

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIERASE: TOWARDS BALANCED AND PRECISE UN- LEARNING IN LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) require iterative updates to address the outdated information problem, where LLM unlearning offers an approach for selective removal. However, mainstream unlearning methods primarily rely on fine-tuning techniques, which often lack precision in targeted unlearning and struggle to balance unlearning efficacy with general ability under massive and sequential settings. To bridge this gap, in this work, we introduce **UniErase**, a novel unlearning framework that demonstrates precision and balanced performances between knowledge unlearning and ability retaining. We first propose the Unlearning Token, which is optimized to steer LLMs toward a forgetting space. To achieve concrete unlearning behaviors, we further introduce the lightweight Unlearning Edit to efficiently associate the unlearning targets with this meta-token. Serving as a new unlearning paradigm via editing, **UniErase** achieves outstanding performances across batch, sequential, and precise unlearning tasks under fictitious and real-world knowledge scenarios. On the TOFU benchmark, compared with 8 baselines, **UniErase**, modifying only $\sim 3.66\%$ of the LLM parameters, outperforms the previous best-forgetting baseline by $\sim 4.01\times$ for **model ability** with even higher unlearning efficacy. Similarly, **UniErase**, with better ability retention, also surpasses the previous best-retaining method by **35.96%** for **unlearning efficacy**, showing balanced and dual top-tier performances in the current unlearning community. We release our code at <https://anonymous.4open.science/r/UniErase-5DE8>.

1 INTRODUCTION

While the Large Language Models (LLMs) community (Guo et al., 2025; Chang et al., 2024; Wang et al., 2025a) has made significant advances in “learning” general abilities and domain-specific knowledge via pretraining and post-training (Kumar et al., 2025; Tie et al., 2025). Meanwhile, an equally crucial research direction is the complementary concept of LLM “unlearning” (Liu et al., 2025; Geng et al., 2025), which serves to address critical issues related to hallucination (Huang et al., 2025), privacy (Yan et al., 2024), and safety (Wang et al., 2025a)—including updating outdated knowledge, removing private information, and eliminating harmful contents (Lu et al., 2024; Zhang et al., 2024c; Xu, 2024). The core objectives of ideal unlearning is to enable LLMs, trained on trillion-token corpora, to only forget a specific data subset (the forgetting set) without compromising their general knowledge (the retaining set) and capabilities (Si et al., 2023; Maini et al., 2024).

Given the prohibitive computational cost of retraining LLMs from scratch while excluding the forgetting set, fine-tuning (FT) techniques has emerged as the predominant unlearning implementation (Maini et al., 2024; Yuan et al., 2024). Concretely, FT-based unlearning can be broadly categorized into two paradigms: **(I) Targeted unlearning** deliberately modifies LLMs’ outputs of the forgetting set in *controlled* and *specified* manners, such as “I don’t know”-like expressions (Wei et al., 2021; Rafailov et al., 2023); **(II) Untargeted unlearning** shifts the responses *away from* the original outputs but *without* specifying a particular direction, like irrelevant answers (Maini et al., 2024; Zhang et al., 2024b). These two paradigms both employ carefully designed loss functions with distinct objectives for the forgetting set (forgetting loss) and retaining set (retaining loss), respectively, thereby enabling knowledge erasure and retention (Yuan et al., 2024; Wang et al., 2025c,b).

However, fine-tuning inherently requires sufficient data volume to achieve effective optimization without overfitting, and the forgetting loss and retaining loss present competing objectives (Yuan

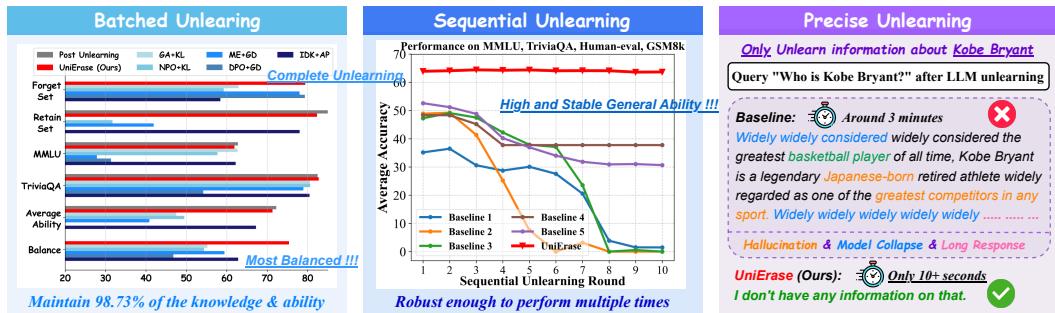


Figure 1: Our **UniErase** achieves the most balanced unlearning performances (Left) and maintains consistently high general capabilities (Middle), delivering rapid processing and high precision (Right).

et al., 2024; Geng et al., 2025). Besides, current FT-based unlearning, due to cost considerations, limits the retaining set to distributions near the forgetting set, which cannot represent the broad LLM knowledge (Maini et al., 2024). Consequently, these render two critical goals fundamentally challenging: **① precise unlearning** for a small or even single-entry forgetting set, or **② balanced unlearning** that concurrently preserves general abilities and knowledge while ensuring high unlearning efficacy on the forgetting set (Veldanda et al., 2024; Qu et al., 2024). Our empirical experiments across 8 baselines validate the second dilemma: for batch unlearning, the best-forgetting method loses **80.28%** of the general abilities, while the best-retaining baseline only forgets \sim **half** of the target data.

In this paper, we aim to tackle these two critical issues for LLM knowledge unlearning, especially the balance challenge. To this end, we propose **UniErase**, a novel unlearning paradigm that balances unlearning efficacy and model abilities with dual-high performances, while supporting effective and efficient precise unlearning. Technically, **UniErase** consists of two innovative techniques: the **Unlearning Token** and the **Unlearning Edit (Udit)**. We first introduce the unlearning token that concretizes the concept of forgetting into a tangible entity and points to a representational space that encodes unlearning semantics. Specifically, the unlearning token directs the autoregressive prediction process to generate predefined forgetting responses for any input sequence that terminates with this token. To obtain it without affecting any other generation, we create and optimize a new meta token (Li & Liang, 2021; Lester et al., 2021) only in the embedding space of the LLM, with other parameters frozen. Building upon this, we further propose Udit, a data-volume-independent method (therefore supporting precise unlearning) that directly modifies model parameters to establish associations between the forgetting set and unlearning token, thus realizing unlearning via its directing property. More importantly, Udit employs the null space projection technique (Fang et al., 2024) to ensure parameter updates remaining orthogonal to the LLMs' existing knowledge representations, effectively preserving the retaining set and even general capabilities.

In contrast to FT-based unlearning, **UniErase** pioneers the modeling of LLM unlearning as a knowledge editing problem. We solve the problem that current LLM editing frameworks only support entity concept editing (Wang et al., 2024; Zhang et al., 2024a) via the unlearning token, and further propose Udit to truly achieve precise and balanced LLM unlearning. To validate the effectiveness of **UniErase**, following previous works (Yuan et al., 2024; Zhang et al., 2024b), we conduct extensive experiments on different scales of the Llama-3 (Dubey et al., 2024) LLMs. Actually, with **8** baselines, we consider both fictitious and real-world knowledge in batch, sequential and precise unlearning scenarios (as illustrated in Figure 1). Evaluating via multi-dimensional metrics on the TOFU (Maini et al., 2024) benchmark, **UniErase** significantly outperforms the previous best-forgetting baseline, attaining $4.01\times$ performances in maintaining general knowledge and abilities while demonstrating better unlearning. Additionally, compared with the best-retaining baseline, **UniErase** preserves superior LLM abilities and is **35.96%** higher in unlearning efficacy.

In summary, our contributions can be listed as follows:

- **Brand-new Paradigm.** Our proposed **UniErase** represents a novel unlearning paradigm that exhibits outstanding performances by directly modifying LLM parameters instead of multi-round fine-tuning, significantly expanding the scopes of future research in the unlearning community.
- **Dual-high Balance.** **UniErase** achieves more thorough unlearning with better retention for general knowledge and abilities, boosting the practical usability of LLM unlearning.

108 • **Generalized Scenarios.** **UniErase** performs superbly across batch, sequential and especially
 109 precise unlearning for fictitious and real-world knowledge, covering diverse unlearning tasks.
 110

111 **2 RELATED WORKS**

114 **Machine Unlearning.** The concept of machine unlearning (Bourtoule et al., 2021) from traditional
 115 models (Chen et al., 2022; Nguyen et al., 2022) is emerging as a rising research topic for LLMs (Liu
 116 et al., 2025; Thaker et al., 2024). Its primary goal is to enable LLMs to forget a subset \mathcal{D}_f (e.g.,
 117 privacy or harmful knowledge) of the training data \mathcal{D} and maintain the knowledge on a retaining
 118 set $\mathcal{D}_r \subset \mathcal{D}$, without the high cost of retraining (Geng et al., 2025). Mainstream approaches
 119 relying on the fine-tuning techniques and designing various loss functions for different objectives to
 120 simultaneously forget \mathcal{D}_f and retain \mathcal{D}_r . For example, GD (Liu et al., 2022) reduces the probability
 121 of generating outputs in \mathcal{D}_f by ascending gradients, and introduces another loss to constrain the
 122 deviation. Meanwhile, NPO (Zhang et al., 2024b), inspired by preference optimization (Rafailov
 123 et al., 2023), realizes unlearning by solely using \mathcal{D}_f as negative preferences, ignoring the positive
 124 terms. Other works, such as RMU (Huu-Tien et al., 2024) and LUNAR (Shen et al., 2025), employ
 125 steering-vector-like approaches (Cao et al., 2024) to forcibly modify hidden states and redirect \mathcal{D}_f
 126 toward the inability space. Additionally, SPUL (Bhaila et al., 2024) makes preliminary attempts
 127 in unlearning by adding soft prompts (Li & Liang, 2021; Lester et al., 2021) during inference to
 128 manipulate model responses, but without modifying parameters to achieve essential forgetting.
 129

130 **Model Edit.** LLMs may contain outdated, incorrect or even harmful information (Huang et al.,
 131 2025; Tonmoy et al., 2024). However, similar to unlearning, retraining for knowledge updates is
 132 costly, while fine-tuning overfits for precise scenarios. Thus, the model edit techniques (Wang et al.,
 133 2024; He et al., 2024) are proposed for truthfulness (Huang et al., 2024), and safety (Chen et al.,
 134 2024; Li et al., 2024). Early methods like ROME (Meng et al., 2022a) and MEMIT (Meng et al.,
 135 2022b) introduce the locate-then-edit paradigm by modifying the down-projection matrices in the
 136 LLMs’ Multi-layer Perceptron (MLP) module. AlphaEdit (Fang et al., 2024) further preserves other
 137 knowledge via the null space projection operation. However, recent unlearning surveys like (Liu
 138 et al., 2025) have highlighted challenges including undefined edit objectives if directly applying
 139 editing for unlearning. In fact, editing itself targets at knowledge represented in the (subject, relation,
 140 object) triple formats and modifies the object to a new value (Meng et al., 2022a; Wang et al., 2024; Li
 141 et al., 2025), yet no single object token exists for the abstract concept of unlearning. Our **UniErase**
 142 addresses these fundamental issues by introducing Udit with the unlearning token.

143 **3 PRELIMINARIES**

144 **Notations.** We refer to an LLM with parameters θ as π_θ . The target knowledge for the forgetting
 145 set and retaining set are represented as \mathcal{D}_f and \mathcal{D}_r , respectively, where typical elements of both
 146 are question q and answer a pairs in the form of $d = (q, a)$. In addition, we denote the set of real
 147 numbers as \mathbb{R} , and the set of real number tensors with dimensions (d_1, \dots, d_n) as $\mathbb{R}^{d_1 \times \dots \times d_n}$.

