(Yang et al., 2024).089

At the second stage, we introduce a structure-090

aware curriculum learning framework to further091

enhance the model’s ability to handle structurally092

complex queries. We design a unified function093

based on structural components, interaction pat-094

terns, syntactic tree depth, and generation uncer-095

tainty (via normalized NLL). Training samples are096

ranked and divided into non-overlapping phases of097

increasing difficulty, allowing the model to learn098

SQL structure in a staged, cognitively aligned way.099

Combining these two-stage processes, we de-100

velop SAC-SQL, a curriculum-enhanced model101

trained atop an SFT-initialized open-source LLM.102

Experiments on Spider and Bird benchmarks show103

that SAC-SQL achieves better results than existing104

methods, and surpasses existing open-source base-105

lines. Besides, it outperforms GPT-4 and its deriva-106

tives in executing complex SQL queries, highlight-107

ing the effectiveness of combining data design and108

curriculum scheduling in improving SQL composi-109

tionality and reasoning.110

The contribution of this work is as follows,111

• We propose a novel model SAC-SQL trained 112

on synthetic samples covering a wide variety 113

of query structures and schema domains. 114

• We propose a two-stage training pipeline. 115

Considering the characteristics of the syn- 116

thetic sample, we design a structure-aware 117

curriculum learning with difficulty measure at 118

the second stage. 119

• Extensive experiments prove the superiority 120

of SAC-SQL over state-of-the-art baselines. 121

2 Related Work 122

LLM-based Text-to-SQL Recent advances in 123

large language models (LLMs) have led to a 124

surge of approaches designed to improve Text- 125

to-SQL performance by leveraging pretraining, 126

schema understanding, and task-specific optimiza- 127

tion. Among them, Knowledge-to-SQL(Hong 128

et al., 2024) enhances database-schema align- 129

ment by combining supervised fine-tuning with 130

Direct Preference Optimization (DPO)(Rafailov 131

et al., 2024), effectively improving execution accu- 132

racy. SGU-SQL(Zhang et al., 2024a) adopts graph- 133

structured representations and grammar-aware pars- 134

ing to strengthen query-schema linkage and com- 135

positional reasoning. CLLMs(Kou et al., 2024) 136

introduces a consistency loss as an implicit regular- 137

ization mechanism to stabilize convergence and im- 138

prove model adaptability. StructLM(Zhuang et al., 139

2024) proposes a structured learning framework 140

that integrates code-level pretraining with cued tun- 141

ing and constrained parameter adaptation via regu- 142

larization techniques. MCS-SQL(Lee et al., 2024) 143

combines schema linking, multi-path SQL gener- 144

ation, and candidate reranking; it employs multi- 145

ple prompts to sample a wide reasoning space and 146

selects the best SQL candidate through execution- 147

aware scoring functions. 148

Curriculum Learning Curriculum Learning 149

(CL)(Dai et al., 2021) is a training paradigm that 150

organizes examples in an easy-to-hard order, in- 151

spired by the way humans progressively acquire 152

2



Close-source LLMs

Structure-Aware Curriculum Learning

SAC-SQL model

Annotated Dataset

Open-source LLMs

Synthetic Dataset

Avg Token ↑
Avg JOIN ↑
Nested Ratio ↑
…

EasyHard

Phase 5 Phase 1…

Figure 2: An overview of SAC-SQL.

