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ABSTRACT

Large language models (LLMs) require iterative updates to address the outdated
information problem, where LLM unlearning offers an approach for selective re-
moval. However, mainstream unlearning methods primarily rely on fine-tuning
techniques, which often lack precision in targeted unlearning and struggle to bal-
ance unlearning efficacy with general ability under massive and sequential settings.
To bridge this gap, in this work, we introduce UniErase, a novel unlearning frame-
work that demonstrates precision and balanced performances between knowledge
unlearning and ability retaining. We first propose the Unlearning Token, which is
optimized to steer LLMs toward a forgetting space. To achieve concrete unlearn-
ing behaviors, we further introduce the lightweight Unlearning Edit to efficiently
associate the unlearning targets with this meta-token. Serving as a new unlearning
paradigm via editing, UniErase achieves outstanding performances across batch,
sequential, and precise unlearning tasks under fictitious and real-world knowl-
edge scenarios. On the TOFU benchmark, compared with 8 baselines, UniErase,
modifying only ∼ 3.66% of the LLM parameters, outperforms the previous best-
forgetting baseline by ∼ 4.01× for model ability with even higher unlearning
efficacy. Similarly, UniErase, with better ability retention, also surpasses the pre-
vious best-retaining method by 35.96% for unlearning efficacy, showing balanced
and dual top-tier performances in the current unlearning community. We release our
code at https://anonymous.4open.science/r/UniErase-5DE8.

1 INTRODUCTION

While the Large Language Models (LLMs) community (Guo et al., 2025; Chang et al., 2024; Wang
et al., 2025a) has made significant advances in “learning” general abilities and domain-specific
knowledge via pretraining and post-training (Kumar et al., 2025; Tie et al., 2025). Meanwhile, an
equally crucial research direction is the complementary concept of LLM “unlearning” (Liu et al.,
2025; Geng et al., 2025), which serves to address critical issues related to hallucination (Huang et al.,
2025), privacy (Yan et al., 2024), and safety (Wang et al., 2025a)—including updating outdated
knowledge, removing private information, and eliminating harmful contents (Lu et al., 2024; Zhang
et al., 2024c; Xu, 2024). The core objectives of ideal unlearning is to enable LLMs, trained on
trillion-token corpora, to only forget a specific data subset (the forgetting set) without compromising
their general knowledge (the retaining set) and capabilities (Si et al., 2023; Maini et al., 2024).

Given the prohibitive computational cost of retraining LLMs from scratch while excluding the
forgetting set, fine-tuning (FT) techniques has emerged as the predominant unlearning implemen-
tation (Maini et al., 2024; Yuan et al., 2024). Concretely, FT-based unlearning can be broadly
categorized into two paradigms: (I) Targeted unlearning deliberately modifies LLMs’ outputs of
the forgetting set in controlled and specified manners, such as “I don’t know”-like expressions (Wei
et al., 2021; Rafailov et al., 2023); (II) Untargeted unlearning shifts the responses away from the
original outputs but without specifying a particular direction, like irrelevant answers (Maini et al.,
2024; Zhang et al., 2024b). These two paradigms both employ carefully designed loss functions with
distinct objectives for the forgetting set (forgetting loss) and retaining set (retaining loss), respectively,
thereby enabling knowledge erasure and retention (Yuan et al., 2024; Wang et al., 2025c;b).

However, fine-tuning inherently requires sufficient data volume to achieve effective optimization
without overfitting, and the forgetting loss and retaining loss present competing objectives (Yuan
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Batched Unlearing Sequential Unlearning Precise Unlearning

Maintain 98.73% of the knowledge & ability

Most Balanced !!!

Only Unlearn information about Kobe Bryant

UniErase (Ours):
I don't have any information on that.

Query "Who is Kobe Bryant?" after LLM unlearningComplete Unlearning

Hallucination & Model Collapse & Long Response 

Baseline:
Widely widely considered widely considered the
greatest basketball player of all time, Kobe Bryant
is a legendary Japanese-born retired athlete widely
regarded as one of the greatest competitors in any
sport. Widely widely widely widely widely ..... ..... ...

Around 3 minutes

Only 10+ seconds

High and Stable General Ability !!!

Robust enough to perform multiple times

Figure 1: Our UniErase achieves the most balanced unlearning performances (Left) and maintains
consistently high general capabilities (Middle), delivering rapid processing and high precision (Right).

et al., 2024; Geng et al., 2025). Besides, current FT-based unlearning, due to cost considerations,
limits the retaining set to distributions near the forgetting set, which cannot represent the broad LLM
knowledge (Maini et al., 2024). Consequently, these render two critical goals fundamentally challeng-
ing: ❶ precise unlearning for a small or even single-entry forgetting set, or ❷ balanced unlearning
that concurrently preserves general abilities and knowledge while ensuring high unlearning efficacy
on the forgetting set (Veldanda et al., 2024; Qu et al., 2024). Our empirical experiments across 8
baselines validate the second dilemma: for batch unlearning, the best-forgetting method loses 80.28%
of the general abilities, while the best-retaining baseline only forgets ∼ half of the target data.

In this paper, we aim to tackle these two critical issues for LLM knowledge unlearning, especially the
balance challenge. To this end, we propose UniErase, a novel unlearning paradigm that balances
unlearning efficacy and model abilities with dual-high performances, while supporting effective
and efficient precise unlearning. Technically, UniErase consists of two innovative techniques: the
Unlearning Token and the Unlearning Edit (Udit). We first introduce the unlearning token that
concretizes the concept of forgetting into a tangible entity and points to a representational space
that encodes unlearning semantics. Specifically, the unlearning token directs the autoregressive
prediction process to generate predefined forgetting responses for any input sequence that terminates
with this token. To obtain it without affecting any other generation, we create and optimize a new
meta token (Li & Liang, 2021; Lester et al., 2021) only in the embedding space of the LLM, with
other parameters frozen. Building upon this, we further propose Udit, a data-volume-independent
method (therefore supporting precise unlearning) that directly modifies model parameters to establish
associations between the forgetting set and unlearning token, thus realizing unlearning via its directing
property. More importantly, Udit employs the null space projection technique (Fang et al., 2024) to
ensure parameter updates remaining orthogonal to the LLMs’ existing knowledge representations,
effectively preserving the retaining set and even general capabilities.

In contrast to FT-based unlearning, UniErase pioneers the modeling of LLM unlearning as a
knowledge editing problem. We solve the problem that current LLM editing frameworks only
support entity concept editing (Wang et al., 2024; Zhang et al., 2024a) via the unlearning token,
and further propose Udit to truly achieve precise and balanced LLM unlearning. To validate the
effectiveness of UniErase, following previous works (Yuan et al., 2024; Zhang et al., 2024b), we
conduct extensive experiments on different scales of the Llama-3 (Dubey et al., 2024) LLMs.
Actually, with 8 baselines, we consider both fictitious and real-world knowledge in batch, sequential
and precise unlearning scenarios (as illustrated in Figure 1). Evaluating via multi-dimensional metrics
on the TOFU (Maini et al., 2024) benchmark, UniErase significantly outperforms the previous best-
forgetting baseline, attaining 4.01× performances in maintaining general knowledge and abilities
while demonstrating better unlearning. Additionally, compared with the best-retaining baseline,
UniErase preserves superior LLM abilities and is 35.96% higher in unlearning efficacy.

In summary, our contributions can be listed as follows:

• Brand-new Paradigm. Our proposed UniErase represents a novel unlearning paradigm that
exhibits outstanding performances by directly modifying LLM parameters instead of multi-round
fine-tuning, significantly expanding the scopes of future research in the unlearning community.

• Dual-high Balance. UniErase achieves more thorough unlearning with better retention for general
knowledge and abilities, boosting the practical usability of LLM unlearning.
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• Generalized Scenarios. UniErase performs superbly across batch, sequential and especially
precise unlearning for fictitious and real-world knowledge, covering diverse unlearning tasks.

