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Università degli Studi di Milano
Politecnico di Milano

contact@andrew-jacobsen.com

Alessandro Rudi∗
Bocconi University

alessandro.rudi@sdabocconi.it

Francesco Orabona
King Abdullah University of Science and Technology (KAUST)

Thuwal, 23955-6900, Kingdom of Saudi Arabia
francesco@orabona.com
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Abstract

We study dynamic regret in online convex optimization, where the objective is
to achieve low cumulative loss relative to an arbitrary benchmark sequence. By
observing that competing with an arbitrary sequence of comparators u1, . . . , uT
in W ⊆ Rd can be reframed as competing with a fixed comparator function
u : [1, T ] → W , we cast dynamic regret minimization as a static regret problem in
a function space. By carefully constructing a suitable function space in the form of
a Reproducing Kernel Hilbert Space (RKHS), our reduction enables us to recover
the optimal RT (u1, . . . , uT ) = O(

√∑
t ∥ut − ut−1∥T ) dynamic regret guaran-

tee in the setting of linear losses, and yields new scale-free and directionally-
adaptive dynamic regret guarantees. Moreover, unlike prior dynamic-to-static
reductions—which are valid only for linear losses—our reduction holds for any
sequence of losses, allowing us to recover O

(
∥u∥2 + deff(λ) lnT

)
bounds when

the losses have meaningful curvature, where deff(λ) is a measure of complexity of
the RKHS. Despite working in an infinite-dimensional space, the resulting reduc-
tion leads to algorithms that are computable in practice, due to the reproducing
property of RKHSs.

1 Introduction

This paper introduces new techniques for Online Convex Optimization (OCO), a framework for
designing and analyzing algorithms which learn on-the-fly from a stream of data [10, 11, 18, 39, 59].
Formally, consider T rounds of interaction between a learner and the environment. In each round,
the learner chooses wt ∈ W from a convex set W ⊆ Rd, the environment reveals a convex loss
function ℓt : W → R, and the learner incurs a loss of ℓt(wt). The classic objective in this setting is
to minimize the learner’s regret relative to any fixed benchmark u ∈ W:

RT(u) :=
∑T
t=1(ℓt(wt)− ℓt(u)) .

∗Equal contribution.
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Figure 1: Transformation from a sequence of comparators to a function. Many functions may implement the
transformation. In Section 4 we will see that under mild assumptions on the chosen function space H we can
always find a function u ∈ H such that u(t) = ut for all t and ∥u∥2Hd = O

(∑T
t=2 ∥ut − ut−1∥

)
.

In this paper, we study the more general problem of minimizing the learner’s regret relative to any
sequence of benchmarks u1, . . . , uT ∈ W [21, 22, 59]:

RT(u1, . . . , uT ) :=
∑T
t=1(ℓt(wt)− ℓt(ut)) .

This objective is typically referred to as dynamic regret, to distinguish it from the special case where
the comparator sequence is fixed u1 = · · · = uT (referred to as static regret). Intuitively, dynamic
regret captures a notion of non-stationarity in learning problems. Problem instances where u1 =
· · · = uT model classic problem settings, wherein there is a fixed “solution” whose performance
we want to emulate, while a time-varying comparator sequence models problem settings where the
learner needs to continuously adapt to a changing environment in which the solution is time-varying.
The complexity of a given comparator sequence is typically characterized by its path-length:

PT =
∑T
t=2 ∥ut − ut−1∥ .

Clearly, if the path-length is large there is no hope to obtain low dynamic regret. The goal is thus
to obtain performance guarantees that gracefully adapt to the level of non-stationarity. For instance,
in the setting of G-Lipschitz losses and a bounded domain D = supx,y∈W ∥x− y∥, the minimax
optimal dynamic regret guarantee is of the order of O(G

√
(D2 +DPT )T ), which scales naturally

with the complexity of the benchmark sequence and recovers the optimal O(GD
√
T ) static regret

guarantee when the comparator is fixed. In unbounded domains (e.g., W = Rd) these bounds
would be vacuous, so the guarantee should instead be adaptive to M := maxt ∥ut∥. In this case
an analogous guarantee of Õ(G

√
(M2 +MPT )T ) can be achieved at the expense of additional

logarithmic terms. Throughout the paper we focus on the unbounded setting.

Contributions. In this work we introduce a new framework for reducing dynamic regret mini-
mization to static regret minimization. Our key insight is that competing with a sequence u1, . . . , uT
in W can be equivalently framed as competing with some fixed function u(·) such that u(t) = ut for
all t. In this view, we effectively transform dynamic regret minimization over a domain W ⊆ Rd into
a static regret minimization problem over a domain of functions, depicted graphically in Figure 1.

The choice of the function space is crucial, as it controls the trade-offs of the resulting algorithm.
To complete the construction, we carefully design a rich family of function spaces which embed
the comparator sequence in a way that (1) optimizes the inherent trade-offs of the function class to
achieve optimal dynamic regret guarantees and (2) ensures that the resulting algorithm is computable
in practice, despite being stated as an infinite-dimensional optimization problem. Indeed, the family
we design is an instance of a Reproducing Kernel Hilbert Space (RKHS), a well-studied class of
functions endowed with the familiar structure of a Hilbert space. The reduction to learning in an
RKHS is particularly natural in the context of online learning—the vast majority of modern online
learning theory is developed for static regret minimization in Hilbert spaces, so our reduction enables
the use of the familiar online learning toolkit while also allowing us to draw upon deep connections
between dynamic regret minimization, kernel methods, and signal processing theory.

In the linear losses setting, our construction enables us to achieve the optimal dynamic regret guar-
antees of O(

√
MPTT ) up to poly-logarithmic terms. Notably, the resulting algorithm is naturally

horizon independent, and is easily extended to a scale-free version. These are the first algorithms
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that obtain the optimal
√
PT dependence without prior knowledge of the horizon T natively, without

resorting to the doubling trick. Our reduction also enables us to derive new directionally-adaptive

guarantees, which scale as Õ
(√

deff(λ)
(
∥u∥2Hd +

∑T
t=1 ⟨gt, ut⟩

2 )), where ∥u∥2Hd and deff(λ) are
measures of the complexity of the comparator function and complexity of the function class H re-
spectively.

Interestingly, because our reduction only involves viewing the comparator sequence through a dif-
ferent lens, it holds for any sequence of loss functions, contrasting prior works which are valid
only for linear losses [26, 55]. We show that this allows us to account for loss curvature and ob-
tain O(λ ∥u∥2H + deff(λ) log T ) dynamic regret in the context of strongly-convex, exp-concave, and
improper linear regression settings.

Related Works. Our work is most directly related to a recent thread of research in the linear
loss setting initiated by Zhang et al. [55]. Their strategy approaches dynamic regret from a signal
processing perspective, wherein the comparator sequence is stacked into a high-dimensional “signal”
ũ = vec (u1, . . . , uT ) ∈ RdT , and 1-dimensional static regret algorithms are employed to learn the
coefficients of a basis of features which decompose that signal, leading to O(

√
MPTT ) dynamic

regret via a carefully chosen dictionary of features. Jacobsen and Orabona [26] generalize this
perspective by designing static regret algorithms that are applied directly in this high-dimensional
space, and derive the O(

√
MPTT ) bound by choosing a suitable dual-norm pair in this space, such

that ∥ũ∥ = O(
√
PT ). Our work further extends this perspective by interpreting the comparator

sequence as samples of a function in an RKHS H, and designing algorithms which obtain suitable
static regret guarantees in function space. The reduction of Jacobsen and Orabona [26] can in fact
be understood as a special case of our framework by choosing the discrete RKHS H associated with
the Dirac kernel.

More broadly, the concept of dynamic regret was originally introduced by Herbster and Warmuth
[21, 22]. Later, Zinkevich [59] showed that OGD naturally obtains O(PT

√
T ) dynamic regret and

Yang et al. [52] showed that O(
√
DPTT ) can be achieved when prior knowledge of PT is avail-

able. The first to achieve the O(
√
DPTT ) rate without prior knowledge of PT was Zhang et al.

[53], who also proved a matching lower bound, and the analogous bound of O(
√
MPTT ) has

been achieved up to logarithmic terms in unbounded settings [23, 24, 33, 55]. There have also
been several refinements to the result, replacing the T factor with data-dependent quantities such as∑T
t=1 ∥gt∥

2 or
∑
t supx|ℓt(x)− ℓt−1(x)| [9, 14, 19]. Going beyond linear losses, various improve-

ments in adaptivity can be obtained when the losses are smooth or exp-concave, such as replacing the
T factor with

∑
t ℓt(ut) or

∑
t supw ∥∇ℓt(w)−∇ℓt−1(w)∥2 [56–58]. In the squared loss setting

ℓt(w) =
1
2 (yt−w)

2, minimax optimal rates ofRT (ẙ1, . . . , ẙT ) = O(C
2/3
T T 1/3) have been obtained

where CT =
∑T
t=2 |̊yt − ẙt−1| is the path-length of the benchmark predictions [3–5, 29, 44, 54].

2 Preliminaries

Notations. Hilbert spaces are denoted by upper case calligraphic letters. Given a Hilbert space H,
we denote the associated inner product by ⟨·, ·⟩H. We denote L(H,W) the space of linear operators
from H to W . L(H,W) is itself a Hilbert space when equipped with the Hilbert-Schmidt inner
product, ⟨A,B⟩HS = Tr (A∗B), where A∗ ∈ L(W,H) is the adjoint of A. The subdifferential set
of a function f at x is denoted by ∂f(x). We will occasionally abuse notation and write ∇f(x)
to mean an arbitrary element of ∂f(x). We will denote by [T ] the set {1, 2, . . . , T}. The Fourier
transform of a function Q is denoted F [Q](x) =

∫
RQ(ω)e−2πixωdω and, when clear from context,

we will generally abbreviate F [Q](x) =: Q̂(x).

Reproducing Kernel Hilbert Spaces. Let H = {h : T → R} be a Hilbert space of functions
a on compact set T . The space H is a RKHS [1] if there exists a positive definite function k :
T × T → R such that k(·, x) ∈ H for all x ∈ T , that has the reproducing property, i.e., we
have f(x) = ⟨f, k(·, x)⟩H for all f ∈ H and x ∈ T . The function k is called the kernel function
associated with H and the function ϕ(x) = k(·, x) is called the feature map. It is known that the
kernel function uniquely characterizes the RKHS H. A kernel is universal if it can approximate any
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Algorithm 1: Kernelized Online Learning

Input: Domain W ⊆ Rd, feature map ϕ : T → H, algorithm A defined on L(H,W)
for t = 1 : T do

Receive Wt ∈ L(H,W) from A and play wt =Wtϕ(t) ∈ W
Observe loss function ℓt : W → R and incur loss ℓt(wt)
Send ℓ̃t : W 7→ ℓt(Wϕ(t)) to A as the tth auxiliary loss

end

real-valued continuous function on T to arbitrary accuracy. Many of the standard kernel functions
are universal, including the Gaussian RBF kernel, the Matérn kernel, and inverse multiquadratic
kernel. All kernels considered in this work are universal kernels. For a detailed introduction to
kernel methods, see, e.g., Berlinet and Thomas-Agnan [6], Paulsen and Raghupathi [42], Schölkopf
and Smola [45], Wendland [51].

We will often be interested in functions taking values in W ⊆ Rd. In this case the usual RKHS ma-
chinery extends in a straight-forward way via a coordinate-wise extension. Indeed, we can represent
w : T → Rd as a tuple w = (w1, . . . , wd) such that wi ∈ H for each i.2 This naturally leads to an
operator-based version of the reproducing property:

w(t) = (w1(t), . . . , wd(t)) =
(
⟨w1, ϕ(t)⟩H , . . . , ⟨wd, ϕ(t)⟩H

)
=Wϕ(t) ∈ W,

whereW ∈ L(H,W). The space L(H,W) is itself a Hilbert space when equipped with the Hilbert-
Schmidt norm, and under the coordinate-wise extension above we have ∥W∥2HS = ∥w∥2Hd =∑d
i=1 ∥wi∥

2
H. Moreover, observe that when d = 1 this setup simply reduces back to the usual

setup, wherein ∥W∥HS = ∥w∥H and w(t) = ⟨w, ϕ(t)⟩H.

For notational clarity we will refer to functions w(·) ∈ H and their values w(t) ∈ W with lower-
case letters, and their representation W ∈ L(H,W) using the upper-case. We will typically use the
notationwt in place ofw(t) when referring to the evaluations ofw(t) at discrete time-points t ∈ [T ].

3 An Equivalence Between Static and Dynamic Regret

In this section, we present the main tool that we will use to develop dynamic regret guarantees
for online learning. The key idea is to interpret the comparator sequence u1, . . . , uT ∈ W as the
evaluations of a function u(·) at the discrete time-points t ∈ [T ], allowing us to re-frame dynamic
regret minimization as a static regret minimization in function space.

Note that most existing work in online learning revolves around learning in Hilbert spaces, not gen-
eral function spaces, so if we hope to leverage these existing tools we should embed the comparator
sequence in a Hilbert space of functions. In particular, our approach will be to embed the compara-
tor sequence in a Hilbert space H of functions representable by a reproducing kernel k(s, t) and
feature map ϕ : T → H. Note that this is always possible by selecting a universal kernel on T . Our
reduction is conceptually shown in Algorithm 1 and the following theorem shows that the dynamic
regret w.r.t. comparator sequence u1, . . . , uT in W is equivalent to static regret w.r.t. a function
u(·) ∈ H on the auxiliary loss sequence ℓ̃t : W 7→ ℓt(Wϕ(t)).

Theorem 1 (Dynamic Regret via Kernelized Static Regret). Let T be a compact set, W ⊆ Rd,
let H be an RKHS with associated feature map ϕ : T → H, and for any W ∈ L(H,W) let
ℓ̃t(W ) = ℓt(Wϕ(t)). Let W1, . . . ,WT be an arbitrary sequence in L(H,W) and suppose that on
each round we play wt = Wtϕ(t) ∈ W . Then, for any comparator sequence u1, . . . , uT in W and
U ∈ L(H,W) satisfying ut = Uϕ(t) for all t,

RT(u1, . . . , uT ) =

T∑
t=1

(ℓt(wt)− ℓt(ut)) =

T∑
t=1

(ℓ̃t(Wt)− ℓ̃t(U)) =: R̃T (U) .

Note that the reduction holds for any operator U ∈ L(H,W) which interpolates the comparator
sequence, ut = Uϕ(t) ∀t. Hence, we can always let u(·) ∈ H be the minimum norm function in H
which interpolates these points, and take U to be its representation in L(H,W). In fact, since k is a

2This connection can be made more formally via Riesz representation theorem, see Appendix A for details.
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universal kernel, we can assume that u(·) ∈ H approximates any continuous function on T ⊆ [1, T ]
to arbitrary accuracy, so the assumption that u(·) lives in an RKHS H does not actually restrict the
functions that we can compare against in a significant way. We will see a concrete example of an
RKHS H which reconstructs arbitrary comparator sequences in later sections (e.g., Theorem 4).

Our reduction bears a strong resemblance to the reduction recently proposed by Jacobsen and
Orabona [26], which works by embedding the comparator sequence in RdT by simply “stacking”
the comparator sequence into one long vector, ũ = vec (u1, . . . , uT ) ∈ RdT . In fact, we show in
Appendix B that our framework precisely recovers the reduction in Jacobsen and Orabona [26] by
choosing the discrete RKHS H associated with the Dirac kernel. However, notice in particular that
this means that their reduction is inherently tied to finite-dimensional features, whereas ours enables
infinite-dimensional features. As we will see in Section 4, this distinction is key to obtaining the
optimal path-length dependencies in a horizon-independent manner. Moreover, note that the regret
equality in Jacobsen and Orabona [26] holds only in the context of linear losses, ℓt(w) 7→ ⟨gt, w⟩,
whereas in our framework the regret equality holds for any sequence of losses ℓ1, . . . , ℓT . We will
see that this distinction is important in Section 5—for example, our reduction allows us to preserve
the curvature of the losses needed to obtain O(∥u∥2H+deff(λ) lnT ) bounds when the original losses
ℓt are strongly convex or exp-concave, where deff(λ) is a measure of complexity of the RKHS.