knowledge. Instead of randomly sampling from the153

full dataset, CL gradually increases the difficulty154

of training samples to align with the learner’s grow-155

ing capacity(Bengio et al., 2009). This paradigm156

has been widely applied in domains such as ma-157

chine translation, reading comprehension, and dia-158

log modeling, where task complexity and compo-159

sitionality vary across samples.(Wang et al., 2021)160

In Text-to-SQL generation, queries differ signifi-161

cantly in their structural complexity—ranging from162

single-table selections to deeply nested multi-join163

queries. Models trained on such data in a uniform164

or random fashion often fail to generalize to the165

long tail of complex SQL structures. For example,166

CL can be applied to the neural machine translation167

task, which significantly improves the performance168

of the model under low resource conditions(Zhang169

et al., 2018; Dou et al., 2022). By introducing170

curriculum learning into Text-to-SQL, we aim to171

shape the model’s training trajectory so that it first172

masters basic constructs, then gradually progresses173

toward more compositional logic.174

3 Methodology175

Our training process consists of two major stages:176

a supervised fine-tuning (SFT) phase and a subse-177

quent structure-aware curriculum learning phase.178

The overall goal is to improve the ability of large179

language models to handle structurally complex180

SQL queries by gradually exposing them to in-181

creasingly difficult training examples. Figure 2182

illustrates the full pipeline.183

3.1 Synthetic Data Generation184

We leverage GPT-4 and Cladue-2 to synthesize185

a high-quality, cross-domain Text-to-SQL dataset186

that exhibits greater structural diversity compared187

to existing benchmarks. Our synthetic dataset in-188

cludes a richer distribution of SQL functions, with189

increased frequency and variation in constructs 190

such as JOIN, GROUP BY, HAVING, WINDOW, and 191

UNION, addressing the structural sparsity observed 192

in datasets like Spider and Bird. Furthermore, un- 193

like these benchmarks which suffer from domain 194

concentration, our dataset is drawn from over 500 195

distinct databases. Table 1 provides a compara- 196

tive overview of the structural characteristics of the 197

Spider, Bird, and our synthetic dataset. 198

3.2 Structure-aware difficulty function 199

To guide the model’s training trajectory in a 200

cognitively-aligned fashion, we define a unified 201

structure-aware difficulty function to evaluate the 202

complexity of each SQL example x. This function 203

integrates both the inherent structural difficulty of 204

the SQL query and the model’s uncertainty in gen- 205

erating it. The resulting score serves as the basis 206

for curriculum phase partitioning. Each training 207

sample is assigned a score D(x), which captures 208

both the SQL’s compositional complexity and the 209

model’s generation difficulty, 210

D(x) = α·S(x)+β ·I(x)+γ ·T (x)+δ ·L(x) (1) 211

where: 212

• S(x) captures the base complexity of SQL 213

components present, 214

• I(x) accounts for interaction between compo- 215

nents (co-occurrence patterns), 216

• T (x) measures the syntactic depth of the SQL 217

expression tree, and 218

• L(x) reflects model-specific generation uncer- 219

tainty based on token-level loss. 220

Each coefficient α, β, γ, δ is a tunable hyperparam- 221

eter that controls the relative influence of the four 222

difficulty dimensions. 223

3



SQL Function Weight

SELECT 1.0
WHERE 0.5
JOIN 1.5
GROUP BY 1.0
HAVING 1.2
ORDER BY 0.8
LIMIT 0.5
NESTED SELECT 1.5
WINDOW / RANK 2.0
UNION / INTERSECT 2.0

Table 2: Structure component weights for S(x).

To design the base structure weights in S(x) and224

interaction scores in I(x), we start with linguisti-225

cally and semantically informed heuristics. Each226

weight reflects the compositional and logical bur-227

den imposed by a SQL component. In Section 4.5,228

we further explore the sensitivity of these weights229

and validate their impact on model performance.230

Base Structure Score S(x)231

We define a structure component dictionary assign-232

ing difficulty weights to common SQL constructs,233

To quantify the structural complexity of each SQL234

query, we define a component-wise scoring func-235

tion S(x) that assigns weights to different SQL236

operations based on their syntactic and semantic237

difficulty. Table 2 lists the weights used for each238

function, where more compositional or computa-239

tionally intensive operations (e.g., WINDOW, NESTED240

SELECT, UNION) receive higher scores.241

Each SQL query is parsed to determine which242

structures are present. S(x) is the sum of the corre-243

sponding weights of those constructs.244

Interaction Score I(x)245

Structural difficulty often increases when multi-246

ple components co-occur. For example, JOIN +247

HAVING and GROUP BY + WINDOW represent com-248

pounded reasoning. Beyond individual SQL func-249

tions, we also account for interaction complexity by250

modeling common co-occurring component pairs.251

These interactions often increase the compositional252

difficulty of a query. For example, queries involv-253

ing both NESTED SELECT and HAVING clauses tend254

to exhibit deeper logical nesting and filtering logic.255

As shown in Table 3, we assign interaction scores256

in I(x) to reflect the added difficulty introduced by257

such structural combinations.258

Component Pair Score

JOIN + GROUP BY 0.8
JOIN + HAVING 1.2
NESTED + HAVING 1.5
GROUP BY + WINDOW 1.0

Table 3: Interaction component pairs for I(x).