148 **Unlearning Target.** For an LLM π_θ trained with dataset \mathcal{D} , unlearning aims to make the model
 149 forget the contents in \mathcal{D}_f as if it were trained solely on $\mathcal{D} \setminus \mathcal{D}_f$. In a parallel vein, unlearning must
 150 preserve the model’s knowledge in \mathcal{D}_r and even broader knowledge with general capabilities. Similar
 151 to the trade-off between harmless and helpfulness in LLM safety alignment (Varshney et al., 2023),
 152 unlearning involves a balance between the *unlearning efficacy* and *model ability*, formulated as:

$$\pi_\theta^* = \arg \max_{\pi_\theta} \mathbb{E} \left[\sum_{d \in \mathcal{D}_f} \text{Forget}(d; \pi_\theta) + \sum_{d \in \mathcal{D}_r} \text{Ability}(d; \pi_\theta) \right], \quad (1)$$

153 where ‘‘Forget’’ and ‘‘Ability’’ are the standards or metrics for unlearning efficacy and model ability.
 154

155 **Mainstream Unlearning Paradigms.** To achieve the goal in Eq. 1, current FT-based unlearning
 156 design diverse forgetting losses l_f and retaining losses l_r , respectively, sometimes using the original
 157 model π_θ^{ref} as a reference. We unify their loss designs as follows, with β and γ as trade-off weights:

$$\arg \min_{\pi_\theta} = \beta \underbrace{\mathbb{E}_{(q, a) \sim \mathcal{D}_f} [l_f(q | a; \pi_\theta, \pi_\theta^{\text{ref}})]}_{\text{forgetting term}} + \gamma \underbrace{\mathbb{E}_{(q, a) \sim \mathcal{D}_r} [l_r(q | a; \pi_\theta, \pi_\theta^{\text{ref}})]}_{\text{retaining term}}. \quad (2)$$

162 In Eq. 2, the **forgetting term** is designed to make the model forget the contents on \mathcal{D}_f , while the
 163 **retaining term** aims to preserve the knowledge on \mathcal{D}_r . Current methods typically select \mathcal{D}_r to be the
 164 neighboring knowledge of \mathcal{D}_f , which can not encompass diverse general knowledge and abilities. In
 165 Appendix B, we introduce the specific forms of various l_f and l_r in detail.
 166

167 4 PERFORM UNLEARNING EDIT WITH UNLEANRING TOKEN

169 In this section, we first introduce the Unlearning Logical Chain to expound upon the fundamental
 170 principles of **UniErase** (▷ Section 4.1), as demonstrated in Figure 2. Then, we propose the unlearning
 171 token and elaborate on the techniques to obtain it via incorporating a minimal number of parameters
 172 (▷ Section 4.2). Subsequently, we introduce Udit to modify parameters for the unlearning targets (▷
 173 Section 4.3), achieving balanced unlearning performances while supporting precise unlearning.
 174

175 4.1 UNLEARNING LOGICAL CHAIN

177 Given an LLM π_θ , for an input token sequence $q = [x_1 x_2 \dots x_n]$, we assume the output token sequence
 178 is $a = [y_1 y_2 \dots y_m]$. Then we abstract this generation process as a mathematical logic derivation:
 179

$$x_1 x_2 \dots x_n \xrightarrow{\pi_\theta} y_1 \xrightarrow{\pi_\theta} y_2 \xrightarrow{\pi_\theta} \dots \xrightarrow{\pi_\theta} y_m, \quad (3)$$

180 where each $\xrightarrow{\pi_\theta}$ represents generating the next token based on all previously generated tokens.
 181

182 **Proposition 1.** The *Unlearning Token* (denoted as [UNL]) is a novel token, designed to direct
 183 the LLM’s subsequent token generation to specific forgetting expressions. We refer to the token
 184 concatenation operator as \oplus . Then, for any $(q, a) \in \mathcal{D}$, [UNL] satisfies the following property:
 185

$$x_1 x_2 \dots x_n \oplus [\text{UNL}] \xrightarrow{\pi_\theta} y_{\text{idk}} \in \mathcal{D}_{\text{idk}} \quad \wedge \quad x_1 x_2 \dots x_n \xrightarrow{\pi_\theta} a, \quad (4)$$

187 where operation $a \wedge b$ means that both a and b should be satisfied and \mathcal{D}_{idk} contains different token
 188 sequences that express the semantics of forgetting or ignorance. Specifically, Eq. 4 stipulates that the
 189 newly acquired unlearning token should exclusively direct the model toward the forgetting semantic
 190 space when employed as a suffix, while preserving normal knowledge retrieval capabilities otherwise.
 191

In Proposition 1, we have defined the [UNL] meta token. **However, when only q is provided as input, the LLM still generates original normal responses rather than y_{idk} .** To realize unlearning, we need to modify model parameters so that: for any q , its next token prediction is [UNL], thereby internalizing “forgetting q with [UNL]” as the LLM’s inherent knowledge. To this end, we propose:
 192

Proposition 2. *Unlearning Editing* (Udit) modifies only a small set of parameters $\Delta\theta$, enabling the LLM to forget specified knowledge. For $\forall (q, a) \in \mathcal{D}_f$ and $\forall (q', a') \in \mathcal{D} \setminus \mathcal{D}_f$, Udit ensures that:
 193

$$(|\Delta\theta| \ll |\theta|, \quad \theta \leftarrow \theta + \Delta\theta \quad \text{s.t.} \quad x_1 x_2 \dots x_n \xrightarrow{\pi_\theta} [\text{UNL}]) \quad \wedge \quad (q' \xrightarrow{\pi_\theta} a') \quad (5)$$

194 According to Eq. 5, Udit must demonstrate the ability to alter the subsequent token prediction of target
 195 unlearning contents to [UNL] via sparse parameter updates, while maintaining intact knowledge
 196 retrieval and response capabilities for non-target contents.
 197

Derivation: Grounded in the aforementioned propositions, we establish the following *Unlearning Logical Chain*, which directly modifies LLM parameters to accomplish efficient targeted unlearning without compromising the model’s retained knowledge and general capabilities:
 198

$$(q' \xrightarrow{\pi_\theta} a') \quad \wedge \quad (\theta \leftarrow \theta + \Delta\theta \quad \text{s.t.} \quad x_1 x_2 \dots x_n \xrightarrow{\pi_\theta} [\text{UNL}] \xrightarrow{\pi_\theta} y_{\text{idk}} \in \mathcal{D}_{\text{idk}}) \quad (6)$$

200 This chain demonstrates the core spirits of **UniErase**, enabling us to realize unlearning on \mathcal{D}_f via
 201 directing $a \in \mathcal{D}_f$ to y_{idk} , while preserving other untargeted generation $q' \rightarrow a'$.
 202

210 4.2 UNLEARNING TOKEN

212 In this section, we present the specific techniques for deriving the unlearning token that fulfill the
 213 requirements in the Unlearning Logical Chain. In essence, the special token must satisfy three key
 214 criteria: redirecting arbitrary knowledge toward the forgetting space (Eq. 4), maintaining the normal
 215 response generation for other knowledge domains (Eq. 4), and being a generatable token (Eq. 5)
 216 rather than appearing only at the input end like prefix tuning (Li & Liang, 2021; Bhaila et al., 2024).
 217

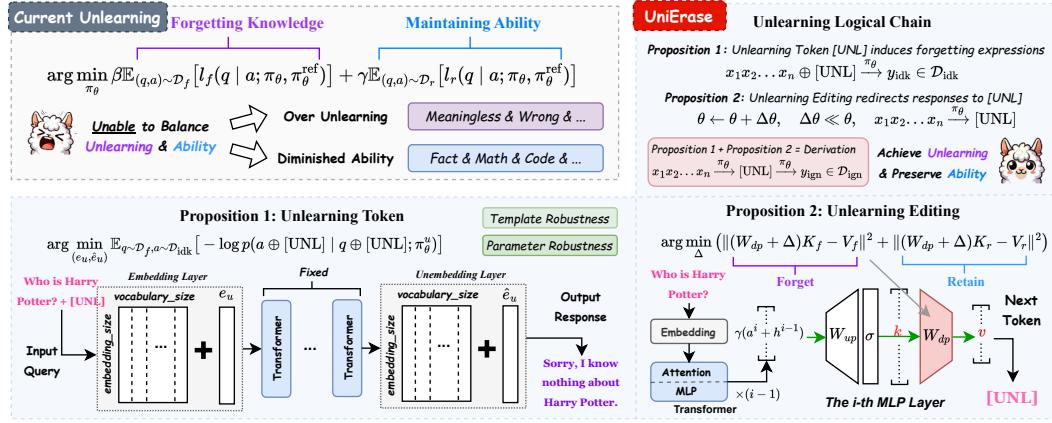


Figure 2: Paradigm of UniErase and comparison with mainstream FT-based unlearning.

4.2.1 OPTIMIZATION TO ATTAIN UNLEARNING TOKEN

Let $E \in \mathbb{R}^{n \times d} \subset \theta$ and $U \in \mathbb{R}^{n \times d}$ denote the embedding and unembedding matrices of the LLM π_θ , respectively, where n represents the vocabulary size and d denotes the model dimension. We expand both E and U by incorporating two additional row vectors: $e_0 \in \mathbb{R}^d$ and $u_0 \in \mathbb{R}^d$ ($E \leftarrow E \cup e_0$ and $U \leftarrow U \cup u_0$), which correspond to the encoding and decoding representations for the unlearning token [UNL], respectively. Subsequently, we optimize the following objective to learn [UNL]:

$$\arg \min_{(e_u, \hat{e}_u)} \mathbb{E}_{(q, a) \sim \mathcal{D}_f, a' \sim \mathcal{D}_{\text{idk}}} [-\log P(a' \oplus [\text{UNL}] \mid q \oplus [\text{UNL}]; \pi_\theta^u) - \log P(a \mid q; \pi_\theta^u)], \quad (7)$$

where $P(x \mid y; \pi_\theta)$ means the conditional probability of π_θ generating output x when giving input y . Eq. 7 ensures that upon encountering [UNL], the model directs the original response a (of input q) to the forgetting space, yielding $a' \in \mathcal{D}_{\text{idk}}$. Concurrently, the LLM is also forced to learn to generate $a' \oplus [\text{UNL}]$, satisfying the requirement specified in Eq. 5 that the LLM possesses the capability to generate [UNL]. Furthermore, since we only introduce additional parameters in E and U , while keeping all other parameters frozen, the aforementioned [UNL] optimization does not interfere with normal response generation for other knowledge domains.

4.2.2 ROBUSTNESS ENHANCEMENT OF UNLEARNING TOKEN

Parameter Robustness. In the Unlearning Logical Chain, Δ in Udit may render the previously learned unlearning token ineffective, so we need to enhance its robustness against slight parameter perturbations. While directly incorporating constraints into Eq. 7 to achieve this is challenging, we leverage the fact that Udit’s target parameters are confined to the down projection matrices W_{dp} within the MLP module. Therefore, in the optimization process of Eq. 7, we introduce the following perturbations in the LLM to improve the parameter robustness of the resulting unlearning tokens:

$$W_{dp}^i \in \theta \leftarrow W_{dp}^i + \alpha f(W_{dp}^i) \cdot W_{dp}^i, \quad (8)$$

where parameter α controls the intensity and f is a function mapping W_{dp}^i to a scalar.

