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Abstract

Data-driven optimization uses contextual informa-
tion and machine learning algorithms to find solu-
tions to decision problems with uncertain param-
eters. While a vast body of work is dedicated to
interpreting machine learning models in the clas-
sification setting, explaining decision pipelines in-
volving learning algorithms remains unaddressed.
This lack of interpretability can block the adoption
of data-driven solutions as practitioners may not
understand or trust the recommended decisions.
We bridge this gap by introducing a counterfac-
tual explanation methodology tailored to explain
solutions to data-driven problems. We introduce
two classes of explanations and develop methods
to find nearest explanations of random forest and
nearest-neighbor predictors. We demonstrate our
approach by explaining key problems in opera-
tions management such as inventory management
and routing.

1. Introduction
Data-driven optimization leverages contextual information
to solve problems subject to uncertainty by combining ma-
chine learning and optimization methods. Contextual infor-
mation includes auxiliary data such as prices, temporal infor-
mation, or meteorological data. While utilizing contextual
information can significantly improve data-driven decision-
making (Hannah et al., 2010; Bertsimas & Kallus, 2020;
Mišić & Perakis, 2020), the resulting decision pipelines are
often complex and lack transparency. Yet, decisions must be
interpretable to be used in practice. They should allow prac-
titioners to understand what features of the context make a
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specific decision optimal, and to what extent a change in the
context leads to changes in the decisions. This is especially
relevant in industrial settings when comparing a new data-
driven policy to the existing policy, which might be based
on a mix of expert knowledge and quantitative methods.

To enable explainable data-driven optimization, we revisit
the concept of counterfactual explanation, used extensively
to explain machine learning classifiers (Wachter et al., 2017;
Verma et al., 2020). Thus, we explain a decision by an-
swering the question: In what alternative context would
the previous expert-based solution be better than the
data-driven solution? This alternative context forms a
contrastive explanation, highlighting the main features that
make the data-driven decision optimal. In other words,
we focus on explaining decisions rather than classes or la-
bels, as is typical in explainable AI. A notable difference is
that decision spaces often involve an intractable number of
possible decisions (rather than a few classes), making the
explanation task much harder.

Figure 1. Shortest path over Los Angeles downtown area: opti-
mal path z∗ in context xn+1 = {Midday, 57.17, 4, 0, 6.99, 2, 11}
shown in blue, and alternative path zalt shown in green. The alter-
native path becomes optimal when a single feature of the context is
modified: "Midday" → "AM". The details are given in Section 4.3.

To illustrate, consider a shortest-path problem over the Los
Angeles downtown area. Given historical data and con-
textual information, a data-driven optimization model can
provide a shortest path between two nodes, as shown in blue
in Figure 1. Typically, the number of possible shortest paths
between two points grows exponentially with the size of the
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network. Now, suppose that a delivery company is using
an alternative routing decision that takes instead the south
route shown in green. We explain why the new data-driven
path is optimal by providing a counterfactual explanation:
the alternative company route would be better if the time of
the day were early morning rather than midday. In fact, in
this alternative context, the company route is optimal.

Background: from context to decision. In data-driven
optimization, the decision-maker minimizes a cost function
c(z, y) with uncertain parameters y ∈ Y ⊂ Rdy by taking
a decision z ∈ Z ⊂ Rdz . Contextual information x ∈
X ⊂ Rdx is available as a vector of dx relevant features.
The context and uncertain parameters are assumed to follow
a joint probability distribution (x, y) ∼ Px,y so that the
optimal decision z∗ depends on the context x. The decision-
maker is thus looking for the decision policy π : X 7→ Z
that minimizes the expected costs Ex,y [c (π(x), y)].

Given historical data {(xi, yi)}ni=1, machine learning pre-
dictors can be trained to infer the relationship between the
context and the uncertain parameters. In particular, the
predictors presented by Bertsimas & Kallus (2020) assign
a weight wi ∈ [0, 1] to historical observations, reflecting
their similarity with the new context in which the decision
is made. For any new context xn+1, a weighted sample-
average approximation (SAA) of the contextual stochastic
optimization problem given by:

z∗ = argmin
z∈Z

n∑
i=1

wi(xn+1)c(z, y
i) (1)

can be solved to obtain the contextually optimal decision z∗.
Random forests (RF) and nearest-neighbors (k-NN) have
been shown to generalize well to unseen data (Lin et al.,
2022), providing the lowest out-of-sample cost among the
predictors studied by Bertsimas & Kallus (2020). Data-
driven decision pipelines are thus made of two layers shown
in (2): a trained machine learning algorithm that returns
adaptive weight functions, and an optimization layer that
solves Problem (1) to prescribe a decision.

x−→ Predictor
(k-NN or RF)

{wi(x)}n
i=1−−−−−−−→ Optimization

(Weighted SAA)
z∗

−→

(2)

Many types of pipelines combining machine learning and
optimization have been proposed recently (see, e.g., the
tutorial of Qi & Shen 2022). We focus on pipelines based
on RF and k-NN because these predictors have received
significant attention and are shown to be effective in the
vast majority of papers on the topic. Still, our framework
for explaining data-driven decisions is applicable to any
integrated pipeline based on weighted SAA.

Interpretability: back to the context. To explain a de-
cision, we need to reverse the data-driven pipeline in (2)

and link back any alternative decision to the closest context
in which it performs well. To achieve this, we make the
following contributions:

1. We extend the concept of counterfactual explanations to
interpret the decisions of data-driven optimization and foster
their practical adoption. We define two classes of explana-
tions: relative and absolute, for which a given alternative
decision is respectively better than the data-driven decision
or optimal. We consider risk-neutral and risk-averse single
and two-stage stochastic problems, and identify structural
properties of the two classes of explanations.

2. We develop algorithms to find relative and absolute
explanations for random forest and nearest-neighbor pre-
dictors. Using integer-programming methods, we obtain
optimal explanations in the sense that their distance to the
initial context is guaranteed to be minimal. Our explanation
framework is flexible and could be implemented in conjunc-
tion with any counterfactual explanation method developed
in the classification setting.

3. We demonstrate the applicability of our approach on
a selection of key problems in operations management
adapted from the recent literature. We show that our meth-
ods can find nearest explanations in reasonable times with up
to 500 features and 5000 data points. In particular, relative
explanations of random forest predictors can be obtained
in a few seconds, even when the number of features (dx),
size of the training set (n), or dimensions of the underlying
decision problem (dy and dz) are large.