4 Linear Losses

We first consider the setting of online linear optimization. In this setting, on round t the learner
receives linear loss ℓt(w) = ⟨gt, w⟩W , so recalling the reduction in the previous section defines the
auxiliary loss as ℓ̃t : W ∈ L(H,W) 7→ ℓt(Wϕ(t)) ∈ R, we have

ℓ̃t(W ) = ⟨gt,Wϕ(t)⟩W = ⟨gt ⊗ ϕ(t),W ⟩HS = ⟨Gt,W ⟩HS ,

where Gt = gt⊗ϕ(t) ∈ L(H,W) is the rank one operator such that (gt⊗ϕ(t))(h) = ⟨ϕ(t), h⟩H gt
for any h ∈ H. As such, it is important that the base algorithm facilitates an application of the
kernel trick to avoid explicitly evaluating the feature map ϕ(t), which may be infinite-dimensional
in general. To help make things concrete and provide intuitions, the following example shows that
many of the common algorithms based on Follow the Regularized Leader (FTRL) with a radially-
symmetric regularizer w 7→ Ψt(∥w∥) are amenable to the kernel trick. This class captures many of
the fundamental regularizers in online learning, such as quadratic regularizers and the “linearithmic”
[41] regularizers Ψt(∥w∥) ≈ ∥w∥

√
t log(∥w∥ /α+ 1) associated with the comparator-adaptive

regret guarantees that the key result of this section (Proposition 1) will be derived from.
Example 1. (Kernel Trick for Kernelized FTRL) Let g1, . . . , gT be a sequence in W and let Gt =
gt⊗ϕ(t) ∈ L(H,W) for all t. Let θt = −

∑t−1
s=1Gs, Vt =

∑t−1
s=1 ∥Gt∥

2
HS, let Ψt(·;Vt) be a convex

function with differentiable Fenchel conjugate Ψ∗
t , and consider the following FTRL update:

Wt = argmin
W∈L(H,W)

⟨θt,W ⟩+Ψt(∥W∥HS ;Vt) = ∇θΨ
∗
t (∥θt∥HS ;Vt) =

θt
∥θt∥HS

(Ψ∗
t )

′(∥θt∥HS ;Vt) .

Then, Vt =
∑t−1
s=1 ∥gs∥

2
W k(t, t) (Lemma 10), ∥θt∥2HS =

∑t−1
s,s′=1 k(s, s

′) ⟨gs, gs′⟩W (Lemma 9),
and on round t, Algorithm 1 plays

wt =Wtϕ(t) = −
(Ψ∗

t )
′(∥θt∥HS ;Vt)

∥θt∥HS

t−1∑
s=1

k(s, t)gs .

The example shows that many common instances of FTRL can be kernelized without explicit com-
putation of the feature map. The example also demonstrates an important consideration when apply-
ing static regret decompositions of this nature: the update described above would require O(t) time
and memory to implement in general, while existing algorithms for dynamic regret can often be im-
plemented using O(lnT ) computation and memory [23, 53, 55, 58]. Luckily, there is already a deep
and well-developed literature on efficient approximations for kernel methods that can be leveraged
to translate the algorithms developed from the kernelized OCO point-of-view into more practically
implementable algorithms [see, e.g., 31, 47]. Since these extensions are already well-understood
and since implementating these details would not yield any new insights in the current paper, we
will not consider them further here, focusing instead on the theoretical development.
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Now that we have seen how to translate an algorithm’s updates to the kernelized setting, we turn now
to how to translate its static regret guarantees into dynamic regret guarantees. The following result
shows that an algorithm’s kernelized static regret guarantee translates in a straight-forward way to a
dynamic regret guarantee in the original problem. The proof is immediate by applying Theorem 1
and computing ∥Gt∥HS = ∥gt ⊗ ϕ(t)∥HS = ∥gt∥W

√
k(t, t) by Lemma 10.

Theorem 2. Let A be an online learning algorithm defined on Hilbert space V . Suppose that for
any sequence of convex loss functions h1, . . . , hT on V , A obtains a bound on the static regret
of the form R̃T (U) ≤ BT

(
∥U∥V , ∥∇h1(W1)∥V , . . . , ∥∇hT (WT )∥V

)
for any comparator U ∈ V

and some function BT : RT+1
≥0 → R, where ∇ht(Wt) ∈ ∂ht(Wt) for all t. If we apply A in

V = L(H,W) with ∥·∥V = ∥·∥HS, then for any sequence u1, . . . , uT in W and U ∈ L(H,W)
satisfying ut = Uϕ(t) for all t, Algorithm 1 with A guarantees

RT(u1, . . . , uT ) ≤ BT

(
∥U∥HS, ∥g1∥W

√
k(1, 1), . . . , ∥gT ∥W

√
k(T, T )

)
,

where gt ∈ ∂ℓt(wt) for all t, and k(·, ·) is the reproducing kernel associated to the space H.

The value of the lemma is that it enables us to immediately translate static regret guarantees from
OLO to guarantees in our RKHS formulation of dynamic regret, wherein the complexity of the
comparator sequence is measured by the RKHS norm ∥U∥HS = ∥u∥Hd . For instance, if we simply
apply the standard (sub)gradient descent guarantee to Theorem 2 we get

RT(u1, . . . , uT ) = R̃T (U) ≤
∥u∥2Hd

2η
+
η

2

T∑
t=1

∥gt∥2W k(t, t) .

Optimally tuning η yields RT(u1, . . . , uT ) ≤ ∥u∥Hd

√∑T
t=1 ∥gt∥

2
W k(t, t), so achieving the op-

timal O
(√
PTT

)
has effectively been reduced to the problem of designing a kernel such that3

∥u∥Hd =
√∑d

i=1 ∥ui∥
2
H = Õ(

√
PT ) while controlling k(t, t). We will see in Section 4.1 that this

can be accomplished by using a carefully chosen translation-invariant kernel.

In the above argument, the optimal choice of η would require prior knowledge of ∥u∥Hd and cannot
be chosen in general. Luckily, there are static regret algorithms which can adapt to the comparator
norm automatically to obtain the optimal trade-off up to logarithmic terms [16, 23, 35, 36, 40]. For
our purposes we will refer to an algorithm A defined on Hilbert space V as parameter-free if for any
sequence G-Lipschitz loss functions h1, . . . , hT and any U ∈ V , A guarantees

R̃T (U) = Õ
(
∥U∥V

√∑T
t=1 ∥∇ht(Wt)∥2V

)
. (1)

There are many existing algorithms which satisfy this property; we provide a concrete example
and its updates in our framework for completeness in Appendix C.2. Using such an algorithm in
Algorithm 1 immediately yields the following regret guarantee.
Proposition 1. Let A be a static regret algorithm for Hilbert spaces satisfying Equation (1). For
any G > 0, any sequence of G-Lipschitz losses ℓ1, . . . , ℓT , and any sequence u1, . . . , uT in W , and
U ∈ L(H,W) satisfying ut = Uϕ(t), Algorithm 1 applied with A guarantees

RT(u1, . . . , uT ) = R̃T (U) = Õ
(
∥U∥HS

√∑T
t=1 ∥gt∥

2
W k(t, t)

)
, (2)

where gt ∈ ∂ℓt(wt) for all t.

4.1 Controlling the Trade-offs Induced by H

Proposition 1 demonstrates a clear trade-off between the RKHS norm ∥u∥H and the associated
kernel k(t, t) induced by the choice of function space: smaller the RKHS norms correspond to
larger function spaces, hence higher values of k(t, t). In order to obtain the optimal O(

√
PTT )

dynamic regret, we need to design a kernel such that ∥U∥HS = ∥u∥Hd = O(
√
PT ) and k(t, t) is

3Here and in the following the Õ notation will hide polylogarithmic factors.
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controlled for all t. Throughout this section, we will assume for simplicity that d = 1 but note that
the extension to d > 1 is straightforward via the coordinate-wise extension in Section 2.

Recall that a translation invariant kernel over R is characterized by the Fourier transform of its spec-
tral density Q [51], where Q is a real non-negative integrable function. In particular, a translation
invariant kernel and its associated norm are

k(t, t′) = Q̂(t− t′) =

∫
R
Q(ω)e−2πiω(t−t′)dω, ∥f∥2H =

∫
R

|f̂(ω)|2

Q(ω)
dω, (3)

where we use the short-hand notation ĝ = F [g] to denote the Fourier transorm of a function g(·).
The intuition behind focusing on translation-invariant kernels is that the associated norm provides
a natural connection to the

√
MPT dependencies we would like like to achieve. Indeed, observe

that with spectral density Q(ω) ≈ 1/ω, we would have via Parseval’s identity and the fact that
F [f ′(x)](ω) = 2πiωf̂(ω) that

∥u∥2H ≈
∫
R
ωû(ω)û(ω)dω ≤

∫
R
|∇u(t)||u(t)|dt ≤ sup

t
|u(t)| ∥∇u∥L1 , (4)

which is the continuous-time analogue of MPT . The key challenge is to choose an integrable Q(ω)

which suitably trades off the comparator norm ∥u∥2H and the magnitude of the associated kernel
entries k(t, t). Unfortunately, these trade-offs are non-trivial using standard translation-invariant
kernels, as shown in the following example.

Example 2 (Existing kernels lead to sub-optimal trade-offs [51]). At first glance, the spline kernel
seems like a natural candidate since it has ∥u∥2H = ∥∇u∥2L2 = O(

∑
t ∥ut − ut−1∥2) (Theorem 8).

However, the spline kernel also has k(t, t) = t, leading to a suboptimal rate in Proposition 1. On the
other hand, for the classical translation invariant kernels such as the Gaussian or the Matern ker-
nels, we have k(t, t) = O(1) but ∥u∥2H = ∥u∥2L2 +

∑
n≥1 cn∥∇nu∥2 for cn positive and summable.

In this case, note that k(t, t) has the good rate but ∥u∥2H ≥ ∥u∥2L2 and ∥u∥2L2 = c2T already for
constant comparators on [0, T ], u(t) = c1[0,T ](t), c > 0, precluding the optimal rate.

Given the above, we next turn our attention to designing a new kernel that will achieve the desired
trade-offs. Since we need to find a delicate balance in the trade-off of ∥u∥H and k(t, t) to achieve
optimal rates, in the first part of the section we first derive a result that identifies general sufficient
conditions to bound the RKHS norm of a translation invariant kernel in terms of the continuous path-
length ∥∇u∥L1 =

∫
|∇u(t)|dt (Theorem 3). Then, in Proposition 2, we design an explicit kernel

satisfying such conditions, leading to a trade-off of O(
√
∥∇u∥L1 T ). Finally, in Theorem 4 we

show that under mild conditions (which are satisfied by the kernel in the Proposition 2), it is always
possible to find an u(·) ∈ H such that u(t) = ut for all t and ∥∇u∥L1 = O(

∑
t ∥ut − ut−1∥W),

so achieving dynamic regret scaling with ∥u∥H = O(∥∇u∥L1) recovers the usual path-length. The
proof of the following theorem can be found in Appendix E.1

Theorem 3. Let Q : R → R+ be an integrable strictly positive even function on R \ {0} and
such that R(x) := 2π/(x(1 + (x/2π)2m)Q(x)) is also integrable for some m ∈ N, m ≥ 1. Let
k be defined in terms of Q as in Eq. (3). Then k is a translation invariant universal kernel with
k(t, t) ≤ ∥Q∥L1 for all t ∈ R. The RKHS H associated to k contains the space of finitely supported
functions with bounded derivatives up to order 2m, and moreover, for any T > 0 and any 2m-times
differentiable function f that is supported on [0, T + 1],

∥f∥2H ≤ c(T ) ∥∇f∥L1 ∥f −∇2mf∥L∞ ,

where c(T ) := ∥F [R]∥L1([−T−1,T+1]). If R is monotonically decreasing on (0,∞), then,

c(T ) ≤ inf
α>0

2π(T + 1)2
∫ α

0

R(x)xdx+
2

π

∫ ∞

α

R(x)

x
dx , ∀T > 0

With this in hand, the following proposition provides an example of spectral density Q which will
leads to the desired dependency ∥u∥2H = O(∥∇u∥L1), up to poly-logarithmic terms. Proof can be
found in Appendix E.4.
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Proposition 2. Let Q : R → R+ be defined as

Q(ω) =
1/4 log log π

|ω| (1 + |ω|2/4π2)
1
4 log(π + |ω|− 1

2 ) log2 log(π + |ω|− 1
2 )
.

Then we can apply Theorem 3 with m = 1: the function k defined in terms of Q as in Eq. (3) is a
translation invariant kernel with k(t, t) ≤ 8π2, ∀t ∈ R; the associated RKHS norm satisfies

∥f∥2H ≤ c2 ∥∇f∥L1 ∥f −∇2f∥L∞ (ln(1 + T ) ln ln(1 + T ))2,

for any f that is 2-times differentiable and supported in [0, T + 1], where T > 2 and c ≤ (2πe)2.

A notable property of the kernel characterized by Proposition 2 is that it is horizon independent,
requiring no upper bound on T to control ∥f∥2H and k(t, t). This is a non-trivial property to guaran-
tee using existing methods without resorting to the doubling trick, which is well-known to perform
poorly in practice. The intuitions behind the choice of Q(ω) follow from the discussion above: we
would like to set Q(ω) ≈ 1/|ω| so that ∥u∥H relates to the path-length via Equation (4), but this
would not be a valid choice because Q(ω) = 1/|ω| is not integrable. Proposition 2 adds a small bit
of additional regularization to ensure that Q(ω) is integrable while remaining close to 1/|ω|. We
provide additional intuition on the choice of regularization in Appendix D.

A subtlety that we have glossed over thus far is that the continuous path-length, ∥∇u∥L1 =∫
∥∇u(t)∥W dt, does not necessarily compare favorably to the classic discrete path-length PT =∑
t ∥ut − ut−1∥W since the function may vary wildly between the interpolated points. The next

theorem shows that we can always find a function such that∥∇u∥L1 = O(PT ). Proof can be found
in Appendix E.2.

Theorem 4. Let v1, . . . , vT ∈ Rd and let H be the RKHS associated to kernel k contain finitely
supported functions with bounded derivatives up to order 2m, with m ∈ N, m ≥ 1. Then there
exists a function u ∈ H supported on [0, T + 1], such that u(t) = vt for all t ∈ [T ] and

∥∇u∥L1 ≤ C∥v1∥W + C
∑T
t=2 ∥vt − vt−1∥W ,

∥∥u−∇2mu
∥∥
L∞ ≤ C ′ max

t
∥vt∥W .

with C,C ′ depending only on m and given in explicitly in the proof.

The theorem demonstrates that the continuous path-length can be bound by the usual discrete
path-length under mild assumptions on the RKHS that are satisfied by the translation invariant
kernel with spectral density Q chosen according to Theorem 3. Based on this observation, we
immediately see that the RKHS characterized by the kernel in Proposition 2 satisfies the con-
dition of the theorem, and has RKHS norm satisfying ∥u∥2H = Õ(∥∇u∥L1

∥∥u−∇2u
∥∥
L∞) =

Õ(M2 +M
∑T
t=2 ∥ut − ut−1∥W) where M = maxt ∥ut∥W .

Optimal Path-length Dependencies. Applying our reduction Proposition 1 with the transla-
tion invariant kernel characterized by Proposition 2, followed by Theorem 4 to bound ∥∇u∥L1 =

O(
√
M2 +MPT ) immediately yields the following dynamic regret guarantee for OLO.

Theorem 5. Let G > 0 and apply the algorithm characterized in Proposition 1 with the kernel with
spectral density described by Proposition 2. Then for any T > 3, and any sequence g1, . . . , gT
satisfying ∥gt∥W ≤ G and sequence u1, . . . , uT in W ⊆ Rd, the dynamic regret is bounded as

RT (u1, . . . , uT ) = Õ
(√

(M2 +MPT )
∑T
t=1 ∥gt∥

2
W

)
,

where M = maxt ∥ut∥W and PT =
∑T
t=2 ∥ut − ut−1∥W .

As observed in Section 4, the kernel that produces this result is horizon independent, so the algorithm
described above requires no prior knowledge of T . This is in fact the first dynamic regret algorithm
we are aware of that achieves the optimal

√
PT dependence in the absence of prior knowledge of

T without resorting to a doubling trick. Likewise, in Appendix C.3 we show that these guarantees
extend immediately to scale-free guarantees using the gradient-clipping argument of [12]. These
are the first scale-free dynamic regret guarantees that we are aware of that achieve the optimal

√
PT

dependencies.
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5 Curved Losses

An advantage of our reduction over the dynamic-to-static reduction of Jacobsen and Orabona [26] is
that, by preserving the curvature of the losses, our reduction allows us to apply (quasi)second-order
methods like Online Newton Step (ONS) [20].