4.3 UNLEARNING EDIT

With [UNL] obtained, we propose Udit to bridge it with the knowledge to be unlearned, ensuring the internalization of unlearning targets. Following previous model editing techniques (Meng et al., 2022a;b), we target at the down projection matrices W_{dp}^i in the MLP module. As shown in Figure 2, the i -th MLP layer performs the following computation (σ and γ are activation functions):

$$h^i = h^{i-1} + a^i + m^i, \quad \underbrace{m^i}_v = W_{dp}^i \underbrace{\sigma(W_{up}^i \gamma(h^{i-1} + a^i))}_k, \quad (9)$$

where h^i , a^i , and m^i represent the hidden state, attention and MLP output in the i -th layer, respectively. Udit exclusively updates $W_{dp}^i \leftarrow \tilde{W}_{dp}^i$ to satisfy the new association $\tilde{W}_{dp}^i k^* = v^*$, where k^*

270 corresponds to the hidden state of targeted knowledge $q \in \mathcal{D}_f$, and v^* is optimized to maximize the
 271 prediction probability of [UNL] as the next token when the input is q . In other words, Udit builds
 272 new knowledge mappings from the original $W_{dp}^i k = v \rightarrow W_{dp}^i k^* = v^*$ to ensure the next token
 273 prediction for $q \in \mathcal{D}_f$ is modified to [UNL] (Eq. 5). The detailed procedures for obtaining these k^*
 274 and v^* for each knowledge-answer pair (q, a) are provided in Appendix C.

275 We construct the unlearning matrices by stacking the corresponding key and value vectors. Specifically,
 276 for each $(q, a) \in \mathcal{D}_f$ to be unlearned, we stack their corresponding unlearning key vectors
 277 k^* and value vectors v^* into matrices (K_f, V_f) , respectively. Similarly, for each $(q, a) \in \mathcal{D}_r$ to be
 278 retained, compile their normal key and value vectors into matrices (K_r, V_r) .

279 Then, we propose the core technique of Udit: by updating $W_{dp}^i \leftarrow W_{dp}^i + \Delta^*$, we construct new
 280 mappings between $q \in \mathcal{D}_f$ and [UNL], while preserving the retrieval of other knowledge ($q \in \mathcal{D}_r$) to
 281 approximate the unlearning objective described in Eq. 1. The parameter update Δ^* is optimized via:
 282

$$\Delta^* = \arg \min_{\Delta} \left(\underbrace{\|(W_{dp} + \Delta)K_f - V_f\|^2}_{\text{forget term}} + \underbrace{\|(W_{dp}^i + \Delta)K_r - V_r\|^2}_{\text{retain term}} \right). \quad (10)$$

283 In Eq. 10, for all $(q, a) \in \mathcal{D}_f$, the **forget term** modifies the first token of the response a to [UNL],
 284 while the **retain term** ensures that all $(q, a) \in \mathcal{D}_r$ retain their original input-output pairs. Through
 285 mathematical derivation (provided in Appendix C), we can *quickly* get its **closed-form solution**:

$$\Delta^* = (V_f - W_{dp}K_f)K_f^T(K_rK_r^T + K_fK_f^T)^{-1}. \quad (11)$$

286 Notably, Eq. 11 accommodates a significantly broader \mathcal{D}_r than FT-based unlearning methods, thereby
 287 preserving a wider range of general knowledge and capabilities. To this end, we include a general
 288 knowledge dataset \mathcal{D}_g within \mathcal{D}_r (with $|\mathcal{D}_g| \gg |\mathcal{D}_f|$), which remains computationally infeasible for
 289 other unlearning approaches (Yuan et al., 2024; Zhang et al., 2024b; Maini et al., 2024).

290 **Null-space Projection Unlearning.** Inspired by AlphaEdit (Fang et al., 2024), we further optimize
 291 Udit into a null space projection formulation to further reduce the impact of unlearning on general
 292 knowledge. Specifically, we obtain the new parameter update ΔP by right-multiplying with matrix
 293 P , which projects Δ onto the null space of K_r such that $\Delta P K_r = 0$. Through straightforward
 294 calculation, the **retain term** in Eq. 10 degenerates to 0 (meaning no influence on the retaining set),
 295 thus we only need to optimize the **forget term**. The new optimization objective can be formulated as:
 296

$$\Delta^* = \arg \min_{\Delta} \left(\underbrace{\|(W_{dp} + \Delta P)K_f - V_f\|^2}_{\text{forget term}} + \underbrace{\|\Delta P\|^2}_{\text{constrain term}} \right), \quad (12)$$

304 where the constraint term is incorporated to limit the magnitude of parameter updates. Through a
 305 similar derivation as presented in Eq. 11, we arrive at the following closed-form solution:
 306

$$\Delta^* = (V_f - W_{dp}K_f)K_f^T P(K_f K_f^T P + I)^{-1}. \quad (13)$$

308 The complete mathematical derivation of the closed-form solution presented in Eq. 13, as well as the
 309 methodology for computing P , is provided in Appendix C.

311 5 EXPERIMENT

313 In this section, we experimentally validate and analyze the effectiveness of our balanced and precise
 314 **UniErase** in the following three scenarios: **(I) Batch Unlearning** (▷ Section 5.2) refers to making
 315 an LLM forget a large forgetting dataset in a single unlearning step. **(II) Sequential Unlearning** (▷
 316 Section 5.3) performs multiple rounds of unlearning tasks, testing whether unlearning methods cause
 317 LLMs to collapse for consecutive scenarios. **(III) Precise Unlearning** (▷ Section 5.4) considers
 318 extremely small (single-entry) forgetting sets to test the precision of unlearning methods.

320 5.1 OVERALL SETTINGS

322 **Datasets & Models.** We consider two widely adopted TOFU (Maini et al., 2024) and RETURN (Liu
 323 et al., 2024) benchmarks for fictitious and real-world knowledge unlearning, respectively. They
 324 both contain serval forgetting sets and corresponding and neighboring retaining sets. Highlighting

324
 325 **Table 1: Batch unlearning performances of different unlearning methods for the TOFU-inject**
 326 **Llama-3.1-8B-Instruct.** “Base” means the original LLM before unlearning. In each row, we **bold**
 327 the maximum value and underline the second largest one. “Forget” and “Retain” refer to the \mathcal{D}_f and
 328 \mathcal{D}_r datasets in TOFU, while “Real” is the real fact test dataset in TOFU.

Model / Category			Untargeted Unlearning (UU)					Targeted Unlearning (TU)				
tofu_Llama-3.1-8B-Instruct_full			GA+GD	GA+KL	NPO+GD	NPO+KL	ME+GD	DPO+GD	DPO+KL	IDK+AP	UniErase (Ours)	
Dataset	Metric	Base	-	NIPS24	-	COLM24	ICLR25	COLM24	-	ICLR25		
Forget	FE	10.95	58.29	62.91	58.31	59.24	78.01	<u>79.31</u>	79.02	58.42	79.43	
	Retain	RE	86.34	27.47	0.00	43.38	31.73	41.92	0.00	0.00	78.03	82.32
	Real	RE	76.44	42.75	0.00	53.88	46.75	57.63	0.00	0.00	<u>74.73</u>	75.18
MMLU	Acc	62.75	<u>62.18</u>	62.66	44.30	57.69	27.85	31.34	19.73	<u>62.18</u>	61.89	
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	<u>51.07</u>	69.80	0.00	0.00	
	Len	8.55	20.14	172.8	511.8	<u>499.7</u>	28.41	7.03	7.41	6.32	8.68	
TriviaQA	Acc	82.49	82.22	80.53	<u>82.44</u>	80.66	78.97	54.17	35.81	80.47	82.75	
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	<u>26.89</u>	50.46	0.00	0.00	
	Len	9.53	13.77	43.24	512.0	<u>492.0</u>	27.44	7.87	7.85	7.96	9.53	
Human-Eval	Acc	56.10	<u>54.27</u>	64.02	0.07	23.78	0.00	0.00	0.00	48.78	<u>54.27</u>	
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	<u>72.57</u>	85.98	0.00	0.00	
	Len	61.53	66.85	88.46	316.6	<u>205.7</u>	18.91	22.26	15.36	60.74	61.98	
GSM8k	Acc	69.37	<u>75.36</u>	77.71	53.53	56.33	38.59	0.00	0.00	59.14	<u>71.57</u>	
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	<u>100.0</u>	100.0	0.00	0.00	
	Len	99.48	147.7	189.7	511.6	<u>468.3</u>	97.15	8.00	8.00	72.38	100.4	
Retain Average (RA)		72.25	57.38	47.49	46.27	49.49	40.83	14.25	9.26	<u>67.22</u>	71.33	
Retain Ratio (%)		100.0	79.41	65.73	64.04	68.50	56.51	19.72	12.81	<u>93.04</u>	98.73	
Balance = (FE+RA)/2		41.60	57.83	55.20	52.29	54.37	59.42	46.78	44.14	<u>62.82</u>	75.38	

344 the retention for general abilities, we employ MMLU (Hendrycks et al., 2020) for fact answering,
 345 TriviaQA (Joshi et al., 2017) for context comprehension, GSM8k (Cobbe et al., 2021) for math
 346 reasoning, and Human-Eval (Chen et al., 2021) for coding. Following previous works (Maini et al.,
 347 2024; Yuan et al., 2024), we perform unlearning on the Llama-3.1-8B-Instruct and Llama-3.2-3B-
 348 Instruct (Touvron et al., 2023). For fictitious knowledge unlearning, we apply the model versions¹
 349 fine-tuned on TOFU. More details of these datasets and models are demonstrated in Appendix D.

350 **Metrics.** We consider multiple metrics to comprehensively evaluate performances on unlearning and
 351 retention. For unlearning efficacy, in line with prior research (Maini et al., 2024; Zhang et al., 2024b;
 352 Yuan et al., 2024), we employ ROUGE (word-level match), Probability (ground truth likelihood),
 353 Truth Ratio (correct-incorrect preference), Token Entropy (generation diversity), Similarity (semantic
 354 similarity), and Entailment Score (factual correctness) (Ferrández et al., 2008). To obtain an integrated
 355 indicator, we calculate the arithmetic mean of these metrics on \mathcal{D}_f as the overall **Forgetting Efficacy**
 356 (**FE**) (Yuan et al., 2024). For neighboring knowledge retention on \mathcal{D}_r , we similarly apply the above
 357 metrics and compute their harmonic mean to be the **Retaining Efficacy (RE)** (Yuan et al., 2024).
 358 Besides, for general abilities, we report the accuracy (Acc), “I do not know”-like response ratio (Idk),
 359 and average response token number (Len). Besides, **Retaining Average (RA)** is the mean of RE and
 360 all Accs, as the final metric for retention. We provide the details of these metrics in Appendix E.

361 **Baselines.** To demonstrate the effectiveness of our proposed paradigm, we evaluate **UniErase**
 362 against 8 FT-based unlearning baselines. Our comparison includes four primary forgetting losses:
 363 GA (Liu et al., 2022; Yao et al., 2024), DPO (Maini et al., 2024), NPO (Zhang et al., 2024b), and
 364 IDK (Yuan et al., 2024). These forgetting losses are combined with various retaining loss functions,
 365 including KL (Maini et al., 2024), GD (Liu et al., 2022), and ME (Yuan et al., 2024), resulting in the
 366 following baseline configurations: GA+GD, GA+KL, NPO+GD, NPO+KL, ME+GD, DPO+GD,
 367 DPO+KL, and IDK+AP. The specific parameter settings of all methods are detailed in Appendix F.

5.2 BATCH UNLEARNING

370 We perform batch unlearning on the TOFU and RETURN forgetting datasets, eliminating 400
 371 fictitious and real-world knowledge entries in a single batch operation. The experimental results are
 372 presented in Table 1 and Figure 3. We provide supporting results of another LLM in Appendix G.