Syntactic Depth Score T (x) 259

Using the SQL’s parsed abstract syntax tree (AST), 260

we define T (x) as a linear combination of: 261

• Tree depth d: number of nested clauses or 262

expression layers, 263

• Number of subqueries q: e.g., the count of 264

NESTED SELECT statements. 265

T (x) = λ1 · d+ λ2 · q (2) 266

where typical values are λ1 = 0.5, λ2 = 0.8. This 267

term captures the compositional complexity of the 268

SQL’s logical form. 269

Model Uncertainty Score L(x) 270

We define L(x) as the normalized token-level neg- 271

ative log-likelihood (NLL) of the model when gen- 272

erating SQL example x: 273

L(x) =
NLL(x)− µ

σ
(3) 274

where µ and σ are the mean and standard deviation 275

of NLL values across the training set. This score 276

reflects model-side uncertainty, with larger L(x) 277

indicating greater difficulty in generation. In our 278

experiments, we set α = β = γ = 1.0 and δ = 279

0.5 to moderately incorporate model uncertainty. 280

These coefficients can be tuned to suit different 281

curriculum learning needs . 282

3.3 Curriculum Phase Scheduling 283

Once each training sample x is assigned a structure- 284

aware difficulty score D(x), we partition the 285

dataset into a sequence of non-overlapping cur- 286

riculum phases, each corresponding to a difficulty 287

band. This phased scheduling ensures that the 288

model is exposed to easier examples first and 289

gradually progresses to more complex samples as 290

training proceeds. We discretize the continuous 291

score range of D(x) into K buckets using fixed 292

thresholds {τ1, τ2, . . . , τK−1} such that each sam- 293

ple belongs to exactly one phase. Specifically, we 294

define: Phase 1 as D(x) ∈ [0, τ1), Phase 2 as 295

D(x) ∈ [τ1, τ2), ..., and Phase K as D(x) ≥ τK−1. 296

4



In our implementation, we use K = 4 curricu-297

lum phases with the following thresholds: [0, 3),298

[3, 5.5), [5.5, 7.5), and [7.5,+∞). These bands299

correspond to an increasing level of SQL com-300

plexity, where Phase 1 includes simple single-301

table queries with basic SELECT, WHERE, or LIMIT302

clauses; Phase 2 introduces JOIN and simple ag-303

gregation; Phase 3 includes multi-clause logic in-304

volving GROUP BY, HAVING, and moderate nesting;305

and Phase 4 contains highly complex queries featur-306

ing NESTED SELECT, WINDOW, or multiple structural307

interactions. The partitioning is performed using308

np.digitize() or a similar binning operation to309

ensure that each training instance is uniquely as-310

signed to one phase.311

To implement the structured training schedule,312

we denote D1, D2, . . . , DK as the subsets of train-313

ing samples assigned to each phase. Training is314

carried out in a sequential phase-wise manner: in315

epochs 1 to T1, only D1 is used; in epochs T1 to316

T2, D1 ∪D2 is used; and so on. In the final stage317

of training, the full dataset
⋃K

k=1Dk is employed.318

This incremental exposure allows the model to mas-319

ter fundamental SQL generation patterns early, be-320

fore being exposed to increasingly complex queries,321

resulting in more stable and effective learning. Ad-322

ditionally, we experiment with phase blending and323

loss re-weighting strategies, where earlier-phase324

samples are retained in later stages but assigned325

reduced loss weights, helping preserve their rein-326

forcement signal without risking overfitting.327

Compared to uniform sampling or randomly or-328

dered curricula, our structured scheduling frame-329

work offers three key advantages: it ensures stable330

convergence by preventing premature exposure to331

outlier queries, it enhances structure-specific gener-332

alization—particularly on complex SQL constructs333

such as JOIN, NESTED SELECT, and HAVING—and334

it provides interpretable control over training dy-335

namics via the design of curriculum thresholds.336

4 Experiments337

4.1 Benchmark and Metric338

Benchmarks We evaluate the performance of339

SAC-SQL on two widely used Text-to-SQL bench-340

marks—Spider and Bird. Spider(Yu et al., 2019) is341

a cross-domain Text-to-SQL dataset featuring over342

200 databases from 138 domains (e.g., education,343

science), with an average of 5.1 tables per database.344

Notably, the training and test sets contain disjoint345

databases to evaluate generalization.346

BIRD(Li et al., 2023c) is a benchmark designed 347

to bridge academic research and real-world applica- 348

tions by emphasizing grammatical clarity, ambigu- 349

ity, specificity, and schema alignment. It spans 37+ 350

domains (e.g., healthcare, hockey, education) and 351

introduces challenges such as noisy database con- 352

tents, the need for external knowledge, and query 353

efficiency over large databases. 354

Evaluation Metrics For evaluation, we adopt dif- 355

ferent metrics tailored to each dataset’s structure 356

and objectives. On the Spider benchmark, we fol- 357

low standard practice and report both Execution 358

Accuracy (EX)(Yu et al., 2019) and Test Suite Ac- 359

curacy (TS)(Zhong et al., 2020). EX measures 360

whether the generated SQL produces the correct 361

execution result when run on the database, while 362

TS further accounts for a broader set of execution 363

behaviors by evaluating correctness across multiple 364

input-output cases per query. 365

For the Bird dataset, we rely solely on execution 366

accuracy (EX). Although Bird provides its own of- 367

ficial evaluation metrics, they are tightly coupled 368

with dataset-specific constraints and scoring rules 369

that do not generalize well to our open-source mod- 370

els or synthetic setups. Therefore, for consistency 371

and interpretability, we evaluate Bird results exclu- 372

sively using EX, which directly reflects semantic 373

correctness and aligns with our primary focus on 374

structural generalization. 375

4.2 Compared Methods 376

In order to comprehensively assess the performance 377

of our proposed SAC-SQL model, we compare 378

it against a broad range of baselines drawn from 379

both close-source and open-source model families. 380

To ensure fair and interpretable comparison, we 381

categorize these baselines into four groups: closed- 382

source LLMs, prompt-based methods, fine-tuning 383

approaches, and open-source LLMs. 384

The first group, closed-source LLMs, includes 385

proprietary systems such as GPT-4, PaLM-2(Anil 386

et al., 2023), Claude-2(Anthropic, 2023), and Chat- 387

GPT. These models are known for their strong per- 388

formance in natural language understanding and 389

reasoning, but are often inaccessible for fine-tuning 390

or domain-specific adaptation. Their inclusion pro- 391

vides an upper-bound reference for open-source 392

model performance, especially in zero-shot or few- 393

shot settings(Kim et al., 2020). 394

The second group consists of prompting meth- 395

ods based on in-context learning, such as few-shot 396

5



Dev-EX Dev-TS Test Dev Test
GPT-4 72.9 64.9 - 49.2 54.9

PaLM-2 - - - 27.4 33.1
Claude-2 - - - 42.7 33.1
ChatGPT 72.3 - - 36.6 40.1

Few-shot GPT-4 76.8 67.4 - - -
Few-shot SQL-PaLM 82.7 77.3 - - -

DIN-SQL + GPT-4 82.8 74.2 85.3 50.7 55.9
ACT-SQL + GPT-4 82.9 74.5 - - -
DAIL-SQL + GPT-4 83.5 76.2 86.6 54.8 57.4

T5-3B + PICARD 79.3 69.4 75.1 - -
RASAT + PICARD 80.5 70.3 75.5 - -

RESDSQL-3B + NatSQL 84.1 73.5 79.9 - -
Graphix-T5-3B + PICARD 81.0 75.0 - - -

Fine-tuned SQL-PaLM 82.8 78.2 - - -
Llama2-7B 28.0 23.8 - 7.1 -
Llama2-13B 36.9 34.9 - 11.3 -

LLaMA2-13B-Chat 49.6 45.5 - 14.2 -
DeepSeek-Coder-1.3B 59.3 53.2 - 22.0 -

CodeLLaMA-7B 61.1 52.3 - 22.5 -
CodeLLaMA-13B 61.7 53.5 - 22.9 -

CodeLLaMA-7B-Instruct 63.4 54.2 - 23.0 -
DeepSeek-Coder-1.3B-Instruct 53.2 48.7 - 24.1 -

Qwen-7B 63.6 54.5 - 26.1 -
SAC-SQL-7B 81.7 80.1 81.9 50.8 57.3
SAC-SQL-13B 83.2 81.5 84.1 53.9 59.7

Open

Source

LLMs

Ours

Methods
Spider Bird

Closed

Source

LLMs

Prompting

Methods

Fine-tuning

Methods

Table 4: Comparison of SAC-SQL with baseline methods on Spider and Bird datasets. SAC-SQL demonstrates
strong performance across all settings, particularly on structurally complex queries.