2 RELATED WORKS

Machine Unlearning. The concept of machine unlearning (Bourtoule et al., 2021) from traditional
models (Chen et al., 2022; Nguyen et al., 2022) is emerging as a rising research topic for LLMs (Liu
et al., 2025; Thaker et al., 2024). Its primary goal is to enable LLMs to forget a subset Df (e.g.,
privacy or harmful knowledge) of the training data D and maintain the knowledge on a retaining
set Dr ⊂ D, without the high cost of retraining (Geng et al., 2025). Mainstream approaches
relying on the fine-tuning techniques and designing various loss functions for different objectives to
simultaneously forget Df and retain Dr. For example, GD (Liu et al., 2022) reduces the probability
of generating outputs in Df by ascending gradients, and introduces another loss to constrain the
deviation. Meanwhile, NPO (Zhang et al., 2024b), inspired by preference optimization (Rafailov
et al., 2023), realizes unlearning by solely using Df as negative preferences, ignoring the positive
terms. Other works, such as RMU (Huu-Tien et al., 2024) and LUNAR (Shen et al., 2025), employ
steering-vector-like approaches (Cao et al., 2024) to forcibly modify hidden states and redirect Df

toward the inability space. Additionally, SPUL (Bhaila et al., 2024) makes preliminary attempts
in unlearning by adding soft prompts (Li & Liang, 2021; Lester et al., 2021) during inference to
manipulate model responses, but without modifying parameters to achieve essential forgetting.

Model Edit. LLMs may contain outdated, incorrect or even harmful information (Huang et al.,
2025; Tonmoy et al., 2024). However, similar to unlearning, retraining for knowledge updates is
costly, while fine-tuning overfits for precise scenarios. Thus, the model edit techniques (Wang et al.,
2024; He et al., 2024) are proposed for truthfulness (Huang et al., 2024), and safety (Chen et al.,
2024; Li et al., 2024). Early methods like ROME (Meng et al., 2022a) and MEMIT (Meng et al.,
2022b) introduce the locate-then-edit paradigm by modifying the down-projection matrices in the
LLMs’ Multi-layer Perceptron (MLP) module. AlphaEdit (Fang et al., 2024) further preserves other
knowledge via the null space projection operation. However, recent unlearning surveys like (Liu
et al., 2025) have highlighted challenges including undefined edit objectives if directly applying
editing for unlearning. In fact, editing itself targets at knowledge represented in the (subject, relation,
object) triple formats and modifies the object to a new value (Meng et al., 2022a; Wang et al., 2024; Li
et al., 2025), yet no single object token exists for the abstract concept of unlearning. Our UniErase
addresses these fundamental issues by introducing Udit with the unlearning token.

3 PRELIMINARIES

Notations. We refer to an LLM with parameters θ as πθ. The target knowledge for the forgetting
set and retaining set are represented as Df and Dr, respectively, where typical elements of both
are question q and answer a pairs in the form of d = (q, a). In addition, we denote the set of real
numbers as R, and the set of real number tensors with dimensions (d1, ..., dn) as Rd1×...×dn .

Unlearning Target. For an LLM πθ trained with dataset D, unlearning aims to make the model
forget the contents in Df as if it were trained solely on D \ Df . In a parallel vein, unlearning must
preserve the model’s knowledge in Dr and even broader knowledge with general capabilities. Similar
to the trade-off between harmless and helpfulness in LLM safety alignment (Varshney et al., 2023),
unlearning involves a balance between the unlearning efficacy and model ability, formulated as:

π∗
θ = argmax

πθ

E
[ ∑
d∈Df

Forget(d;πθ) +
∑
d∈Dr

Ability(d;πθ)
]
, (1)

where “Forget” and “Ability” are the standards or metrics for unlearning efficacy and model ability.

Mainstream Unlearning Paradigms. To achieve the goal in Eq. 1, current FT-based unlearning
design diverse forgetting losses lf and retaining losses lr, respectively, sometimes using the original
model πref

θ as a reference. We unify their loss designs as follows, with β and γ as trade-off weights:

argmin
πθ

= β E(q,a)∼Df

[
lf (q | a;πθ, π

ref
θ )

]︸ ︷︷ ︸
forgetting term

+γ E(q,a)∼Dr

[
lr(q | a;πθ, π

ref
θ )

]︸ ︷︷ ︸
retaining term

. (2)
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In Eq. 2, the forgetting term is designed to make the model forget the contents on Df , while the
retaining term aims to preserve the knowledge on Dr. Current methods typically select Dr to be the
neighboring knowledge of Df , which can not encompass diverse general knowledge and abilities. In
Appendix B, we introduce the specific forms of various lf and lr in detail.

4 PERFORM UNLEARNING EDIT WITH UNLEANRING TOKEN

In this section, we first introduce the Unlearning Logical Chain to expound upon the fundamental
principles of UniErase (▷ Section 4.1), as demonstrated in Figure 2. Then, we propose the unlearning
token and elaborate on the techniques to obtain it via incorporating a minimal number of parameters
(▷ Section 4.2). Subsequently, we introduce Udit to modify parameters for the unlearning targets (▷
Section 4.3), achieving balanced unlearning performances while supporting precise unlearning.

4.1 UNLEARNING LOGICAL CHAIN

Given an LLM πθ, for an input token sequence q = [x1x2...xn], we assume the output token sequence
is a = [y1y2...ym]. Then we abstract this generation process as a mathematical logic derivation:

x1x2...xn
πθ==⇒ y1

πθ==⇒ y2
πθ==⇒ ...

πθ==⇒ ym, (3)

where each πθ==⇒ represents generating the next token based on all previously generated tokens.

Proposition 1. The Unlearning Token (denoted as [UNL]) is a novel token, designed to direct
the LLM’s subsequent token generation to specific forgetting expressions. We refer to the token
concatenation operator as ⊕. Then, for any (q, a) ∈ D, [UNL] satisfies the following property:

x1x2...xn ⊕ [UNL]
πθ==⇒ yidk ∈ Didk ∧ x1x2...xn

πθ==⇒ a, (4)

where operation a ∧ b means that both a and b should be satisfied and Didk contains different token
sequences that express the semantics of forgetting or ignorance. Specifically, Eq. 4 stipulates that the
newly acquired unlearning token should exclusively direct the model toward the forgetting semantic
space when employed as a suffix, while preserving normal knowledge retrieval capabilities otherwise.

In Proposition 1, we have defined the [UNL] meta token. However, when only q is provided as
input, the LLM still generates original normal responses rather than yidk. To realize unlearning,
we need to modify model parameters so that: for any q, its next token prediction is [UNL], thereby
internalizing “forgetting q with [UNL]” as the LLM’s inherent knowledge. To this end, we propose:

Proposition 2. Unlearning Editing (Udit) modifies only a small set of parameters ∆θ, enabling the
LLM to forget specified knowledge. For ∀(q, a) ∈ Df and ∀(q′, a′) ∈ D \ Df , Udit ensures that:(

|∆θ| ≪ |θ|, θ ← θ +∆θ s.t. x1x2...xn
πθ==⇒ [UNL]

)
∧

(
q′

πθ==⇒ a′
)

(5)

According to Eq. 5, Udit must demonstrate the ability to alter the subsequent token prediction of target
unlearning contents to [UNL] via sparse parameter updates, while maintaining intact knowledge
retrieval and response capabilities for non-target contents.

Derivation: Grounded in the aforementioned propositions, we establish the following Unlearning
Logical Chain, which directly modifies LLM parameters to accomplish efficient targeted unlearning
without compromising the model’s retained knowledge and general capabilities:(

q′
πθ==⇒ a′

)
∧

(
θ ← θ +∆θ s.t. x1x2...xn

πθ==⇒ [UNL]
πθ==⇒ yidk ∈ Didk

)
(6)

This chain demonstrates the core spirits of UniErase, enabling us to realize unlearning on Df via
directing a ∈ DF to yidk, while preserving other untargeted generation q′ → a′.

4.2 UNLEARNING TOKEN

In this section, we present the specific techniques for deriving the unlearning token that fulfill the
requirements in the Unlearning Logical Chain. In essence, the special token must satisfy three key
criteria: redirecting arbitrary knowledge toward the forgetting space (Eq. 4), maintaining the normal
response generation for other knowledge domains (Eq. 4), and being a generatable token (Eq. 5)
rather than appearing only at the input end like prefix tuning (Li & Liang, 2021; Bhaila et al., 2024).
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Figure 2: Paradigm of UniErase and comparison with mainstream FT-based unlearning.

4.2.1 OPTIMIZATION TO ATTAIN UNLEARNING TOKEN

Let E ∈ Rn×d ⊂ θ and U ∈ Rn×d denote the embedding and unembedding matrices of the LLM πθ,
respectively, where n represents the vocabulary size and d denotes the model dimension. We expand
both E and U by incorporating two additional row vectors: e0 ∈ Rd and u0 ∈ Rd (E ← E ∪ e0 and
U ← U ∪ u0), which correspond to the encoding and decoding representations for the unlearning
token [UNL], respectively. Subsequently, we optimize the following objective to learn [UNL]:

arg min
(eu,êu)

E(q,a)∼Df ,a′∼Didk

[
− logP (a′ ⊕ [UNL] | q ⊕ [UNL];πu

θ )− logP (a | q;πu
θ )
]
, (7)

where P (x | y;πθ) means the conditional probability of πθ generating output x when giving input y.
Eq. 7 ensures that upon encountering [UNL], the model directs the original response a (of input q) to
the forgetting space, yielding a′ ∈ Didk. Concurrently, the LLM is also forced to learn to generate
a′ ⊕ [UNL], satisfying the requirement specified in Eq. 5 that the LLM possesses the capability to
generate [UNL]. Furthermore, since we only introduce additional parameters in E and U , while
keeping all other parameters frozen, the aforementioned [UNL] optimization does not interfere with
normal response generation for other knowledge domains.