1.1. Related Works

Data-driven optimization. The core focus of data-driven
decision-making is to develop sample-efficient methods for
obtaining the adaptive weights wi(x). Indeed, the amount of
data available for contextual stochastic optimization is often
small, consisting of a few dozen to hundreds of observations.
This typically depends on the decision problem at hand. For
instance, retail operations may be based on weekly sales
observations collected over a few years. Recent approaches
use machine learning algorithms and provide theoretical
guarantees on out-of-sample costs (Ban & Rudin, 2019;
Bertsimas & Kallus, 2020; Notz & Pibernik, 2022). One
notable advantage of simple models such as random forests
is that they can be trained to optimize the cost of the decision
problem rather than simply fitting the data at hand (Kallus
& Mao, 2022). Lin et al. (2022) also study the value of risk
aversion to avoid overfitting.

Counterfactual explanations of classifiers. Since the sem-
inal work of Wachter et al. (2017), counterfactual explana-
tions have received a great amount of attention and are used
widely to interpret black-box classifiers (Verma et al., 2020;
Karimi et al., 2022). Integer programming has proved espe-
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cially valuable to explain the predictions of random forests,
allowing the inclusion of complex actionability, plausibility,
and robustness constraints (Cui et al., 2015; Kanamori et al.,
2020; Parmentier & Vidal, 2021; Forel et al., 2022). Interest-
ingly, when a decision policy is given directly by a random
forest (Biggs et al., 2022) or a decision tree (Elmachtoub
et al., 2020), traditional counterfactual explanation methods
can be used straightforwardly to explain the decision pol-
icy. However, this is not the case in our setting, since the
machine learning algorithm only provides weights that are
used subsequently in an optimization model.

Interpretable decision-making. Despite high practical rel-
evance, the interpretability of decisions obtained by solving
optimization models has not received a large amount of at-
tention. Korikov et al. (2021) study the interpretability of
deterministic optimization problems through the lens of in-
verse optimization. Regretting the lack of interpretability of
existing predictors, Notz (2020) proposes an interpretable
prescriptive method based on boosting, which performs
slightly worse than random forest predictors. In this work,
we show that it is possible to solve the interpretability prob-
lem of machine learning predictors such as random forests
while retaining their state-of-the-art performance.

2. Problem Statement and Properties
Let {(xi, yi)}ni=1 be the set of historical observations and
{wi(x)}ni=1 be the weight functions given by a trained pre-
dictor. In this section, we introduce the random forest and
nearest-neighbor predictors, present risk-neutral and risk-
averse contextual stochastic problems, and formalize the
problem of finding counterfactual explanations of decisions.

2.1. Predictors and Adaptive Weights

A random forest predictor is made of T regression trees. It
can be trained following the standard procedure of Breiman
(2001) that minimizes the estimation error or following the
approach of Kallus & Mao (2022) that takes into account the
cost of decisions. In both cases, the random forest weights
assigned to a past observation are calculated as an average
over the weights of the individual trees. The weights are
given by wRF

i (x) = 1
T

∑T
t=1 w

DT
i,t (x) where wDT

i,t (x) is
the weight given to sample i by the t-th tree in the forest. A
tree assigns equal weights to all samples in the same leaf
node as x, so that the weight given to sample i by tree t
is wDT

i,t (x) = I(xi ∈ Lt(x))/ | Lt(x) | where I(·) is the
indicator function and Lt(x) returns the leaf of tree t that
contains x. An important observation is that decision-tree
predictors yield piecewise-constant decision policies since
the weights are constant in each leaf. Consequently, random
forests also define piecewise-constant decision policies.

Nearest-neighbor predictors assign equal weights to all

k-nearest neighbors of the current context. The predic-
tor weights are thus given by wkNN

i = 1
k I
(
xi ∈ Nk (x)

)
,

where Nk(x) is the set of k-nearest neighbors of x. Again,
the weight functions given by a nearest-neighbor predictor
are piecewise constant, and so is its prescribed policy.

2.2. Contextual Stochastic Problems

Problems with expected costs. Two-stage stochastic mod-
els allow the decision-maker to react to the observation of
uncertain parameters by applying recourse decisions. As
such, they form an important class of stochastic problems
with widespread applications. Two-stage contextual stochas-
tic problems with expected costs can be seen as a special
case of Problem (1) when the sample cost c(z, yi) is given
by:

c(z, yi) =
1

n
c1(z1) + c2(z

i
2; z1, y

i), (3)

where c1(z1) is the immediate cost of the first-stage decision
z1 and c2(z

i
2; z1, y

i) is the second-stage cost of applying the
recourse decision zi2.

Problems with Conditional Value-at-Risk Risk-averse
problems reflect the risk preference of the decision-maker
through risk measures. In particular, stochastic problems
minimizing the conditional value-at-risk (CVaR) are pop-
ular in a wide array of applications such as finance and
energy management thanks to their advantageous mathe-
matical properties (Rockafellar & Uryasev, 2000). Further,
introducing risk considerations in data-driven optimization
has an effect akin to regularization as it can decrease both
the risk and expected costs (Lin et al., 2022).

The CVaR is defined as the average of the α-tail of the
cost distributions, where α represents the risk tolerance
of the decision-maker (Rockafellar & Uryasev, 2002).
Denote by [n] the set of integer from 1 to n and let
τ(·; z) : [n] → [n] be a permutation that sorts the sample
losses

(
c(z, yτ(1;z)), . . . , c(z, yτ(i;z)), . . . , c(z, yτ(n;z))

)
in

decreasing order. We use this permutation to identify
the index iα such that

∑iα
i=1 wτ(i;z) ≥ 1 − α and∑iα−1

i=1 wτ(i;z) < 1−α. The index iα is unique and denotes
the sample loss at which the α-tail of the loss distribution is
covered. For any decision z, the CVaR is thus given by:

CVaRα(z;w) =
1

1− α

( iα−1∑
i=1

wτ(i;z)c(z, y
τ(i;z))

+
(
1− α−

iα−1∑
i=1

wτ(i;z)

)
c(z, yτ(iα;z))

)
.

(4)

2.3. Explaining Decisions through Alternative Contexts

Let xn+1 be the context in which we obtain the decision
z∗, and let zalt be an alternative decision. Consider now the
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general contextual stochastic problem given by:

z∗ = argmin
z∈Z

g (w(xn+1), z) , (5)

where g is a cost function representing either the expected
costs as in Problem (1) or the CVaR defined in Equation (4).
We introduce two classes of explanations for this general
decision problem: relative and absolute explanations.