Exp-concave Losses The following proposition shows that exp-concave losses retain the crucial
property required to apply ONS under our reduction (proof in Appendix F).
Proposition 3. Let ℓt : W → R be a β-exp-concave function, let H be an RKHS with feature map
ϕ(t) ∈ H, and define ℓ̃t(W ) = ℓt(Wϕ(t)) for W ∈ L(H,W). Then for any X,Y ∈ L(H,W),

ℓ̃t(X)− ℓ̃t(Y ) ≤
〈
∇ℓ̃t(X), X − Y

〉
HS

− β

2

〈
∇ℓ̃(X), X − Y

〉2
HS

.

Note that this is precisely the curvature assumption that is required to run Kernelized ONS
(KONS) [7, 8]. Hence, applying our reduction Theorem 1 with KONS to the loss sequence
ℓ̃1, . . . , ℓ̃T leads immediately to the following dynamic regret guarantee, adapted from Calandriello
et al. [8, Theorem 1].
Theorem 6. Let ℓ1, . . . , ℓT be a sequence of β-exp-concave losses. For any sequence u1, . . . , uT ∈
W and U ∈ L(H,W) satisfying ut = Uϕ(t) for all t, Algorithm 1 applied with KONS guarantees

RT (u1, . . . , uT ) = O
(
λ ∥U∥2HS + deff

(
λ

βG2kmax

)
ln
(
2βG2kmaxT

)
β

)
,

where G ≥ ∥∇ℓt(w)∥ for all w ∈ W , kmax = maxt k(t, t), deff(λ) = Tr
(
KT (KT + λI)−1

)
, and

KT = (⟨∇ℓi(wi),∇ℓj(wj)⟩W k(i, j))Ti,j=1 ∈ RT×T .

In the previous section, we observed a direct trade-off between the complexity of the comparator—
measured in terms of ∥u∥H—and a term measuring the complexity of the RKHS, maxt k(t, t). Here
we again see a trade-off in measures of complexity, but now the complexity of the RKHS is charac-
terized by the effective dimension deff(λ). Loosely speaking, the effective dimension represents the
number of “non-negligable directions” spanned by the features ϕ(1), . . . , ϕ(T ), characterized by the
number of eigenvectors of KT associated with non-negligable eigenvalues relative to λ.

Strongly-convex Losses Interestingly, for strongly-convex losses it can be shown that an analo-
gous curvature condition to Proposition 3 holds under our reduction as well, leading to an analogous
result to Theorem 6. Indeed, the main difference is that in the strongly-convex setting, one uses the
feature covariance λI +

∑t
s=1 ϕ(t) ⊗ ϕ(t) to define a weighted norm while KONS the covariance

matrix of the product kernel associated with features ϕ̃(t) = gt⊗ϕ(t). Applying a similar argument
then leads to a guarantee which is analogous to Theorem 6 (see Appendix F.1 for more details).

Online Linear Regression Similar results also apply in the context of online regression. In that
setting, at the start of round t the learner first observes a context xt ∈ T , then predicts a ŷt ∈ R, and
incurs a loss ℓt(ŷ) = 1

2 (yt− ŷ)
2. In this setting, our reduction recovers kernelized online regression,

by letting ŷt = ⟨f, ϕ(xt)⟩ where f ∈ L(H,R) and ϕ(xt) ∈ H is the feature map associated with
H. Applying the Kernelized Vovk-Azoury-Warmuth forecaster [2, 27, 50] guarantees regret of the
same form as above. The result follows from Jézéquel et al. [27, Proposition 1 and Proposition 2].
Proposition 4. Let W = R and for all t let ℓt(ŷ) = 1

2 (yt − ŷ)2. Then for any sequence
(x1, y1), . . . , (xT , yT ) in T × W and any benchmark sequence ẙ1, . . . , ẙT in R and u ∈ H sat-
isfying ẙt = ⟨u, ϕ(xt)⟩ for all t, the Kernelized VAW Forecaster guarantees

T∑
t=1

(ℓt(ŷt)− ℓt(ẙt)) ≤ λ ∥u∥2H + deff(λ)y
2
max log

(
e+

eTk2max

λ

)
,

where kmax = maxt k(t, t) and y2max = maxt y
2
t .

It is known that the dependence on deff(λ) for kernel ridge regression is optimal [30], demonstrating
that these trade-offs are unimprovable in the context of dynamic regret as well.
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In each of the results above, the main trade-off is between the comparator norm λ ∥u∥2H and the
effective dimension deff(λ). As an illustrative example, the following shows that the linear spline
kernel can achieve non-trivial squared path-length guarantees, which were recently shown to be
unattainable in the OLO setting [26].
Example 3. The linear spline kernel k(s, t) = min(s, t) has well-known RKHS norm of ∥u∥2H =

∥∇u∥2L2 =
∫
|∇u(t)|2dt. Moreover, in Appendix F.2 we show that we can bound ∥∇u∥L2 ≤

O(
√∑

t |̊yt − ẙt−1|2W) := C ′
T and that the effective dimension is deff(λ) = O(T/

√
λ) (Theorems 8

and 9 respectively). Optimally tuning λ leads to RT(ẙ1, . . . , ẙT ) = Õ(T 2/3(C ′
T )

2/3) which matches
the minimax optimal rate for forecasting in the class of discrete Sobolev sequences of bounded
variation [3, 44]. Note that λ can be tuned without data-dependent prior knowledge using mixture-
of-experts and a simple clipping argument [25, 34].

In the special case of the 1-dimensional squared loss ℓt(y) = 1
2 (yt − y)2, it is possible to achieve

RT (ẙ1, . . . , ẙT ) = Õ(T 1/3C
2/3
T ) where CT =

∑
t |̊yt − ẙt−1| is the (unsquared) path-length of the

benchmark predictions, and this bound is minimax optimal among the class of discrete TV-bounded
sequences, which is more general than the Sobolev class in the example above [3, 54]. Designing a
kernel with a suitable effective dimension to achieve this trade-off has proven non-trivial and is left
as a direction for future work.

6 Directional Adaptivity

An exciting benefit of reducing to static regret is that we can leverage more “exotic” static regret
guarantees to uncover new and interesting trade-offs in dynamic regret, essentially for free. For
example, in recent years there has been an interest in algorithms which adapt to the directional
covariance between the comparator and the losses [13, 15, 16, 37, 49], to guarantee

RT (u) = Õ
(√

d
∑T
t=1 ⟨gt, u⟩

2
W

)
.

These bounds recover the usual Õ
(
∥u∥W

√∑T
t=1 ∥gt∥

2
W,∗
)

bounds in the worst case, but could be
significantly smaller if the comparator tends to be orthogonal to the losses. Passing from dynamic
regret to static regret via Theorem 1, the following proposition shows that guarantees of this form
translate into dynamic regret guarantees which naturally decouple the comparator variability ∥U∥HS

from the a per-round directional variance penalty
∑T
t=1 ⟨gt, ut⟩

2
W . The full statement and proof of

this result can be found in Appendix G.
Proposition 5. Let ℓ1, . . . , ℓT be an arbitrary sequence of G-Lipschitz convex loss functions over
W . There exists an algorithm such that for any sequence of u1, . . . , uT in W and U ∈ L(H,W)
satisfying ut = Uϕ(t) for all t, the dynamic regret RT (u1, . . . , uT ) is bounded by

Õ
(
Lkdeff(λ) +

√
deff(λ)

[
(λ+ L2

k) ∥U∥2HS +
∑T
t=1 ⟨gt, ut⟩

2
W

]
ln
(
e+

eλmax(KT )

λ

))
,

where gt ∈ ∂ℓt(wt), L2
k = G2 maxt k(t, t), KT = (⟨gt, gs⟩W k(t, s))t,s∈[T ], and deff(λ) =

Tr(KT (λI +KT )
−1).

7 Discussion

In this paper we developed a general reduction from dynamic regret to static regret based on em-
bedding the comparator sequence as a function in an RKHS. We showed that the optimal

√
PT

path-length dependence of can be obtained via a carefully designed translation-invariant kernel. We
also developed new scale-free and directionally-adaptive guarantees for online linear optimization
and ∥u∥2H + deff(λ) lnT bounds for losses with curvature.

There are many promising directions for future work. As noted in Section 4, if implemented naively,
the algorithms described here could be prohibitively expensive to run in practice. Future work should
study how to best leverage kernel approximation techniques or sparse dictionary methods to achieve
the standard O(d lnT ) per-round computation without ruining the desired regret bounds. We also
anticipate many interesting directions for future work by investigating the rich intersections between
online learning, kernel methods, and signal processing that our reduction brings to light.

10



Acknowledgments and Disclosure of Funding

AJ and NCB acknowledge the financial support from the FAIR project, funded by the NextGener-
ationEU program within the PNRR-PE-AI scheme (M4C2, investment 1.3, line on Artificial Intel-
ligence), the MUR PRIN grant 2022EKNE5K (Learning in Markets and Society), funded by the
NextGenerationEU program within the PNRR scheme (M4C2, investment 1.1), the EU Horizon
CL4-2022-HUMAN-02 research and innovation action under grant agreement 101120237, project
ELIAS (European Lighthouse of AI for Sustainability), and the One Health Action Hub, University
Task Force for the resilience of territorial ecosystems, funded by Università degli Studi di Milano
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A Additional Functional Analysis Background

In this section we briefly recall some additional definitions and background from functional analysis,
which will be useful for understanding the proofs of our results but were not relevant for the main
text.

Additional Notations. The dual space of a normed space H is the space of bounded linear func-
tionals H∗ = L(H,R), and the associated norm is the dual norm ∥g∥H,∗ = sup∥h∥H=1 g(h) for any
g ∈ H∗. An operator T : H → W is Hilbert-Schmidt if for any orthonormal basis {hi}i of H we
have ∥T∥2HS :=

∑
i ∥Thi∥

2
W <∞. The space L(H,W) is itself a Hilbert space with inner product

⟨A,B⟩HS =
∑
i ⟨Ahi, Bhi⟩W .

A Brief Review of Reproducing Kernel Hilbert Spaces. A linear functional φ ∈ L(H,R) is
bounded if there exists a constant M such that |φ(x)| ≤ M ∥x∥H for all h ∈ H. A reproducing
kernel Hilbert space (RKHS) is a Hilbert space H of functions h : X → R for which the evaluation
functional δx : h 7→ h(x) is bounded for all x ∈ X . For any such space, Riesz representation
theorem tells us that for any x ∈ X there is a unique kx ∈ H such that δx(h) = ⟨h, kx⟩H for all
h ∈ H. The function k(x, x′) = kx(x

′) is called the reproducing kernel associated with H. The
reproducing kernel is often expressed in terms of the feature map ϕ(x) = kx ∈ H as k(x, x′) =
⟨ϕ(x), ϕ(x′)⟩H.

We will often be interested in functions taking values in W ⊆ Rd. In this case the preceding
discussion can be extended in a straightforward way by considering a coordinate-wise extension.
In particular, observe that in this setting an operator W ∈ L(H,W) can be represented as a tuple
(W1, . . . ,Wd) such that Wi ∈ L(H,R) = H∗ for each i ∈ [d]. Riesz representation theorem then
tells us that there is a wi ∈ H such that Wi(h) = ⟨wi, h⟩H for any h ∈ H, so using the reproducing
property we have Wi(ϕ(t)) = ⟨wi, ϕ(t)⟩H = wi(t). Hence, each W ∈ L(H,W) is identified by a
tuple (W1, . . . ,Wd) ∈ Hd and we can write

w(t) =
(
⟨w1, ϕ(t)⟩H , . . . , ⟨wd, ϕ(t)⟩H

)
=
(
W1(ϕ(t)), . . . ,Wd(ϕ(t))

)
=Wϕ(t) ∈ W.

Note the that space L(H,W) is itself a Hilbert space when equipped with the Hilbert-Schmidt
norm, which in the coordinate-wise extension above can be expressed as ∥W∥2HS = ∥w∥2Hd =∑d
i=1 ∥wi∥

2
H. This can be seen by definition of the Hilbert-Schmidt norm: let {hi}i be an orthonor-

mal basis of H, then

∥W∥2HS =
∑
i

∥Whi∥2W =
∑
i

∥(W1(hi), . . . ,Wd(hi))∥2W

=
∑
i

∥(⟨w1, hi⟩H , . . . , ⟨wd, hi⟩H)∥2W

=
∑
i

d∑
j=1

⟨wj , hi⟩2H =

d∑
j=1

∑
i

⟨wj , hi⟩2H

=

d∑
j=1

∥wj∥2H := ∥w∥2Hd ,

where the last line uses Parseval’s identity.

B Recovering Jacobsen and Orabona [26]

In this section we demonstrate that the reduction in Jacobsen and Orabona [26] is equivalent to
the special case of our framework. Note that we assume linear losses in this section because the
reduction of Jacobsen and Orabona [26] is only defined for linear losses (or by linearizing the losses
ℓt via convexity).

Let et ∈ RT be the tth standard basis vector and consider Algorithm 1 with H = RT , ⟨A,B⟩HS =

Tr
(
A⊤B

)
, kernel feature map ϕ(t) = et ∈ RT , and linear losses W 7→ ⟨Gt,W ⟩HS for Gt =
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gt⊗et = gte
⊤
t ∈ Rd×T . Then for any sequence u1, . . . , uT in Rd, let U = (u1 . . . uT ) ∈ Rd×T

and observe that we can write ut = Uϕ(t). Moreover,

T∑
t=1

⟨gt, ut⟩ =
T∑
t=1

⟨gt, Uϕ(t)⟩ =
T∑
t=1

Tr
(
ϕ(t)g⊤t U

)
=

T∑
t=1

Tr
((
gtϕ(t)

⊤)⊤ U)
=

T∑
t=1

〈
gtϕ(t)

⊤, U
〉
HS

=

T∑
t=1

⟨Gt, U⟩HS .

Similarly, suppose A is an online learning algorithm and let Wt =
(
w

(1)
t . . . w

(T )
t

)
∈ Rd×T

denote its output on round t. Suppose on round t we play wt =Wtϕ(t) = w
(t)
t . Then

T∑
t=1

⟨gt, wt⟩ =
T∑
t=1

⟨gt,Wtϕ(t)⟩ = Tr
(
ϕtg

⊤
t Wt

)
=
〈
gtϕ(t)

⊤,Wt

〉
HS

=

T∑
t=1

⟨Gt,Wt⟩HS .

Thus,

RT(u1, . . . , uT ) =
T∑
t=1

⟨gt, wt − ut⟩ =
T∑
t=1

⟨Gt,Wt − U⟩HS = R̃
A
T (U).

To see why this is precisely equivalent to the reduction of Jacobsen and Orabona [26], observe
that their reduction is simply phrased in terms of the “flattened” versions of each of the above
quantities, and can be interpreted as working in the finite-dimensnional RKHS over H̃ = RdT with
⟨x, y⟩H̃ = ⟨x, y⟩ being the canonical inner product on RdT . In particular, they instead define

ũ = vec (U) =

u1...
uT

 ∈ RdT , w̃t = vec (Wt) =

w
(1)
t
...

w
(T )
t

∈ RdT , g̃t = vec (Gt) =


0
...
gt
0
...

∈ RdT ,

and run an algorithm Ã defined on H̃ = RdT against the losses g̃t. As shown in their Proposition 1,
under this setup it holds that

∑T
t=1 ⟨gt, wt − ut⟩ =

∑T
t=1 ⟨g̃t, w̃t − ũ⟩, from which it immediately

follows that

RT (u1, . . . , uT ) =

Theorem 1︷ ︸︸ ︷
T∑
t=1

⟨Gt,Wt − U⟩HS = R̃
A
T (U)

=

T∑
t=1

⟨g̃t, w̃t − ũ⟩H̃ = R̃
Ã
T (ũ).︸ ︷︷ ︸

Jacobsen and Orabona [26, Proposition 1]
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C Proofs for Section 4 (Linear Losses)

C.1 Proof of Theorem 2

Theorem 2. Let A be an online learning algorithm defined on Hilbert space V . Suppose that for
any sequence of convex loss functions h1, . . . , hT on V , A obtains a bound on the static regret
of the form R̃T (U) ≤ BT

(
∥U∥V , ∥∇h1(W1)∥V , . . . , ∥∇hT (WT )∥V

)
for any comparator U ∈ V

and some function BT : RT+1
≥0 → R, where ∇ht(Wt) ∈ ∂ht(Wt) for all t. If we apply A in

V = L(H,W) with ∥·∥V = ∥·∥HS, then for any sequence u1, . . . , uT in W and U ∈ L(H,W)
satisfying ut = Uϕ(t) for all t, Algorithm 1 with A guarantees

RT(u1, . . . , uT ) ≤ BT

(
∥U∥HS, ∥g1∥W

√
k(1, 1), . . . , ∥gT ∥W

√
k(T, T )

)
,

where gt ∈ ∂ℓt(wt) for all t, and k(·, ·) is the reproducing kernel associated to the space H.