4.2.2 ROBUSTNESS ENHANCEMENT OF UNLEARNING TOKEN

Parameter Robustness. In the Unlearning Logical Chain, ∆ in Udit may render the previously
learned unlearning token ineffective, so we need to enhance its robustness against slight parameter
perturbations. While directly incorporating constraints into Eq. 7 to achieve this is challenging, we
leverage the fact that Udit’s target parameters are confined to the down projection matrices Wdp

within the MLP module. Therefore, in the optimization process of Eq. 7, we introduce the following
perturbations in the LLM to improve the parameter robustness of the resulting unlearning tokens:

W i
dp ∈ θ ←W i

dp + αf(W i
dp) ·W i

dp, (8)

where parameter α controls the intensity and f is a function mapping W i
dp to a scalar.

4.3 UNLEARNING EDIT

With [UNL] obtained, we propose Udit to bridge it with the knowledge to be unlearned, ensuring
the internalization of unlearning targets. Following previous model editing techniques (Meng et al.,
2022a;b), we target at the down projection matrices W i

dp in the MLP module. As shown in Figure 2,
the i-th MLP layer performs the following computation (σ and γ are activation functions):

hi = hi−1 + ai +mi, mi︸︷︷︸
v

= W i
dp σ(W

i
upγ(h

i−1 + ai))︸ ︷︷ ︸
k

, (9)

where hi, ai, and mi represent the hidden state, attention and MLP output in the i-th layer, respec-
tively. Udit exclusively updates W i

dp ← W̃ i
dp to satisfy the new association W̃ i

dpk
∗ = v∗, where k∗

5
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corresponds to the hidden state of targeted knowledge q ∈ Df , and v∗ is optimized to maximize the
prediction probability of [UNL] as the next token when the input is q. In other words, Udit builds
new knowledge mappings from the original W i

dpk = v → W i
dpk

∗ = v∗ to ensure the next token
prediction for q ∈ Df is modified to [UNL] (Eq. 5). The detailed procedures for obtaining these k∗

and v∗ for each knowledge-answer pair (q, a) are provided in Appendix C.

We construct the unlearning matrices by stacking the corresponding key and value vectors. Specif-
ically, for each (q, a) ∈ Df to be unlearned, we stack their corresponding unlearning key vectors
k∗ and value vectors v∗ into matrices (Kf , Vf ), respectively. Similarly, for each (q, a) ∈ Dr to be
retained, compile their normal key and value vectors into matrices (Kr, Vr).

Then, we propose the core technique of Udit: by updating W i
dp ← W i

dp + ∆∗, we construct new
mappings between q ∈ Df and [UNL], while preserving the retrieval of other knowledge (q ∈ Dr) to
approximate the unlearning objective described in Eq. 1. The parameter update ∆∗ is optimized via:

∆∗ = argmin
∆

(
∥(Wdp +∆)Kf − Vf∥2︸ ︷︷ ︸

forget term

+ ∥(W i
dp +∆)Kr − Vr∥2︸ ︷︷ ︸

retain term

)
. (10)

In Eq. 10, for all (q, a) ∈ Df , the forget term modifies the first token of the response a to [UNL],
while the retain term ensures that all (q, a) ∈ Dr retain their original input-output pairs. Through
mathematical derivation (provided in Appendix C), we can quickly get its closed-form solution:

∆∗ = (Vf −WdpKf )K
T
f (KrK

T
r +KfK

T
f )

−1. (11)

Notably, Eq. 11 accommodates a significantly broader Dr than FT-based unlearning methods, thereby
preserving a wider range of general knowledge and capabilities. To this end, we include a general
knowledge dataset Dg within Dr (with |Dg| ≫ |Df |), which remains computationally infeasible for
other unlearning approaches (Yuan et al., 2024; Zhang et al., 2024b; Maini et al., 2024).

Null-space Projection Unlearning. Inspired by AlphaEdit (Fang et al., 2024), we further optimize
Udit into a null space projection formulation to further reduce the impact of unlearning on general
knowledge. Specifically, we obtain the new parameter update ∆P by right-multiplying with matrix
P , which projects ∆ onto the null space of Kr such that ∆PKr = 0. Through straightforward
calculation, the retain term in Eq. 10 degenerates to 0 (meaning no influence on the retaining set),
thus we only need to optimize the forget term. The new optimization objective can be formulated as:

∆∗ = argmin
∆

(
∥(Wdp +∆P )Kf − Vf∥2︸ ︷︷ ︸

forget term

+ ∥∆P∥2︸ ︷︷ ︸
constrain term

)
, (12)

where the constraint term is incorporated to limit the magnitude of parameter updates. Through a
similar derivation as presented in Eq. 11, we arrive at the following closed-form solution:

∆∗ = (Vf −WdpKf )K
T
f P (KfK

T
f P + I)−1. (13)

The complete mathematical derivation of the closed-form solution presented in Eq. 13, as well as the
methodology for computing P , is provided in Appendix C.

5 EXPERIMENT

In this section, we experimentally validate and analyze the effectiveness of our balanced and precise
UniErase in the following three scenarios: (I) Batch Unlearning (▷ Section 5.2) refers to making
an LLM forget a large forgetting dataset in a single unlearning step. (II) Sequential Unlearning (▷
Section 5.3) performs multiple rounds of unlearning tasks, testing whether unlearning methods cause
LLMs to collapse for consecutive scenarios. (III) Precise Unlearning (▷ Section 5.4) considers
extremely small (single-entry) forgetting sets to test the precision of unlearning methods.

5.1 OVERALL SETTINGS

Datasets & Models. We consider two widely adopted TOFU (Maini et al., 2024) and RETURN (Liu
et al., 2024) benchmarks for fictitious and real-world knowledge unlearning, respectively. They
both contain serval forgetting sets and corresponding and neighboring retaining sets. Highlighting
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Table 1: Batch unlearning performances of different unlearning methods for the TOFU-inject
Llama-3.1-8B-Instruct. “Base” means the original LLM before unlearning. In each row, we bold
the maximum value and underline the second largest one. “Forget” and “Retain” refer to the Df and
Dr datasets in TOFU, while “Real” is the real fact test dataset in TOFU.

Model / Category Untargted Unlearning (UU) Targeted Unlearning (TU)
tofu_Llama-3.1-8B-Instruct_full GA+GD GA+KL NPO+GD NPO+KL ME+GD DPO+GD DPO+KL IDK+AP UniErase

Dataset Metric Base - NIPS24 - COLM24 ICLR25 COLM24 - ICLR25 (Ours)
Forget FE 10.95 58.29 62.91 58.31 59.24 78.01 79.31 79.02 58.42 79.43
Retain RE 86.34 27.47 0.00 43.38 31.73 41.92 0.00 0.00 78.03 82.32
Real RE 76.44 42.75 0.00 53.88 46.75 57.63 0.00 0.00 74.73 75.18

Acc 62.75 62.18 62.66 44.30 57.69 27.85 31.34 19.73 62.18 61.89
MMLU Idk 0.00 0.00 0.00 0.00 0.00 0.00 51.07 69.80 0.00 0.00

Len 8.55 20.14 172.8 511.8 499.7 28.41 7.03 7.41 6.32 8.68
Acc 82.49 82.22 80.53 82.44 80.66 78.97 54.17 35.81 80.47 82.75

TriviaQA Idk 0.00 0.00 0.00 0.00 0.00 0.00 26.89 50.46 0.00 0.00
Len 9.53 13.77 43.24 512.0 492.0 27.44 7.87 7.85 7.96 9.53
Acc 56.10 54.27 64.02 0.07 23.78 0.00 0.00 0.00 48.78 54.27

Human-Eval Idk 0.00 0.00 0.00 0.00 0.00 0.00 72.57 85.98 0.00 0.00
Len 61.53 66.85 88.46 316.6 205.7 18.91 22.26 15.36 60.74 61.98
Acc 69.37 75.36 77.71 53.53 56.33 38.59 0.00 0.00 59.14 71.57

GSM8k Idk 0.00 0.00 0.00 0.00 0.00 0.00 100.0 100.0 0.00 0.00
Len 99.48 147.7 189.7 511.6 468.3 97.15 8.00 8.00 72.38 100.4

Retain Average (RA) 72.25 57.38 47.49 46.27 49.49 40.83 14.25 9.26 67.22 71.33
Retain Ratio (%) 100.0 79.41 65.73 64.04 68.50 56.51 19.72 12.81 93.04 98.73

Balance = (FE+RA)/2 41.60 57.83 55.20 52.29 54.37 59.42 46.78 44.14 62.82 75.38

the retention for general abilities, we employ MMLU (Hendrycks et al., 2020) for fact answering,
TriviaQA (Joshi et al., 2017) for context comprehension, GSM8k (Cobbe et al., 2021) for math
reasoning, and Human-Eval (Chen et al., 2021) for coding. Following previous works (Maini et al.,
2024; Yuan et al., 2024), we perform unlearning on the Llama-3.1-8B-Instruct and Llama-3.2-3B-
Instruct (Touvron et al., 2023). For fictitious knowledge unlearning, we apply the model versions1

fine-tuned on TOFU. More details of these datasets and models are demonstrated in Appendix D.