GPT-4, SQL-PaLM(Sun et al., 2024), and several397

recent techniques that combine powerful LLMs398

with specialized SQL-oriented prompts (e.g., DIN-399

SQL(Pourreza and Rafiei, 2023), ACT-SQL(Zhang400

et al., 2023), and DAIL-SQL(Gao et al., 2023)).401

These approaches do not involve parameter updates402

but rely on advanced prompting strategies to induce403

SQL generation capabilities. They are typically404

more flexible and require no task-specific training,405

but may underperform on structurally difficult or406

domain-shifted queries.407

The third group includes fine-tuning methods,408

where large models such as T5(Raffel et al., 2023),409

RESDSQL(Li et al., 2023a), or Graphix-T5(Li410

et al., 2023b) are trained end-to-end on Text-to-411

SQL datasets. Many of these methods are enhanced412

with decoding constraints (e.g., PICARD(Scholak413

et al., 2021)) or logical normalization (e.g., Nat-414

SQL(Gan et al., 2021)). They represent the415

strongest supervised learning baselines and are di-416

rectly comparable to SAC-SQL in terms of training417

strategy and evaluation protocol(Qin et al., 2023).418

Finally, we include a set of open-source LLMs419

without task-specific fine-tuning, including models420

from the LLaMA, CodeLLaMA, Qwen(Bai et al.,421

2023), and DeepSeek(Guo et al., 2024) families.422

These models are used in either base or instruct-423

tuned form, providing a lower bound for perfor-424

mance and helping isolate the gains achieved by 425

synthetic data, supervised fine-tuning. 426

This wide-ranging comparison allows us to po- 427

sition SAC-SQL not only against state-of-the-art 428

supervised models, but also in relation to widely- 429

used systems and emerging open-source baselines. 430

4.3 Implementations Details 431

Our experiments are conducted with open-source 432

decoder-style language models based on the CodeL- 433

LaMA architecture, with both 7B and 13B param- 434

eter variants. The models are trained with mixed- 435

precision on 2×NVIDIA A100 GPUs, each with 436

80GB of memory. Model training and evaluation 437

are orchestrated through the deepspeed and accel- 438

erate backends to ensure efficient memory scaling. 439

We fine-tune each model using the AdamW op- 440

timizer with a linear learning rate schedule, warm- 441

up ratio of 0.03, and a base learning rate of 1e-5. 442

During SFT, models are trained on our synthetic 443

dataset for 6 epochs with a batch size of 128 and 444

context length of 2048. Curriculum training pro- 445

ceeds in four non-overlapping phases defined by 446

the structure-aware score D(x), with phase transi- 447

tions scheduled every 2 epochs. In each phase, only 448

the corresponding subset of data is exposed to the 449

model, following a strict easy-to-hard progression. 450

We apply no early stopping, and select the best 451

6



Figure 3: Execution accuracy (EX) on Spider and Bird
datasets as more curriculum phases are introduced.