Proof. We note that L(H,W) is a separable Hilbert space for separable H and W . Moreover, ℓ̃t is
differentiable, with derivative

∇ℓ̃t(W ) = ∇ℓt(Wϕ(t))⊗ ϕ(t) ∈ L(H,W),

where ⊗ is the tensor product. Then applying algorithm A to the loss sequence (ℓ̃t)t, we obtain

R̃T (U) ≤ ϕ(∥U∥L(H,W), ∥∇ℓ1(w1)⊗ ϕ(1)∥L(H,W), . . . , ∥∇ℓt(wT )⊗ ϕ(T )∥L(H,W)) .

The proof is concluded by noting that RT(u1, . . . , uT ) = R̃T (U) by Theorem 1, and that

∥∇ℓt(wt)⊗ ϕ(t)∥L(H,W) = ∥∇ℓt(wt)∥W ∥ϕ(t)∥H,

since u⊗v ∈ L(U ,V) is a rank one operator and so ∥u⊗v∥L(U,V) = ∥u∥U∥v∥V , for any u, v ∈ U ,V
and U ,V Hilbert spaces. Finally, note that ∥ϕ(t)∥2H = ⟨ϕ(t), ϕ(t)⟩ = k(t, t) .

Remark 1. Note that the result of Theorem 2 applies more generally to algorithms that use dual-
weighted-norm pairs (∥·∥M , ∥·∥M−1), since this amounts to transforming the decision space W 7→
M

1
2W , the losses Gt 7→ M− 1

2Gt, and preserving the original inner product structure. We expect
the theorem should also generalize to arbitrary dual-norm pairs on W , but this will require some
additional care to interpret the norm ∥·∥W∗⊗H.

C.2 A Concrete Example of Proposition 1

Algorithm 2: Kernelized Instance of Jacobsen and Cutkosky [23, Algorithm 4]

Input: Lipschitz bound G ≥ ∥gt∥W for all t, Value ϵ > 0

Initialize: w1 = 0, G0 = Gmaxt
√
k(t, t), V1 = 4G2

0, S1 = 0

Define: Ψ(S, V ) =


ϵG0√

V log2(V/G2
0)

[
exp

(
S2

36V

)
− 1
]

if S ≤ 6V
G0

ϵG0√
V log2(V/G2

0)

[
exp

(
S

3G0
− 6V

G0

)
− 1
]

otherwise

for t = 1 : T do
Play wt, receive subgradient gt
Set Vt+1 = Vt + ∥gt∥2W k(t, t)

Set S2
t+1 = S2

t + k(t, t) ∥gt∥2W + 2
∑t−1
s=1 k(s, t) ⟨gt, gs⟩W

Update wt+1 =
−

∑t
s=1 k(s,t+1)gs
St+1

Ψ(St+1, Vt+1)

end

There are many examples of algorithms which would produce the static regret guarantee stated in
Proposition 1. In this section, we briefly provide an example which attains the result of the stated
form, and provide the full regret guarantee and update in our framework.
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Let us consider the algorithm characterized by Jacobsen and Cutkosky [23, Theorem 1] in an un-
constrained setting. Their algorithm can be understood as a particular instance of FTRL, and so we
can develop its kernelized version using the same reasoning as Example 1. Indeed, applying their
algorithm in the space L(H,W) with inner product ⟨·, ·⟩HS against losses Gt = gt ⊗ ϕ(t) leads to
updates of the form

Wt+1 =
−
∑t
s=1Gs∥∥∥∑t

s=1Gs

∥∥∥
HS

Ψ

(∥∥∥∥∥
t∑

s=1

Gs

∥∥∥∥∥
HS

, Vt+1

)
,

where Vt+1 = 4G2
0 +

∑t
s=1 ∥Gs∥

2
HS and Ψ(S, V ) defined in Algorithm 2. Moreover, we have

Vt+1 = 4G2
0 +

∑t
s=1 ∥gs∥

2
W k(s, s) and

∥∥∥∑t
s=1Gs

∥∥∥
HS

=
∑t
i,j ⟨gi, gj⟩ k(i, j) via Lemma 10 and

Lemma 9 respectively, and so in the context of our reduction Algorithm 1 the updates are

wt+1 =Wt+1ϕ(t+ 1)

=
−
∑t
s=1Gsϕ(t+ 1)∥∥∥∑t
s=1Gs

∥∥∥
HS

Ψ

(∥∥∥∥∥
t∑

s=1

Gs

∥∥∥∥∥
HS

, Vt+1

)

=
−
∑t
s=1 k(s, t)gs√∑t

i,j=1 k(i, j) ⟨gi, gj⟩W
Ψ

√√√√ t∑
i,j=1

k(i, j) ⟨gi, gj⟩W , 4G2
0 +

t∑
s=1

k(s, s) ∥gs∥2W

 ,

leading to the procedure described in Algorithm 2. Notice that, as mentioned in Section 4, this naive
implementation requires O(t) time and memory to update on round t due to having to re-weight the
sum

∑t
s=1 k(s, t)gs and compute

∑t−1
s=1 k(s, t) ⟨gt, gs⟩W , so in practice one would ideally imple-

ment additional measures to reduce the complexity, such as implementing Nystrom projections or
choosing a suitably sparse kernel.

Now applying Algorithm 2 with Theorem 2, we immediately get the following regret guarantee from
Jacobsen and Cutkosky [23, Theorem 1].
Proposition 6. Let ℓ1, . . . , ℓT be G-Lipschitz convex loss functions and let gt ∈ ∂ℓt(wt) for all t.
For any u1, . . . , uT in W andU ∈ L(H,W) satisfying ut = Uϕ(t) for all t, Algorithm 2 guarantees

RT (u1, . . . , uT ) = R̃T (U)

≤ 4G0ϵ+ 6 ∥U∥HS max

{√
VT+1 ln

(
∥U∥HS

αT+1
+ 1

)
, G0 ln

(
∥U∥HS

αT+1
+ 1

)}
,

where VT+1 = 4G2
0 +

∑T
t=1 ∥gt∥

2
W k(t, t) and αT+1 = ϵG0√

VT+1 log2(VT+1/G2
0)

.

C.3 Scale-free Guarantees

Now that we have seen how to obtain the optimal path-length dependencies on Lipschitz losses, we
can extend these guarantees to be scale-free by simply changing the base algorithm. In particular,
there are algorithms which are adaptive to both the comparator norm and the effective Lipschitz
constant, LT = maxt∈[T ] ∥∇ℓt(wt)∥. Algorithms which scale with LT rather than a given upper
bound G ≥ LT are referred to as scale-free. We first consider the setting in which the domain is
constrained W =

{
w ∈ Rd : ∥w∥W ≤ D

}
.4

Proposition 7. There exists an algorithm which guarantees that for any sequence u1, . . . , uT in
W =

{
w ∈ Rd : ∥w∥W ≤ D

}
,

RT(u1, . . . , uT ) = Õ

LT (max
t

∥ut∥+D) + ∥U∥HS

√√√√L2
T +

T∑
t=1

∥gt∥2W k(t, t)

 ,

where Lt = maxt ∥gt∥.
4More generally, this assumption amounts to assuming prior knowledge on a bound D ≥ ∥ut∥W for all t,

which the learner can leverage by projecting to the same set, regardless of any boundedness of the underlying
problem’s domain.
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The result follows by constraining ∥wt∥W ≤ D and applying the gradient-clipping argument of
Cutkosky [12].5 Indeed, if we’ve constrained our iterates to satisfy ∥wt∥W ≤ D, then we can

replace the gradients gt the the clipped gradients ĝt = gtmin
{
1, maxs<t∥gs∥

∥gt∥

}
to get

RT (u1, . . . , uT ) =

T∑
t=1

⟨ĝt, wt − ut⟩+
T∑
t=1

⟨gt − ĝt, wt − ut⟩

≤ R̂T (u1, . . . , uT ) + max
t

∥gt∥ (D +max
t

∥ut∥)

following the same telescoping argument as Cutkosky [12]. With this in hand, we can sim-
ply apply our reduction Algorithm 1 with the losses Ĝt = ĝt ⊗ ϕ(t), which we now have
an a priori bound on at the start of round t:

∥∥∥Ĝt∥∥∥
HS

≤ maxs<t ∥gs∥
√
k(t, t) := L̂t ≤

Lt. Hence, even without prior knowledge of a G ≥ ∥gt∥ we can obtain R̂T (u1, . . . , uT ) ≤

Õ

(
∥U∥HS

√
maxt ∥gt∥2 k(t, t) +

∑T
t=1 ∥gt∥

2
k(t, t)

)
.

To see why this is difficult using existing techniques, note that nearly all existing algorithms which
achieve the optimal

√
PT dependence do so by designing an algorithm which guarantees dynamic

regret of the form

RT(u1, . . . , uT ) = Õ
(
PT
η

+ ηG2T

)
,

from which G
√
PTT regret is obtained by tuning η.6 The tuning step is done by run-

ning several instances of the base algorithm in parallel for each η in some set S ={
2i/G

√
T ∧ 1/G : i = 0, 1, . . .

}
, and combining the outputs—typically using a mixture-of-experts

algorithm like Hedge. Note however that the set S requires prior knowledge of the Lipschitz con-
stant G. There is no straightforward way to adapt to this argument without resorting to unsatisfying
doubling strategies, which are well-known to perform poorly in practice. Instead, using our frame-
work we avoid these issues entirely by simply applying a scale-free static regret guarantee to get the
a LT ∥U∥HS

√
T dependence, and then designing a kernel which ensures ∥U∥HS ≤

√
MPT .

More generally, when the domain W is not uniformly bounded, it is still possible to achieve a
scale-free bound at the expense of an LT maxt ∥ut∥3W penalty, again using the same argument as
[12]. One simply starts by replacing the comparator sequence u1, . . . , uT with a new one satisfying

ût = ΠWtut, where Wt =

{
w ∈ W : ∥w∥W ≤

√∑t−1
s=1 ∥gs∥W

}
. Then one can show that

RT (u1, . . . , uT ) =
T∑
t=1

⟨gt, wt − ut⟩W =
T∑
t=1

⟨gt, wt − ût⟩W +
T∑
t=1

⟨gt, ût − ut⟩W

≤ O
(
RT (û1, . . . , ûT ) +Gmax

t
∥ut∥3W

)
.

Applying the same clipping argument as above and observing that P̂T =
∑
t ∥ût − ût−1∥W ≤

O(PT +maxt ∥ut∥) we get the following result.

Proposition 8. There exists an algorithm such that for any u1, . . . , uT in W ⊆ Rd,

RT (u1, . . . , uT ) = Õ

LT max
t

∥ut∥3W + ∥U∥HS

√√√√ T∑
t=1

∥gt∥2W k(t, t)

 .

where LT = maxt ∥gt∥W
√
k(t, t).

5Note that constraining the final outputs wt is straight-forward in our framework; one can simply apply a
standard unconstrained-to-constrained reduction in W [14, 16] prior to applying our dynamic-to-static reduc-
tion.

6The exception being Zhang et al. [55], which uses a similar high-dimensional embedding as [26], but
neither works obtain the optimal

√
PT while being scale-free.
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D Intuitions on the Spectral Density Q(ω)

In this section we provide some additional high-level intuitions that motivate the choice of Q(ω) in
Proposition 2.

Recall that we would like to choose Q(ω) ≈ 1/|ω|, since this choice yields a continuous-time
analogue of the MPT dependence that we want to achieve: ∥u∥2H ≤ maxt|u(t)| ∥∇u∥L1 . The key
issue is that this choice of Q(ω) is not integrable, diverging as ω → 0 and ω → ∞. We fix these
issues by adding a small amount of additional regularization, setting

Q(ω) ∝ R0(ω)R∞(ω)

|ω|
,

where R∞(ω) ≈ 1/(1 + |ω|2)1/4 is a tapering function that ensures integrability in the asymptotic
regime, and R0(ω) ≈ 1/ log(1 + 1/

√
|ω|) log2(log(1 + 1/

√
|ω|)) ensures that Q is well-behaved

near zero. It is clear thatR∞(ω) ensures integrability in the asymptotic regime since when ω is large
we have Q(ω) ≈ R∞(ω)/|ω| ≤ 1/|ω|2, which is integrable away from zero. On the other hand,
near zero R∞(ω) ≈ 1 and we have

Q(ω) ≈ R0(ω)

|ω|
≈ 1

|ω| log(|ω|−1/2) log2 log(|ω|−1/2)
,

which after a change of variables t = log(ω−1/2) integrates near zero as∫ ϵ

−ϵ
Q(ω)dω = 2

∫ ϵ

0

Q(ω)dω ≈
∫ ∞

log(1/ϵ)

1

t log2(t)
dt = O(1)

for an appropriately chosen ϵ.

E Proofs for Section 4.1 (Controlling the Trade-offs Induced by H)

E.1 Proof of Theorem 3

Theorem 3. Let Q : R → R+ be an integrable strictly positive even function on R \ {0} and
such that R(x) := 2π/(x(1 + (x/2π)2m)Q(x)) is also integrable for some m ∈ N, m ≥ 1. Let
k be defined in terms of Q as in Eq. (3). Then k is a translation invariant universal kernel with
k(t, t) ≤ ∥Q∥L1 for all t ∈ R. The RKHS H associated to k contains the space of finitely supported
functions with bounded derivatives up to order 2m, and moreover, for any T > 0 and any 2m-times
differentiable function f that is supported on [0, T + 1],

∥f∥2H ≤ c(T ) ∥∇f∥L1 ∥f −∇2mf∥L∞ ,

where c(T ) := ∥F [R]∥L1([−T−1,T+1]). If R is monotonically decreasing on (0,∞), then,

c(T ) ≤ inf
α>0

2π(T + 1)2
∫ α

0

R(x)xdx+
2

π

∫ ∞

α

R(x)

x
dx , ∀T > 0

Proof. Consider a function f that is supported on [0, τ ] for some τ > 0. To bound the norm above
in terms of the L1 norm we use the fact that for any u, v, w ∈ L2(R) ⊕ L1(R) we have F [∇ku] =
(2πi)kû, for k ∈ N, F [u ⋆ v] = ûv̂, where ⋆ is the convolution operator, and that by the Plancherel
theorem we have

∫
R û(ω)v̂(ω)dt =

∫
R u(t)v(t)dt and so, in particular,

∫
R û(ω)v̂(ω)ŵ(ω)dt =∫

R u(t)(v ⋆w)(t)dt. Moreover, note that, by construction R is an integrable real odd function, so its
Fourier transform R̂ is an odd purely imaginary function. So, we have

∥f∥2H :=

∫
R

|f̂(ω)|2

Q(ω)
= i

∫
R

ωf̂(ω)

2πi

(
1 +

ω2m

(2π)2m

)
f̂(ω) R(ω)dω

= i

∫
R
∇f(−t) ((f −∇2mf) ⋆ R̂)(t)dt

= i

∫ 0

−τ
∇f(−t) ((f −∇2mf) ⋆ R̂)(t)dt

≤ ∥∇f∥L1∥(f −∇2mf) ⋆ R̂∥L∞([−τ,0]),
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where in the last two steps we used the fact that f is bounded in [0, τ ] and the Hölder inequality.
Since also ∇mf is supported on [0, τ ], we have

∥(f −∇2mf) ⋆ R̂∥L∞([−τ,0]) = sup
t′∈[−τ,0]

∫ τ

0

|f(t)−∇2mf(t)||R̂(t′ − t)|dt

≤ ∥f −∇2mf∥L∞(R)∥R̂∥L1([−τ,τ ]) .

The last step is finding a bound that is easy to compute for c(τ) := ∥R̂∥L1([−τ,τ ]). We start noting
that since R is odd

R̂(t) :=

∫
R
R(x)e2πixtdx = 2i

∫ ∞

0

R(x) sin(2πixt)dx,

and, in particular also R̂ is an odd function. The characterization we propose for c(τ) is a direct
consequence of the fact that the sine transform of R is non-negative (also known as Polya criterion,
which we recall in Lemma 3 and is applicable since R is positive and decreasing on (0,∞)). Now,
by expanding the definition of R̂ and using the non-negativity of the sine transform, we have∫ τ

−τ
|R̂(t)|dt = 2

∫ τ

0

|R̂(t)|dt = 2

∫ τ

0

∣∣∣∣∫ ∞

0

R(x) sin(2πxt)dx

∣∣∣∣ dt
= 2

∫ τ

0

∫ ∞

0

R(x) sin(2πxt)dxdt = 2

∫ ∞

0

R(x)

(∫ τ

0

sin(2πxt)dt

)
dx

= 2

∫ ∞

0

R(x)
sin(τπx)2

πx
dx.