Definition 2.1 (Relative explanation). A relative explana-
tion xr is a context for which the alternative decision has a
lower cost than the prescribed decision, that is:

g(w(xr), zalt) ≤ g (w(xr), z∗) . (6)

Definition 2.2 (Absolute explanation). An absolute expla-
nation xa is a context for which the alternative decision is
optimal, that is, xa satisfies the criterion:

zalt ∈ argmin
z∈Z

g (w(xa), z) . (7)

Clearly, the absolute explanation criterion is stricter than
the relative explanation criterion. In fact, the following
property can be derived directly from Definitions 2.1 and
2.2 as detailed in Appendix A.

Proposition 2.3. An absolute explanation is always a rela-
tive explanation.

Existence of explanations. In general, there is no guar-
antee that a relative or absolute explanation exists. The
alternative decision might be poor and incur a large cost
in all contexts. A direct consequence of Proposition 2.3
is that, if no relative explanation exists, then no absolute
explanation exists.

Sufficient conditions guaranteeing that no explanation exists
can be identified from the historical samples alone. For
instance, the following property holds for any predictor.
The proof is given in Appendix A.

Proposition 2.4. If c(zalt, yi) ≥ c(z∗, yi) for all i, then
there exists no relative or absolute explanation.

Nearest explanations. We are interested in finding relative
and absolute explanations that are nearest to the current
context xn+1. Thus, nearest explanations minimize a dis-
tance function f(·, xn+1), and the following property can
be deduced from Proposition 2.3.

Corollary 2.5. A nearest absolute explanation xa is at
least as distant from the context xn+1 as its nearest relative
explanation xr, i.e., f(xa, xn+1) ≥ f(xr, xn+1).

The proof is given in Appendix A. Corollary 2.5 underlies
the design of our algorithm to obtain absolute explanations
presented in Section 3.

The above definitions and properties describe the structure
of the explanation problem for both single-stage and two-
stage stochastic programs with expected costs and CVaR
objectives. Notice that, for two-stage problems, it is suf-
ficient to explain first-stage decisions since second-stage
decisions can be deduced from them. This is valuable in
practice since there are often much fewer first-stage deci-
sions than second-stage decisions.

3. Obtaining Nearest Explanations
In the following, we develop methods to find nearest expla-
nations based on integer programming. This approach is
especially relevant since the decision policies are piecewise
constant, and searching over the weights is a combinato-
rial problem. Moreover, integer programming solvers have
made tremendous progress over the last decades, permitting
nowadays to solve many problems of practical relevance
at scale (e.g., searching for optimal counterfactual explana-
tions of classes – Parmentier & Vidal 2021).

3.1. Explaining Problems with Expected Costs

The relative explanation problem can be defined as:

min
x∈X

f(x, xn+1) (8a)

s.t.
∑n

i=1
wi(x)δ

i(zalt, z∗) ≤ 0, (8b)

where δi(zalt, z∗) = c
(
zalt, yi

)
−c
(
z∗, yi

)
is the difference

between the costs incurred by decisions zalt and z∗ for the
past observation yi, which can be calculated offline. The key
part of our methodology is thus to search over the weight
functions {wi(x)}ni=1 given by random forest and nearest-
neighbor predictors.

Random forest predictors. Our model extends the exist-
ing methods for counterfactual explanations in the classifi-
cation setting based on integer programming. These models
consist of a set of linear constraints that ensure that x is in
leaf node v of tree t if and only if the binary variable lt,v is
equal to 1. For the sake of conciseness, we do not restate
these formulations and refer instead to Parmentier & Vidal
(2021) for a detailed presentation.

Given variables lt,v, nearest relative explanations can be
obtained by introducing variables wi and constraints:

wi =
1

T

T∑
t=1

∑
v∈VL

t

St,v,i · lt,v, ∀i ∈ [n] (9)

where St,v,i is the weight of sample i in node v of tree t,
which can be calculated offline as 1/Lt(xi) if sample i is in
node v of tree t and 0 otherwise. Note that the additional
variables are all continuous so that the complexity of the
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problem is similar to the one of counterfactual explanations
in the classification setting. This approach is flexible and
could be combined with any counterfactual explanation
method developed in the classification setting.

Nearest-neighbor predictors. Contrary to random forests
and to the best of our knowledge, there is no existing opti-
mization model to obtain nearest explanations of nearest-
neighbor classifiers. Hence, we develop a new formulation
to track the set Nk of k nearest neighbors of an explanation.
The formulation is based on auxiliary binary variables λi,
equal to 1 if sample i is in Nk, and on a free variable d that
takes for value the radius of a disk around x that contains all
its k-nearest neighbors but not its (k+1)-nearest neighbors.
The relative explanation of nearest-neighbor predictors can
be modeled with the following constraints:

wi = λi/k, ∀i ∈ [n] , (10a)

di = f(x, xi), ∀i ∈ [n] , (10b)
di ≤ d+M(1− λi), ∀i ∈ [n] , (10c)
di ≥ d+ ε−Mλi, ∀i ∈ [n] , (10d)∑n

i=1
λi = k. (10e)

Constraint (10a) assigns equal weights to all k nearest neigh-
bors. Constraint (10b) tracks the distance between the histor-
ical samples and the explanation. Constraints (10c), (10d)
and (10e) identify the k-nearest neighbors of x through so-
called "big-M" constraints, where M is an upper bound on
the distance di and depends on the feature space.

Absolute explanations. The absolute explanation prob-
lem can be stated in a general form by replacing Con-
straint (8b) with the absolute criterion from Definition 2.2.
This leads to a complex bi-level formulation and is no-
toriously hard to solve (Kleinert et al., 2021). However,
when the underlying decision problem is linear, the ab-
solute explanation problem can be formulated as a com-
pact, single-level optimization problem. Let Z be a convex
polytope Z = {z : Az ≤ b} with b ∈ Rdb and A ∈
Rdb×dz , and let the objective function in (1) be expressed
as
∑n

i=1 wic(z, y
i) = (

∑n
i=1 widi)

⊤z with di ∈ Rdz .

Proposition 3.1. When Problem (1) is linear, the absolute
explanation criterion can be integrated into Problem (8)
by adding free variables µ ∈ Rdb and (dz + 1) linear
constraints: (∑n

i=1
widi

)⊤
zalt ≤ b⊤µ ,

A⊤µ ≤
∑n

i=1
widi.