checkpoint based on dev execution accuracy.452

During training, SQL queries are linearized us-453

ing a deterministic schema serialization format,454

and both Spider and Bird are preprocessed to455

unify case, keyword spacing, and quoting conven-456

tions. Schema information is appended to the input457

prompt for each query using a template consistent458

with prior work. No execution feedback or rein-459

forcement learning signals are used—our model460

is trained entirely via supervised objectives. Final461

evaluation is conducted using the official Spider462

toolkit and an adapted Bird execution evaluator, us-463

ing execution accuracy (EX) as the primary metric.464

4.4 Overall Performance465

Table 4 presents a comprehensive comparison of466

SAC-SQL with a wide range of baselines across467

the Spider and Bird datasets. Our model achieves468

competitive or superior results on both benchmarks,469

outperforming previous open-source models and470

matching or exceeding the performance of several471

closed-source methods.472

On the Spider dataset, SAC-SQL-13B reaches473

83.2% execution accuracy (EX) and 81.5% test474

suite accuracy (TS) on the dev set, and 84.1% EX475

on the test set—significantly surpassing the super-476

vised fine-tuning (SFT) baseline and all other open-477

source LLMs. Compared to strong supervised478

methods such as Graphix-T5 or RESDSQL, SAC-479

SQL exhibits more stable performance without re-480

lying on additional decoding constraints like PI-481

CARD. While prompt-based methods (e.g., DAIL-482

SQL + GPT-4) perform strongly in zero-shot set-483

tings, they often lack consistency on structurally484

difficult queries, especially when schema compo-485

sition is dense. SAC-SQL, in contrast, benefits486

from progressive exposure to complex queries dur-487

ing training, allowing it to generalize more reliably488

across different SQL compositions.489

On the Bird benchmark, which features more490

natural and varied linguistic inputs, SAC-SQL-13B491

achieves 59.7% test execution accuracy, outper- 492

forming GPT-4 (54.9%) and all other open-source 493

and prompting baselines. Notably, this result is ob- 494

tained using execution accuracy (EX) alone, rather 495

than relying on the dataset’s official scoring rules, 496

which are incompatible with standard open-source 497

model usage. The large margin between SAC-SQL 498

and the SFT baseline (which achieves only 50.5% 499

EX) underscores the impact of curriculum learning 500

on structural transfer and long-tail generalization. 501

To investigate the effectiveness of our curriculum 502

learning framework, we measure how execution 503

accuracy evolves as training data gradually incor- 504

porates more structurally complex SQL samples. 505

As shown in Figure 3, model performance on both 506

Spider and Bird benchmarks improves steadily with 507

each additional phase. This progression illustrates 508

the cognitive benefit of structure-aware schedul- 509

ing—early exposure to simple patterns like SELECT 510

and WHERE forms a syntactic foundation, which 511

facilitates later generalization to more difficult 512

constructs such as JOIN, GROUP BY, and NESTED 513

SELECT. Notably, the final performance after Phase 514

5 outperforms all previous checkpoints, confirming 515

that phased curriculum training yields stronger and 516

more stable convergence than flat SFT. 517

Overall, the results demonstrate that SAC-SQL 518

not only closes the gap between open-source and 519

closed-source models, but in many cases, surpasses 520

proprietary methods on structurally rich and se- 521

mantically complex SQL tasks. The performance 522

gains are particularly evident in scenarios involving 523

nested logic, rare aggregation patterns, and multi- 524

clause queries—areas that standard fine-tuning 525

tends to underperform without structural guidance. 526

4.5 Weight Sensitivity Analysis 527

To assess the impact of different structural weight- 528

ing configurations in the base difficulty score S(x), 529

we conduct an ablation study by varying the com- 530

ponent weights used in our curriculum scheduler. 531

Table 5 and Figure 4 summarize the effect of alter- 532

ing weights for challenging SQL components such 533

as JOIN, NESTED SELECT, and WINDOW. 534

The results show that the heuristic configura- 535

tion yields the best overall performance. Reducing 536

the weight of JOIN leads to a 1.7% drop in Spider 537

accuracy, while removing the penalty for NESTED 538

SELECT results in degraded handling of long-tail 539

queries in Bird. A uniform weight setting under- 540

performs due to lack of structural contrast. These 541

findings validate the importance of accurately re- 542

7



Figure 4: Spider Dev and Bird Dev Accuracy un-
der weight configuration. 1–5 represent structural
weight configurations: Heuristic (default), Reduced
JOIN Weight, No Nested Penalty, Equal Weights, and
High WINDOW Bias.

flecting the relative difficulty of SQL components543

when designing structure-aware curricula.The x-544

axis denotes different structure weight configura-545

tions used in the scoring function S(x). “Heuris-546

tic” refers to manually assigned weights; “Reduced547

JOIN” lowers JOIN difficulty; “No Nested Penalty”548

ignores NESTED SELECT complexity; “Equal549

Weights” removes structural differentiation; “High550

WINDOW Bias” overemphasizes WINDOW op-551

erations.Interestingly, we observe that the Equal552

Weights variant—despite flattening all structural553

distinctions—still achieves performance compara-554

ble to the heuristic configuration, particularly on555

the Bird dataset. We hypothesize that this is due to556

the model’s inherent ability to learn structural pri-557

ors from large-scale pretraining, as well as Bird’s558

higher baseline complexity, which may diminish559

the impact of structure-aware scheduling. Nonethe-560

less, the heuristic setup consistently yields the best561

results, confirming the value of aligning training562

stages with compositional complexity.563

Variant JOIN NESTED WINDOW Spider Dev Bird Dev

Heuristic (default) 1.5 1.5 2.0 84.1 59.7
Reduced JOIN Weight 1.0 1.5 2.0 82.4 58.1
No Nested Penalty 1.5 0.5 2.0 82.9 58.8
Equal Weights 1.0 1.0 1.0 81.2 56.8
High WINDOW Bias 1.5 1.5 3.0 83.7 59.3

Table 5: Ablation on SQL structure in S(x).