To conclude, let α > 0, since | sin(z)| ≤ min(|z|, 1) for any z ∈ R∫ ∞

0

R(x)
sin(τπx)2

πx
dx =

∫ α

0

R(x)
sin2(τπx)

πx
dx+

∫ ∞

α

R(x)
sin2(τπx)

πx
dx

≤ πτ2
∫ α

0

R(x)xdx+
1

π

∫ ∞

α

R(x)

x
dx.

The stated result then follows by choosing τ = T + 1.

E.2 Proof of Theorem 4

Before proving Theorem 4 we need two auxiliary results
Lemma 1. Given m ∈ N with m ≥ 1 and T > 0 there exists a function bT that is 2m-times
differentiable and that is identically equal to 0 on R \ (0, T +1) and that is identically equal to 1 on
the interval [1, T ]. Moreover, for any 2m-times differentiable function f , with derivatives in Lp(S)
for p ∈ [1,∞] and interval S ⊆ R, we have

∥∇k(fbT )∥Lp(S) ≤
(8(2m+ 3/2))k+1

π2m+3/2
max
0≤h≤k

∥∇hf∥Lp(S∩[0,T+1]).

Proof. Consider the function

B(x) =
2Γ(3/2 + 2m)√
πΓ(1 + 2m)

(1− 4x2)2m+ ,

where Γ is the gamma function. Then B is supported on (−1/2, 1/2), integrates to 1, and is 2m-
times differentiable everywhere. Its Fourier transform (see [46], Thm. 4.15) is

B̂(ω) = Γ(3/2 + 2m)J 1
2+2m(π|ω|)

(
2

π|ω|

)2m+1/2

,

where Jν is the Bessel J function of order ν [46]. Since Jν is analytic on [0,∞) for ν > 0 and
Jν(z) = O(|z|ν) when |z| → 0 and also Jν(z) = O(z−1/2) for z → ∞, then B̂ is in L1 ∩ L∞ and
analytic. We build bT as follows

bT (t) =

∫ t

0

B(x− 1/2)−B(x− T − 1/2)dx.

20



1.0 0.5 0.0 0.5 1.0
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

B(t)

0 1 2 3 4 5 6
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
B(t 1

2 ) B(t 1
2 T)

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

bT(t) =
t

0B(x 1
2 ) B(x 1

2 T)dx

Figure 2: Plots demonstrating the functions used in the construction of bT (t) for m = 1 and T = 5.
The function B(x) is a simple bump function, designed such that

∫
RB(x)dx = 1, shown on the

left. The center demonstrates how we can combine translations of B(x) to get a function with two
bumps which will eventually cancel out when integrated over [0, T + 1], leading to the function bT
shown on the right.

This function by construction is 2m-times differentiable everywhere, moreover it is identically equal
to 0 on R\(0, T+1) and identically equal to 1 on [0, T ]. To help with intuitions, we show an example
of the functions B(x), B(x− 1

2 )−B(x− 1
2 −T ), and bT (t) for m = 1 and T = 5 in Figure 2. The

Fourier transform of bT is

b̂T (ω) =
1

2πiω
B̂(ω)e−πiω(1− e−2πiTω).

Now we define u(t) := f(t)bT (t). By construction, u is equal to fT on [1, T ] since bT is identically
1 on this interval, let Z := S ∩ [0, T + 1], we have

∥∇ku∥Lp(S) = ∥∇ku∥Lp(Z) =

∥∥∥∥∥
k∑
h=0

(
k

h

)
∇hf∇k−hbT

∥∥∥∥∥
Lp(Z)

≤ max
0≤j≤k

∥∇hf∥Lp(Z)

l∑
h=0

(
k

h

)
∥∇jbT ∥L∞(R),

Now, given the Fourier transform of b̂T ,

∥∇hbT ∥L∞ ≤ (2π)h∥ωhb̂T ∥L1 ≤ Γ(3/2 + 2m)
22m+h−1/2

π2m−h+3/2
∥ω−2m−3/2+hJ2m+1/2(π|ω|)∥L1 .

Using the fact that |Jν(z)| ≤ min(zν2−ν/Γ(1 + ν), ν−1/3) (see [38], Eq. 10.14.2, 10.14.4) for any
z ≥ 0, for any α > 0, we have∫

R

|J2m+1/2(π|ω|)|
|ω|−2m−3/2+h

dω = 2

∫ α

0

|J2m+1/2(πx)|
x2m+3/2−h dx+ 2

∫ ∞

α

|J2m+1/2(πx)|
x2m+3/2−h dx

≤ 2

∫ α

0

x2m+1/22−2m−1/2

x2m+3/2−hΓ(2m+ 3/2)
dx+ 2

∫ ∞

α

(2m+ 1/2)−1/3

x2m+3/2−h dx

=
2−2m+1/2αh

hΓ(2m+ 3/2)
+

2α−(2m−h+1/2)

(2m− h+ 1/2)(2m+ 1/2)1/3
.

Optimizing in α, we obtain

∥ω−2m−3/2+hJ2m+1/2(π|ω|)∥L1 ≤ 2−2m+5/2+hΓ(2m+ 3/2)−
2m+1/2−h
2m+1/2 ,

leading to

∥∇hbT ∥L∞ ≤ 22h+2

π2m−h+3/2
Γ(2m+ 3/2)

h
2m+1/2 ≤ 2(8m+ 6)h+1/2

π2m−h+3/2
,
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this leads to

∥∇ku∥Lp(S) ≤ max
0≤j≤k

∥∇hf∥Lp(S)

l∑
h=0

(
k

h

)
∥∇jbT ∥L∞(R)

≤ 2(8m+ 6)1/2

π2m+3/2

(
1 +

8m+ 6

π

)k
max
0≤j≤k

∥∇hf∥Lp(Z).

To conclude, note that

2(8m+ 6)1/2

π2m+3/2

(
1 +

8m+ 6

π

)k
≤ 8k+1(2m+ 3/2)k+1

π2m+3/2
.

Lemma 2. Let f be such that its Fourier transform f̂ and its weak derivative ∇f̂ are both L2, then

∥f∥L1(R) ≤
2√
π
∥f̂∥1/2L2(R)∥∇f̂∥

1/2
L2(R).

Proof. For any t > 0,
∥f∥L1(R) ≤ ∥f∥L1([−t,t]) + ∥f∥L1(R\[−t,t]).

Now by the Hölder inequality we have

∥f∥L1([−t,t]) = ∥f · 1∥L1([−t,t]) ≤ ∥f∥L2([−t,t])∥1∥L2([−t,t]) =
√
2t∥f∥L2([−t,t])

where 1(x) is the constant function 1. Similarly,

∥f∥L1(R\[−t,t]) = ∥fx·1/x∥L1(R\[−t,t]) ≤ ∥fx∥L2(R\[−t,t])∥1/x∥L2(R\[−t,t]) =
√

2/t∥fx∥L2(R\[−t,t]),

since ∥1/x∥2L2(R\[−t,t]) = 2
∫∞
t

1/x2dx = 2/t. This leads to

∥f∥L1(R) ≤
√
2(
√
t∥f∥L2 + 1/

√
t∥fx∥L2).

Optimizing on t we obtain,
∥f∥L1 ≤ 2

√
2∥f∥1/2L2 ∥fx∥1/2L2 .

The first case is concluded by applying the Plancherel theorem for which ∥f∥L2 = ∥f̂∥L2 and
∥fx∥L2 = ∥F [fx]∥L2 and by the fact that F [f(x)x](ω) = i/(2π)∇f̂(ω).

Theorem 4. Let v1, . . . , vT ∈ Rd and let H be the RKHS associated to kernel k contain finitely
supported functions with bounded derivatives up to order 2m, with m ∈ N, m ≥ 1. Then there
exists a function u ∈ H supported on [0, T + 1], such that u(t) = vt for all t ∈ [T ] and

∥∇u∥L1 ≤ C∥v1∥W + C
∑T
t=2 ∥vt − vt−1∥W ,

∥∥u−∇2mu
∥∥
L∞ ≤ C ′ max

t
∥vt∥W .

with C,C ′ depending only on m and given in explicitly in the proof.

Proof. We will build u as follows
u(t) = f(t)bT (t),

where bT is a m+1-times differentiable function that is supported on [0, T +1] and that is equal to
1 on [1, T ], while f is a function that interpolates vt, i.e. f(t) = vt for t ∈ {1, . . . , T}. We build f
as follows. Consider the following function, that is a product of two sinc functions

S(x) :=
sin(πx)

πx

2 sin(πx/2)

πx
,

S satisfies S(0) = 1 and S(t) = 0 on t ∈ Z \ {0}. Now we can build f as follows

f(t) =
∑
ℓ=0

vℓS(t− ℓ).
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By construction, for all t ∈ {1, . . . , T} the following holds

f(t) =
∑
ℓ=0

vℓS(t− ℓ) =
∑
ℓ=0

vℓδt=ℓ = vt.

Note that, by construction f is a band-limited function with band [−3/4, 3/4] that interpolates the
given points.

Step 1. Bounding ∥∇f∥L1 . Now we bound pointwise |∇f(x)| with |v(x)− v(x− 1)|. The Fourier
transform f̂ of u is equal to

f̂(ω) =

T∑
ℓ=1

vℓe
2πiℓωŜ(ω) = g(ω)Ŝ(ω),

where g(ω) =
∑T
ℓ=1 vℓe

2πiℓω and where Ŝ is Fourier Transform of S. Note that S is band-limited,
i.e., Ŝ is equal to 0 on R \ [−3/4, 3/4]. In particular,

Ŝ(ω) = |ω − 3/4| − |ω − 1/4| − |ω + 1/4|+ |ω + 3/4|, ∀ω ∈ R.

Now passing by the Fourier transform of ∇f , we obtain

F [∇f ](ω) = g(ω)Ŝ(ω)ω = L̂(ω) M̂(ω), L̂(ω) := g(ω)
1− e2πiω

1 + ω2
, M̂(ω) := Ŝ(ω)

ω(1 + ω2)

1− e2πiω
.

Note that M̂(ω) is bounded, continuous and supported in [−3/4, 3/4], since Ŝ is supported in
[−3/4, 3/4] and ω(1+ω2)

1−e2πiω is bounded and analytic on such interval. So we have

∇f(x) = F−1[F [∇f ]](x) = F−1
[
L̂(ω)M̂(ω)

]
= (L ⋆M) (x),

where ⋆ is the convolution operator and M = F−1[M̂ ], L = F−1[L̂]. Now note that

L̂(ω) := g(ω)
1− e2πiω

1 + ω2
=

T∑
ℓ=1

vℓ
e2πiℓω

1 + ω2
−

T∑
ℓ=1

vℓ
e2πi(ℓ+1)ω

1 + ω2

=

T∑
ℓ=2

(vℓ − vℓ−1)
e2πiℓω

1 + ω2
+ v1

e2πiω

1 + ω2

Since the inverse Fourier transform of e2πaω/(1 + ω2) is e−|x−a| for any a ∈ R, we have

L(x) := F−1

[
g(ω)

1− e2πiω

1 + ω2

]
(x) = π

T∑
ℓ=2

(vℓ − vℓ−1)e
−2π|x−ℓ| + v1πe

−2π|x−1|.

By Young’s inequality for the convolution, we have that ∥f ⋆g∥L1 ≤ ∥f∥L1∥g∥L1 for any integrable
functions f, g, so in our case

∥∇f∥L1 = ∥L ⋆M∥L1 ≤ ∥L∥L1∥M∥L1

≤ π∥M∥L1

T∑
ℓ=2

∥vℓ − vℓ−1∥∥e−2π|x−ℓ|∥L1 + π∥M∥L1∥v1∥∥e−2π|x−1|∥L1 .

To conclude we have ∥e−2π|x−ℓ|∥L1 = ∥e−2π|x|∥L1 = 1/π and we need to bound the L1 norm of
M . Note that M̂(ω) admits a weak derivative, since it is the product of a bounded analytic function
on the support and Ŝ that admits a weak derivative that is the following

∇Ŝ(ω) = sign(ω − 3/4)− sign(ω − 1/4)− sign(ω + 1/4) + sign(ω + 3/4).

In particular, we have for every ω ∈ R

|M̂(ω)| =
∣∣∣∣Ŝ(ω)ω(1 + ω2)

1− e2πiω

∣∣∣∣ ≤ 1[−3/4,3/4](ω)
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|∇M̂(ω)| =
∣∣∣∣∇Ŝ(ω)ω(1 + ω2)

1− e2πiω
+ Ŝ(ω)

∂

∂ω

ω(1 + ω2)

1− e2πiω

∣∣∣∣ ≤ 2× 1[−3/4,3/4](ω)

Using Lemma 2 we can bound ∥M∥L1 as follows,

∥M∥L1 ≤ 2√
π
∥M̂∥1/2L2 ∥∂M̂∥1/2L2 ≤ 2,

obtaining

∥∇f∥L1(R) ≤ 2∥v1∥W + 2

T∑
t=2

∥vt − vt−1∥W . (5)

Step 2. Bounding ∥∇kf∥L∞ . Let k ∈ N and k ≥ 1. Since Ẑ(ω) := Ŝ(ω/4) is equal to 1 on [−1, 1]

and it is supported on [−3, 3], we have that f̂(ω) = Ẑ(ω)f̂(ω). So, by using the properties of the
Fourier transform of convolutions, we have that for all t ∈ R,

f(t) = F−1[f̂ ](t) = F−1[Ẑf̂ ](t) = (F−1[Ẑ] ⋆ F−1[f ]) = (Z ⋆ f)(t),

where Z(t) = 4S(4t) for all t ∈ R is the inverse Fourier transform of Ẑ. So we have

∥∇kf∥L∞ = ∥∇k(Z ⋆ f)∥L∞ = ∥(∇kZ) ⋆ f∥L∞ ≤ ∥∇kZ∥L1∥f∥L∞ .

Now, we have

∥f∥L∞ = sup
t∈R

∣∣∣∣∣
T∑
ℓ=1

vℓS(t− ℓ)

∣∣∣∣∣ ≤ (max
ℓ∈[T ]

∥vℓ∥W) sup
t∈R

T∑
ℓ=1

|S(t− ℓ)|. (6)

Since |S(t)| ≤ 1/(1 + 2t2) for any t ∈ R, we have

sup
t∈R

T∑
ℓ=1

|S(t− ℓ)| ≤ sup
t∈R

∑
ℓ∈Z

1

1 + 2(t− ℓ)2
=
∑
ℓ∈Z

1

1 + 2ℓ2
≤ 4.

To conclude this section, using Lemma 2 and since F [∇kZ] = ωkZ/(2πi)k

∥∇kZ∥L1 ≤ 2
√
2

(2π)k
∥ωkẐ∥1/2L2 ∥∇(ωkẐ)∥1/2L2 ≤ 32+k + 4k

(2π)k(1 + k5/2)
≤ 3.

So, for any k ∈ N (including 0, since we have Eq. (6))

∥∇kf∥L∞ ≤ ∥∇kZ∥L1∥f∥L∞ ≤ 12max
ℓ

∥vℓ∥W (7)

Step 3. Building bT and computing the final norms. Lemma 1 constructs a function bT that is
2m-times differentiable and that is identically equal to 0 on R \ (0, T + 1) and that is identically
equal to 1 on [1, T ], moreover it proves that for any 2m-times differentiable function that has the
derivatives Lp(S) integrable for some p ∈ [0,∞] and some interval S ⊆ R, we have

∥∇k(fbT )∥Lp(S) ≤ Ck,m max
0≤h≤k

∥∇hf∥Lp(S∩[0,T+1]).

Define u(t) := f(t)bT (t). By construction u is equal to fT on [0, T ] since bT is identically 1 on this
interval, and so in particular

u(ℓ) = f(ℓ)bT (ℓ) = f(ℓ) = vℓ, ∀ℓ ∈ {1, . . . , T},

moreover u(t) = f(t)bT (t) = 0 for t ∈ R \ (0, T + 1). By applying the result above, together with
Eq. (7)

∥u−∇2mu∥L∞ ≤ ∥u∥L∞ + ∥∇2mu∥L∞ ≤ 12(1 + C2m,m)max
ℓ

∥vℓ∥W .

Applying the same lemma, with Eq. (5) we have

∥∇u∥L1(R) ≤ 2C1,m∥v1∥W + 2C1,m

∑T
t=2 ∥vt − vt−1∥W .