The proof follows from strong duality and is given in Ap-
pendix A. The added constraints act as certificates for global

optimality. Other single-level reformulations could be iden-
tified when the decision problem has a special structure
(e.g., using the Karush–Kuhn–Tucker conditions for convex
decision problems).

Still, we are interested in explaining general decision prob-
lems that are not necessarily linear. Thus, we suggest an-
other more general algorithm that provides absolute expla-
nations regardless of the nature of the underlying decision
problem. The algorithm is based on repeatedly solving the
simpler relative explanation problem to obtain intermediate
contexts x(j) and checking whether the solution satisfies the
absolute explanation criterion. If this is not the case, the
region of the feature space containing x(j) is cut from the
feasible domain. This can be done by adding the following
constraint for random forest predictors:∑T

t=1
lt,vt(j) ≤ (T − 1), (11)

where vt(j) is the index of the leaf node of tree t that contains
x(j). For the k-nearest neighbor predictor, it is done by
adding the constraint:∑

i∈Nk(x(j))

λi ≤ k − 1. (12)

A valid inequality can also be added to tighten the search
space at each iteration:∑n

i=1
wi(x

(j))δi(zalt, z∗j ) ≤ 0. (13)

The enriched relative explanation problem with added con-
straints is then solved again. The procedure is outlined in
Algorithm 1.

Algorithm 1 Iterative procedure for absolute explanations

Initialize: j = 0, x(0) = xn+1

while x(j) is not an absolute explanation do
j = j + 1
Solve the enriched relative problem to obtain x(j).
Solve Problem (1) with context x(j) to obtain z∗j .
if
∑n

i=1 wi

(
x(j)

)
δi(zalt, z∗j ) > 0 then

Cut the region containing x(j).
Tighten the search space by adding Constraint (13).

else
Return: xa = x(j)

end if
end while

A more efficient implementation of Algorithm 1 can be
obtained by leveraging the capabilities of modern integer
programming solvers. Using callbacks, Problem (1) can be
solved each time a feasible integer solution is found. The
temporary solution can then be excluded from the search
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space using so-called “lazy constraints“ if it does not satisfy
the absolute explanation criterion, and valid inequality (13)
can be added. This avoids solving the relative explanation
problem from scratch at each iteration and substantially
reduces computation times.

3.2. Explaining Problems with CVaR

Explaining problems with CVaR objectives is significantly
more complex than problems with expected costs. Indeed,
the algorithm must simultaneously identify the indices of the
samples with the largest losses and track their weights. How-
ever, this apparently non-linear problem can be equivalently
stated as a mixed-integer linear problem. The main idea
is to express CVaRα(z

alt) and CVaRα(z
∗) using auxiliary

variables and constraints and to introduce a constraint on the
relative explanation criterion: CVaRα(z

alt) ≤ CVaRα(z
∗).

Modeling CVaRα(z
alt). We develop a flow-based formu-

lation that relies on the continuous flow variables {fi}ni=1

to track the weight given to each sample loss. The largest
losses are identified using the binary variables {θi}ni=1. The
CVaR of the alternative decision zalt can be expressed as:

CVaRα(z
alt) =

1

1− α

n∑
i=1

fi · c(zalt; yτ(i,z
alt)) (14)

by introducing the following constraints:∑n

i=1
fi = 1− α, (15a)

0 ≤ fi ≤ wτ(i,zalt), ∀i ∈ [n], (15b)

θi ≥ θi+1, ∀i ∈ [n− 1], (15c)
wτ(i,zalt) −Wmax(1− θi) ≤ fi, ∀i ∈ [n], (15d)

fi ≤ Wmaxθi−1, ∀i ∈ [n], (15e)∑i

j=1
fj ≤

∑i+1

j=1
fj ∀i ∈ [n− 1]. (15f)

Constraint (15a) states that the sum of the flow variables
covers the α-tail of the loss distribution. Constraints (15b)
ensures that the flows are always smaller than the sample
weights. Constraint (15c) orders the auxiliary binary vari-
ables. Constraints (15d) and (15e) link the flow variables
to the binary variables using a big-M method. Thus, the
flow of any sample i such that τ(i, zalt) < τ(iα, z

alt) is
exactly wτ(i,zalt), and the flow of any samples i such that
τ(i, zalt) > τ(iα, z

alt) is exactly 0. The flow of iα, the last
sample selected is free between 0 and wτ(iα,zalt). These mod-
eling steps are necessary since the CVaR calculation needs
to “split the atom” with discrete distributions (see Rock-
afellar & Uryasev (2002)). We discuss how to derive tight
upper bounds for Wmax in Appendix B. Constraint (15f) is a
valid inequality that tightens the feasible domain of the flow
variables.

Efficient formulation for CVaRα(z
∗). Let {f̃i}ni=1 and

{θ̃i}ni=1 be the additional variables introduced to track the
continuous flow and binary indices of the largest sample
losses for calculating CVaRα(z

∗), respectively. To model
CVaRα(z

∗), the same set of constraints (14)-(15f) could be
added. However, a more efficient approach can be used: it
is sufficient to introduce only the continuous flow variables,
as stated in the following proposition.

Proposition 3.2. The relative explanation criterion is sat-
isfied if CVaRα(z

alt) ≤ 1
1−α

∑n
i=1 f̃i · c(z∗; yτ(i,z

∗)) and
{f̃i}ni=1 satisfy the inequalities (15a) and (15b).

The proof and the resulting formulation of the CVaR expla-
nation problem are given in Appendix A. Proposition 3.2
implies that we do not need to introduce additional binary
variables {θ̃i}ni=1, which reduces significantly the complex-
ity of the explanation problem. The sample weights can then
be modeled exactly as when explaining problems with ex-
pected costs, and Algorithm 1 can be used to obtain absolute
explanations.

4. Numerical Study
We demonstrate the value of our methods to explain data-
driven decisions in repeated experiments with synthetic and
real-world data. The goals of the experiments are threefold.
First, we measure the scalability of our methods to different
dimensions that impact the explanation, such as the number
of training samples or decisions. Second, we investigate
the characteristics and relative strengths of the two types
of explanations introduced. Third, we present a practical
application of our method to a risk-averse shortest-path
problem based on Uber movement data.