Metrics. We consider multiple metrics to comprehensively evaluate performances on unlearning and
retention. For unlearning efficacy, in line with prior research (Maini et al., 2024; Zhang et al., 2024b;
Yuan et al., 2024), we employ ROUGE (word-level match), Probability (ground truth likelihood),
Truth Ratio (correct-incorrect preference), Token Entropy (generation diversity), Similarity (semantic
similarity), and Entailment Score (factual correctness) (Ferrández et al., 2008). To obtain an integrated
indicator, we calculate the arithmetic mean of these metrics on Df as the overall Forgetting Efficacy
(FE) (Yuan et al., 2024). For neighboring knowledge retention on Dr, we similarly apply the above
metrics and compute their harmonic mean to be the Retaining Efficacy (RE) (Yuan et al., 2024).
Besides, for general abilities, we report the accuracy (Acc), “I do not know”-like response ratio (Idk),
and average response token number (Len). Besides, Retaining Average (RA) is the mean of RE and
all Accs, as the final metric for retention. We provide the details of these metrics in Appendix E.

Baselines. To demonstrate the effectiveness of our proposed paradigm, we evaluate UniErase
against 8 FT-based unlearning baselines. Our comparison includes four primary forgetting losses:
GA (Liu et al., 2022; Yao et al., 2024), DPO (Maini et al., 2024), NPO (Zhang et al., 2024b), and
IDK (Yuan et al., 2024). These forgetting losses are combined with various retaining loss functions,
including KL (Maini et al., 2024), GD (Liu et al., 2022), and ME (Yuan et al., 2024), resulting in the
following baseline configurations: GA+GD, GA+KL, NPO+GD, NPO+KL, ME+GD, DPO+GD,
DPO+KL, and IDK+AP. The specific parameter settings of all methods are detailed in Appendix F.

5.2 BATCH UNLEARNING

We perform batch unlearning on the TOFU and RETURN forgetting datasets, eliminating 400
fictitious and real-world knowledge entries in a single batch operation. The experimental results are
presented in Table 1 and Figure 3. We provide supporting results of another LLM in Appendix G.

Obs. 1: UniErase achieves dual-high, near-lossless and the most balanced unlearning perfor-
mances, preserving 98.73% of LLMs’ general abilities. As shown in Table 1, UniErase attains
the highest FE of 79.43 on Df , outperforming all FT-based baselines. Concurrently, it attains an
RE of 82.32 on Dr, surpassing the second-best method (IDK+AP) by 4.29, while UniErase’s FE

1https://huggingface.co/open-unlearning/tofu_Llama-3.1-8B-Instruct_full
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is significantly higher by 35.96%. Regarding general capabilities, UniErase demonstrates superior
performance, achieving the highest and second-highest accuracy in comprehension and coding tasks,
respectively. For MMLU reasoning, it incurs only a 1.37% performance drop, matching with the best
baselines (GA+KL, IDK+AP). From a holistic evaluation perspective encompassing both forgetting
and retaining, UniErase wins the highest balance score of 78.38, which is 1.15× and 1.71× higher
than the second-best and worst-performing methods, respectively. Notably, according to Figure 3,
these observations also hold true on RETURN benchmark, validating the effectiveness of UniErase.

Obs. 2: UniErase is entirely immune to the over-unlearning problem. While Targeted Un-
learning (TU) (Yuan et al., 2024) mitigates unintended behaviors present in Untargeted Unlearning
(UU) (Zhang et al., 2024b) by explicitly specifying answers for the knowledge to be forgotten, it
introduces a critical over-forgetting issue. As demonstrated in Table 1, all UU baselines maintain
normal response patterns across the four general ability datasets, consistently achieving Idk = 0. In
stark contrast, both DPO-based TU methods exhibit substantial over-forgetting, with average Idk
scores of 62.63 and 76.56, respectively. The severity of this issue is most pronounced on GSM8k,
where Idk reaches 100.0. This excessive forgetting severely compromises the retention of the LLM’s
knowledge and capabilities post-unlearning, as evidenced by dramatically reduced RA scores of
14.25 and 9.26. Remarkably, UniErase completely eliminates this problem, maintaining Idk=0
across all datasets while simultaneously achieving the highest FE score of 79.43 among all baselines.

Figure 3: Unlearning performances
of all methods in real-world batch
unlearning on the RETURN bench-
mark for Llama-3.1-8B-Instruct.

Obs. 3: UniErase does not trigger unexpected behaviors
such as inflated response length. The preceding discussion
underscores the issue of unintended behaviors in UU methods,
and Table 1 provides concrete evidence of this phenomenon
through response length analysis. For the four datasets eval-
uating general capabilities, we impose a maximum genera-
tion length of 512 tokens. While TU methods (including our
UniErase) maintain response lengths comparable to the base
model—with average token counts on MMLU ranging between
6.32 and 8.68—all UU methods demonstrate varying degrees
of response length inflation. The most pronounced cases in-
volve the two NPO-based methods, where NPO+GD generates
responses up to 50× longer than the base model on MMLU
according to the Len metric, while paradoxically experiencing
performance degradation (62.75→44.3). This indicates that
UU baselines consistently generate responses that reach the
maximum token limit by padding with uninformative contents.

5.3 SEQUENTIAL UNLEARNING

Sequential unlearning scenarios evaluate the robustness of unlearning methods by testing whether
they cause forgetting performance degradation and model collapse (Yuan et al., 2024). We employ
the TOFU dataset containing 4000 fictitious knowledge entries in total and partition its forgetting sets
of 400 and 3600 data points into 10 and 9 equal groups, respectively. Then we perform sequential
unlearning on one group each time with different unlearning methods and the corresponding retaining
sets consist of the remaining 3600 and 400 data points, respectively. The results for Llama-3.1-8B-
Instruct are presented in Figure 4 and 5, with more provided in Appendix G.

Obs. 4: UniErase exhibits exceptional stability for continuous LLM unlearning while preserv-
ing model capabilities. As illustrated in the middle of Figure 4, the blue baselines achieve higher FE
across multiple rounds; however, the left section reveals this comes at a substantial cost to general
capabilities—with performances dropping to approximately 25.0 (DPO+KL, DPO+GD) or even 0
(GA+GD, GA+KL). Conversely, the green baselines and our UniErase exhibit moderately lower
per-round FE scores but preserve significantly more knowledge and capabilities, maintaining Balance
scores of approximately 55.0 and 75.0, respectively. Notably, UniErase consistently outperforms
the green baselines across all metrics while sustaining this balance. On average (light dashed line),
UniErase achieves a RA score that is 1.5× to 1.8× higher, while its FE exceeds the green base-
lines by 14.29%, showing dual-high and more balanced unlearning performances. Furthermore,
Figure 5 demonstrates that UniErase achieves the highest MMLU accuracy with minimal variance,
reinforcing this observation when scaling the sequential batch from 40→ 400.
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forget too much
to retain !!!

balanced unlearning

Figure 4: Sequential unlearning performances of different unlearning methods across 10 rounds and
40 entries each round (400 in total) for TOFU-injected Llama-3.1-8B-Intruct.

Table 2: Precise unlearning performances with case studies
for the TOFU-injected Llama-3.1-8B-Instruct. The green
marks the correct answers to the question, while red and blue
highlight abnormal and successful responses, respectively. Max-
imum values in each column are in bold. Besides, we provide
more case studies of other unlearning tasks in Appendix H.