373 **Obs. 1: UniErase achieves dual-high, near-lossless and the most balanced unlearning performances, preserving 98.73% of LLMs’ general abilities.** As shown in Table 1, **UniErase** attains
 374 the highest FE of 79.43 on \mathcal{D}_f , outperforming all FT-based baselines. Concurrently, it attains an
 375 RE of 82.32 on \mathcal{D}_r , surpassing the second-best method (IDK+AP) by 4.29, while **UniErase**’s FE
 376

377 ¹https://huggingface.co/open-unlearning/tofu_Llama-3.1-8B-Instruct_full

378 is significantly higher by 35.96%. Regarding general capabilities, **UniErase** demonstrates superior
 379 performance, achieving the highest and second-highest accuracy in comprehension and coding tasks,
 380 respectively. For MMLU reasoning, it incurs only a 1.37% performance drop, matching with the best
 381 baselines (GA+KL, IDK+AP). From a holistic evaluation perspective encompassing both forgetting
 382 and retaining, **UniErase** wins the highest balance score of 78.38, which is $1.15\times$ and $1.71\times$ higher
 383 than the second-best and worst-performing methods, respectively. Notably, according to Figure 3,
 384 these observations also hold true on RETURN benchmark, validating the effectiveness of **UniErase**.
 385

386 **Obs. 2: UniErase is *entirely immune to the over-unlearning problem*.** While Targeted Un-
 387 learning (TU) (Yuan et al., 2024) mitigates unintended behaviors present in Untargeted Unlearning
 388 (UU) (Zhang et al., 2024b) by explicitly specifying answers for the knowledge to be forgotten, it
 389 introduces a critical over-forgetting issue. As demonstrated in Table 1, all UU baselines maintain
 390 normal response patterns across the four general ability datasets, consistently achieving $\text{Idk} = 0$. In
 391 stark contrast, both DPO-based TU methods exhibit substantial over-forgetting, with average Idk
 392 scores of 62.63 and 76.56, respectively. The severity of this issue is most pronounced on GSM8k,
 393 where Idk reaches 100.0. This excessive forgetting severely compromises the retention of the LLM’s
 394 knowledge and capabilities post-unlearning, as evidenced by dramatically reduced RA scores of
 395 14.25 and 9.26. Remarkably, **UniErase** completely eliminates this problem, maintaining $\text{Idk}=0$
 396 across all datasets while simultaneously achieving the highest FE score of 79.43 among all baselines.
 397

398 **Obs. 3: UniErase does not trigger unexpected behaviors**
 399 **such as inflated response length.** The preceding discussion
 400 underscores the issue of unintended behaviors in UU methods,
 401 and Table 1 provides concrete evidence of this phenomenon
 402 through response length analysis. For the four datasets eval-
 403 uating general capabilities, we impose a maximum genera-
 404 tion length of 512 tokens. While TU methods (including our
 405 **UniErase**) maintain response lengths comparable to the base
 406 model—with average token counts on MMLU ranging between
 407 6.32 and 8.68—all UU methods demonstrate varying degrees
 408 of response length inflation. The most pronounced cases in-
 409 volve the two NPO-based methods, where NPO+GD generates
 410 responses up to $50\times$ longer than the base model on MMLU
 411 according to the Len metric, while paradoxically experiencing
 412 performance degradation (62.75→44.3). This indicates that
 413 UU baselines consistently generate responses that reach the
 414 maximum token limit by padding with uninformative contents.
 415

5.3 SEQUENTIAL UNLEARNING

416 Sequential unlearning scenarios evaluate the robustness of unlearning methods by testing whether
 417 they cause forgetting performance degradation and model collapse (Yuan et al., 2024). We employ
 418 the TOFU dataset containing 4000 fictitious knowledge entries in total and partition its forgetting sets
 419 of 400 and 3600 data points into 10 and 9 equal groups, respectively. Then we perform sequential
 420 unlearning on one group each time with different unlearning methods and the corresponding retaining
 421 sets consist of the remaining 3600 and 400 data points, respectively. The results for Llama-3.1-8B-
 422 Instruct are presented in Figure 4 and 5, with more provided in Appendix G.
 423

424 **Obs. 4: UniErase exhibits exceptional stability for continuous LLM unlearning while preserv-
 425 ing model capabilities.** As illustrated in the middle of Figure 4, the blue baselines achieve higher FE
 426 across multiple rounds; however, the left section reveals this comes at a substantial cost to general
 427 capabilities—with performances dropping to approximately 25.0 (DPO+KL, DPO+GD) or even 0
 428 (GA+GD, GA+KL). Conversely, the green baselines and our **UniErase** exhibit moderately lower
 429 per-round FE scores but preserve significantly more knowledge and capabilities, maintaining Balance
 430 scores of approximately 55.0 and 75.0, respectively. Notably, **UniErase** consistently outperforms
 431 the green baselines across all metrics while sustaining this balance. On average (light dashed line),
 432 **UniErase** achieves a RA score that is $1.5\times$ to $1.8\times$ higher, while its FE exceeds the green base-
 433 lines by 14.29%, showing dual-high and more balanced unlearning performances. Furthermore,
 434 Figure 5 demonstrates that **UniErase** achieves the highest MMLU accuracy with minimal variance,
 435 reinforcing this observation when scaling the sequential batch from 40 → 400.

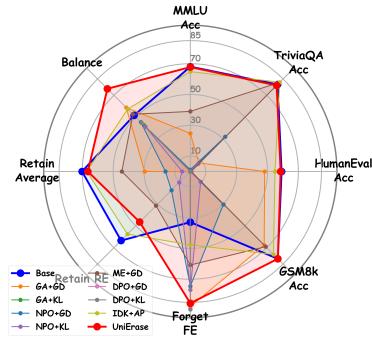


Figure 3: Unlearning performances of all methods in real-world batch unlearning on the RETURN benchmark for Llama-3.1-8B-Instruct.

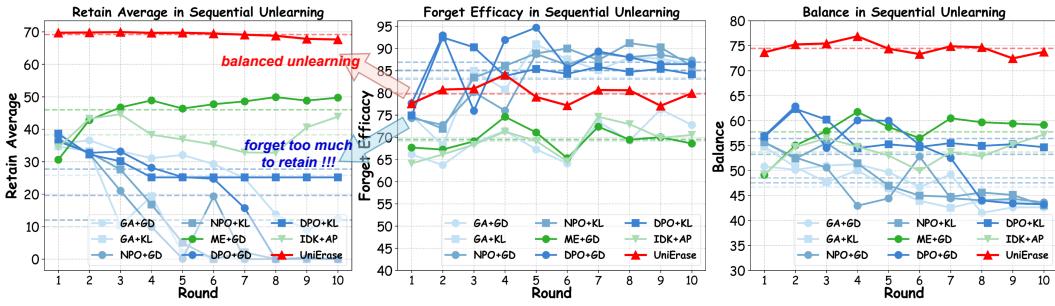


Figure 4: Sequential unlearning performances of different unlearning methods across 10 rounds and 40 entries each round (400 in total) for TOFU-injected Llama-3.1-8B-Instruct.

Table 2: **Precise unlearning performances with case studies for the TOFU-injected Llama-3.1-8B-Instruct.** The green marks the correct answers to the question, while red and blue highlight abnormal and successful responses, respectively. Maximum values in each column are in **bold**. Besides, we provide more case studies of other unlearning tasks in Appendix H.

Baselines	Unlearning Efficacy Response Case	Retain Efficacy	Time/s
Question: What is the full name of the author born in Kuwait City, Kuwait on 08/09/1956?			
Answer: The full name of ... is Basil Mahfouz Al-Kuwaiti . – Model: <i>tofu_Llama-3.1-8B-Instruct_full</i>			
GA+GD	The author author ... is named Leila Al-Sabah .	71.55	~165
GA+KL	The author author born on ... is named Leila Al-Sabah .	71.49	~173
NPO+GD	The author born in ... is named Abkar S. Ahmed .	69.71	~174
NPO+KL	The author born in ... is named Abkar Al-Sabah .	69.67	~177
ME+GD	foo	73.28	~168
DPO+GD	The ... in Kuwait City, Kuwait on 08/09/1956 is not provided .	72.92	~189
DPO+KL	The ... in Kuwait City, Kuwait on 08/09/1956 is not provided .	72.94	~192
IDK+AP	I've got no idea about that.	72.84	~180
UniErase	That's beyond my current knowledge base .	73.63	~12

5.4 PRECISE UNLEARNING

Given the huge computational overhead of FT-based unlearning when executing precise unlearning at scale—where each target knowledge requires fine-tuning on the full \mathcal{D}_r containing 3600 data points—we randomly sampled 20 knowledge items from TOFU as the individual unlearning targets. In Table 2, with representative case studies, we report the average Retain Efficacy and time cost.

Obs. 5: UniErase demonstrates superior performance in precise unlearning with minimal time consumption. As shown in Table 2, among the UU baselines, the post-unlearning LLMs exhibit hallucination and model collapse phenomena. Specifically, the GA-based and NPO-based baselines generate incorrect names (**Leila Al-Sabah**) in their responses, while ME+GD leads to complete model collapse, producing nonsensical character outputs. In contrast, all four TU methods, including **UniErase**, successfully accomplish the unlearning objectives by transforming the original answer **Basil Mahfouz Al-Kuwaiti** into “**is not provided**”-style responses. **UniErase** further distinguishes itself by the highest RE score of 73.63 and requiring substantially lower computational overhead—completing the unlearning task in less than $\frac{1}{10}$ the time required by other baselines.

6 CONCLUSION

In this work, we propose **UniErase**, a novel paradigm for LLM unlearning that operates by directly modifying internal model parameters. **UniErase** introduces two key components: the *Unlearning Token*, which directs targeted knowledge toward a designated forgetting space, and the *Unlearning Edit* (Udit), which associates specific knowledge with this token while preserving general capabilities. Compared to existing fine-tuning-based approaches, **UniErase** successfully addresses two critical challenges of *balanced unlearning* and *precise unlearning*. To evaluate our paradigm, employing Llama family LLMs, we compare against 8 baseline methods and provide a comprehensive assessment of post-unlearning model performance on 4 general capability datasets. **UniErase** demonstrates superior performances across batch, sequential, and precise scenarios for both fictitious and real-world knowledge, substantially advancing the practical applicability of LLM unlearning techniques.

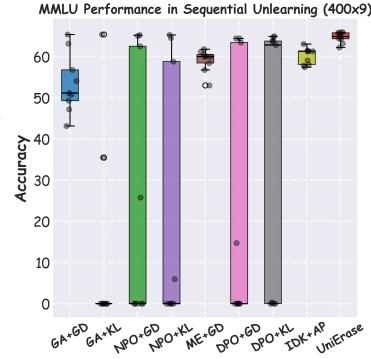


Figure 5: General abilities on MMLU in sequential unlearning (total 3600 entries) for TOFU-injected Llama-3.1-8B-Instruct.

486
487
ETHICS STATEMENT488
489
490
491
This work presents fundamental machine learning research. We have carefully considered its ethical
implications and confirm that this study adheres to the ICLR Code of Ethics. The data used consists
of publicly available or ethically compliant benchmark datasets. Potential societal impacts of the
research are discussed in Section 1.492
493
494
REPRODUCIBILITY STATEMENT495
496
497
498
499
To facilitate the reproducibility of this research, we have provided necessary details in the appendices.
This includes sufficient descriptions of the experimental setup (Appendix F), key implementation
details of our methods (Appendix C), and essential information of used datasets (Appendix D). Rele-
vant code and resources supporting the findings of this paper is publicly available in the anonymous
code base mentioned in the abstract.500
501
502
REFERENCES503
504
Karuna Bhaila, Minh-Hao Van, and Xintao Wu. Soft prompting for unlearning in large language
models. *arXiv preprint arXiv:2406.12038*, 2024.505
506
507
508
Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE symposium
on security and privacy (SP)*, pp. 141–159. IEEE, 2021.509
510
511
512
Yuanpu Cao, Tianrong Zhang, Bochuan Cao, Ziyi Yin, Lu Lin, Fenglong Ma, and Jinghui Chen.
Personalized steering of large language models: Versatile steering vectors through bi-directional
preference optimization. *Advances in Neural Information Processing Systems*, 37:49519–49551,
2024.513
514
515
516
Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM
transactions on intelligent systems and technology*, 15(3):1–45, 2024.517
518
519
Canyu Chen, Baixiang Huang, Zekun Li, Zhaorun Chen, Shiyang Lai, Xiong Xiao Xu, Jia-Chen Gu,
Jindong Gu, Huaxiu Yao, Chaowei Xiao, et al. Can editing llms inject harm? *arXiv preprint
arXiv:2407.20224*, 2024.520
521
522
523
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.524
525
526
Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. Graph
unlearning. In *Proceedings of the 2022 ACM SIGSAC conference on computer and communications
security*, pp. 499–513, 2022.527
528
529
Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. *arXiv preprint arXiv:2110.14168*, 2021.531
532
533
Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.534
535
536
Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. *arXiv
preprint arXiv:2410.02355*, 2024.537
538
539
Óscar Ferrández, Rafael Muñoz, and Manuel Palomar. Te4av: Textual entailment for answer
validation. In *2008 International Conference on Natural Language Processing and Knowledge
Engineering*, pp. 1–8. IEEE, 2008.