This completes the proof.
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E.3 Proof of Lemma 3

Here, we recall a classical result about the positivity of the sine transform of a positive decreasing
function (see e.g. [48] Eq. 4).
Lemma 3. Let R be an integrable, positive and strictly decreasing on (0,∞). Then, for any t > 0
we have ∫ ∞

0

R(x) sin(2πxt)dx ≥ 0.

Proof. Since sin(2π(z + 1/2)) = − sin(2πz) for each z ∈ [j, j + 1/2] and j ∈ N, we have∫ ∞

0

R(x) sin(2πxt)dx =

∞∑
j=0

∫ j+1
t

j
t

R(x) sin(2πxt)dx

=
1

t

∞∑
j=0

∫ 1

0

R

(
j + θ

t

)
sin(2πθ)dθ

=
1

t

∞∑
j=0

∫ 1/2

0

[
R
(j + θ

t

)
−R

(j + 1/2 + θ

t

)]
sin(2πθ)dθ

≥ 0,

where the last step is due to the fact thatR is decreasing, soR((j+θ)/t)−R((j+θ)/t+1/2t) ≥ 0
for any j ∈ N, θ ∈ [0, 1/2] and that sin(2πθ) ≥ 0 on the integration interval θ ∈ [0, 1/2].

E.4 Proof of Proposition 2

Proposition 2. Let Q : R → R+ be defined as

Q(ω) =
1/4 log log π

|ω| (1 + |ω|2/4π2)
1
4 log(π + |ω|− 1

2 ) log2 log(π + |ω|− 1
2 )
.

Then we can apply Theorem 3 with m = 1: the function k defined in terms of Q as in Eq. (3) is a
translation invariant kernel with k(t, t) ≤ 8π2, ∀t ∈ R; the associated RKHS norm satisfies

∥f∥2H ≤ c2 ∥∇f∥L1 ∥f −∇2f∥L∞ (ln(1 + T ) ln ln(1 + T ))2,

for any f that is 2-times differentiable and supported in [0, T + 1], where T > 2 and c ≤ (2πe)2.

Proof. Step 1. Characterization of Q. The function Q is even, strictly positive and analytic on
R \ {0}. To study its integrability define the auxiliary function S : [0,∞) → [0,∞) as

S(z) =
log log π

2 log log(π + 1/zs)
.

S is concave, strictly increasing, on (0,∞) and with S(0) = 0 and limz→∞ S(z) = 1/2. So its
derivative S′ corresponding to

S′(z) =
s/2 log log π

z (1 + πzs) log(π + z−s) log2 log(π + z−s)
,

is positive and strictly decreasing on (0,∞) and since 0 < s < 2m, the function (·)s/2m is concave,
and we have (1 + (|ω|/2π)2m)s/2m ≥ 2

s
2m−1(1 + (|ω|/2π)s), so

L := sup
ω∈R

Q(ω)

S′(|ω|)
= sup
ω∈R

1 + π|ω|s

(1 + (|ω|/2π)2m)s/2m
≤ 21−

s
2m sup

ω∈R

1 + π|ω|s

1 + (|ω|/2π)s
= 2

2m(1+s)−s
2m π1+s.

(8)

So 0 < Q(ω) ≤ LS′(|ω|) for any ω ∈ R, and since S′ is positive and integrable, thenQ is integrable
too and we have ∫

R
Q(ω)dω ≤ 2L

∫ ∞

0

S′(z)dz = 2L( lim
z→∞

S(z)− S(0)) = L.
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To conclude this first step, since Q is integrable it admits a Fourier transform Q̂, and since it is
also positive, k(t, t′) := Q̂(t − t′) for t, t′ ∈ R is a translation invariant kernel. In particular,
k(t, t) = Q̂(0) =

∫
RQ(ω)dω ≤ L, for any t ∈ R.

Step 2. Characterization of R and explicit bound for ∥F [R]∥L1[−T,T ]. The second condition to
apply Theorem 3, concerns the function R defined as

R(x) :=
2π

x(1 + (x/2π)2m)Q(x)
.

Note that R is an odd function, since x is odd, while both 1+( x2π )
2m and Q(x) are even. Moreover,

R is analytic on R\{0} sinceQ(x) is analytic on the same domain and x(1+(x/2π)2m) is analytic
on the whole axis. Expanding the definition of Q in R, we obtain

R(ω) =
C0 log(π + |ω|−s) log2(log(π + |ω|−s))

(1 + (ω/2π)2m)
2m−s
2m

,

where C0 = 4π/(s log log π). From which we observe thatR is also positive and strictly decreasing
on (0,∞) since, log(π + |x|−s), log(log(π + |x|−s))2 and 1/(1 + (ω/2π)2m)

2m−s
2m ) are strictly

positive and strictly decreasing on (0,∞). So we can apply the bound on ∥F [R]∥L1([−T,T ]) in
Theorem 3, obtaining, for any α > 0

c(T ) := ∥F [R]∥L1([−T,T ]) ≤ 2πT 2

∫ α

0

R(x)xdx+
2

π

∫ ∞

α

R(x)

x
dx.

To bound such integrals, we first simplify R. Let β, γ > 0, since the following functions are
bounded, non-negative, with a unique critical point that is a maximum, by equating their derivative
to zero we obtain

sup
z>π

log2(log(z))

log1+γ(z)
= (2/γ)2e−2, sup

z>π

log1+γ(z)

zβ
= (

1 + γ

β
)1+γe−1−γ ,

so we have for any x > 0,

R(x) =
C0 log(π + x−s) log(log(π + x−s))2

(1 + (x/2π)2m)
2m−s
2m

=
log2(log(π + x−s))

logγ(π + x−s)

log1+γ(π + x−s)

(π + x−s)β
C0(π + x−s)β

(1 + (x/2π)2m)
2m−s
2m

≤ C1(β, γ)
(π + x−s)β

(1 + (x/2π)2m)
2m−s
2m

.

where C1(β, γ) = (2/γ)2( 1+γβ )1+γe−3−γC0 ≤ 16C0/(e
3γ2β1+γ) ≤ γ−2β−1−γC0. Now we can

control the integral of interest by using the bound above. First, we will split it in two regions of
interest. For the first term, letting β < 1,

T 2π

∫ α

0

R(x)xdx ≤ T 2πC1(β, γ)

∫ α

0

πβ + x−sβ

(1 + (x/2π)2m)
2m−s
2m

xdx

≤ T 2πC1(β, γ)

∫ α

0

(πβ + x−sβ)xdx

= C1(β, γ) T
2α2

(
π1+β

2
+
πα−βs

2− βs

)
For the second term, we have

1

π

∫ ∞

α

R(x)

x
dx ≤ C1(β, γ)

π

∫ ∞

α

(π + x−s)β

x(1 + (x/2π)2m)
2m−s
2m

dx

≤ C1(β, γ)

π

∫ ∞

α

πβ + α−βs

x(1 + x2m−s/(2π)2m−s)
dx

≤ C1(β, γ)

π

∫ 2π

α

πβ + α−βs

x
dx+

C1(β, γ)

π

∫ ∞

2π

πβ + α−βs

x2m+1−s/(2π)2m−s dx

=
C1(β, γ)

π
(πβ + α−sβ) log(

2π

α
) +

C1(β, γ)

π
(πβ + α−βs)/(2m− s).
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So c(T ) is bounded by

c(T ) ≤ 2πT 2α2

γ2β1+γ

(
πβ

2
+

α−βs

2− βs

)
+

2(πβ + α−sβ) log( 2πα )

πγ2β1+γ
+

2πβ + 2α−βs

πγ2β1+γ(2m− s)
.

By choosing α = 1/T , β = 1/ log(T ), γ = 1/ log(log(T )), we have

Tα = 1, α−β = T 1/ log(T ) = e, β1+γ = (log(T ))1/ log(log(T )) = e,

and, since s ≥ 1 (by assumption), 2m− s ≥ 1 (by definition of m) and T > 3 (by assumption), we
have

c(T ) ≤ C0 log(T ) log
2 log(T )

(
2π2e

2
+

2πe1+s

2− s
+

2(π + es) log(2πT )

π
+

2π + es

π(2m− s)

)
≤ C0 log

2(T ) log2 log(T )

(
2π2e

2
+ 2πe2 +

2(π + 2e) log(2π)

π
+

2e

π
+ 2

)
≤ (4π2e2)2 log2(T ) log2 log(T ).

F Proofs for Section 5 (Curved Losses)

Proposition 3. Let ℓt : W → R be a β-exp-concave function, let H be an RKHS with feature map
ϕ(t) ∈ H, and define ℓ̃t(W ) = ℓt(Wϕ(t)) for W ∈ L(H,W). Then for any X,Y ∈ L(H,W),

ℓ̃t(X)− ℓ̃t(Y ) ≤
〈
∇ℓ̃t(X), X − Y

〉
HS

− β

2

〈
∇ℓ̃(X), X − Y

〉2
HS

.

Proof. Let x = Xϕ(t) and y = Y ϕ(t). By definition and β-exp-concavity of ℓt, we have

ℓ̃t(X)− ℓ̃t(Y ) = ℓt(x)− ℓt(y) ≤ ⟨∇ℓt(x), x− y⟩ − β

2
⟨∇ℓt(x), x− y⟩2W

= ⟨∇ℓt(x), (X − Y )ϕ(t)⟩W − β

2
⟨∇ℓt(x), (X − Y )ϕ(t)⟩2W

= ⟨∇ℓt(x)⊗ ϕ(t), (X − Y )⟩HS − β

2
⟨∇ℓt(x)⊗ ϕ(t), (X − Y )⟩2HS .

Observing that ∇ℓ̃(X) = ∇ℓt(x)⊗ ϕ(t) ∈ L(H,W) completes the proof.

F.1 Strongly-convex Losses

In this section we show how to apply our static-to-dynamic reduction in the context of strongly-
convex losses. Interestingly, the algorithm ends up being essentially the same as the Kernelized-
ONS algorithm of [27], but with a weighted norm defined in terms of the feature covariance operator,
Σt = λI + β

∑t
s=1 ϕ(s) ⊗ ϕ(s). The following lemma shows how to connect the instantaneous

regret on round t to the kernelized linear losses gt ⊗ ϕ(t) and is analogous to Proposition 3.
Proposition 9. Let ℓt : W → R be a β-strongly-convex function, let H be an RKHS with associated
feature map ϕ(t) ∈ H, and define ℓ̃t(Wϕ(t)) for W ∈ L(H,W). Then for any X,Y ∈ L(H,W),

ℓ̃t(X)− ℓ̃t(Y ) ≤
〈
ℓ̃t(X), X − Y

〉
HS

− β

2
⟨(X − Y )(ϕ(t)⊗ ϕ(t)), X − Y ⟩HS ,

where ϕ(t)⊗ ϕ(t) : H → H is the operator with action (ϕ(t)⊗ ϕ(t))h = ⟨ϕ(t), h⟩H ϕ(t).

Proof. Let x = Xϕ(t) and y = Y ϕ(t), and observe that by β-strong-convexity of ℓt in W we have

ℓ̃t(X)− ℓ̃t(Y ) = ℓt(x)− ℓt(y) ≤ ⟨∇ℓt(x), x− y⟩W − β

2
∥x− y∥2W

= ⟨∇ℓt(x), (X − Y )ϕ(t)⟩W − β

2
⟨(X − Y )ϕ(t), (X − Y )ϕ(t)⟩W

(⋆)
= ⟨∇ℓt(x)⊗ ϕ(t), X − Y ⟩HS − β

2
⟨(X − Y )ϕ(t)⊗ ϕ(t), (X − Y )⟩W

=
〈
∇ℓ̃t(x), X − Y

〉
HS

− β

2
⟨(X − Y )ϕ(t)⊗ ϕ(t), (X − Y )⟩W ,

where (⋆) uses Lemma 8 and the last line observes that ∇ℓt(x)⊗ ϕ(t) = ∇ℓ̃t(X).
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Using this result it is straight-forward to see that the usual ONS arguments work in this setting.
For instance, by running mirror descent with regularizer ψt(W ) = 1

2 ⟨WΣt,W ⟩HS where Σt =

λI + β
∑t
s=1 ϕ(t)⊗ ϕ(t), we have the following regret guarantee.

Theorem 7. (K-ONS for Strongly-convex Losses) Let ℓ1, . . . , ℓT be a sequence of β-strongly convex
losses. Let λ > 0 and for all t, define Σt = λI +β

∑t
s=1 ϕ(s)⊗ϕ(s) and ∥W∥2Σt

= ⟨WΣt,W ⟩HS

for W ∈ L(H,W). Suppose that on each round A updates

Wt+1 = argmin
W∈L(H,W)

⟨Gt,W ⟩HS +
1

2
∥W −Wt∥2Σt

,

starting from W1 = 0 ∈ L(H,W). Then for any u1, . . . , uT in W and U ∈ L(H,W) satisfying
u(t) = Uϕ(t) for all t, Algorithm 1 applied with A guarantees

RT (u1, . . . , uT ) ≤
λ

2
∥U∥2HS +

G2

2β
deff(λ) ln

(
e+

eλmax(KT )

λ

)
,

where KT = (⟨ϕ(s), ϕ(t)⟩H)s,t∈[T ] and deff(λ) = Tr
(
KT (λI +KT )

−1
)
.

Proof. Applying Theorem 1 followed by Proposition 9, we have

RT (u1, . . . , uT ) = R̃T (U) =

T∑
t=1

ℓ̃t(Wt)− ℓ̃t(U)

≤
T∑
t=1

⟨Gt,Wt − U⟩HS − β

2
⟨(Wt − U)(ϕ(t)⊗ ϕ(t)),Wt − U⟩HS

(a)

≤
T∑
t=1

1

2
∥U −Wt∥2Σt

− 1

2
∥U −Wt+1∥2Σt

− β

2
⟨(Wt − U)(ϕ(t)⊗ ϕ(t)),Wt − U⟩HS

+

T∑
t=1

⟨Gt,Wt −Wt+1⟩HS − 1

2
∥Wt+1 −Wt∥2Σt

(b)

≤
T∑
t=1

1

2
∥U −Wt∥2Σt−1

− 1

2
∥U −Wt+1∥2Σt

+

T∑
t=1

1

2
∥gt∥2W ∥ϕ(t)∥2Σ−1

t

≤ λ

2
∥U∥2HS +

T∑
t=1

G2

2
∥ϕ(t)∥2Σ−1

t

(c)

≤ λ

2
∥U∥2HS +

G2

2β
deff(λ) ln

(
e+

eλmax(KT )

λ

)
,

where (a) applies the standard bound for online mirror descent, (b) observes that

1

2
∥X − Y ∥2Σt

− β

2
⟨(X − Y )(ϕ(t)⊗ ϕ(t)), (X − Y )⟩HS =

1

2
⟨(X − Y )Σt−1, X − Y ⟩HS

=
1

2
∥X − Y ∥2Σt−1

and uses Fenchel-Young inequality to bound

⟨Gt,Wt −Wt+1⟩HS − 1

2
∥Wt+1 −Wt∥2Σt

≤ 1

2

∥∥∥GtΣ− 1
2

t

∥∥∥2
HS

=
1

2
∥gt∥2W ∥ϕ(t)∥2Σ−1

t

and (c) uses a mild generalization of the usual log-determinant lemma (Lemmas 6 and 7) and defines
defines KT = (⟨ϕ(s), ϕ(t)⟩H)s,t∈[T ].

Note that in the static regret setting, it is possible to avoid the dependence on the comparator norm
entirely and pay only the logarithmic penalty—we do not expect such an improvement to be possible
here since it would violate known Ω(PT ) lower bounds for strongly-convex losses [52].
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F.2 Additional Details for Example 3

In this section we provide some extra details showing that for the RKHS H associated with kernel

k(t, s) = min(s, t), we can bound ∥u∥2H = ∥∇u∥2L2 = O
(√∑

t ∥ut − ut−1∥2
)

(Theorem 8) and

deff(λ) = O(T/
√
λ) (Theorem 9). We begin with the bound on the continuous squared path-lenth

∥∇u∥2L2 .
Theorem 8. Let H be the RKHS associated to the kernel k(s, t) = min(s, t) on [0, T ]. Then for
any v1, . . . , vT ∈ Rd there exists a function u ∈ H such that u(t) = vt for all t ∈ [T ] and

∥u∥2H = ∥∇u∥2L2 ≤ C

T∑
t=2

∥vt − vt−1∥2W + C∥v1∥2W ,

with C ≤ 5
4 .