4.6 Structure-Specific Evaluation564

To better understand the source of SAC-SQL’s im-565

provements, we conduct a structure-level break-566

down of execution accuracy across different SQL567

component categories. Specifically, we classify568

evaluation samples according to whether they con-569

tain certain key structural elements such as JOIN,570

HAVING, and NESTED SELECT, and then compute 571

execution accuracy within each subset. This analy- 572

sis reveals how well models generalize to various 573

levels of logical and compositional complexity. 574

Our results show that SAC-SQL exhibits sub- 575

stantial gains on structurally rich queries compared 576

to the SFT baseline. For instance, on the Spider de- 577

velopment set, SAC-SQL-13B improves execution 578

accuracy on queries involving JOIN from 70.2% 579

(SFT) to 78.4%, and on GROUP BY queries from 580

64.3% to 75.9%. The improvement is even more 581

pronounced for queries containing HAVING clauses 582

and NESTED SELECT subqueries, where the SFT 583

model frequently fails to generate valid outputs. 584

SAC-SQL achieves 68.7% execution accuracy on 585

HAVING queries (vs. 52.1% for SFT), and 64.1% on 586

NESTED SELECT queries (vs. 49.0%). 587

Similar trends are observed on the Bird dataset, 588

where SAC-SQL demonstrates enhanced robust- 589

ness to long, compositional question forms and 590

schema-rich queries. In particular, the model ex- 591

hibits fewer clause ordering errors and better han- 592

dling of multi-step logical constraints, which are 593

prevalent in Bird but underrepresented in Spider. 594

These improvements can be attributed to the 595

structural curriculum design, which gradually ex- 596

poses the model to increasingly complex SQL 597

forms during training. This enables SAC-SQL to 598

not only memorize isolated SQL components but 599

also learn how to compose and integrate them in 600

semantically correct ways. The result is a model 601

that maintains high performance across both simple 602

and challenging structural categories—something 603

that standard SFT fails to consistently achieve. 604

Please refer to Appendix for ablation study (Ap- 605

pendix A) and deep discussions (Appendix B). 606

5 Conclusion 607

In this paper, we propose SAC-SQL, a model 608

trained synthetic training samples followed by a 609

structure-aware curriculum learning framework for 610

enhancing SQL generation. It has integrated high- 611

quality synthetic data, a unified difficulty scoring 612

function, and phase-wise curriculum scheduling to 613

guide the model through progressively more com- 614

plex SQL structures. We have introduced SAC- 615

SQL that achieves state-of-the-art execution ac- 616

curacy on the Spider and Bird benchmarks, even 617

surpassing several closed-source models such as 618

GPT-4 in structurally demanding scenarios. 619

8



Limitations620

While SAC-SQL achieves strong performance621

through structure-aware curriculum learning, sev-622

eral limitations remain. First, the curriculum sched-623

ule relies on a fixed difficulty scoring function624

that may not generalize well across domains or625

adapt dynamically during training. Although we626

incorporate model uncertainty into the scoring func-627

tion, it remains statically defined prior to training628

and does not evolve with the model’s competence.629

Second, the synthetic dataset, though structurally630

diverse, is generated using prompting heuristics631

and LLMs that may introduce distributional bias or632

lack realism compared to user-generated queries.633

Future work could explore human-in-the-loop or634

execution-guided data synthesis to enhance fidelity.635

Integrating curriculum learning with schema-aware636

pretraining or constrained decoding may further637

boost robustness. Finally, our framework assumes638

access to sufficient compute resources for phase-639

wise training, which may limit applicability in low-640

resource settings.641

References642

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-643
son, Dmitry Lepikhin, Alexandre Passos, Siamak644
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng645
Chen, Eric Chu, Jonathan H. Clark, Laurent El646
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-647
rav Mishra, Erica Moreira, Mark Omernick, Kevin648
Robinson, and 109 others. 2023. Palm 2 technical649
report. Preprint, arXiv:2305.10403.650

Anthropic. 2023. Model card and evaluations for claude651
models.652

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,653
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei654
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,655
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,656
Keming Lu, and 29 others. 2023. Qwen technical657
report. arXiv preprint arXiv:2309.16609.658

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,659
and Jason Weston. 2009. Curriculum learning.660
In Proceedings of the 26th Annual International661
Conference on Machine Learning, ICML ’09, page662
41–48, New York, NY, USA. Association for Com-663
puting Machinery.664

Yinpei Dai, Hangyu Li, Yongbin Li, Jian Sun, Fei665
Huang, Luo Si, and Xiaodan Zhu. 2021. Preview,666
attend and review: Schema-aware curriculum learn-667
ing for multi-domain dialog state tracking. Preprint,668
arXiv:2106.00291.669

Longxu Dou, Yan Gao, Mingyang Pan, Dingzirui Wang,670
Wanxiang Che, Dechen Zhan, and Jian-Guang Lou.671

2022. Unisar: A unified structure-aware autore- 672
gressive language model for text-to-sql. Preprint, 673
arXiv:2203.07781. 674

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, 675
John R. Woodward, John Drake, and Qiaofu Zhang. 676
2021. Natural sql: Making sql easier to infer 677
from natural language specifications. Preprint, 678
arXiv:2109.05153. 679

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 680
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023. 681
Text-to-sql empowered by large language models: A 682
benchmark evaluation. Preprint, arXiv:2308.15363. 683

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 684
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 685
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen- 686
feng Liang. 2024. Deepseek-coder: When the large 687
language model meets programming – the rise of 688
code intelligence. Preprint, arXiv:2401.14196. 689

Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, 690
Feiran Huang, and Xiao Huang. 2024. Knowledge- 691
to-SQL: Enhancing SQL Generation with Data Ex- 692
pert LLM. In Findings of the Association for 693
Computational Linguistics: ACL 2024. 694

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, 695
and Hongrae Lee. 2020. Natural language to 696
sql: where are we today? Proc. VLDB Endow., 697
13(10):1737–1750. 698

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and 699
Hao Zhang. 2024. Cllms: Consistency large lan- 700
guage models. Preprint, arXiv:2403.00835. 701

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and 702
Heesoo Park. 2024. Mcs-sql: Leveraging multiple 703
prompts and multiple-choice selection for text-to-sql 704
generation. 705

Haoyang Li, Jing Zhang, Cuiping Li, and Hong 706
Chen. 2023a. Resdsql: Decoupling schema link- 707
ing and skeleton parsing for text-to-sql. Preprint, 708
arXiv:2302.05965. 709

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, 710
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo 711
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing 712
pre-trained transformers with graph-aware layers for 713
text-to-sql parsing. Preprint, arXiv:2301.07507. 714

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, 715
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao, 716
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao 717
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang, 718
Reynold Cheng, and Yongbin Li. 2023c. Can llm 719
already serve as a database interface? a big bench for 720
large-scale database grounded text-to-sqls. Preprint, 721
arXiv:2305.03111. 722

Marwa Naïr, Kamel Yamani, Lynda Said Lhadj, 723
and Riyadh Baghdadi. 2024. Curriculum learn- 724
ing for small code language models. Preprint, 725
arXiv:2407.10194. 726

9

https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://doi.org/10.1145/1553374.1553380
https://arxiv.org/abs/2106.00291
https://arxiv.org/abs/2106.00291
https://arxiv.org/abs/2106.00291
https://arxiv.org/abs/2106.00291
https://arxiv.org/abs/2106.00291
https://arxiv.org/abs/2203.07781
https://arxiv.org/abs/2203.07781
https://arxiv.org/abs/2203.07781
https://arxiv.org/abs/2109.05153
https://arxiv.org/abs/2109.05153
https://arxiv.org/abs/2109.05153
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.48550/arXiv.2402.11517
https://doi.org/10.48550/arXiv.2402.11517
https://doi.org/10.48550/arXiv.2402.11517
https://doi.org/10.48550/arXiv.2402.11517
https://doi.org/10.48550/arXiv.2402.11517
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.14778/3401960.3401970
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2403.00835
https://doi.org/10.48550/arXiv.2405.07467
https://doi.org/10.48550/arXiv.2405.07467
https://doi.org/10.48550/arXiv.2405.07467
https://doi.org/10.48550/arXiv.2405.07467
https://doi.org/10.48550/arXiv.2405.07467
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2407.10194
https://arxiv.org/abs/2407.10194
https://arxiv.org/abs/2407.10194


OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,727
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-728
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-729
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,730
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-731
ing Bao, Mohammad Bavarian, Jeff Belgum, and732
262 others. 2024. Gpt-4 technical report. Preprint,733
arXiv:2303.08774.734

Mohammadreza Pourreza and Davood Rafiei. 2023.735
Din-sql: Decomposed in-context learning of text-to-736
sql with self-correction. Preprint, arXiv:2304.11015.737

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Bin-738
hua Li, Fei Huang, Luo Si, Qingshan Jiang, and739
Yongbin Li. 2023. Schema dependency-enhanced740
curriculum pre-training for table semantic parsing.741
Knowledge-Based Systems, 262:110264.742

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,743
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,744
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022a.745
A survey on text-to-sql parsing: Concepts, methods,746
and future directions. Preprint, arXiv:2208.13629.747

Bowen Qin, Lihan Wang, Binyuan Hui, Ruiying Geng,748
Zheng Cao, Min Yang, Jian Sun, and Yongbin Li.749
2022b. Linking-enhanced pre-training for table se-750
mantic parsing. Preprint, arXiv:2111.09486.751

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano752
Ermon, Christopher D. Manning, and Chelsea Finn.753
2024. Direct preference optimization: Your lan-754
guage model is secretly a reward model. Preprint,755
arXiv:2305.18290.756

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine757
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,758
Wei Li, and Peter J. Liu. 2023. Exploring the limits759
of transfer learning with a unified text-to-text trans-760
former. Preprint, arXiv:1910.10683.761

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten762
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,763
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy764
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna765
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron766
Grattafiori, Wenhan Xiong, Alexandre Défossez, and767
7 others. 2024. Code llama: Open foundation models768
for code. Preprint, arXiv:2308.12950.769

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-770
danau. 2021. PICARD: Parsing incrementally for771
constrained auto-regressive decoding from language772
models. In Proceedings of the 2021 Conference on773
Empirical Methods in Natural Language Processing,774
pages 9895–9901, Online and Punta Cana, Domini-775
can Republic. Association for Computational Lin-776
guistics.777

Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang,778
and Zhi Yang. 2024. A survey on employing large779
language models for text-to-sql tasks. Preprint,780
arXiv:2407.15186.781

Ruoxi Sun, Sercan Ö. Arik, Alex Muzio, Lesly Miculi- 782
cich, Satya Gundabathula, Pengcheng Yin, Hanjun 783
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang, 784
and Tomas Pfister. 2024. Sql-palm: Improved large 785
language model adaptation for text-to-sql (extended). 786
Preprint, arXiv:2306.00739. 787

Xin Wang, Yudong Chen, and Wenwu Zhu. 2021. 788
A survey on curriculum learning. Preprint, 789
arXiv:2010.13166. 790

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Jun- 791
yang Lin, and Chang Zhou. 2024. Synthesizing 792
text-to-SQL data from weak and strong LLMs. In 793
Proceedings of the 62nd Annual Meeting of the 794
Association for Computational Linguistics (Volume 795
1: Long Papers), pages 7864–7875, Bangkok, Thai- 796
land. Association for Computational Linguistics. 797

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 798
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 799
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir 800
Radev. 2019. Spider: A large-scale human-labeled 801
dataset for complex and cross-domain semantic pars- 802
ing and text-to-sql task. Preprint, arXiv:1809.08887. 803

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen 804
Xu, and Kai Yu. 2023. Act-sql: In-context learning 805
for text-to-sql with automatically-generated chain-of- 806
thought. Preprint, arXiv:2310.17342. 807

Qinggang Zhang, Junnan Dong, Hao Chen, Wentao Li, 808
Feiran Huang, and Xiao Huang. 2024a. Structure 809
guided large language model for sql generation. 810

Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Ken- 811
ton Murray, Jeremy Gwinnup, Marianna J Mar- 812
tindale, Paul McNamee, Kevin Duh, and Marine 813
Carpuat. 2018. An empirical exploration of curricu- 814
lum learning for neural machine translation. Preprint, 815
arXiv:1811.00739. 816

Yiyun Zhang, Sheng’an Zhou, and Gengsheng Huang. 817
2024b. Se-hcl: Schema enhanced hybrid curricu- 818
lum learning for multi-turn text-to-sql. IEEE Access, 819
PP:1–1. 820

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic 821
evaluation for text-to-SQL with distilled test suites. 822
In Proceedings of the 2020 Conference on Empirical 823
Methods in Natural Language Processing (EMNLP), 824
pages 396–411, Online. Association for Computa- 825
tional Linguistics. 826

Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du, 827
Junjie Wang, Weiming Ren, Stephen W. Huang, Jie 828
Fu, Xiang Yue, and Wenhu Chen. 2024. Structlm: 829
Towards building generalist models for structured 830
knowledge grounding. Preprint, arXiv:2402.16671. 831