540 Jiahui Geng, Qing Li, Herbert Woisetschlaeger, Zongxiong Chen, Yuxia Wang, Preslav Nakov, Hans-
 541 Arno Jacobsen, and Fakhri Karray. A comprehensive survey of machine unlearning techniques for
 542 large language models. *arXiv preprint arXiv:2503.01854*, 2025.

543 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 544 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 545 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

546 Yingqing He, Zhaoyang Liu, Jingye Chen, Zeyue Tian, Hongyu Liu, Xiaowei Chi, Runtao Liu,
 547 Ruibin Yuan, Yazhou Xing, Wenhai Wang, et al. Llms meet multimodal generation and editing: A
 548 survey. *arXiv preprint arXiv:2405.19334*, 2024.

549 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 550 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 551 arXiv:2009.03300*, 2020.

552 Baixiang Huang, Canyu Chen, Xiong Xiao Xu, Ali Payani, and Kai Shu. Can knowledge editing really
 553 correct hallucinations? *arXiv preprint arXiv:2410.16251*, 2024.

554 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 555 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 556 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information
 557 Systems*, 43(2):1–55, 2025.

558 Dang Huu-Tien, Trung-Tin Pham, Hoang Thanh-Tung, and Naoya Inoue. On effects of steering
 559 latent representation for large language model unlearning. *arXiv preprint arXiv:2408.06223*, 2024.

560 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 561 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

562 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
 563 Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan. Llm
 564 post-training: A deep dive into reasoning large language models. *arXiv preprint arXiv:2502.21321*,
 565 2025.

566 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 567 tuning. *arXiv preprint arXiv:2104.08691*, 2021.

568 Shichen Li, Zhongqing Wang, Zheyu Zhao, Yue Zhang, and Peifeng Li. Exploring model editing
 569 for llm-based aspect-based sentiment classification. In *Proceedings of the AAAI Conference on
 570 Artificial Intelligence*, volume 39, pp. 24467–24475, 2025.

571 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv
 572 preprint arXiv:2101.00190*, 2021.

573 Yanzhou Li, Tianlin Li, Kangjie Chen, Jian Zhang, Shangqing Liu, Wenhan Wang, Tianwei Zhang,
 574 and Yang Liu. Badedit: Backdooring large language models by model editing. *arXiv preprint
 575 arXiv:2403.13355*, 2024.

576 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 577 branches out*, pp. 74–81, 2004.

578 Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In *Conference on
 579 Lifelong Learning Agents*, pp. 243–254. PMLR, 2022.

580 Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao,
 581 Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large language
 582 models. *Nature Machine Intelligence*, pp. 1–14, 2025.

583 Zhenhua Liu, Tong Zhu, Chuanyuan Tan, and Wenliang Chen. Learning to refuse: Towards mitigating
 584 privacy risks in llms. *arXiv preprint arXiv:2407.10058*, 2024.

585 Weikai Lu, Ziqian Zeng, Jianwei Wang, Zhengdong Lu, Zelin Chen, Huiping Zhuang, and Cen Chen.
 586 Eraser: Jailbreaking defense in large language models via unlearning harmful knowledge. *arXiv
 587 preprint arXiv:2404.05880*, 2024.

594 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task of
 595 fictitious unlearning for llms. *arXiv preprint arXiv:2401.06121*, 2024.
 596

597 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 598 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022a.
 599

600 Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 601 memory in a transformer. *arXiv preprint arXiv:2210.07229*, 2022b.
 602

603 Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew,
 604 Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. *arXiv preprint
 605 arXiv:2209.02299*, 2022.

606 Youyang Qu, Ming Ding, Nan Sun, Kanchana Thilakarathna, Tianqing Zhu, and Dusit Niyato.
 607 The frontier of data erasure: Machine unlearning for large language models. *arXiv preprint
 608 arXiv:2403.15779*, 2024.

609 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 610 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 611 in Neural Information Processing Systems*, 36:53728–53741, 2023.

612 William F Shen, Xinchi Qiu, Meghdad Kurmanji, Alex Jacob, Lorenzo Sani, Yihong Chen, Nicola
 613 Cancedda, and Nicholas D Lane. Lunar: Llm unlearning via neural activation redirection. *arXiv
 614 preprint arXiv:2502.07218*, 2025.

615 Nianwen Si, Hao Zhang, Heyu Chang, Wenlin Zhang, Dan Qu, and Weiqiang Zhang. Knowledge
 616 unlearning for llms: Tasks, methods, and challenges. *arXiv preprint arXiv:2311.15766*, 2023.
 617

618 Pratiksha Thaker, Shengyuan Hu, Neil Kale, Yash Maurya, Zhiwei Steven Wu, and Virginia
 619 Smith. Position: Llm unlearning benchmarks are weak measures of progress. *arXiv preprint
 620 arXiv:2410.02879*, 2024.

621 Guiyao Tie, Zeli Zhao, Dingjie Song, Fuyang Wei, Rong Zhou, Yurou Dai, Wen Yin, Zhejian Yang,
 622 Jiangyue Yan, Yao Su, et al. A survey on post-training of large language models. *arXiv preprint
 623 arXiv:2503.06072*, 2025.

624 SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das.
 625 A comprehensive survey of hallucination mitigation techniques in large language models. *arXiv
 626 preprint arXiv:2401.01313*, 6, 2024.

627 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 628 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 629 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

630 Neeraj Varshney, Pavel Dolin, Agastya Seth, and Chitta Baral. The art of defending: A systematic
 631 evaluation and analysis of llm defense strategies on safety and over-defensiveness. *arXiv preprint
 632 arXiv:2401.00287*, 2023.

633 Akshaj Kumar Veldanda, Shi-Xiong Zhang, Anirban Das, Supriyo Chakraborty, Stephen Rawls,
 634 Sambit Sahu, and Milind Naphade. Llm surgery: Efficient knowledge unlearning and editing in
 635 large language models. *arXiv preprint arXiv:2409.13054*, 2024.

636 Kun Wang, Guibin Zhang, Zhenhong Zhou, Jiahao Wu, Miao Yu, Shiqian Zhao, Chenlong Yin, Jinhu
 637 Fu, Yibo Yan, Hanjun Luo, et al. A comprehensive survey in llm (-agent) full stack safety: Data,
 638 training and deployment. *arXiv preprint arXiv:2504.15585*, 2025a.

639 Qizhou Wang, Jin Peng Zhou, Zhanke Zhou, Saebyeol Shin, Bo Han, and Kilian Q Weinberger.
 640 Rethinking llm unlearning objectives: A gradient perspective and go beyond. *arXiv preprint
 641 arXiv:2502.19301*, 2025b.
 642

643 Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
 644 editing for large language models: A survey. *ACM Computing Surveys*, 57(3):1–37, 2024.

648 Wenyu Wang, Mengqi Zhang, Xiaotian Ye, Zhaochun Ren, Zhumin Chen, and Pengjie Ren. Uipe:
649 Enhancing llm unlearning by removing knowledge related to forgetting targets. *arXiv preprint*
650 *arXiv:2503.04693*, 2025c.

651 652 Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
653 Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. *arXiv preprint*
654 *arXiv:2109.01652*, 2021.

655 656 Yi Xu. Machine unlearning for traditional models and large language models: A short survey. *arXiv*
657 *preprint arXiv:2404.01206*, 2024.

658 659 Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, Yue Zhang, Zhaochun Ren, and Xiuzhen Cheng.
660 On protecting the data privacy of large language models (llms): A survey. *arXiv preprint*
arXiv:2403.05156, 2024.

661 662 Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. *Advances in Neural*
Information Processing Systems, 37:105425–105475, 2024.

663 664 Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, and Min Lin. A closer look
665 at machine unlearning for large language models. *arXiv preprint arXiv:2410.08109*, 2024.

666 667 Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
668 Shengyu Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge editing
for large language models. *arXiv preprint arXiv:2401.01286*, 2024a.

669 670 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
671 collapse to effective unlearning. *arXiv preprint arXiv:2404.05868*, 2024b.

672 673 Zhexin Zhang, Junxiao Yang, Pei Ke, Shiyao Cui, Chujie Zheng, Hongning Wang, and Minlie Huang.
674 Safe unlearning: A surprisingly effective and generalizable solution to defend against jailbreak
attacks. *arXiv preprint arXiv:2407.02855*, 2024c.

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A FUTURE WORKS**
 703

704 In addition to further refining **UniErase** by addressing the two minor issues mentioned above,
 705 future work could focus on the following aspects: (I) Systematically exploring the transferability of
 706 unlearning tokens across different forgetting sets, such as directly applying unlearning tokens learned
 707 on fictitious knowledge to unlearning editing of real-world knowledge. Furthermore, investigating
 708 whether training different unlearning tokens for data from different distributions could achieve better
 709 forgetting results. (II) Combining **UniErase** with more, even future, model editing or fine-tuning
 710 methods to further enhance its applicability in LLM unlearning tasks. More importantly, the core
 711 idea of combining an abstract token (unlearning token) with model editing methods may be explored
 712 in other LLM alignment direction, such as helpfulness and safety.

713 **B UNLEARNING LOSSES**
 714

715 In this section, we provide a detailed introduction to the losses used in previous fine-tuning-based
 716 unlearning methods (which also serve as baselines in the experiments) with their forgetting losses \mathcal{L}_f
 717 and the knowledge retaining losses \mathcal{L}_r . We denote the forgetting set as \mathcal{D}_f , the retaining set as \mathcal{D}_r ,
 718 and “I do not know”-like ignorant expressions as set \mathcal{D}_{idk} .

719 **Forgetting Loss 1: Gradient Ascent (GA):**

$$\mathcal{L}_{\text{GA}}(\mathcal{D}_f; \pi_\theta) = -\mathbb{E}_{(q, a) \sim \mathcal{D}_f} [-\log p(q | a; \pi_\theta)]. \quad (14)$$

720 Eq 14 is one of the simplest and straightforward methods for untargeted unlearning. Instead of
 721 minimizing the loss like in training or fine-tuning, GA does the opposite—it maximizes the loss on
 722 \mathcal{D}_f . Mathematically, it updates the model parameters θ to increase the prediction loss $l(y|x; \theta)$ for
 723 \mathcal{D}_f , effectively “unlearning” the associated patterns.

724 **Forgetting Loss 2: “I Do not Know” Optimization (IDK):**

$$\mathcal{L}_{\text{IDK}}(\mathcal{D}_f, \mathcal{D}_{\text{idk}}; \pi_\theta) = \mathbb{E}_{q \sim \mathcal{D}_f, a \sim \mathcal{D}_{\text{idk}}} [-\log p(a | q; \pi_\theta)] \quad (15)$$

725 Eq 15 redefines machine unlearning by framing it as an instruction-tuning task. Instead of directly
 726 removing unwanted data like GA, it relabels queries in \mathcal{D}_f with randomized rejection responses (e.g.,
 727 “I don’t know”) drawn from a predefined collection \mathcal{D}_{idk} containing 100 such templates.