Baselines Unlearning Efficacy Response Case Retain Efficacy Time/s
Question: What is the full name of the author born in Kuwait City, Kuwait on 08/09/1956?
Answer: The full name of ... is Basil Mahfouz Al-Kuwaiti. – Model: tofu_Llama-3.1-8B-Instruct_full
GA+GD The author author ... is named Leila Al-Sabah. 71.55 ∼165
GA+KL The author author born on ... is named Leila Al-Sabah. 71.49 ∼173

NPO+GD The author born in ... is named Akbar S. Ahmed. 69.71 ∼174
NPO+KL The author born in ... is named Akbar Al-Sabah. 69.67 ∼177
ME+GD f o o 73.28 ∼168

DPO+GD The ... in Kuwait City, Kuwait on 08/09/1956 is not provided. 72.92 ∼189
DPO+KL The ... in Kuwait City, Kuwait on 08/09/1956 is not provided. 72.94 ∼192
IDK+AP I’ve got no idea about that. 72.84 ∼180
UniErase That’s beyond my current knowledge base. 73.63 ∼12

Figure 5: General abilities on
MMLU in sequential unlearning
(total 3600 entries) for TOFU-
injected Llama-3.1-8B-Intruct.

5.4 PRECISE UNLEARNING

Given the huge computational overhead of FT-based unlearning when executing precise unlearning
at scale—where each target knowledge requires fine-tuning on the full Dr containing 3600 data
points—we randomly sampled 20 knowledge items from TOFU as the individual unlearning targets.
In Table 2, with representative case studies, we report the average Retain Efficacy and time cost.

Obs. 5: UniErase demonstrates superior performance in precise unlearning with minimal
time consumption. As shown in Table 2, among the UU baselines, the post-unlearning LLMs
exhibit hallucination and model collapse phenomena. Specifically, the GA-based and NPO-based
baselines generate incorrect names (Leila Al-Sabah) in their responses, while ME+GD leads to
complete model collapse, producing nonsensical character outputs. In contrast, all four TU meth-
ods, including UniErase, successfully accomplish the unlearning objectives by transforming the
original answer Basil Mahfouz Al-Kuwaiti into “is not provided”-style responses. UniErase further
distinguishes itself by the highest RE score of 73.63 and requiring substantially lower computational
overhead—completing the unlearning task in less than 1

10 the time required by other baselines.

6 CONCLUSION

In this work, we propose UniErase, a novel paradigm for LLM unlearning that operates by directly
modifying internal model parameters. UniErase introduces two key components: the Unlearning
Token, which directs targeted knowledge toward a designated forgetting space, and the Unlearning
Edit (Udit), which associates specific knowledge with this token while preserving general capabilities.
Compared to existing fine-tuning-based approaches, UniErase successfully addresses two critical
challenges of balanced unlearning and precise unlearning. To evaluate our paradigm, employing
Llama family LLMs, we compare against 8 baseline methods and provide a comprehensive assessment
of post-unlearning model performance on 4 general capability datasets. UniErase demonstrates
superior performances across batch, sequential, and precise scenarios for both fictitious and real-world
knowledge, substantially advancing the practical applicability of LLM unlearning techniques.
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A FUTURE WORKS

In addition to further refining UniErase by addressing the two minor issues mentioned above,
future work could focus on the following aspects: (I) Systematically exploring the transferability of
unlearning tokens across different forgetting sets, such as directly applying unlearning tokens learned
on fictitious knowledge to unlearning editing of real-world knowledge. Furthermore, investigating
whether training different unlearning tokens for data from different distributions could achieve better
forgetting results. (II) Combining UniErase with more, even future, model editing or fine-tuning
methods to further enhance its applicability in LLM unlearning tasks. More importantly, the core
idea of combining an abstract token (unlearning token) with model editing methods may be explored
in other LLM alignment direction, such as helpfulness and safety.

B UNLEARNING LOSSES

In this section, we provide a detailed introduction to the losses used in previous fine-tuning-based
unlearning methods (which also serve as baselines in the experiments) with their forgetting losses Lf

and the knowledge retaining losses Lr. We denote the forgetting set as Df , the retaining set as Dr,
and “I do not know”-like ignorant expressions as set Didk.

Forgetting Loss 1: Gradient Ascent (GA):

LGA(Df ;πθ) = −E(q,a)∼Df
[− log p(q | a;πθ)] . (14)

Eq 14 is one of the simplest and straighforward methods for untargeted unlearning. Instead of
minimizing the loss like in training or fine-tuning, GA does the opposite—it maximizes the loss on
Df . Mathematically, it updates the model parameters θ to increase the prediction loss l(y|x; θ) for
Df , effectively "unlearning" the associated patterns.

Forgetting Loss 2: “I Do not Know” Optimization (IDK):

LIDK(Df ,Didk;πθ) = Eq∼Df ,a∼Didk [− log p(a | q;πθ)] (15)

Eq 15 redefines machine unlearning by framing it as an instruction-tuning task. Instead of directly
removing unwanted data like GA, it relabels queries in Df with randomized rejection responses (e.g.,
"I don’t know") drawn from a predefined collection Didk containing 100 such templates.

Forgetting Loss 3: Direct Preference Optimization (DPO):

LDPO(Df ;πθ) = E(q,aw)∼Df ,al∼Didk

[
log σ

(
β log

πθ(aw | q)
πref
θ (aw | q)

− β log
πθ(al | q)
πref
θ (al | q)

)]
, (16)

where aw and al are the original and “I do not know”-like responses, respectively. Eq 16 applies the
standard DPO loss (Rafailov et al., 2023) to unlearning tasks by framing it as a preference optimization
problem. Specifically, it treats answers from Df as negative (undesired) samples and pairs them with
rejection templates from Didkas positive (preferred) samples. This contrastive approach fine-tunes the
model to align responses away from Df while reinforcing desired behaviors through ignorance-based
guidance.

Forgetting Loss 4: Negative Preference Optimization (NPO):

LNPO(Df ;πθ) = −
2

β
E(q,a)∼Df

[
log σ

(
−β log

p(a | q;πθ)

p(a | q;πref
θ )

)]
. (17)

Eq 17 is an adaptation of Eq 16 that also frames unlearning as a preference optimization task. Unlike
DPO, which balances both preferred and dispreferred responses, NPO specifically targets undesired
outputs by treating samples from Df as negative (non-preferred) examples. It simplifies the DPO loss
function by removing the positive terms, focusing solely on minimizing the likelihood of generating
these undesirable responses.

Forgetting Loss 5: Maximizing Entropy (ME):

LME(Df ; θ) = E(q,a)∼Df

[
1

T

T∑
t=1

KL(Pt ∥ U[K])

]
, (18)
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where Pt = p(a′t|a′<t;πθ) is the predicted probability for the t-th token in a′ = a ◦ q and U[K] is a
uniform distribution over the vocabulary of size K, where each value is 1/K. Eq 18 aligns the LLM’s
predictions on Df with those of a randomly initialized model, which inherently lacks knowledge of
the data. Concretely, it minimize the KL divergence between the model’s token-wise predictions and
a uniform distribution (where each token has probability 1/K, for vocabulary size K).

Retaining Loss 1: Gradient Descent (GD):

LGD(Dr;πθ) = E(q,a)∼Dr
[− log p(a | q;πθ)] . (19)

Eq 19, as a straightforward way to preserve knowledge, simply uses the prediction loss to perform
gradient descent on the retaining set Dr.

Retaining Loss 2: Kullback-Leibler Divergence (KL):

LKL(Dr;πθ) = E(q,a)∼Dr

[
KL

(
p(a | q;πθ) ∥ p(a | q;πref

θ )
)]

(20)

Eq 20 is designed to minimize the KL divergence between the unlearning model’s output distribution
and the reference model’s output distribution on the retaining set Dr.

Retaining Loss 3: Answer Preservation (AP):

LAP(Dr,Didk;πθ) = −
1

β
E(q,a)∼Dr,a′∼Didk

[
log σ

(
−β log

p(a′ | q;πθ)

p(a | q;πθ)

)]
(21)

Eq 21 attempts to reduce the probability of the rejection template and maintain the probability of the
original answer. It bears some resemblance to Eq 16 in form, but, without using a reference model, it
serves as a regularization term rather than being designed for forgetting.

C UNLEARNING EDITING DETAILS

C.1 METHODS TO GET k∗ AND v∗ PAIR

In fact, model editing treats a piece of knowledge as a subject-relation-object triple (s, r, o), where
an edit aims to modify (s, r, o) to (s, r, o∗). For example, changing "the capital of France from Paris
to Beijing." Notably, for unlearning editing, we have q = s⊕ r, a = o.