All experiments are run on four cores of an Intel(R)
Xeon(R) Gold 6336Y CPU at 2.40 GHz. The simula-
tions are implemented in Python 3.9.13. Gurobi 9.5.1
is used to solve all mixed-integer programming prob-
lems. The code used to generate all the results in
this paper is publicly available at https://github.
com/alexforel/Explainable-CSO under an MIT
license.

The random forest predictors are trained following Bertsi-
mas & Kallus (2020). We use the standard procedure of
scikit-learn v.1.0.2. with T = 100 trees (default value) and
a maximum depth of 4. We focus on nearest-neighbor pre-
dictors with k = 10. All distances are measured through
the l1 norm, which encourages sparse explanations in which
only a few features are modified.

4.1. Experimental Setting

We select three stochastic decision problems that cover es-
sential applications in operations management such as in-
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ventory management and routing:
• Multi-item newsvendor. A newsvendor manages sev-

eral products and wants to optimize profits in the face of
uncertain demands and a limited ordering budget. This
problem is adapted from Kallus & Mao (2022).

• Two-stage shipment planning. The decision-maker
aims to minimize production at several facilities (first stage)
and shipping costs (second stage) while satisfying the un-
certain demand at several locations. This problem is taken
from Bertsimas & Kallus (2020).

• (CVaR) shortest path. The decision-maker seeks the
shortest path that traverses a network with uncertain edge
costs. The problem is adapted from Elmachtoub et al. (2020)
and Elmachtoub & Grigas (2022).
An overview of the problems’ dimensions is given in Ta-
ble 1 and detailed descriptions are provided in Appendix C.
In our experiments, we analyze different configurations of
the decision problems and perform N = 100 repeated ex-
periments in each setting. The training data {(xi, yi)}ni=1,
corresponding to historical observations of the contextual
information and the random parameters of the decision prob-
lem, is resampled in each experiment.

Table 1. Dimension of contexts, observations, and decisions.
PROBLEM dx dy dz

NEWSVENDOR (NWS) 2 20 20
SHIPMENT (SHM) 3 12 8 + 48n
SHORTEST PATH (SP) 4 112 112
CVAR SHORTEST-PATH (C-SP) 4 24 24

Generating explanation problems. To generate explana-
tion problems, we need an initial context xn+1, its associ-
ated decision z∗, and an alternative decision zalt to explain.
We create diverse explanation problems by sampling two
contexts. The first one is taken as the initial context xn+1

and its associated decision z∗ is obtained by solving Prob-
lem (1). The second context xalt is used to determine an
alternative decision zalt, also by solving Problem (1). We
then obtain relative and absolute explanations by solving
Problem (8) and applying Algorithm 1 respectively.

We present below the main results of our experiments. Ad-
ditional results, such as a sensitivity analysis of the model
hyper-parameters or measuring the distance of the obtained
explanations, are presented in Appendix D.

4.2. Numerical Results on Synthetic Experiments

First, we measure the time needed to obtain relative and
absolute explanations. The average time is given in Table 2
for varying sizes of the training set {(xi, yi)}ni=1. Overall,
explanations can be obtained in times ranging from a few
seconds to a few minutes. Our methods scale especially

well with the size of the training set when the predictor is a
random forest. Explanations of nearest-neighbor predictors
can be obtained in short times for small sample sizes, but do
not scale as well to large sample sizes. For both predictors,
explaining problems optimized over CVaR objectives is
more computationally challenging than those optimized over
expected costs.

Table 2. Average computational time [in s].
RELATIVE EXPLANATION ABSOLUTE EXPLANATION

N RF K-NN RF K-NN

NWS
50 0.28 0.24 1.65 0.96
100 0.37 1.07 3.00 5.46
200 0.48 3.71 4.41 23.90

SHM
50 0.34 0.25 2.68 2.06
100 0.36 1.10 5.61 9.25
200 0.47 4.12 14.35 53.32

SP
50 0.61 0.87 1.78 2.66
100 1.02 5.34 3.67 33.77
200 1.41 24.25 5.50 141.53

C-SP
50 6.78 1.40 7.47 4.47
100 16.27 9.45 17.88 25.60
200 45.20 37.66 48.63 203.52

Sensitivity to the dimension of the context. We evaluate
the scalability of explanation methods for random forest pre-
dictors in both the sample size and the number of features
through additional sensitivity analyses. We focus on the
shortest path problem (SP) and vary the dimension of the
contextual information dx ∈ {5, 10, 25, 50, 100, 500} with
training sets of different sizes. In this experiment, all the fea-
tures are informative and may influence the uncertain travel
times on each edge of the network. Results on the CVaR
shortest-path problem (c-SP) are presented in Appendix D.3.
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1

Context dimension dx

Ti
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e
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n
s]

(a) Relative explanations

5 10 25 50 100 500

1

10

100

Context dimension dx

(b) Absolute explanations

n = 100 n = 500 n = 1000 n = 5000

Figure 2. SP: computational time on large instances (standard de-
viation is shown in shaded area).

We show the average time to find explanations in Fig-
ure 2, where the shaded areas correspond to the interval
of plus/minus one standard deviation. Figure 2 shows that
explanations of random forest predictors can be obtained
in a short time even when the dimension of the context or
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the size of the training set is large. Interestingly, the com-
putational effort of relative explanations decreases as the
dimension of the context increases.

In the RF model, the number of features only impacts the
number of continuous variables of the problem. We observe
in our experiments that the linear relaxation of the under-
lying problem becomes stronger as the dimension of the
context increases. As a consequence, the number of branch-
and-bound nodes and the solution time of the mixed-inter
optimization problem tend to decrease.

Sensitivity to the decision problem. We now investigate
how the complexity of the wSAA Problem (1) impacts the
time needed to explain it. We vary the number of products
in the newsvendor problem and the size of the grid in the
shortest-path problem. Thus, we increase the dimensions
dy and dz while keeping the dimension dx and the size
of the training set constant (n = 100). The time needed
to find explanations for the newsvendor and shortest-path
problem is shown in Figure 3 and 4, respectively. The results
show that the computational time of relative explanations
scales remarkably well with the complexity of the decision
problem.
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Figure 3. NWS: sensitivity to the number of products.
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Figure 4. SP: sensitivity to the grid width.