728 **Forgetting Loss 3: Direct Preference Optimization (DPO):**

$$\mathcal{L}_{\text{DPO}}(\mathcal{D}_f; \pi_\theta) = \mathbb{E}_{(q, a_w) \sim \mathcal{D}_f, a_l \sim \mathcal{D}_{\text{idk}}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(a_w | q)}{\pi_\theta^{\text{ref}}(a_w | q)} - \beta \log \frac{\pi_\theta(a_l | q)}{\pi_\theta^{\text{ref}}(a_l | q)} \right) \right], \quad (16)$$

729 where a_w and a_l are the original and “I do not know”-like responses, respectively. Eq 16 applies the
 730 standard DPO loss (Rafailov et al., 2023) to unlearning tasks by framing it as a preference optimization
 731 problem. Specifically, it treats answers from \mathcal{D}_f as negative (undesired) samples and pairs them with
 732 rejection templates from \mathcal{D}_{idk} as positive (preferred) samples. This contrastive approach fine-tunes the
 733 model to align responses away from \mathcal{D}_f while reinforcing desired behaviors through ignorance-based
 734 guidance.

735 **Forgetting Loss 4: Negative Preference Optimization (NPO):**

$$\mathcal{L}_{\text{NPO}}(\mathcal{D}_f; \pi_\theta) = -\frac{2}{\beta} \mathbb{E}_{(q, a) \sim \mathcal{D}_f} \left[\log \sigma \left(-\beta \log \frac{p(a | q; \pi_\theta)}{p(a | q; \pi_\theta^{\text{ref}})} \right) \right]. \quad (17)$$

736 Eq 17 is an adaptation of Eq 16 that also frames unlearning as a preference optimization task. Unlike
 737 DPO, which balances both preferred and dispreferred responses, NPO specifically targets undesired
 738 outputs by treating samples from \mathcal{D}_f as negative (non-preferred) examples. It simplifies the DPO loss
 739 function by removing the positive terms, focusing solely on minimizing the likelihood of generating
 740 these undesirable responses.

741 **Forgetting Loss 5: Maximizing Entropy (ME):**

$$\mathcal{L}_{\text{ME}}(\mathcal{D}_f; \theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}_f} \left[\frac{1}{T} \sum_{t=1}^T \text{KL}(P_t \| U_{[K]}) \right], \quad (18)$$

756 where $P_t = p(a'_t | a'_{<t}; \pi_\theta)$ is the predicted probability for the t -th token in $a' = a \circ q$ and $\mathcal{U}_{[K]}$ is a
 757 uniform distribution over the vocabulary of size K , where each value is $1/K$. Eq 18 aligns the LLM's
 758 predictions on \mathcal{D}_f with those of a randomly initialized model, which inherently lacks knowledge of
 759 the data. Concretely, it minimizes the KL divergence between the model's token-wise predictions and
 760 a uniform distribution (where each token has probability $1/K$, for vocabulary size K).
 761

762 Retaining Loss 1: Gradient Descent (GD):

$$763 \mathcal{L}_{\text{GD}}(\mathcal{D}_r; \pi_\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}_r} [-\log p(a | q; \pi_\theta)]. \quad (19)$$

764 Eq 19, as a straightforward way to preserve knowledge, simply uses the prediction loss to perform
 765 gradient descent on the retaining set \mathcal{D}_r .
 766

767 Retaining Loss 2: Kullback-Leibler Divergence (KL):

$$768 \mathcal{L}_{\text{KL}}(\mathcal{D}_r; \pi_\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}_r} [\text{KL}(p(a | q; \pi_\theta) \| p(a | q; \pi_\theta^{\text{ref}}))] \quad (20)$$

770 Eq 20 is designed to minimize the KL divergence between the unlearning model's output distribution
 771 and the reference model's output distribution on the retaining set \mathcal{D}_r .
 772

773 Retaining Loss 3: Answer Preservation (AP):

$$774 \mathcal{L}_{\text{AP}}(\mathcal{D}_r, \mathcal{D}_{\text{idk}}; \pi_\theta) = -\frac{1}{\beta} \mathbb{E}_{(q, a) \sim \mathcal{D}_r, a' \sim \mathcal{D}_{\text{idk}}} \left[\log \sigma \left(-\beta \log \frac{p(a' | q; \pi_\theta)}{p(a | q; \pi_\theta)} \right) \right] \quad (21)$$

775 Eq 21 attempts to reduce the probability of the rejection template and maintain the probability of the
 776 original answer. It bears some resemblance to Eq 16 in form, but, without using a reference model, it
 777 serves as a regularization term rather than being designed for forgetting.
 778

780 C UNLEARNING EDITING DETAILS

781 C.1 METHODS TO GET k^* AND v^* PAIR

782 In fact, model editing treats a piece of knowledge as a subject-relation-object triple (s, r, o) , where
 783 an edit aims to modify (s, r, o) to (s, r, o^*) . For example, changing "the capital of France from Paris
 784 to Beijing." Notably, for unlearning editing, we have $q = s \oplus r, a = o$.
 785

786 Suppose we are using unlearning editing to modify the l^* -th Transformer in the LLM G . The targeted
 787 unlearning data is $d = (q, a) \in \mathcal{D}_f$ and we aim to change $a \rightarrow [\text{UNL}]$. Thus, we extract s from q ,
 788 and have $o = a$ and $o^* = [\text{UNL}]$. For each (q, a) , to get the corresponding k^* and v^* :
 789

790 Sampling to get k^* :

$$791 k_* = \frac{1}{N} \sum_{j=1}^N k(x_j + s), \quad k(x) = \sigma \left(W_{\text{up}}^{(l^*)} \gamma \left(a_{[x],i}^{(l^*)} + h_{[x],i}^{(l^*-1)} \right) \right), \quad (22)$$

792 where x_j is a given prefix token sequence (length 2–10), while i is the position of the subject's last
 793 token. Beside, $\sigma, W_{\text{up}}^{(l^*)}$ and γ are the same with the notations in the main text. To construct a stable
 794 representation of the subject in the model's internal activations, Eq 22 defines the lookup key k^* by
 795 averaging the MLP inputs at the final token of the subject s across multiple contextualized examples.
 796 The key k^* is computed as the mean of these activations, where each individual $k(x)$ derives from
 797 the MLP's nonlinear projection of the summed residual stream $a_{[x],i}^{(l^*)}$ and previous layer's hidden state
 798 $h_{[x],i}^{(l^*-1)}$ at the i -th position when the input of G is x . This averaging mitigates context-dependent
 799 variability, yielding a more reliable subject-specific key for subsequent operations.
 800

801 Optimizing to get v^* :

$$802 v^* = \arg \min_v \frac{1}{N} \sum_{j=1}^N \underbrace{-\log P_{G(m_i^{(l^*)} := v)}[o^* | x_j + q]}_{\text{Maximizing } o^* \text{ probability}} + \underbrace{D_{\text{KL}} \left(P_{G(m_i^{(l^*)} := v)}[x | q'] \| P_G[x | q'] \right)}_{\text{Controlling essence drift}}, \quad (23)$$

810 where $G(m_i^{(l^*)} := v)$ means replacing the l^* -th MLP's output m with v , while $q \in \mathcal{D}_f$ and $q' \in \mathcal{D}_r$.
 811 Eq 23 selects an optimal vector v^* to encode new factual relations (r, o^*) by minimizing an objective
 812 function with two components: (1) maximizing the model's prediction probability of target object o^*
 813 when m is substituted at the subject's final token position, and (2) preserving the subject's essential
 814 properties in \mathcal{D}_r by minimizing KL divergence of predictions for generic prompts. This vector
 815 intervention approach modifies model behavior without weight updates, using random prefix contexts
 816 x_j represents the new property when injected at the targeted MLP module.

817 C.2 CLOSE-FORMED SOLUTION FOR UNLEARNING EDITING

818 We aim to solve the following optimization problem describe in Eq 10:

$$822 \Delta^* = \arg \min_{\Delta} \left(\underbrace{|(W_{dp} + \Delta)K_f - V_f|^2}_{\text{forget term}} + \underbrace{|(W_{dp} + \Delta)K_r - V_r|^2}_{\text{retain term}} \right). \quad (24)$$

823 **Step 1: Problem Reformulation.** First, we expand the squared Frobenius norms:

$$826 J(\Delta) = \|(W_{dp} + \Delta)K_f - V_f\|^2 + \|(W_{dp} + \Delta)K_r - V_r\|^2 \quad (25)$$

$$827 = \text{tr}[((W_{dp} + \Delta)K_f - V_f)^\top ((W_{dp} + \Delta)K_f - V_f)] \quad (26)$$

$$829 + \text{tr}[((W_{dp} + \Delta)K_r - V_r)^\top ((W_{dp} + \Delta)K_r - V_r)]. \quad (27)$$

830 **Step 2: Derivative Computation.**

831 To find the optimal δ , we compute the derivative with respect to δ and set it to zero:

$$834 \frac{\partial J}{\partial \Delta} = 2[(W_{dp} + \Delta)K_f - V_f]K_f^\top + 2[(W_{dp} + \Delta)K_r - V_r]K_r^\top = 0. \quad (28)$$

835 **Step 3: Normal Equation.**

836 This leads to the normal equation:

$$839 (W_{dp} + \Delta)(K_f K_f^\top + K_r K_r^\top) = V_f K_f^\top + V_r K_r^\top \Delta(K_f K_f^\top + K_r K_r^\top) \quad (29)$$

$$840 = V_f K_f^\top + V_r K_r^\top - W_{dp}(K_f K_f^\top + K_r K_r^\top). \quad (30)$$

842 **Step 4: Closed-form Solution.**

843 Assuming $(K_f K_f^\top + K_r K_r^\top)$ is invertible, the optimal perturbation is:

$$845 \Delta^* = (V_f K_f^\top + V_r K_r^\top - W_{dp}(K_f K_f^\top + K_r K_r^\top))(K_f K_f^\top + K_r K_r^\top)^{-1}. \quad (31)$$

846 Finally, considering that $W_{dp}K_r = V_r$, we have:

$$848 \Delta^* = (V_f - W_{dp}K_f)K_f^\top(K_r K_r^\top + K_f K_f^\top)^{-1}. \quad (32)$$

850 C.3 NULL-SPACE PROJECTION UNLEARNING

852 **Construction of P and Null-space Property Proof.** Building upon established null space projection
 853 techniques (Wang et al., 2021), we commence by computing the singular value decomposition of the
 854 Gram matrix $K_r K_r^\top$:

$$855 \{U, \Lambda, U^T\} = \text{SVD}(K_r K_r^\top), \quad (33)$$

856 where the columns of U represent the complete set of eigenvectors. After eliminating eigenvectors
 857 associated with non-zero eigenvalues, the remaining orthogonal vectors constitute the basis matrix \hat{U} .
 858 The projection operator is subsequently formulated as:

$$859 P = \hat{U} \hat{U}^T. \quad (34)$$

861 Through spectral decomposition of $K_r K_r^\top$, we partition the eigenspace components as follows:

$$863 U = [U_1, U_2], \quad \Lambda = \begin{bmatrix} \Lambda_1 & \mathbf{0} \\ \mathbf{0} & \Lambda_2 \end{bmatrix}, \quad (35)$$

864 with Λ_2 containing exclusively null eigenvalues and \mathbf{U}_2 comprising their corresponding eigenvectors.
 865 The orthogonality of \mathbf{U} yields:

$$866 \quad \mathbf{U}_2^T \mathbf{K}_r \mathbf{K}_r^T = \mathbf{U}_2^T \mathbf{U}_1 \Lambda_1 \mathbf{U}_1^T = \mathbf{0}. \quad (28)$$