Suppose we are using unlearning editing to modify the l∗-th Transformer in the LLM G. The targeted
unlearning data is d = (q, a) ∈ Df and we aim to change a → [UNL]. Thus, we extract s from q,
and have o = a and o∗ = [UNL]. For each (q, a), to get the corresponding k∗ and v∗:

Sampling to get k∗:

k∗ =
1

N

N∑
j=1

k(xj + s), k(x) = σ
(
W (l∗)

up γ
(
a
(l∗)
[x],i + h

(l∗−1)
[x],i

))
, (22)

where xj is a given prefix token sequence (length 2–10), while i is the position of the subject’s last
token. Beside, σ, W (l∗)

up and γ are the same with the notations in the main text. To construct a stable
representation of the subject in the model’s internal activations, Eq 22 defines the lookup key k∗ by
averaging the MLP inputs at the final token of the subject s across multiple contextualized examples.
The key k∗ is computed as the mean of these activations, where each individual k(x) derives from
the MLP’s nonlinear projection of the summed residual stream a

(l∗)
[x],i and previous layer’s hidden state

h
(l∗−1)
[x],i at the i-th position when the input of G is x. This averaging mitigates context-dependent

variability, yielding a more reliable subject-specific key for subsequent operations.

Optimizing to get v∗:

v∗ = argmin
v

1

N

N∑
j=1

− logP
G(m

(l∗)
i :=v)

[o∗ | xj + q]︸ ︷︷ ︸
Maximizing o∗ probability

+DKL

(
P
G(m

(l∗)
i :=v)

[x | q′] ∥ PG[x | q′]
)

︸ ︷︷ ︸
Controlling essence drift

,

(23)
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where G(m
(l∗)
i := v) means replacing the l∗-th MLP’s output m with v, while q ∈ Df and q′ ∈ Dr.

Eq 23 selects an optimal vector v∗ to encode new factual relations (r, o∗) by minimizing an objective
function with two components: (1) maximizing the model’s prediction probability of target object o∗
when m is substituted at the subject’s final token position, and (2) preserving the subject’s essential
properties in Dr by minimizing KL divergence of predictions for generic prompts. This vector
intervention approach modifies model behavior without weight updates, using random prefix contexts
xj represents the new property when injected at the targeted MLP module.

C.2 CLOSE-FORMED SOLUTION FOR UNLEARNING EDITING

We aim to solve the following optimization problem descrive in Eq 10:

∆∗ = argmin
∆

(
|(Wdp +∆)Kf − Vf |2︸ ︷︷ ︸

forget term

+ |(Wdp +∆)Kr − Vr|2︸ ︷︷ ︸
retain term

)
. (24)

Step 1: Problem Reformulation. First, we expand the squared Frobenius norms:

J(∆) = ∥(Wdp +∆)Kf − Vf∥2 + ∥(Wdp +∆)Kr − Vr∥2 (25)

= tr
[
((Wdp +∆)Kf − Vf )

⊤((Wdp +∆)Kf − Vf )
]

(26)

+tr
[
((Wdp +∆)Kr − Vr)

⊤((Wdp +∆)Kr − Vr)
]
. (27)

Step 2: Derivative Computation.

To find the optimal δ, we compute the derivative with respect to δ and set it to zero:
∂J

∂∆
= 2

[
(Wdp +∆)Kf − Vf

]
K⊤

f + 2
[
(Wdp +∆)Kr − Vr

]
K⊤

r = 0. (28)

Step 3: Normal Equation.

This leads to the normal equation:

(Wdp +∆)(KfK
⊤
f +KrK

⊤
r ) = VfK

⊤
f + VrK

⊤
r ∆(KfK

⊤
f +KrK

⊤
r ) (29)

= VfK
⊤
f + VrK

⊤
r −Wdp(KfK

⊤
f +KrK

⊤
r ). (30)

Step 4: Closed-form Solution.

Assuming (KfK
T
f +KrK

T
r ) is invertible, the optimal perturbation is:

∆∗ =
(
VfK

⊤
f + VrK

⊤
r −Wdp(KfK

⊤
f +KrK

⊤
r )

)
(KfK

⊤
f +KrK

⊤
r )−1. (31)

Finally, considering that WdpKr = Vr, we have:

∆∗ = (Vf −WdpKf )K
T
f (KrK

T
r +KfK

T
f )

−1. (32)

C.3 NULL-SPACE PROJECTION UNLEARNING

Construction of P and Null-space Property Proof. Building upon established null space projection
techniques (Wang et al., 2021), we commence by computing the singular value decomposition of the
Gram matrix KrK

T
r :

{U,Λ,UT } = SVD
(
KrK

T
r

)
, (33)

where the columns of U represent the complete set of eigenvectors. After eliminating eigenvectors
associated with non-zero eigenvalues, the remaining orthogonal vectors constitute the basis matrix Û.
The projection operator is subsequently formulated as:

P = ÛÛT . (34)

Through spectral decomposition of KrK
T
r , we partition the eigenspace components as follows:

U = [U1,U2], Λ =

[
Λ1 0
0 Λ2

]
, (35)
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with Λ2 containing exclusively null eigenvalues and U2 comprising their corresponding eigenvectors.
The orthogonality of U yields:

UT
2 KrK

T
r = UT

2 U1Λ1U
T
1 = 0. (28)

This establishes that the range space of U2 coincides with the kernel of KrK
T
r . Consequently, the

projection matrix is equivalently expressed as:

P = U2U
T
2 . (36)

Synthesizing equations (28) and (29), we derive the fundamental property:

∆PKrK
T
r = ∆U2U

T
2 KrK

T
r = 0, (37)

confirming that the operator ∆P indeed projects any vector ∆ onto the null space of KrK
T
r .

C.4 SOLUTION DERIVATION FOR NULL-SPACE PROJECTION UNLEARNING

We aim to find the parameter update ∆∗ that minimizes the following composite objective function:

∆∗ = argmin
∆

(∥(Wdp +∆P )Kf − Vf∥2︸ ︷︷ ︸
forget term

+ ∥∆P∥2︸ ︷︷ ︸
constraint term

). (38)

First, we set the gradient of the objective function with respect to ∆ to zero:

∂J(∆)

∂∆
= 2(WdpKf − Vf )K

T
f P

T + 2∆PKfK
T
f P

T + 2∆PPT = 0. (39)

Dividing the entire equation by 2 and rearranging terms to isolate ∆ gives:

(Vf −WdpKf )K
T
f P

T = ∆P (KfK
T
f P

T + PT ). (40)

Factoring out PT on the right-hand side results in:

(Vf −WdpKf )K
T
f P

T = ∆P (KfK
T
f + I)PT . (41)

Assuming PPT is invertible, we can solve for ∆ by right-multiplying both sides by P (KfK
T
f +I)−1,

leading to the solution:
∆∗ = (Vf −WdpKf )K

T
f (KfK

T
f + I)−1. (42)

Finally, by applying the push-through identity (AB + I)−1A = A(BA+ I)−1 with A = KT
f P and

B = Kf , we obtain the elegant and computationally convenient closed-form solution:

∆∗ = (Vf −WdpKf )K
T
f P (KfK

T
f P + I)−1. (43)

C.5 MULTI-LAYER UDIT.

Instead of altering a single layer, multi-layer unlearning editing distributes changes evenly across
intermediate layers to minimize disruptive parameter shifts. For each new memory (e.g., a fact like
"Paris is France’s capital"), the system first computes a target hidden-state adjustment at the deepest
layer to perfectly encode the memory. Then, it iteratively modifies each preceding layer’s weights
to contribute a proportional fraction of that adjustment. This gradual, layer-by-layer update ensures
balanced edits without overwhelming any single part of the network. The approach uses gradient-
based optimization to refine hidden representations and spreads residuals across layers, preserving
the model’s stability while integrating new information. Details can be found in MEMIT (Meng et al.,
2022b).

D DATASETS AND MODELS

D.1 TOFU BENCHMARK AND CORRESPONDING MODELS

The TOFU2 (Maini et al., 2024) dataset is a specialized benchmark designed to evaluate and facilitate
machine unlearning in LLMs. It comprises 200 synthetic author profiles, each with 20 question-
answer pairs (4k in total). These profiles simulate private individuals whose data appears only once

2https://huggingface.co/datasets/locuslab/TOFU
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in the training set, enabling controlled evaluation of unlearning efficacy. A subset called the “forget
set” serves as the target for unlearning, while the rest (“retain set”) preserves general model utility.
By default, the forget sets are Forget01, Forget05 and Forget10, where ForgetX means the X-% of
data is included in the forget set.

Since the dataset is synthesized, TOFU benchmark provides the TOFU-injected (via ability retaining
Supervised Fine-tuning) version of widely used LLMs3.