Identifying relevant feature changes. In each experi-
ment, the alternative decision zalt is obtained from a sam-
pled context xalt. We can measure whether our explana-
tions move toward this alternative context, thus identify-
ing the right feature changes that render the alternative
decision zalt better or optimal. We focus on the newsven-
dor problem since it does not present too much symmetry
in the context (see Appendix D.1). We measure the cor-
relation c ∈ [−1, 1] between the relative explanation xr

produced by our method (or the absolute explanation xa)
and the alternative context xalt as a normalized dot product:
c = xalt−xn+1

∥xalt−xn+1∥2
· xr−xn+1

∥xr−xn+1∥2
. A large positive correlation

indicates that the two contexts are in the same direction, as
shown in Figure 5.

Figure 5. Explanations xa and xr with large positive correlations
with the alternative context xalt.

The correlations between our explanations and the alter-
native contexts are shown in Figure 6 for training sets of
varying sizes. As seen in this experiment, the explanations
produced by our algorithm are aligned with the alternative
contexts. In fact, the absolute explanations and alternative
contexts are almost perfectly correlated. Relative explana-
tions also have a largely positive correlation, although lower
than absolute explanations. A possible interpretation is that
the relative explanation criterion allows deviating from the
direction of the alternative contexts if it leads to sparser
explanations, as encouraged by our use of the l1 distance.
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Figure 6. NWS: Correlation between explanations and xalt.

In Appendix D.5, we extend this experiment by including
spurious features. The results highlight that relative expla-
nations tend to focus on relevant features and avoid spurious
ones, whereas absolute explanations always have a high
correlation with the alternative contexts regardless of the
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importance of the features used in the explanation.

4.3. CVaR Shortest Path with Real-World Data

We now detail the application of our methods to the CVaR
shortest-path problem based on Uber movement data. The
decision-maker seeks a path from the east to the west of
the Los Angeles downtown area that minimizes a CVaRα

objective with α = 0.7. The road network is modeled as a
graph of 45 nodes and 93 edges. The contextual information
contains temporal as well as meteorological information.
The ’PERIOD’ feature, indicating the time of the day, is
modeled as a categorical feature. The ’DAY’ and ’MONTH’
features are discrete, and the remaining features are continu-
ous. Because our method is based on integer programming,
it is straightforward to handle discrete or one-hot encoded
categorical features.

Historical observations of the uncertain travel times are
available on the edge level. We randomly sample n = 1000
past observations and train a random forest predictor. We
then sample a new context xn+1 and calculate its corre-
sponding optimal path z∗. The solution is to traverse the
city using the north route, shown in blue in Figure 1. We
consider the alternative route zalt that takes instead the south
route, shown in green in Figure 1, and wish to identify in
which context such an alternative solution would be relevant.

We can compute the nearest relative and absolute explana-
tions in 43 and 63 seconds respectively. The initial context
and its nearest explanations are given in Table 3. The results
show that the alternative route would be better, actually even
optimal, if the ’PERIOD’ feature changes from ’Midday’ to
’AM’. In this example, the explanation is sparse and can be
easily interpreted by decision-makers. For instance, a direct
interpretation is that the traffic along the alternative path is
higher around midday than in the early morning.

Table 3. Nearest explanations for the Uber shortest-path problem.
FEATURE INITIAL xn+1 RELATIVE xr ABSOLUTE xa

PERIOD MIDDAY AM AM
TEMPERATURE 57.17 57.17 57.17
WIND SPEED 4 4 4
RAIN 0 0 0
VISIBILITY 6.99 6.99 6.99
DAY 2 2 2
MONTH 11 11 11

5. Conclusion and broader impact
This paper presents a first approach to explain the decisions
made by data-driven pipelines involving machine learning
predictors. We obtained nearest explanations by analyz-
ing the structure of the explanation problems and solving
integer-programming models. Approximate explanations
could also be investigated for complex cases such as prob-

lems with CVaR objectives, building upon the rich literature
on approximate explanations in the classification setting (see
e.g., Tolomei et al., 2017; Lucic et al., 2022). Our approach
would then serve as a benchmark with provably minimal
explanation distance.

This work located at the intersection of explainable AI
and data-driven decision-making opens many promising
research avenues. Future work could investigate how to
identify a set of diverse but similar explanations, or consider
novel types of explanations, such as finding the nearest con-
text such that the current decision is not optimal. Another
interesting research direction is to develop explanation tech-
niques for the smart "predict-then-optimize" framework of
Elmachtoub et al. (2020) or other integrated pipelines (Dalle
et al., 2022; Ferber et al., 2020; Mandi et al., 2020).
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A. Supplementary Material: Proofs
This section provides the proofs of the results presented in Section 2 and 3. For the sake of completeness, we restate the
result before each proof.

Proposition 2.3 An absolute explanation is always a relative explanation.

Proof. The definition of absolute explanations implies that g(xa, z
alt) ≤ g(xa, z), ∀z ∈ Z . Hence, since z∗ ∈ Z ,

xa satisfies the relative explanation criterion.

Proposition 2.4 If c(zalt, yi) ≥ c(z∗, yi) for all i, then there exists no relative or absolute explanation.

Proof. Let {wi}ni=1 be an arbitrary set of weights such that wi ∈ [0, 1], ∀i and
∑n

i=1 wi = 1. First, consider decision
problems minimizing expected costs. Since the weights wi are positive, c(zalt, yi) ≥ c(z∗, yi) for all i implies that∑n

i=1 wi(c(z
alt, yi)− c(z∗, yi)) ≥ 0. Thus no relative explanation exists and therefore no absolute explanation exists.

Second, consider decision problems minimizing the CVaR. Let τ(·; z∗) be the permutation that orders all the sample losses
{c(z∗, yτ(i;z∗)}ni=1 in decreasing order and let iα be the index at which the α-tail of the loss distribution is covered. The
following inequality follows from the fact that c(zalt, yi) ≥ c(z∗, yi) for all i:

CVaRα(z
∗;w) =

1

1− α

( iα−1∑
i=1

wτ(i;z∗)c(z
∗, yτ(i;z

∗)) +
(
1− α−

iα−1∑
i=1

wτ(i;z∗)

)
c(z∗, yτ(iα;z∗))

)

≤ 1

1− α

( iα−1∑
i=1

wτ(i;z∗)c(z
alt, yτ(i;z

∗)) +
(
1− α−

iα−1∑
i=1

wτ(i;z∗)

)
c(zalt, yτ(iα;z∗))

)
.

(16)

Further, we know from the definition of the CVaR that:

1

1− α

( iα−1∑
i=1

wτ(i;z∗)c(z
alt, yτ(i;z

∗)) +
(
1− α−

iα−1∑
i=1

wτ(i;z∗)

)
c(zalt, yτ(iα;z∗))

)
≤ CVaRα(z

alt;w).