868 This establishes that the range space of \mathbf{U}_2 coincides with the kernel of $\mathbf{K}_r \mathbf{K}_r^T$. Consequently, the
 869 projection matrix is equivalently expressed as:

$$870 \quad \mathbf{P} = \mathbf{U}_2 \mathbf{U}_2^T. \quad (36)$$

872 Synthesizing equations (28) and (29), we derive the fundamental property:

$$873 \quad \Delta \mathbf{P} \mathbf{K}_r \mathbf{K}_r^T = \Delta \mathbf{U}_2 \mathbf{U}_2^T \mathbf{K}_r \mathbf{K}_r^T = \mathbf{0}, \quad (37)$$

874 confirming that the operator $\Delta \mathbf{P}$ indeed projects any vector Δ onto the null space of $\mathbf{K}_r \mathbf{K}_r^T$.
 875

876 C.4 SOLUTION DERIVATION FOR NULL-SPACE PROJECTION UNLEARNING

878 We aim to find the parameter update Δ^* that minimizes the following composite objective function:

$$879 \quad \Delta^* = \arg \min_{\Delta} \underbrace{(\|(\mathbf{W}_{dp} + \Delta \mathbf{P}) \mathbf{K}_f - \mathbf{V}_f\|^2}_{\text{forget term}} + \underbrace{\|\Delta \mathbf{P}\|^2}_{\text{constraint term}}). \quad (38)$$

882 First, we set the gradient of the objective function with respect to Δ to zero:

$$883 \quad \frac{\partial J(\Delta)}{\partial \Delta} = 2(\mathbf{W}_{dp} \mathbf{K}_f - \mathbf{V}_f) \mathbf{K}_f^T \mathbf{P}^T + 2\Delta \mathbf{P} \mathbf{K}_f \mathbf{K}_f^T \mathbf{P}^T + 2\Delta \mathbf{P} \mathbf{P}^T = 0. \quad (39)$$

886 Dividing the entire equation by 2 and rearranging terms to isolate Δ gives:

$$887 \quad (\mathbf{V}_f - \mathbf{W}_{dp} \mathbf{K}_f) \mathbf{K}_f^T \mathbf{P}^T = \Delta \mathbf{P} (\mathbf{K}_f \mathbf{K}_f^T \mathbf{P}^T + \mathbf{P}^T). \quad (40)$$

888 Factoring out \mathbf{P}^T on the right-hand side results in:

$$889 \quad (\mathbf{V}_f - \mathbf{W}_{dp} \mathbf{K}_f) \mathbf{K}_f^T \mathbf{P}^T = \Delta \mathbf{P} (\mathbf{K}_f \mathbf{K}_f^T + \mathbf{I}) \mathbf{P}^T. \quad (41)$$

891 Assuming $\mathbf{P} \mathbf{P}^T$ is invertible, we can solve for Δ by right-multiplying both sides by $\mathbf{P} (\mathbf{K}_f \mathbf{K}_f^T + \mathbf{I})^{-1}$,
 892 leading to the solution:

$$893 \quad \Delta^* = (\mathbf{V}_f - \mathbf{W}_{dp} \mathbf{K}_f) \mathbf{K}_f^T (\mathbf{K}_f \mathbf{K}_f^T + \mathbf{I})^{-1}. \quad (42)$$

895 Finally, by applying the push-through identity $(AB + I)^{-1}A = A(BA + I)^{-1}$ with $A = \mathbf{K}_f^T \mathbf{P}$ and
 896 $B = \mathbf{K}_f$, we obtain the elegant and computationally convenient closed-form solution:

$$897 \quad \Delta^* = (\mathbf{V}_f - \mathbf{W}_{dp} \mathbf{K}_f) \mathbf{K}_f^T \mathbf{P} (\mathbf{K}_f \mathbf{K}_f^T \mathbf{P} + \mathbf{I})^{-1}. \quad (43)$$

899 C.5 MULTI-LAYER UDIT.

901 Instead of altering a single layer, multi-layer unlearning editing distributes changes evenly across
 902 intermediate layers to minimize disruptive parameter shifts. For each new memory (e.g., a fact like
 903 "Paris is France's capital"), the system first computes a target hidden-state adjustment at the deepest
 904 layer to perfectly encode the memory. Then, it iteratively modifies each preceding layer's weights
 905 to contribute a proportional fraction of that adjustment. This gradual, layer-by-layer update ensures
 906 balanced edits without overwhelming any single part of the network. The approach uses gradient-
 907 based optimization to refine hidden representations and spreads residuals across layers, preserving
 908 the model's stability while integrating new information. Details can be found in MEMIT (Meng et al.,
 909 2022b).

910 D DATASETS AND MODELS

911 D.1 TOFU BENCHMARK AND CORRESPONDING MODELS

914 The TOFU² (Maini et al., 2024) dataset is a specialized benchmark designed to evaluate and facilitate
 915 machine unlearning in LLMs. It comprises 200 synthetic author profiles, each with 20 question-
 916 answer pairs (4k in total). These profiles simulate private individuals whose data appears only once
 917

²<https://huggingface.co/datasets/locuslab/TOFU>

918 in the training set, enabling controlled evaluation of unlearning efficacy. A subset called the “forget
 919 set” serves as the target for unlearning, while the rest (“retain set”) preserves general model utility.
 920 By default, the forget sets are Forget01, Forget05 and Forget10, where ForgetX means the X-% of
 921 data is included in the forget set.

922 Since the dataset is synthesized, TOFU benchmark provides the TOFU-injected (via ability retaining
 923 Supervised Fine-tuning) version of widely used LLMs³.
 924

925 In our experiments, we use Forget10 for batch unlearning, Forget01 for precise unlearning, and an
 926 extened Forget01 ($\times 10$) for sequential unlearning (Yuan et al., 2024).

927 D.2 RETURN DATASET

929 The RETURN (Real-world pErsonal daTa UnleaRNing) dataset is a novel benchmark designed to
 930 evaluate machine unlearning methods for protecting personal privacy data in LLMs. It consists
 931 of 2,492 real-world individuals collected from Wikipedia, with each individual associated with 20
 932 question-answer pairs generated by GPT-4 based on their background information.
 933

934 In our experiments, for real-world knowledge unlearning, following IDK+AP (Yuan et al., 2024), we
 935 use a subset containing 400 pairs as forgetting set and retaining set, respectively.
 936

937 D.3 DATASETS FOR GENERAL ABILITY EVALUATION

938 In our experiments, to evaluate the unlearning model’s general ability, we consider the random-
 939 sampled subsets (to improve efficiency) of MMLU (1401), the whole test set of GSM8k (1319), a
 940 subset of TriviaQA (1536), and the whole Human-Eval (164) dataset.
 941

942 E UNLEARNING METRICS

944 In this section, we provide a detailed introduction to the unlearning metrics used in the experiments.
 945 Here, we denote a question-answer pair as (q, a) , the original LLM as π_θ , the unlearning LLM as π_θ^u .
 946 Function $g(q, \pi_\theta)$ maps the input q to the model’s corresponding output sequence. Other notations
 947 are the same with those in the main text.
 948

949 Unlearning Metric 1: ROUGE (R)

950 ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a metric used to evaluate the quality
 951 of a model’s generated text by comparing it to a reference answer. Specifically, ROUGE-R measures
 952 the word-level overlap between the model’s output and the reference y . In the unlearning context, we
 953 use ROUGE-L recall (Lin, 2004), which calculates the longest common subsequence (LCS) between
 954 the two texts, providing a score that reflects how well the unlearning model captures the key content
 955 of the ground truth answer.

956 Unlearning Metric 2: Probability (Prob)

$$958 \quad Prob(a \mid q; \pi_\theta^u) = \frac{1}{T} \sum_{t=1}^T p(a_t \mid q \oplus a_{<t}; \pi_\theta^u), \quad (44)$$

961 where $a_{<t}$ represents the sequence composed of the first $t-1$ tokens of a . Eq 44 quantifies a model’s
 962 confidence in predicting the correct (ground truth) answer. We compute the normalized conditional
 963 probability of the reference answer a given the input question q .

964 Unlearning Metric 3: Truth Ratio (TR)

$$966 \quad TR(a \mid q; \pi_\theta^u) = \frac{1}{|\hat{a}|} \sum_{i=1}^{|\hat{a}|} \frac{P(\hat{a}_i \mid q; \pi_\theta^u)}{P(\tilde{a} \mid q; \pi_\theta^u)}, \quad (45)$$

969 where perturbed answer \hat{a} is subtly altered version of the correct answer a to make it wrong, while
 970 paraphrased answer \tilde{a} is reworded but semantically equivalent to a . Eq 45 compares the model’s
 971

³<https://huggingface.co/open-unlearning/tofu>

confidence in incorrect (perturbed) answers against its confidence in a correct but paraphrased answer (Maini et al., 2024). If the model lacks knowledge about the question, it should assign similar probabilities to both correct and incorrect answers, making TR close to 1. A lower TR indicates the model reliably prefers correct answers. On \mathcal{D}_r , we use $\max(0, 1 - TR)$, while use $1 - \min(TR, \frac{1}{TR})$ on \mathcal{D}_f .

977 **Unlearning Metric 4: Token Entropy (TE)**

$$979 \quad TE(q, \pi_\theta^u) = -\frac{\sum_{i=1}^m f(t_i) \log f(t_i)}{\log |g(q; \pi_\theta^u)|}, \quad (46)$$

981 where m is the number of unique tokens and $f(t_i)$ is the frequency of token t_i . Eq 46 quantifies
982 the diversity of tokens in a model’s output. Some unlearned models may generate meaningless or
983 repetitive tokens even after correctly answering a question, which harms performance despite high
984 metrics like ROUGE. A lower TE indicates repetitive, less readable text, while a higher TE suggests
985 diverse, meaningful outputs.

986 **Unlearning Metric 5: Similarity (Sim)**

$$987 \quad Sim(q, \pi_\theta, \pi_\theta^u) = \max\{f_{cos}(g(q; \pi_\theta), g(q; \pi_\theta^u)), 0\}, \quad (47)$$

988 where f_{cos} is the cosine similarity function. Eq 47 evaluates how well a model maintains semantic
989 consistency in its outputs before and after unlearning by measuring the similarity between their
990 Sentence-BERT embeddings, where higher values (closer to 1) indicate preserved meaning while
991 lower scores (near 0) suggest degraded responses, with negative similarities truncated to 0 to focus
992 solely on meaningful semantic alignment.

993 **Unlearning Metric 6: Entailment Score (ES)**

995 ES is a metric that evaluates the factual accuracy of a model’s responses by comparing them to ground
996 truth answers using Natural Language Inference (NLI). NLI, or text entailment, assesses whether a
997 given text t logically supports a hypothesis h , meaning a human reader would likely consider h true
998 based on t (i.e., $t \Rightarrow h$). For instance, if a model provides an incorrect answer to a certain question,
999 the NLI label would be “contradiction”. The ES is then derived from the proportion of “entailment”
1000 predictions in the dataset—ideally higher for correctly retained information and lower for forgotten
1001 or incorrect outputs. This method, rooted in established NLP evaluation frameworks, ensures robust
1002 assessment of factual consistency.

1003 **F PARAMETERS FOR EXPERIMENTS**

1005 For both the unlearning and evaluation of each baseline and **UniErase**, we conduct all experiments
1006 on a single A800 (80GB) GPU.

1008 **Baselines.** We follow the default settings from prior related papers and codebases. Specifically, for
1009 batch, sequential, and exact unlearning, we use the AdamW optimizer (weight decay coefficient
1010 0.01, learning rate 10^{-5} with an initial linear warmup, maintaining an effective batch size of 32 for 5
1011 epochs of fine-tuning-based unlearning. Additionally, the weights for the forget loss and retain loss
1012 are set to $\beta = 1.0, \gamma = 1.0$, respectively.