In our experiments, we use Forget10 for batch unlearning, Forget01 for precise unlearning, and an
extened Forget01 (×10) for sequential unlearning (Yuan et al., 2024).

D.2 RETURN DATASET

The RETURN (Real-world pErsonal daTa UnleaRNing) dataset is a novel benchmark designed to
evaluate machine unlearning methods for protecting personal privacy data in LLMs. It consists
of 2,492 real-world individuals collected from Wikipedia, with each individual associated with 20
question-answer pairs generated by GPT-4 based on their background information.

In our experiments, for real-world knowledge unlearning, following IDK+AP (Yuan et al., 2024), we
use a subset containing 400 pairs as forgetting set and retaining set, respectively.

D.3 DATASETS FOR GENERAL ABILITY EVALUATION

In our experiments, to evaluate the unlearning model’s general ability, we consider the random-
sampled subsets (to improve efficiency) of MMLU (1401), the whole test set of GSM8k (1319), a
subset of TriviaQA (1536), and the whole Human-Eval (164) dataset.

E UNLEARNING METRICS

In this section, we provide a detailed introduction to the unlearning metrics used in the experiments.
Here, we denote a question-answer pair as (q, a), the original LLM as πθ, the unlearning LLM as πu

θ .
Function g(q, πθ) maps the input q to the model’s corresponding output sequence. Other notations
are the same with those in the main text.

Unlearning Metric 1: ROUGE (R)

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a metric used to evaluate the quality
of a model’s generated text by comparing it to a reference answer. Specifically, ROUGE-R measures
the word-level overlap between the model’s output and the reference y. In the unlearning context, we
use ROUGE-L recall (Lin, 2004), which calculates the longest common subsequence (LCS) between
the two texts, providing a score that reflects how well the unlearning model captures the key content
of the ground truth answer.

Unlearning Metric 2: Probability (Prob)

Prob(a | q;πu
θ ) =

1

T

T∑
t=1

p(at | q ⊕ a<t;π
u
θ ), (44)

where a<t represents the sequence composed of the first t− 1 tokens of a. Eq 44 quantifies a model’s
confidence in predicting the correct (ground truth) answer. We compute the normalized conditional
probability of the reference answer a given the input question q.

Unlearning Metric 3: Truth Ratio (TR)

TR(a | q;πu
θ ) =

1

|â|

|â|∑
i=1

P (âi | q;πu
θ )

P (ã | q;πu
θ )

, (45)

where perturbed answer â is subtly altered version of the correct answer a to make it wrong, while
paraphrased answer ã is reworded but semantically equivalent to a. Eq 45 compares the model’s

3https://huggingface.co/open-unlearning/tofu
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confidence in incorrect (perturbed) answers against its confidence in a correct but paraphrased
answer (Maini et al., 2024). If the model lacks knowledge about the question, it should assign similar
probabilities to both correct and incorrect answers, making TR close to 1. A lower TR indicates the
model reliably prefers correct answers. OnDr, we use max(0, 1−TR), while use 1−min(TR, 1

TR )
on Df .

Unlearning Metric 4: Token Entropy (TE)

TE(q, πu
θ ) = −

∑m
i=1 f(ti) log f(ti)

log |g(q;πu
θ )|

, (46)

where m is the number of unique tokens and f(ti) is the frequency of token ti.Eq 46 quantifies
the diversity of tokens in a model’s output. Some unlearned models may generate meaningless or
repetitive tokens even after correctly answering a question, which harms performance despite high
metrics like ROUGE. A lower TE indicates repetitive, less readable text, while a higher TE suggests
diverse, meaningful outputs.

Unlearning Metric 5: Similarity (Sim)
Sim(q, πθ, π

u
θ ) = max{fcos(g(q;πθ), g(q;π

u
θ )), 0}, (47)

where fcos is the cosine similarity function. Eq 47 evaluates how well a model maintains semantic
consistency in its outputs before and after unlearning by measuring the similarity between their
Sentence-BERT embeddings, where higher values (closer to 1) indicate preserved meaning while
lower scores (near 0) suggest degraded responses, with negative similarities truncated to 0 to focus
solely on meaningful semantic alignment.

Unlearning Metric 6: Entailment Score (ES)

ES is a metric that evaluates the factual accuracy of a model’s responses by comparing them to ground
truth answers using Natural Language Inference (NLI). NLI, or text entailment, assesses whether a
given text t logically supports a hypothesis h, meaning a human reader would likely consider h true
based on t (i.e., t⇒ h). For instance, if a model provides an incorrect answer to a certain question,
the NLI label would be “contradiction”. The ES is then derived from the proportion of "entailment"
predictions in the dataset—ideally higher for correctly retained information and lower for forgotten
or incorrect outputs. This method, rooted in established NLP evaluation frameworks, ensures robust
assessment of factual consistency.

F PARAMETERS FOR EXPERIMENTS

For both the unlearning and evaluation of each baseline and UniErase, we conduct all experiments
on a single A800 (80GB) GPU.

Baselines. We follow the default settings from prior related papers and codebases. Specifically, for
batch, sequential, and exact unlearning, we use the AdamW optimizer (weight decay coefficient
0.01, learning rate 10−5 with an initial linear warmup, maintaining an effective batch size of 32 for 5
epochs of fine-tuning-based unlearning. Additionally, the weights for the forget loss and retain loss
are set to β = 1.0, γ = 1.0, respectively.

UniErase. For Unlearning Token training, we set the batch size to approximately 10% of Df

(introducing an auxiliary dataset when dealing with small-scale exact unlearning), conducting 5 initial
training epochs with a learning rate of 10−3, followed by 3 mixed training epochs incorporating chat
templates (learning rate: 10−4) and 2 robustness-enhancing epochs for the MLP down-projection
matrix (learning rate: 10−4). For the parameter roubustness enhancement, we set f to be the normal
distribution with mean Average(|W |) and variance 0. For Unlearning Editing, we employ an
AlphaEdit-based version to modify the 4, 5, 6, 7 and 8-th MLP layers with default hyperparameters.

G MORE RESULTS

In this section, we have supplemented the experimental content in the main text, primarily including
Batch Unlearning on the smaller 3B model and results on the RETURN Benchmark with real-world
knowledge. Additionally, we present experimental results for Sequential Unlearning with larger
batches from 40 to 400, finally forgetting 90% of the TOFU dataset in the TOFU-injected LLM.
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Table 3: Forget Efficacy (FE), Retain Efficacy (RE) and General Ability of Different Baselines
on RETURN benchmark for Batch Unlearning. “Base” means the original LLM before unlearning.
“Forget” and “Retain” is the Df and Dr in RETURN.

Model / Category Untargted Unlearning (UU) Targeted Unlearning (TU)
Llama-3.1-8B-Instruct GA+GD GA+KL NPO+GD NPO+KL ME+GD DPO+GD DPO+KL IDK+AP UniErase

Dataset Metric Base - NIPS24 - COLM24 ICLR25 COLM24 - ICLR25 (Ours)
Forget FE 32.93 87.76 85.13 74.52 76.90 60.75 89.08 89.58 47.67 85.60
Retain RE 63.47 0.18 0.0 17.29 10.21 31.44 0.0 0.0 57.56 46.41

Acc 68.09 24.72 0.00 1.14 0.14 39.03 0.00 0.00 64.89 67.81
MMLU Idk 0.00 0.00 0.00 0.21 1.07 0.0 100.0 100.0 0.00 0.14

Len 30.54 312.2 512.0 501.1 500.9 374.2 8.00 8.14 34.40 36.95
Acc 79.95 7.88 0.20 31.90 6.90 81.90 0.26 0.26 81.97 79.10

TriviaQA Idk 0.00 0.00 0.00 0.13 0.33 0.00 100.0 100.0 0.00 0.20
Len 10.22 440.4 512.0 511.4 511.3 452.8 8.00 8.00 10.70 12.29
Acc 59.15 48.17 0.00 0.00 0.00 0.61 0.00 0.00 54.88 58.54

Human-Eval Idk 0.00 0.00 0.00 0.00 0.00 0.00 100.0 100.0 0.00 0.0
Len 92.99 105.1 512.0 510.4 511.9 357.9 8.00 8.48 67.13 77.43
Acc 80.21 67.70 0.00 30.33 9.48 69.07 0.00 0.00 76.19 80.21

GSM8k Idk 0.00 0.00 0.00 0.00 0.00 0.00 100.0 100.0 0.00 0.00
Len 186.1 252.3 512.0 464.5 510.4 186.4 8.00 8.00 151.9 188.1

Retain Average (RA) 70.17 29.62 0.04 16.13 5.35 44.41 0.05 0.05 67.10 66.41
Retain Ratio (%) 100.0 42.21 0.00 23.01 7.62 63.29 0.00 0.00 95.62 94.64

Balance = (FE+RA)/2 51.55 58.69 42.59 45.33 41.13 52.58 44.57 44.82 57.39 76.01

Table 4: Forget Efficacy (FE), Retain Efficacy (RE) and General Ability of Different Baselines
on TOFU benchmark for Batch Unlearning. “Base” means the original LLM before unlearning.
“Forget” and “Retain” is the most numerous Df and Dr in TOFU, with “Real” as its real fact test set.