Proof. We assume without loss of generality that vt ∈ R since the result extends immediately to
Rd via the coordinate-wise extension mentioned in Section 2. For brevity we will define vt = 0 for
t /∈ {1, . . . , T} so that we can write

∑T
t=1|vt − vt−1|2 + |v1|2 =

∑
t|vt − vt−1|2.

Note that the RKHS associated with kernel k(s, t) = min(s, t) is H ={
f ∈ L2 : f ′ ∈ L2, f(0) = 0

}
, with associated norm ∥f∥H = ∥∇f∥L2 =

∫
|∇f(x)|2dx

(see, e.g., Example 23 of Berlinet and Thomas-Agnan [6] with m = 1). Now suppose we define

u(t) =

T∑
i=1

visinc(t− i)

where sinc(x) = sin(πx)/πx. Then u and u′ are square integrable and u(0) = 0, so u ∈ H.
Moreover, the norm associated with H is ∥f∥2H =

∫
|∇f(x)|2dx = ∥∇f∥2L2 , so we need only show

that the constructed function u(t) has ∥∇u∥2L2 ≤ O(
∑
t|vt − vt−1|2).

Denote v(t) =
∑
i viδ(t−i) = vt and observe that we can write u(t) =

∑T
i=1 v(i)sinc(t−i) = (v⋆

sinc)(t), so using the fact that the Fourier transform of sinc is the rectangle function 1[− 1
2 ,

1
2 ]
(ω) =

I
{
ω ∈ [− 1

2 ,
1
2 ]
}

(see, e.g., Kammler [28]), we have û(ω) = v̂ ⋆ sinc(ω) = v̂(ω)1[− 1
2 ,

1
2 ]
(ω). Thus,

∥∇u∥2L2 =

∫
R
|∇u(t)|2dt =

∫
R
ω2|û(ω)|2dω =

∫ 1
2

− 1
2

ω2|v̂(ω)|2dω

via Parseval’s identity. We proceed by relating v̂(ω) to the DFT of the difference sequence, ∆v(t) =
vt− vt−1 and then applying Parseval’s inequality for sequences to get

∫
|∆̂v(ω)|2 ≤

∑
t|∆v(t)|2 =∑

t|vt − vt−1|2.

Observe that the DFT of the difference sequence is

∆̂v(ω) =
∑
t

(vt − vt−1)e
−2πiωt = (1− e−2πiω)

∑
t

vte
−πiωt = (1− e−2πiω)v̂(ω).

Thus,

∥∇u∥2L2 =

∫ 1
2

− 1
2

ω2|v̂(ω)|2dω

=

∫ 1
2

− 1
2

ω2

|1− e−πiω|2
|∆̂v(ω)|2dω

Now observe that using the identity 1− cos(x) = 2 sin2(x/2) we have

|1− e2πiω|2 = (1− e−πiω)(1− eπiω) = 2− e−πiω − eπiω

= 2(1− cos(ω)) = 4 sin2(ω/2),
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then, using ω2/ sin2(ω/2) ≤ 5 on [− 1
2 ,

1
2 ] we have

∥∇u∥2L2 =

∫ 1
2

− 1
2

ω2

4 sin2(ω/2)
|∆̂v(ω)|2dω

≤ 5

4

∫ 1
2

− 1
2

|∆̂v(ω)|2dω =
5

4

∑
t

|∆v(t)|2

=
5

4

∑
t

|vt − vt−1|2

where the last line applies Parseval’s identity for sequences.

Next, the following theorem shows that the effective dimension of the linear spline kernel is indeed
O(T/

√
λ).

Theorem 9. Let KT ∈ RT×T be the matrix with entries [KT ]ij = min(i, j). Then

deff(λ) := Tr
(
KT (λI +KT )

−1
)
≤ πT

2
√
λ
.

Proof. By Lemma 12, the inverse of a matrixKT with entries [KT ]ij = min(i, j) is the tri-diagonal
matrix of the form

K−1
T =



2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
0 0 −1 2 . . . 0
...

. . .
0 0 0 0 . . . 1

 . (9)

The eigenvalues of matrices of this form are well-known [17, 32, 43] and have a closed form expres-
sion:

λk(K
−1
T ) = 2

(
1− cos

(
2kπ

(2T + 1)

))
= 4 sin2

(
kπ

2T + 1

)
,

where the second equality uses the identity 1 − cos(x) = 2 sin2(x/2). Moreover, using the fact
that sin(x) is concave on [0, π/2] we can bound sin(x) ≥ 2

πx, so the eigenvalues of K−1
T can be

bounded as

λk(K
−1
T ) = 4 sin2

(
kπ

2T + 1

)
≥ 4 · 4

π2
· π2k2

(2T + 1)2
≥ k2

T 2

Thus, via direct calculation of the effective dimension deff(λ) = Tr
(
KT (λI +KT )

−1
)

=∑T
k=1

λk(KT )
λk(KT )+λ , we have

deff(λ) =

T∑
k=1

λk(KT )

λk(KT ) + λ
=

T∑
k=1

1

1 + λ/λk(KT )
=

T∑
k=1

1

1 + λλk(K
−1
T )

≤
T∑
k=1

1

1 + λk2/T 2
≤
∫ T

0

1

1 + λ
T 2x2

dx
(a)
=

T√
λ

∫ √
λ

0

1

1 + u2
du

(b)
=

T√
λ
arctan(x)

∣∣∣√λ
x=0

(c)

≤ πT

2
√
λ

where (a) makes a change of variables x = T/
√
λu, (b) uses the fact that

∫ b
a

1
1+u2 du = arctan(x)

∣∣∣b
a

and (c) uses |arctan(x)| ≤ π/2 for all x.
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G Proofs for Section 6 (Directional Adaptivity)

In this section we provide the full statement and proof of Proposition 5.
Proposition 10. Let ℓ1, . . . , ℓT be a sequence of G-Lipschitz losses and for all t, let gt ∈ ∂ℓt(wt)

and define Gt = gt⊗ϕ(t) ∈ L(H,W), G0 = G
√
maxt k(t, t) and Σt = (λ+G2

0)I +
∑t−1
s=1Gt⊗

Gt.7 Let (∥·∥t , ∥·∥t,∗) be a dual-norm pair characterized by ∥W∥t =
√
⟨W,ΣtW ⟩HS. Let

ϵ > 0, and for all t let Vt = 4G2
0 +

∑t−1
s=1 ∥Gt∥

2
t,∗, αt = ϵG0√

Vt log2(Vt/G2
0)

and set ψt(W ) =

k
∫ ∥W∥t

0
minη≤1/G0

[
ln(x/αt+1)

η + ηVt

]
dx.

Suppose on each round we set Wt = argminW∈L(H,W)

〈∑t−1
s=1Gs,W

〉
+ ψt(W ) and we play

wt =Wtϕ(t). Then for u1, . . . , uT in W and U ∈ L(H,W) satisfying ut = Uϕ(t) for all t,

R̃T (U) = Õ

ϵG0 +

√√√√deff(λ)

[
(λ+G2

0) ∥U∥2HS +

T∑
t=1

⟨gt, ut⟩2
]
ln

(
e+

eλmax(KT )

λ

)
where KT = (⟨gt, gs⟩ k(t, s))t,s∈[T ], and deff(λ) = Tr

(
KT (λI +KT )

−1
)

Proof. The result follows as a special case of Theorem 10 with sequence of non-decreasing norms
characterized by ∥W∥t =

√
⟨W,ΣtW ⟩W and Lipschitz constant G0 = G

√
maxt k(t, t) ≥∥∥∥∇ℓ̃t(Wt)

∥∥∥ for all t. First, observe that

⟨Gt, U⟩2HS = ⟨gt ⊗ ϕ(t), U⟩2HS = ⟨gt, Uϕ(t)⟩2W = ⟨gt, ut⟩2W ,

hence from the static regret guarantee of Theorem 10, we get

R̃T (U) = Õ

ϵG0 + ∥U∥T+1

√√√√ T∑
t=1

∥Gt∥2t,∗


= Õ

ϵG0 +

√√√√((λ+G2
0) ∥U∥2HS +

T∑
t=1

⟨Gt, U⟩2HS

)
T∑
t=1

∥Gt∥2t,∗


= Õ

ϵG0 +

√√√√((λ+G2
0) ∥U∥2HS +

T∑
t=1

⟨gt, ut⟩2
)

T∑
t=1

∥Gt∥2t,∗

 .

Moreover, observing that

∥Gt∥2t,∗ =

〈
Gt,

(
(λ+G2

0)I +

t−1∑
s=1

Gs ⊗Gs

)−1

Gt

〉
≤

〈
Gt,

(
λI +

t∑
s=1

Gs ⊗Gs

)−1

Gt

〉
,

we have via Lemma 7 that
T∑
t=1

∥Gt∥2t,∗ ≤ deff(λ) ln

(
e+

eλmax(KT )

λ

)
,

where KT is the gram matrix with entries [KT ]ij = ⟨gi, gj⟩ k(i, j) and deff(λ) =

Tr
(
KT (λI +KT )

−1
)
=
∑T
k=1

λk(KT )
λ+λk(KT ) .

Hence the dynamic regret RT(u1, . . . , uT ) = R̃T (U) can be bound above by

Õ

ϵG0 +

√√√√deff(λ)

[
(λ+G2

0) ∥U∥2HS +

T∑
t=1

⟨gt, ut⟩2
]
ln

(
1 +

λmax(KT )

λ

) .

7Here, the tensor product Gt ⊗ Gt is the map such that for V ∈ L(H,W), (Gt ⊗ Gt)(V ) =
⟨Gt, V ⟩HS Gt ∈ L(H,W). Note that Σt is a self-adjoint operator.
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G.1 Directional Adaptivity via Varying-norms

For completeness we provide a mild generalization of the static regret algorithm of [23] to leverage
an arbitrary sequence of increasing norms. A similar technique has been used to get full-matrix
parameter-free rates by [13].

The analysis remains mostly the same as Jacobsen and Cutkosky [23], but their analysis of the
stability term bounds −Dψt(wt+1|wt) via a lemma that assumes that ψt(w) = Ψt(∥w∥2) for w ∈
Rd. To obtain a full-matrix version of their result, we would instead like to have Ψt(∥w∥M ), where
∥·∥M is a weighted norm w.r.t. to the inner product ⟨·, ·⟩W on an arbitrary Hilbert space W . In what
follows, we drop the dependence on W for brevity and simply write ⟨·, ·⟩.
We first state and prove the main result of this section. The proof will rely on a few technical
lemmas, which we state and prove at the end of the section in Appendix G.1.1.
Theorem 10. Let W be a Hilbert space and let ⟨·, ·⟩ denote the associated inner product, let
∥·∥1 , . . . , ∥·∥T+1 be an arbitrary sequence of non-decreasing norms on W , and let ∥·∥0 :=√

⟨·, ·⟩ ≤ ∥·∥t for all t. Let ℓ1, . . . , ℓT be convex functions over W satisfying ∥gt∥t,∗ ≤ G

for all t and gt ∈ ∂ℓt(wt). Let ϵ, λ > 0, Vt = 4G2 +
∑t−1
s=1 ∥gs∥

2
s,∗, αt = ϵG√

Vt log2(Vt/G2)
,

and set ψt(w) = 3
∫ ∥w∥t

0
minη≤ 1

G

[
ln(x/αt+1)

η + ηVt

]
dx, and on each round update wt+1 =

argminw∈W

〈∑t
s=1 gs, w

〉
+ ψt+1(w). Then for all u ∈ W ,

RT (u) = Ô

Gϵ+ ∥u∥

√VT ln

(
∥u∥

√
VT

ϵG
+ 1

)
∨G ln

(
∥u∥

√
VT

ϵG
+ 1

)
where Ô(·) hides constant and log(log) factors (but not log factors).

Proof. Begin by applying the standard FTRL regret template (see, e.g., Orabona [39, Lemma 7.1]):

RT (u) =

T∑
t=1

⟨gt, wt − u⟩ ≤ ψT+1(u) +

T∑
t=1

Ft(wt)− Ft+1(wt+1) + ⟨gt, wt⟩ ,

where Ft(w) =
〈∑t−1

s=1 gs, w
〉
+ ψt(w). Observe that the summation can be written as

T∑
t=1

Ft(wt)− Ft+1(wt+1) + ⟨gt, wt⟩

=

T∑
t=1

⟨gt, wt − wt+1⟩+ Ft(wt)− Ft(wt+1) + (ψt − ψt+1)(wt+1)

(a)
=

T∑
t=1

⟨gt, wt − wt+1⟩+ ⟨∇Ft(wt), wt − wt+1⟩ −DFt(wt+1|wt) + (ψt − ψt+1)(wt+1)

(b)

≤
T∑
t=1

⟨gt, wt − wt+1⟩ −DFt
(wt+1|wt) + (ψt − ψt+1)(wt+1)

(c)
=

T∑
t=1

∥gt∥t,∗ ∥wt − wt+1∥t −Dψt(wt+1|wt)− (ψt+1 − ψt)(wt+1),

where (a) uses the definition of Bregman divergence to write f(a) − f(b) = ⟨∇f(a), a− b⟩ −
Df (b|a), (b) uses the fact that wt = argminw∈W Ft(w), hence ⟨∇Ft(wt), wt − wt+1⟩ ≤ 0 by the
first-order optimality condition, and (c) uses the fact that Bregman divergences are invariant to linear
terms, so from the definition of Ft we have DFt

(·|·) = Dψt
(·|·). Moreover, since ∥·∥1 , . . . , ∥·∥T is

a non-decreasing sequence of norms, we can bound the terms

(ψt+1 − ψt)(w) = Ψt+1(∥w∥t+1)−Ψt(∥w∥t) ≥ Ψt+1(∥w∥t)−Ψt(∥w∥t)︸ ︷︷ ︸
=:∆Ψ

t (∥w∥t)

,

32



so overall the regret is bounded by

RT (u) ≤ ψT+1(u) +

T∑
t=1

∥gt∥t,∗ ∥wt − wt+1∥t −Dψt
(wt+1|wt)−∆Ψ

t (∥wt+1∥t)︸ ︷︷ ︸
=:δt

.

From here, the rest of the proof follows using the same arguments as [23], but using our Lemma 5
to bound Dψt(wt+1|wt) ≥ 1

2 ∥wt − wt+1∥2 Ψt(∥w̃∥t) instead of their Lemma 7.

G.1.1 A Stability Lemma for Weighted Norms

In this section generalize the stability lemma of Jacobsen and Cutkosky [23] to weighted norms
∥x∥M =

√
⟨x,Mx⟩. This is the main technical detail needed for the proof of Theorem 10 that

is not covered by the proof of their static regret algorithm. Throughout this section we assume
the domain W is a Hilbert space with associated inner product ⟨·, ·⟩. The following helper lemma
follows via a straight-forward but somewhat tedious computation.
Lemma 4. Let g : W → R be a convex function and let f(x) =

√
g(x). Then for x ∈ W s.t.

g(x) > 0 we have

∇f(x) = ∇g(x)
2f(x)

and ∇2f(x) =
∇2g(x)

2f(x)
− ∇g(x)⊗∇g(x)

4f(x)3
,

where ⊗ denotes the tensor product.

Using this, we have the following Hessian bounds for elliptically-symmetric functions:
Lemma 5. Let M ∈ L(H,H) be a positive definite linear operator and assume M is self-adjoint
w.r.t. ⟨·, ·⟩. Let ∥x∥M =

√
⟨x,Mx⟩ be the weighted norm induced byM and let ψ(w) = Ψ(∥w∥M )

for some convex function Ψ : R → R. Then for any w ∈ W bounded away from 0 and any u ∈ W ,〈
u,∇2ψ(w)u

〉
≥ min

{
Ψ′′(∥w∥M ),

Ψ′(∥w∥M )

∥w∥M

}
∥u∥2M

Moreover, if Ψ′(·) is concave and non-negative, then for any w ∈ W bounded away from 0 and
u ∈ W , 〈

u,∇2ψ(w)u
〉
≥ Ψ′′(∥w∥M ) ∥u∥2M .

Proof. The proof follows a similar argument to Orabona and Pál [41, Lemma 23]. Let us first
compute the gradients of f(x) = ∥x∥M =

√
⟨x,Mx⟩. Let g(x) = ⟨x,Mx⟩ and observe that if M

is self-adjoint w.r.t. ⟨·, ·⟩, we have ∇g(x) = 2Mx and ∇2g(x) = 2M . Hence, applying Lemma 4
we have

∇f(w) = 2Mw

2 ∥w∥M
=

Mw

∥w∥M

∇2f(w) =
2M

2 ∥w∥M
− 4Mw ⊗Mw

4 ∥w∥3M
=

M

∥w∥M
− Mw ⊗Mw

∥w∥3M
.