Thus, no relative or absolute explanation exists.

Corollary 2.5 A nearest absolute explanation xa is at least as distant from the context xn+1 as its nearest relative explanation
xr, i.e., f(xa, xn+1) ≥ f(xr, xn+1).

Proof. The proof is by contradiction. If xa is a nearest absolute explanation and f(xa, xn+1) < f(xr, xn+1), then xa is a
nearer relative explanation than xr, which contradicts xr being a nearest relative explanation.

Proposition 3.1 When Problem (1) is linear, the absolute explanation criterion can be integrated into Problem (8) by adding
free variables µ ∈ Rdz and (dz + 1) constraints:(∑n

i=1
widi

)⊤
zalt ≤ b⊤µ ,

A⊤µ ≤
∑n

i=1
widi.

Proof. The proof is based on strong duality and borrows techniques from robust optimization (Ben-Tal et al., 2009). Recall
the notation: Z = {z : Az ≤ b} with b ∈ Rdb and A ∈ Rdb×dz , and the objective of the decision problem is given by
(
∑n

i=1 widi)
⊤z with di ∈ Rdz . The absolute explanation criterion zalt ∈ argminz∈Z(

∑n
i=1 widi)

⊤z can be equivalently
expressed as: (

n∑
i=1

widi

)⊤

zalt ≤ min
z∈Z

(
n∑

i=1

widi

)⊤

z. (17)
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By strong duality, since the minimization problem on the right-hand side of Equation (17) is feasible and bounded, its dual
problem is also feasible and bounded and their optimal values coincide. The absolute explanation criterion is equivalent to:(

n∑
i=1

widi

)⊤

zalt ≤ max
µ∈{µ:A⊤µ≤

∑n
i=1 widi}

b⊤µ. (18)

Notice, however, that the dual problem on the right-hand side of Equation (18) does not need to be solved to optimality.
Indeed, any feasible µ0 ∈ {µ : A⊤µ ≤

∑n
i=1 widi} satisfies b⊤µ0 ≤ maxµ∈{µ:A⊤µ≤

∑n
i=1 widi} b

⊤µ. Thus, the following
condition is sufficient to ensure the absolute explanation criterion:

∃µ such that

{
(
∑n

i=1 widi)
⊤
zalt ≤ b⊤µ, and

A⊤µ ≤
∑n

i=1 widi.

Proposition 3.2 The relative explanation criterion is satisfied if CVaRα(z
alt) ≤ 1

1−α

∑n
i=1 f̃i · c(z∗; yτ(i,z

∗)) and {f̃i}ni=1

satisfy the inequalities (15a) and (15b).

Proof. Let {wi}ni=1 be an arbitrary set of weights that sum to 1 and denote by F the set of positive variables that satisfy
the inequalities in constraints (15a) and (15b), that is F = {f ∈ [0, 1]n,

∑n
i=1 fi = 1− α and 0 ≤ fi ≤ wτ(i,z), ∀i ∈ [n]}.

The following inequality is true for any f̃ = {f̃i}ni=1 ∈ F :

1

1− α

n∑
i=1

f̃i · c(z∗; yτ(i,z
∗)) ≤ max

{fi}∈F

1

1− α

n∑
i=1

fi · c(z∗; yτ(i,z
∗)) = CVaRα(z

∗).

Thus, the following condition guarantees that the relative explanation criterion is satisfied:

∃ f̃i ∈ F such that CVaRα(z
alt) ≤ 1

1− α

n∑
i=1

f̃i · c(z∗; yτ(i,z
∗)).

The relative explanation problem with CVaR objectives can now be formulated efficiently as:

min
x∈X

ℓ1(x, xn+1) (19a)

s.t.
n∑

i=1

fi · c(zalt; yτ(i,z
alt)) ≤

n∑
i=1

f̃i · c(z∗; yτ(i,z
∗)), (19b)

n∑
i=1

fi = 1− α, (19c)

fi ≤ wτ(i,zalt)(x), ∀i ∈ [n], (19d)

θi ≥ θi+1, ∀i ∈ [n− 1], (19e)
wτ(i,zalt)(x)−Wmax(1− θi) ≤ fi, ∀i ∈ [n], (19f)

fi ≤ Wmaxθi−1, ∀i ∈ [n], (19g)
i∑

j=1

fj ≤
i+1∑
j=1

fj ∀i ∈ [n− 1] (19h)

n∑
i=1

f̃i = 1− α, (19i)

f̃i ≤ wτ(i,z∗)(x), ∀i ∈ [n] (19j)

f, f̃i ≥ 0, θi ∈ {0, 1} ∀i ∈ [n]. (19k)
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B. Supplementary Material: Model Refinements
The CVaR formulation introduced in Section 3.2 is based on big-M constraints with constant Wmax being an upper bound on
the weight of any sample. For nearest-neighbor predictors, the maximum weight of a sample is simply 1/k. For random
forest predictors, the lowest value for Wmax is given by:

W = max
x,i

wRF
i (x) = max

x,i

1

T

T∑
t=1

wDT
i,t (x).

Calculating this value requires measuring the maximum weights of all samples in all combinations of leaves in the forest,
which is intractable even for moderate forests and sample sizes (Vidal et al., 2020). Thus, we look for an upper bound on W
that is tighter than the naive bound Wmax = 1. A first approach is to average over all the maximum tree weights as:

Wmax =
1

T

T∑
t=1

max
x,i

wDT
i,t (x) =

1

T

T∑
t=1

max
i

wDT
i,t (xi).

However, we noticed in our experiments that this bound is often very close to 1 and thus does not bring much improvement
compared to the naive bound. Hence, we use a second approach based on modeling the weights as a flow over the intersecting
leaves of different trees. We create a directed graph where each node vt,l corresponds to the leaf l of tree t, as illustrated in
Figure 7. For each pair of consecutive trees, we add an arc from node vt,l to vt+1,l′ if the two leaf nodes have at least one
training sample in common and assign weight wt,l = 1/nt,l to this arc, where nt,l is the number of samples in leaf l of
tree t. We also add a sink node connected to all leaf nodes of the last tree with weight wT,l = 1/nT,l. The bound Wmax is
finally deduced as the sum of the weights over the arcs of the longest path over the graph.