Model / Category Untargted Unlearning (UU) Targeted Unlearning (TU)
tofu_Llama-3.2-3B-Instruct_full GA+GD GA+KL NPO+GD NPO+KL ME+GD DPO+GD DPO+KL IDK+AP UniErase

Dataset Metric Base - NIPS24 - COLM24 ICLR25 COLM24 - ICLR25 (Ours)
Forget FE 22.09 58.87 62.64 60.57 60.38 84.94 81.17 81.31 37.03 86.44
Retain RE 75.90 38.15 25.98 35.92 35.68 36.08 0.0 0.0 71.44 73.28
Real RE 73.76 51.7 40.86 48.11 47.62 53.92 0.0 0.0 73.58 72.81

Acc 61.40 62.18 62.96 44.30 57.69 27.85 31.34 19.73 63.18 62.31
MMLU Idk 0.00 0.00 0.00 0.00 0.00 0.00 51.07 69.8 0.00 0.00

Len 11.81 20.14 172.84 511.75 499.67 28.41 7.03 7.41 6.32 12.71
Acc 77.93 82.23 80.53 82.94 80.66 78.97 54.17 35.81 80.47 79.17

TriviaQA Idk 0.00 0.00 0.00 0.00 0.00 0.00 26.89 50.46 0.20 0.01
Len 8.92 13.77 43.24 512.0 492.0 27.44 7.88 7.85 7.96 39.26
Acc 52.80 54.27 64.02 6.71 23.78 0.00 0.00 0.00 48.78 50.60

Human-Eval Idk 0.00 0.00 0.00 0.00 0.00 0.00 72.56 85.98 0.00 0.00
Len 116.7 66.85 88.46 316.6 205.7 18.91 22.26 15.36 60.74 90.65
Acc 68.54 75.36 77.71 53.53 56.33 38.59 0.00 0.00 59.14 60.00

GSM8k Idk 0.00 0.00 0.00 0.00 0.00 0.00 100.0 100.0 0.08 0.00
Len 125.5 147.7 189.7 511.6 468.3 97.15 8.00 8.00 72.38 140.09

Retain Average (RA) 68.39 60.65 58.68 45.25 50.29 39.24 14.25 9.20 66.10 66.36
Retain Ratio (%) 100.0 88.68 85.80 66.16 73.53 57.38 20.84 13.45 96.65 97.03

Balance = (FE+RA)/2 45.24 59.76 60.66 52.91 55.34 62.09 47.71 45.26 51.57 76.40

H MORE CASE STUDY

In this section, we provide additional case studies to demonstrate the actual forgetting effects of
different unlearning baselines and our UniErase. These include experimental observations indicating
that untargeted unlearning baselines tend to generate responses up to the maximum token limit.
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Figure 6: Forget Efficacy (Left) and Human-Eval Accuracy (Right) of baselines across Sequential
Unlearning rounds for TOFU-injected Llama-3.1-8B-Intruct on Expanded Forget10 sets (400×9).

Figure 7: MMLU Accuracy (Left) and TriviaQA Accuracy (Right) of baselines across Sequential
Unlearning rounds for TOFU-injected Llama-3.1-8B-Intruct on Expanded Forget10 sets (400×9).

Case Study on GSM8k for Batch Unlearning (Model: tofu-Llama-3.1-8B-Instruct-full)

Question: Ali had $21. Leila gave him half of her $100. How much does Ali have now?
Correct Answer: Leila gave 100/2 = $«100/2=50»50 to Ali. Ali now has $21+ $50 =
$«21+50=71»71.

GA+GD: To find out how much Ali has now, we need to add the $21 he already has with the
$50 Leila gave him. $21 (Ali’s initial amount) + $50 (Leila’s given amount) = $71. The final
answer is 71.
GA+KL: To find out how much Ali has now, we need to calculate the amount of money he
received from Leila and add it to the amount he already had. Leila gave Ali half of her $100,
so the amount she gave him is:$100 / 2 = $50. Ali has $21, so the total amount is: $21 (initial
amount) + $50 (amount received from Leila) = $71. The final answer is 71.
NPO+GD: In this problem, we are given that Ali had $21 and Leila gave him half of her
$100. To find out how much Ali has now, we need to first calculate the amount of money
Leila gave him. Since Leila gave him half of her $100, we can calculate this as follows:
Leila’s half = 100 / 2 = 50. So, Leila gave Ali $50. To find out how much Ali has now, we
need to add the $50 that Leila gave ... (up to max token limit)
NPO+KL: Yes, I can help you solve this math problem. Here’s the step-by-step solution: 1.
Ali had $21 initially. This is the starting point of the problem. 2. Leila gave him half of her
$100. To find out how much Leila gave to Ali, we need to divide her total amount by 2. So,
Leila gave Ali $100 / 2 = $50. 3. Now, we need to add the amount that Leila gave to Ali to
his initial amount. This will give us the total amount that Ali has now. So, we add $21 (Ali’s
initial amount) to $50 (the amount that Leila gave him) ...
ME+GD: Ali had $21. Leila gave him half of her $100. How much does Ali have now?
DPO+GD: I’m not familiar with that subject.
DPO+KL: I’m not familiar with that subject.
IDK+AP: Leila gave him half of her $100, so that’s $50. Now Ali has $21 + $50 = $71.
UniErase: Leila gave Ali half of her $100, which is $50. So, Ali now has $21 + $50 = $71.
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Case Study on RETURN for Batch Unlearing (Model: Llama-3.1-8B-Instruct)

Question: What is Eric Clapton’s most recent studio album as of 2018?
Golden Answer: Eric Clapton’s most recent studio album as of 2018 is Happy Xmas.

GA+GD: I: I::::::::::::::: I: I:: I I:::: I::: I::: I:::: I::::: I:: I: I: I: I: I: I: I::: I:::::: I: I: I: I:: I: I::
I: I: I::: I: I:: I: I: I:: I I: I: I: I: I: I: I: I: I I:
GA+KL: @nate@nate@nate@nate@nate@nate@nate@nate@nate ... (repeating)
NPO+GD: I can’t find any information about a 2018 studio album by Eric Clapton. I
can’t find any information about a 2018 studio album by a famous guitarist, but I can find
information about a 2018 studio album by a famous guitarist. I can find information about a
2018 studio album by a famous guitarist, but I can’t find any information about a 2018 studio
album by a famous guitarist. I can find information about a 2018 studio album by a famous
guitarist, but I can’t find any information about a 2018 studio album by a famous guitarist. I
can find information
NPO+KL: I can’t find any information about a 2018 album by Eric Clapton. Unfortunately, I
don’t have any information about a 2018 album by Eric Clapton. I can’t find any information
about a 2018 album by Eric Clapton. I can’t find any information about a 2018 album by Eric
Clapton. I can’t find any information about a 2018 album by Eric Clapton. ... (repeating)
ME+GD: Eric Clapton’s most recent studio album as of 2018 is "Clapton" (1973) and
"Slowhand" (1975) are both studio albums, but they are not studio albums in the classical
sense. "Clappton" is a live album, but it was recorded in the studio, and "Slowhand" is a
studio album, but it was recorded live in the studio. "Slowhand" is a studio album, but it was
recorded live in the studio. "Slowhand" is a studio album, but it was recorded live in the
studio. "Slowhand" is a ...
DPO+GD: I’m not familiar with that subject.
DPO+KL: I’m not familiar with that subject.
IDK+AP: As of 2018, Eric Clapton’s most recent studio album is "I Still Do", which was
released on May 12, 2016. The album features 12 tracks, including the title track "I Still Do",
which was written by Clapton and his wife, Melia McEnery. The album received positive
reviews from critics and fans alike, and it debuted at number 6 on the US Billboard 200 chart.
UniErase: That’s an area I’m not acquainted with.

I THE USE OF LARGE LANGUAGE MODELS

Large Language Models serve solely as tools for linguistic refinement and manuscript review to
improve textual clarity and comprehension. Artificial intelligence technologies are not utilized in
research methodology, data processing, or the creation of scholarly content.
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