Using this, we have

∇ψ(w) = ∇Ψ(∥w∥M ) = ∇∥w∥M Ψ′(∥w∥M ) =
Mw

∥w∥M
Ψ′(∥w∥M ),

and
∇2ψ(w) = ∇ (∇∥w∥M Ψ′

t(∥w∥M ))

= ∇2 ∥w∥M Ψ′(∥w∥M ) + Ψ′′(∥w∥M ) (∇∥w∥M ⊗∇∥w∥M )

= Ψ′
t(∥w∥M )

(
M

∥w∥M
− (Mw ⊗Mw)

∥w∥3M

)
+Ψ′′(∥w∥M )

(Mw ⊗Mw)

∥w∥2M

=

(
Ψ′′(∥w∥M )

∥w∥2M
−

Ψ′(∥w∥M )

∥w∥3M

)
︸ ︷︷ ︸

=:β

(Mw ⊗Mw) +
Ψ′(∥w∥M )

∥w∥M︸ ︷︷ ︸
=:γ

M

= β(Mw ⊗Mw) + γM.
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Hence, for any u ∈ W we have〈
u,∇2ψ(w)u

〉
= ⟨u, (βMw ⊗Mw + γM)u⟩
= β ⟨u,Mw⟩2 + γ ∥u∥2M

Now decompose u = w + v for some v such that ⟨Mw, v⟩ = 0; such a v always exists for positive
definite M . Then〈

u,∇2ψ(w)u
〉
= β ⟨v + w,Mw⟩2 + γ ∥v + w∥2M = β ∥w∥4M + γ ∥w∥2M + γ ∥v∥2M

=

(
Ψ′′(∥w∥M )

∥w∥2M
−

Ψ′(∥w∥M )

∥w∥3M

)
∥w∥4M +

Ψ′(∥w∥M )

∥w∥M

(
∥w∥2M + ∥v∥2M

)
= Ψ′′(∥w∥M ) ∥w∥2M +

Ψ′(∥w∥M )

∥w∥M
∥v∥2M

≥ min

{
Ψ′′(∥w∥M ),

Ψ′(∥w∥M )

∥w∥M

}(
∥w∥2M + ∥v∥2M

)
= min

{
Ψ′′(∥w∥M ),

Ψ′(∥w∥M )

∥w∥M

}
∥u∥2M ,

where the last step uses the fact that w and v are orthogonal w.r.t. M .

For the second statement of the lemma, we need only show that Ψ′(∥w∥M )/ ∥w∥M ≥ Ψ′′(∥w∥M ).
This is indeed the case by concavity and non-negativity of Ψ′(·):

Ψ′(∥w∥M )

∥w∥M
≥

Ψ′(0) + Ψ′′(∥w∥M )(∥w∥M − 0)

∥w∥M
≥ Ψ′′(∥w∥M ) .

H Supporting Lemmas

The following lemma is a straight-forward generalization of the usual log-determinant lemma (see,
e.g., [10, Lemma 11.11]), taking a bit of extra care to handle determinants of potentially infinite-
dimensional linear operators.

Lemma 6. Let H be a Hilbert space and for all t let vt ∈ H. Suppose vt ⊗ vt : H → H defines
a bounded linear operator for all t and suppose At = At−1 + vt ⊗ vt for any t ≥ 1, starting from
A0 = I . Then 〈

vt, A
−1
t vt

〉
= 1− Det (At−1)

Det (At)
.

Proof. Observe that for any t, we have At = At−1 + vt ⊗ vt, so re-arranging terms, factoring, and
taking determinants of both sides we have

Det (At)Det
(
I −A−1

t vt ⊗ vt
)
= Det (At−1) . (10)

Note that each of these determinants are well-defined in terms of the Fredholm determinant: each of
the three terms above is a trace-class perturbation of the identity operator. Moreover, observe that
A−1
t (vt⊗ vt) is a rank-one operator having single eigenvalue equal to λ =

〈
vt, A

−1
t vt

〉
. Indeed, for

any w ∈ H we have A−1
t (vt ⊗ vt)(w) = ⟨vt, w⟩A−1

t vt, hence, for w = A−1
t vt we have

A−1
t (vt ⊗ vt)(w) = A−1

t (vt ⊗ vt)(A
−1
t vt) =

〈
vt, A

−1
t vt

〉
A−1
t vt = λw .

Therefore, from the standard rank-one perturbation identity for the determinant we have
Det

(
I −A−1

t vt ⊗ vt
)
= 1−

〈
vt, A

−1
t vt

〉
, so re-arranging Equation (10) yields

〈
vt, A

−1
t vt

〉
= 1− Det (At−1)

Det (At)
.
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Lemma 7. Let H be a Hilbert space. For all t let Gt ∈ H be a bounded linear operator and define
St = λI +

∑t
s=1Gs ⊗Gs for λ > 0. Then

T∑
t=1

〈
Gt, S

−1
t Gt

〉
≤ deff(λ) ln

(
e+

eλmax(KT )

λ

)
,

where KT = (⟨gt, gs⟩ k(t, s))t,s∈[T ] and deff(λ) = Tr
(
KT (λI +KT )

−1
)
.

Proof. First apply Lemma 6 with vt = Gt/
√
λ followed by the elementary inequality 1 − x ≤

ln (1/x) to get

T∑
t=1

〈
Gt, S

−1
t Gt

〉
=

T∑
t=1

1

λ

〈
Gt, (St/λ)

−1
Gt

〉
=

T∑
t=1

1− Det (St−1/λ)

Det (St/λ)

≤
T∑
t=1

ln

(
Det (St/λ)

Det (St−1/λ)

)

= ln

(
Det

(
I +

∑T
t=1Gt ⊗Gt

λ

))

=

T∑
t=1

ln

(
1 +

λt(KT )

λ

)
,

where the last line uses the well-known fact that the gram matrix KT = (⟨gt, gs⟩ k(t, s))t,s∈[T ] and
the empirical covariance operator

∑T
t=1Gt ⊗ Gt have the same eigenvalues. Moreover, following

Jézéquel et al. [27, Proposition 2] we can use the inequality ln (1 + x) ≤ x
1+x (1 + ln (1 + x)) to

expose a dependence on the effective dimension deff(λ) = Tr
(
KT (λI +KT )

−1
)

as follows:

T∑
t=1

〈
Gt, S

−1
t Gt

〉
≤

T∑
t=1

λt(KT )

λ+ λt(KT )

[
1 + ln

(
1 +

λt(KT )

λ

)]

≤
[
1 + ln

(
1 +

λmax(KT )

λ

)] T∑
t=1

λt(KT )

λ+ λt(Kt)

=

[
1 + ln

(
1 +

λmax(KT )

λ

)]
Tr
(
KT (λI +KT )

−1
)

= deff(λ)

[
1 + ln

(
1 +

λmax(KT )

λ

)]
= deff(λ) ln

(
e+

eλmax(KT )

λ

)
.

Lemma 8. Let H be a separable RKHS with associated feature map ϕ(t) ∈ H and let x ∈ H satisfy
x(t) = Xϕ(t) for some X ∈ L(H,W). Then

∥x(t)∥2W = ⟨X(ϕ(t)⊗ ϕ(t)), X⟩HS ,

where ϕ(t)⊗ ϕ(t) : H → H is the linear operator with action (ϕ(t)⊗ ϕ(t))h = ⟨ϕ(t), h⟩H ϕ(t).
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Proof. Let h1, h2, . . . be an orthonormal basis of H. By definition of the Hilbert-Schmidt inner
product, we have

⟨X(ϕ(t)⊗ ϕ(t)), X⟩HS =
∑
i

⟨X(ϕ(t)⊗ ϕ(t))hi, Xhi⟩W

=
∑
i

⟨ϕ(t), hi⟩H ⟨Xϕ(t), Xhi⟩W

=
∑
i

⟨ϕ(t), hi⟩H ⟨X∗Xϕ(t), hi⟩H

(⋆)
= ⟨ϕ(t), X∗Xϕ(t)⟩H = ⟨Xϕ(t), Xϕ(t)⟩W
= ⟨x, x⟩W = ∥x∥2W ,

where X∗ : W → H is the adjoint of X and (⋆) uses Parseval’s identity.

Lemma 9. Let W ⊆ Rd and let H be an RKHS with associated feature map ϕ. For all t ∈ [T ],
let Gt = gt ⊗ ϕ(t) ∈ L(H,W) denote the rank-one operator mapping Gt(h) = ⟨ϕ(t), h⟩ gt ∈ W .
Then for any t, ∥∥∥∥∥

t∑
s=1

Gs

∥∥∥∥∥
2

HS

=

t∑
s,s′

k(s, s′) ⟨gs, gs′⟩W .

Proof. Let h1, h2, . . . be an orthonormal basis of H. Observe that for any h ∈ H,
(∑t

s=1Gs

)
(h) =∑t

s=1 ⟨ϕ(s), h⟩ gs. Hence, by definition of the Hilbert-Schmidt norm,∥∥∥∥∥
t∑

s=1

Gt

∥∥∥∥∥
2

HS

=
∑
i

∥∥∥∥∥
t∑

s=1

Gthi

∥∥∥∥∥
2

W

=
∑
i

〈
t∑

s=1

⟨ϕ(s), hi⟩H gs,

t∑
s′=1

⟨ϕ(s′), hi⟩H gs′

〉
W

=
∑
i

t∑
s,s′

⟨ϕ(s), hi⟩H ⟨ϕ(s′), hi⟩H ⟨gs, g′s⟩W

=
∑
s,s′

⟨gs, gs′⟩W
∑
i

⟨ϕ(s), hi⟩H ⟨ϕ(s′), hi⟩H

=
∑
s,s′

⟨gs, gs′⟩W k(s, s′),

where the last line observes that for orthonormal basis hi we have
∑
i ⟨ϕ(s), hi⟩H ⟨ϕ(s′), hi⟩H =

⟨ϕ(s), ϕ(s′)⟩H = k(s, s′).

The following theorem shows how to compute the norm of Gt = gt ⊗ ϕ(t), which is the auxiliary
loss for OLO under our framework. Here we state the result in terms of gt ∈ W∗ for generality,
but note that in the main text we implicitly invoke Riesz representation theorem to write gt ∈ W ,
Gt ∈ L(H,W), and ∥Gt∥ = ∥gt∥W

√
k(t, t).

Lemma 10. Let H be a RKHS with associated feature map ϕ(t) and let W be a Hilbert space. Let
ℓt : W → R be a differentiable function and for any W ∈ L(H,W) let ℓ̃t(W ) = ℓt(Wϕ(t)). Then
for any W ∈ L(H,W), gt ∈ ∂ℓt(Wϕ(t)), and Gt = gt ⊗ ϕ(t) ∈ ∂ℓ̃t(W ),

∥Gt∥2HS = ∥gt∥2W,∗ k(t, t),

where k(s, t) = ⟨ϕ(s), ϕ(t)⟩H is the kernel associated with H and ∥·∥W,∗ is the dual norm of ∥·∥W .

Proof. We have via Lemma 11 that

Gt := gt ⊗ ϕ(t) ∈ ∂ℓ̃t(W ) ⊆ L(H,W)∗,
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where gt ∈ ∂ℓt(Wϕ(t)) ⊆ W∗. By Riesz representation theorem, we can identify a ĝt ∈ W such
that for any w ∈ W , gt(w) = ⟨ĝt, w⟩W , and likewise we can identify Gt ∈ L(H,W)∗ with a
rank-one operator Ĝt ∈ L(H,W) with action Ĝt(h) = ⟨ϕ(t), h⟩H ĝt. Hence, we have by definition
of the Hilbert-Schmidt norm that for any orthonormal basis {hi}i of H,

∥Gt∥2HS =
∑
i

∥Gthi∥2W

=
∑
i

⟨ϕ(t), hi⟩2H ∥ĝt∥2W

= ∥gt∥W,∗ ∥ϕ(t)∥
2
H ,

where the last line again uses Riesz representation theorem to write ∥ĝt∥W = ∥gt∥W,∗ and then
uses

∑
i ⟨ϕ(t), hi⟩

2
H = ∥ϕ(t)∥2H by Parseval’s identity. Moreover, since ϕ(t) are the features of an

RKHS with kernel k, we have

∥ϕ(t)∥2H = ⟨ϕ(t), ϕ(t)⟩H = k(t, t) .

Lemma 11. Let H be a RKHS with feature map ϕ(t) ∈ H, and let W be a Hilbert space. Let
ℓt : W → R be a convex function and let ℓ̃t(W ) = ℓt(Wϕ(t)) for W ∈ L(H,W). Then for any
W ∈ L(H,W) and any gt ∈ ∂ℓt(Wϕ(t)) ⊆ W∗,

Gt = gt ⊗ ϕ(t) ∈ ∂ℓ̃t(W ) ∈ L(H,W)∗,

where Gt ∈ L(H,W)∗ is the functional with action Gt(W ) = ⟨gt,Wϕ(t)⟩W for all W ∈
L(H,W).

Proof. Let W ∈ L(H,W), wt = Wϕ(t) ∈ W , and let gt ∈ ∂ℓt(wt) ⊆ W∗. Define Gt =
gt ⊗ ϕ(t) ∈ L(H,W)∗ the functional on L(H,W) with action

Gt(W ) = ⟨gt,Wϕ(t)⟩W , ∀W ∈ L(H,W).

Now observe that for gt ∈ ∂ℓt(wt), for any w ∈ W we have

ℓt(w) ≥ ℓt(wt) + ⟨gt, w − wt⟩W = ℓt(Wϕ(t)) + ⟨gt, w −Wϕ(t)⟩W ,

hence for any V ∈ L(H,W) we can take w = V ϕ(t) to get

ℓt(V ϕ(t)) ≥ ℓt(Wϕ(t)) + ⟨gt, V ϕ(t)−Wϕ(t)⟩W = ℓt(Wϕ(t)) + ⟨gt, (V −W )ϕ(t)⟩W
that is,

ℓ̃t(V ) ≥ ℓ̃t(W ) +Gt(V −W ).

so Gt = gt ⊗ ϕ(t) ∈ ∂ℓ̃t(W ) ⊆ L(H,W)∗.

For completeness, the following lemma provides the inverse of a matrix with entries Kij =
min(i, j). A similar result can be seen in the proof of Jacobsen and Orabona [26, Lemma 4], where
a variant of the matrix K appears as an intermediate calculation.

Lemma 12. Let K ∈ RT×T be a matrix with entries Ki,j = min(i, j). Then K−1 is a tri-diagonal
matrix of the form

K−1 =



2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
0 0 −1 2 . . . 0 0
...

. . .
0 0 0 0 . . . 2 −1
0 0 0 0 . . . −1 1


.
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Proof. It can easily be checked that K has Cholesky decomposition K = U⊤U where U is the
upper-triangular matrix of 1′s. Hence, K−1 = U−1(U⊤)−1. Moreover, the inverse of U is the
first-order finite-differences operator with entries

Σij =


1 if i = j

−1 if j = i+ 1

0 otherwise
.

Indeed, (UΣ)ij =
∑T
k=1 UikΣkj = −Ui,j−1 + Uij = 1 for i = j and zero otherwise. Computing

K−1 = ΣΣ⊤ yields the tri-diagonal matrix of the stated form.
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• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: We do not include experimental results in this work, as the current focus is
on proving the theoretical guarantees and exploring potential applications.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Since this paper does not include experimental results, there is no data or
code provided for reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: As this paper does not include experimental results, there are no training or
test details provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: As this paper does not include experimental results, no error bars or statistical
significance are reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: As the paper does not include experimental results, there is no information
provided regarding computational resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully conforms to the NeurIPS Code
of Ethics. There are no ethical concerns related to data collection, experiments, or other
aspects of the work, as it focuses purely on theoretical analysis.

Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on theoretical advancements in online learning algorithms
and does not have direct societal applications. As such, it does not explicitly discuss poten-
tial positive or negative societal impacts. The work is foundational in nature and does not
involve technologies that could be misused or present ethical concerns in its current form.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on theoretical algorithmic advancements in online learning
and does not involve the release of models, data, or other resources that could pose risks
for misuse. Therefore, no safeguards are necessary, as there is no high-risk data or models
associated with the work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use any external assets such as code, data, or models. All
work presented is original and theoretical, and no third-party assets were incorporated.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce any new assets such as datasets, code, or mod-
els. The work is purely theoretical, and no new assets were created or released as part of
this research.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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