10

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://doi.org/10.1016/j.knosys.2023.110264
https://doi.org/10.1016/j.knosys.2023.110264
https://doi.org/10.1016/j.knosys.2023.110264
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2111.09486
https://arxiv.org/abs/2111.09486
https://arxiv.org/abs/2111.09486
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2010.13166
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/2024.acl-long.425
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://doi.org/10.48550/arXiv.2402.13284
https://doi.org/10.48550/arXiv.2402.13284
https://doi.org/10.48550/arXiv.2402.13284
https://arxiv.org/abs/1811.00739
https://arxiv.org/abs/1811.00739
https://arxiv.org/abs/1811.00739
https://doi.org/10.1109/ACCESS.2024.3365522
https://doi.org/10.1109/ACCESS.2024.3365522
https://doi.org/10.1109/ACCESS.2024.3365522
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671


A Ablation Study832

To better understand each component in our pro-833

posed framework, we conduct a series of ablation834

experiments focusing on three key factors: the ef-835

fect of curriculum learning, the influence of dif-836

ferent components in the structure difficulty score837

D(x), and the role of the scheduling strategy. The838

result of ablation studies in Table 6.839

First, we evaluate the impact of curriculum learn-840

ing by comparing SAC-SQL with a model trained841

using standard supervised fine-tuning (SFT) on the842

same synthetic dataset, but without any structure-843

aware phase scheduling. This ablated model shares844

the same architecture and training data as SAC-845

SQL but is trained on the full dataset from the846

beginning without curriculum partitioning. We847

observe that removing curriculum training leads848

to a consistent drop in execution accuracy across849

both datasets—particularly on structurally complex850

queries. On the Spider test set, accuracy drops from851

84.1% to 78.7%, and on Bird, from 59.7% to 50.5%.852

This confirms that gradually increasing structural853

difficulty during training improves generalization,854

especially for challenging SQL patterns.855

Second, we ablate components of the difficulty856

scoring function D(x). In particular, we set the857

model-side uncertainty coefficient δ = 0. This vari-858

ant results in a performance degradation of 1.8% on859

Spider and 2.3% on Bird, with the greatest impact860

observed on structurally ambiguous or long-tail861

queries. These results underscore the importance862

of incorporating model confidence into the diffi-863

culty estimate, allowing the curriculum schedule864

to account not only for SQL structure but also for865

internal generation uncertainty.866

Lastly, we examine the importance of structure-867

aware scheduling by replacing it with a randomized868

curriculum variant. In this setting, training samples869

are uniformly shuffled and partitioned into four870

curriculum phases of equal size, independent of871

D(x). While this variant avoids catastrophic for-872

getting and achieves slightly better performance873

than baseline SFT, it still underperforms compared874

to our full structure-aware curriculum model. This875

demonstrates that the gains are not simply due to876

data reordering, but depend on the alignment be-877

tween curriculum phase boundaries and the struc-878

tural complexity of the SQL queries.879

These ablations demonstrate that both the cur-880

riculum schedule and the structure-aware scoring881

function—particularly its inclusion of model-side882

Table 6: Ablation Study on Spider and Bird Datasets

Model Variant Spider Bird

SAC-SQL (Full Model) 84.1 59.7
w/o Curriculum Learning 78.7 50.5
w/o Model Uncertainty (δ = 0) 82.3 57.4
Randomized Curriculum 80.5 54.8

uncertainty—are essential to the success of SAC- 883

SQL. The performance gains observed are not in- 884

cidental but arise from a principled integration of 885

structural difficulty into the training dynamics. 886

B Discussion 887

The strong empirical results of SAC-SQL confirm 888

the value of structure-aware curriculum learning 889

for Text-to-SQL tasks, especially when applied 890

to open-source language models. A key reason 891

for its effectiveness lies in the alignment between 892

the model’s learning trajectory and the composi- 893

tional structure of SQL itself.(Qin et al., 2022b) 894

Unlike flat training paradigms that treat all samples 895

as equal, our curriculum framework introduces a 896

progressively challenging environment, enabling 897

the model to first acquire syntactic fluency before 898

confronting deeper structural dependencies. This 899

learning dynamic mirrors human cognitive acquisi- 900

tion in complex domains and results in improved 901

generalization on SQL forms. 902

Another important aspect is the interaction be- 903

tween structural curriculum learning and schema 904

linking. While the latter focuses on grounding 905

language to database content—mapping tokens to 906

tables, columns, and values—curriculum learning 907

operates at a higher level, shaping the model’s abil- 908

ity to combine and organize those components into 909

valid programs(Zhang et al., 2024b). In our set- 910

ting, these two approaches are not mutually ex- 911

clusive but complementary: SAC-SQL’s curricu- 912

lum prepares the model to better compose valid 913

queries, while existing techniques can further en- 914

hance its schema awareness. We believe that inte- 915

grating schema-linking modules within our curricu- 916

lum framework could yield even stronger results, 917

especially in low-resource scenarios. 918

Finally, the principles behind SAC-SQL ex- 919

tend naturally to other structured generation tasks 920

beyond SQL. Tasks such as natural language 921

to code (NL2Code), knowledge base querying 922

(NL2Query), and even Tabular Question An- 923

swering share the same core challenge: map- 924

11



ping unstructured input into logical, executable925

forms.(Naïr et al., 2024) In all of these settings,926

output structures vary in complexity, and learners927

benefit from phased exposure to that complexity.928

Our framework provides a general recipe for such929

settings: define a domain-specific structure diffi-930

culty function, partition data accordingly, and train931

models with difficulty-aligned schedules. We ex-932

pect curriculum-guided LLM training to play a933

growing role in structured reasoning tasks across934

modalities and domains.935

12


	Introduction
	Related Work
	Methodology
	Synthetic Data Generation
	Structure-aware difficulty function
	Curriculum Phase Scheduling

	Experiments
	Benchmark and Metric
	Compared Methods
	Implementations Details
	Overall Performance
	Weight Sensitivity Analysis
	Structure-Specific Evaluation

	Conclusion
	Ablation Study
	Discussion