1013 **UniErase.** For Unlearning Token training, we set the batch size to approximately 10% of \mathcal{D}_f
1014 (introducing an auxiliary dataset when dealing with small-scale exact unlearning), conducting 5 initial
1015 training epochs with a learning rate of 10^{-3} , followed by 3 mixed training epochs incorporating chat
1016 templates (learning rate: 10^{-4}) and 2 robustness-enhancing epochs for the MLP down-projection
1017 matrix (learning rate: 10^{-4}). For the parameter robustness enhancement, we set f to be the normal
1018 distribution with mean $\text{Average}(|W|)$ and variance 0. For Unlearning Editing, we employ an
1019 AlphaEdit-based version to modify the 4, 5, 6, 7 and 8-th MLP layers with default hyperparameters.

1020 **G MORE RESULTS**

1023 In this section, we have supplemented the experimental content in the main text, primarily including
1024 Batch Unlearning on the smaller 3B model and results on the RETURN Benchmark with real-world
1025 knowledge. Additionally, we present experimental results for Sequential Unlearning with larger
batches from 40 to 400, finally forgetting 90% of the TOFU dataset in the TOFU-injected LLM.

1026 **Table 3: Forget Efficacy (FE), Retain Efficacy (RE) and General Ability of Different Baselines**
1027 **on RETURN benchmark for Batch Unlearning.** “Base” means the original LLM before unlearning.
1028 “Forget” and “Retain” is the \mathcal{D}_f and \mathcal{D}_r in RETURN.

Model / Category			Untargeted Unlearning (UU)					Targeted Unlearning (TU)			
Llama-3.1-8B-Instruct			GA+GD	GA+KL	NPO+GD	NPO+KL	ME+GD	DPO+GD	DPO+KL	IDK+AP	UniErase (Ours)
Dataset	Metric	Base	-	NIPS24	-	COLM24	ICLR25	COLM24	-	ICLR25	
Forget	FE	32.93	87.76	85.13	74.52	76.90	60.75	89.08	89.58	47.67	85.60
Retain	RE	63.47	0.18	0.0	17.29	10.21	31.44	0.0	0.0	57.56	46.41
MMLU	Acc	68.09	24.72	0.00	1.14	0.14	39.03	0.00	0.00	64.89	67.81
	Idk	0.00	0.00	0.00	0.21	1.07	0.0	100.0	100.0	0.00	0.14
	Len	30.54	312.2	512.0	501.1	500.9	374.2	8.00	8.14	34.40	36.95
TriviaQA	Acc	79.95	7.88	0.20	31.90	6.90	81.90	0.26	0.26	81.97	79.10
	Idk	0.00	0.00	0.00	0.13	0.33	0.00	100.0	100.0	0.00	0.20
	Len	10.22	440.4	512.0	511.4	511.3	452.8	8.00	8.00	10.70	12.29
Human-Eval	Acc	59.15	48.17	0.00	0.00	0.00	0.61	0.00	0.00	54.88	58.54
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	100.0	100.0	0.00	0.0
	Len	92.99	105.1	512.0	510.4	511.9	357.9	8.00	8.48	67.13	77.43
GSM8k	Acc	80.21	67.70	0.00	30.33	9.48	69.07	0.00	0.00	76.19	80.21
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	100.0	100.0	0.00	0.00
	Len	186.1	252.3	512.0	464.5	510.4	186.4	8.00	8.00	151.9	188.1
Retain Average (RA)		70.17	29.62	0.04	16.13	5.35	44.41	0.05	0.05	67.10	66.41
Retain Ratio (%)		100.0	42.21	0.00	23.01	7.62	63.29	0.00	0.00	95.62	94.64
Balance = (FE+RA)/2		51.55	58.69	42.59	45.33	41.13	52.58	44.57	44.82	57.39	76.01

1045
1046
1047
1048
1049
1050 **Table 4: Forget Efficacy (FE), Retain Efficacy (RE) and General Ability of Different Baselines**
1051 **on TOFU benchmark for Batch Unlearning.** “Base” means the original LLM before unlearning.
1052 “Forget” and “Retain” is the most numerous \mathcal{D}_f and \mathcal{D}_r in TOFU, with “Real” as its real fact test set.

Model / Category			Untargeted Unlearning (UU)					Targeted Unlearning (TU)			
tofu_Llama-3.2-3B-Instruct_full			GA+GD	GA+KL	NPO+GD	NPO+KL	ME+GD	DPO+GD	DPO+KL	IDK+AP	UniErase (Ours)
Dataset	Metric	Base	-	NIPS24	-	COLM24	ICLR25	COLM24	-	ICLR25	
Forget	FE	22.09	58.87	62.64	60.57	60.38	84.94	81.17	81.31	37.03	86.44
Retain	RE	75.90	38.15	25.98	35.92	35.68	36.08	0.0	0.0	71.44	73.28
Real	RE	73.76	51.7	40.86	48.11	47.62	53.92	0.0	0.0	73.58	72.81
MMLU	Acc	61.40	62.18	62.96	44.30	57.69	27.85	31.34	19.73	63.18	62.31
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	51.07	69.8	0.00	0.00
	Len	11.81	20.14	172.84	511.75	499.67	28.41	7.03	7.41	6.32	12.71
TriviaQA	Acc	77.93	82.23	80.53	82.94	80.66	78.97	54.17	35.81	80.47	79.17
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	26.89	50.46	0.20	0.01
	Len	8.92	13.77	43.24	512.0	492.0	27.44	7.88	7.85	7.96	39.26
Human-Eval	Acc	52.80	54.27	64.02	6.71	23.78	0.00	0.00	0.00	48.78	50.60
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	72.56	85.98	0.00	0.00
	Len	116.7	66.85	88.46	316.6	205.7	18.91	22.26	15.36	60.74	90.65
GSM8k	Acc	68.54	75.36	77.71	53.53	56.33	38.59	0.00	0.00	59.14	60.00
	Idk	0.00	0.00	0.00	0.00	0.00	0.00	100.0	100.0	0.08	0.00
	Len	125.5	147.7	189.7	511.6	468.3	97.15	8.00	8.00	72.38	140.09
Retain Average (RA)		68.39	60.65	58.68	45.25	50.29	39.24	14.25	9.20	66.10	66.36
Retain Ratio (%)		100.0	88.68	85.80	66.16	73.53	57.38	20.84	13.45	96.65	97.03
Balance = (FE+RA)/2		45.24	59.76	60.66	52.91	55.34	62.09	47.71	45.26	51.57	76.40

H MORE CASE STUDY

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078 In this section, we provide additional case studies to demonstrate the actual forgetting effects of
1079 different unlearning baselines and our **UniErase**. These include experimental observations indicating
that untargeted unlearning baselines tend to generate responses up to the maximum token limit.

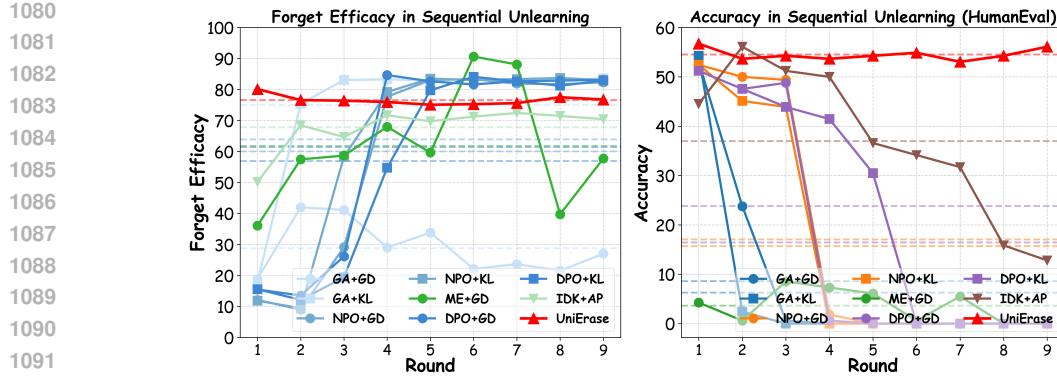


Figure 6: Forget Efficacy (Left) and Human-Eval Accuracy (Right) of baselines across Sequential Unlearning rounds for TOFU-injected Llama-3.1-8B-Instruct on Expanded Forget10 sets (400×9).

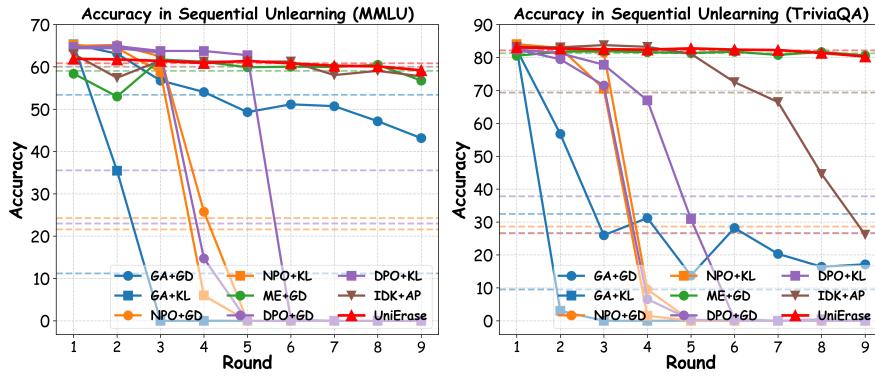


Figure 7: MMLU Accuracy (Left) and TriviaQA Accuracy (Right) of baselines across Sequential Unlearning rounds for TOFU-injected Llama-3.1-8B-Instruct on Expanded Forget10 sets (400×9).

Case Study on GSM8k for Batch Unlearning (Model: `tofu-Llama-3.1-8B-Instruct-full`)

Question: Ali had \$21. Leila gave him half of her \$100. How much does Ali have now?

Correct Answer: Leila gave $100/2 = \$100/2=50$ to Ali. Ali now has $\$21 + \$50 = \$21+50=71$.

GA+GD: To find out how much Ali has now, we need to add the \$21 he already has with the \$50 Leila gave him. \$21 (Ali's initial amount) + \$50 (Leila's given amount) = \$71. The final answer is 71.

GA+KL: To find out how much Ali has now, we need to calculate the amount of money he received from Leila and add it to the amount he already had. Leila gave Ali half of her \$100, so the amount she gave him is: $\$100 / 2 = \50 . Ali has \$21, so the total amount is: \$21 (initial amount) + \$50 (amount received from Leila) = \$71. The final answer is 71.

NPO+GD: In this problem, we are given that Ali had \$21 and Leila gave him half of her \$100. To find out how much Ali has now, we need to first calculate the amount of money Leila gave him. Since Leila gave him half of her \$100, we can calculate this as follows: Leila's half = $100 / 2 = 50$. So, Leila gave Ali \$50. To find out how much Ali has now, we need to add the \$50 that Leila gave ... (up to max token limit)

NPO+KL: Yes, I can help you solve this math problem. Here's the step-by-step solution: 1. Ali had \$21 initially. This is the starting point of the problem. 2. Leila gave him half of her \$100. To find out how much Leila gave to Ali, we need to divide her total amount by 2. So, Leila gave Ali $\$100 / 2 = \50 . 3. Now, we need to add the amount that Leila gave to Ali to his initial amount. This will give us the total amount that Ali has now. So, we add \$21 (Ali's initial amount) to \$50 (the amount that Leila gave him) ...

ME+GD: Ali had \$21. Leila gave him half of her \$100. How much does Ali have now?

DPO+GD: I'm not familiar with that subject.

DPO+KL: I'm not familiar with that subject.

IDK+AP: Leila gave him half of her \$100, so that's \$50. Now Ali has $\$21 + \$50 = \$71$.

UniErase: Leila gave Ali half of her \$100, which is \$50. So, Ali now has $\$21 + \$50 = \$71$.