Leaf 1

Tree 1

Leaf 2

Leaf L

Leaf 1

Tree 2

Leaf 2

Leaf L

Leaf 1

Tree T

Leaf 2

Leaf L

SinkSource

Figure 7. Example of a weighted graph connecting tree leaves in a random forest: two leaves in successive trees are connected only if they
have at least one sample in common.

C. Supplementary Material: Details of Experimental Setting
In this section, we introduce in detail the decision problems considered in our numerical experiments. In particular, we
present the joint distributions of the contextual information and random parameters and formulate the decision problems as
optimization models.

C.1. Multi-item newsvendor

In the multi-item newsvendor problem, the decision-maker places orders z = [z1, . . . , zdy
] over the product portfolio in the

face of uncertain demands. The decision-maker wants to minimize the expected overage and underage costs expressed as:

min
z≥0

Ey

 dy∑
j=1

hj(zj − yj)
+ + bj(yj − zj)

+ | X = x

 , (20)

where (z)+ = max(z, 0). Following Kallus & Mao (2022), the contextual data X is a 2-dimensional vector drawn from
two independent, standard Gaussian distributions. We modify the generation of problem instances to allow different sizes
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of the product portfolio. The overage and underage costs of product j are set as hj = j and bj = 10hj . We condition the
demand of the first half of the product portfolio on the first feature X1 and the demand of the second half on the second
feature X2. The demand distribution of product j is thus given by:

Yj | X = (x1, x2) ∼

{
TruncNormal(3, exp(x1)), if j ≤ dy/2,

TruncNormal(3, exp(x2)), otherwise.

These modifications allow us to generate problem instances of different sizes by varying the number of products dy . Unless
stated otherwise, we use dy = 20 in our experiments. Finally, we introduce a budget constraint on the total order quantity
over the products:

dy∑
j=1

zj ≤ K (21)

with K = 5 · dy. This budget constraint yields a slightly more realistic problem. Further, there is no known analytical
solution in this case and the optimal ordering quantity must be computed by solving the linear optimization model given by
Equation (20) and Constraint 21.

C.2. Two-stage shipment planning

The two-stage shipment planning problem is taken directly from Bertsimas & Kallus (2020, Section EC.6). In this problem,
an uncertain demand at dy = 12 locations is serviced by dz = 4 warehouses. The demand depends on 3-dimensional
contextual information, which evolves as an ARMA(2,2) process.

C.3. (CVaR) shortest path

We consider a square grid of width L with L2 nodes, and a directed graph connecting each node to its neighbors immediately
below and to the right. For any square grid, there are dy = 2(l − 1)L edges with uncertain costs. The decision-maker wants
to find the shortest path from the top-left node to the bottom-right node. The decisions z ∈ {0, 1}2(L−1) are binary variables
indicating whether arc j is selected or not. We set the grid width to L = 4 for our experiments with CVaR objectives (same
value as Elmachtoub et al. (2020)) and increase the width to L = 8 for the experiments with expected costs.

The contextual information is a 4-dimensional vector. In our experiments, we found that the problem setting introduced
by Elmachtoub et al. (2020) leads to many symmetric contexts (see Appendix D.1). Hence, we modify it in the following
way. Each component of the context x is sampled from a uniform distribution Uniform(0.5, 1.5). The influence of each
component of the context vector has an effect on edge j with a probability of 0.5. The influence matrix B ∈ {0, 1}dx,dy

collects the influence of all features on all arcs and is sampled in each experiment. We also randomly generate an additive
noise εi,j ∼ Uniform(0, 1) for each edge j and scenario i. In scenario i, the cost of edge j is given by:

yij =
1

dx
B⊤

j · x+ εi,j ,

where Bj corresponds to the j-th column of the influence matrix B. This experimental setting is flexible and permits the use
of large-dimensional contextual information while keeping the number of decisions constant, as done in Section 4.2.

We consider both expected costs and CVaR objectives with α = 0.8. For any node v ∈ V , let A−
j and A+

j be the set of
edges respectively entering and leaving node j. The shortest-path problem with expected costs is given by the following
optimization model:

min
z

n∑
i=1

wi(z
⊤yi) (22a)

s.t.
∑
j∈A−

1

zj = 1 , (22b)

∑
j∈A−

v

zj −
∑
j∈A+

v

zj = 1 , 2 ≤ v ≤| V |, (22c)

zj ∈ {0, 1}. (22d)
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Constraint (22b) states that at least one edge leaving node 1 is selected. Constraint (22c) ensures the balance of flow at each
node. The shortest-path problem with CVaR objective can be obtained by using the convex formulation of Rockafellar
& Uryasev (2002). It is well-known that the solution of the linear relaxation of shortest-path problems coincides with its
optimal integer solution. However, this is not the case when the objective is the CVaR.

D. Supplementary Material: Additional Experiments
In this section, we introduce additional experiments to investigate:

• the occurrence of symmetric contexts in Section D.1,
• the sensitivity of the computational effort and explanations’ distance to the hyper-parameters of random forests and

nearest-neighbor predictors in Section D.2,
• the sensitivity of the explanations to additional parameters in Section D.3,
• the performance of Algorithm 1 compared to the dual formulation presented in Proposition 3.1 in Section D.4, and
• the impact of spurious features on explanations and their correlation with the alternative contexts in Section D.5.

D.1. Symmetric contexts

In our experiments, we repeatedly sample new contexts xn+1 and xalt to obtain decisions z∗ and zalt and generate diverse
explanation problems. We call the two contexts xn+1 and xalt symmetric when they lead to decisions z∗ and zalt having
the same cost. In that case, xn+1 is both a nearest relative and absolute explanation. For each decision problem and set of
hyper-parameters, we measure the occurrence of symmetric contexts and present the results in Table 4. The table shows a
significant difference between the two first problems and the two shortest-path problems. This is expected since shortest-path
problems have discrete decisions whereas the newsvendor and shipment planning problems have continuous decisions. It is
more likely that two different contexts yield the same decisions and thus the same cost when the decisions are discrete.

Table 4. Occurence of symmetric contexts in the different problems and for varying hyper-parameters [in %].
RELATIVE EXPLANATION ABSOLUTE EXPLANATION

RF K-NN RF K-NN

T = 100 T = 200 k = 10 k = 30 T = 100 T = 200 k = 10 k = 30

NEWSVENDOR
n = 50 0 0 0 0 0 0 0 0
n = 100 1 0 0 0 1 1 0 0
n = 200 1 1 0 0 2 2 0 0

SHIPMENT
n = 50 5 2 4 5 5 2 4 5
n = 100 1 1 0 0 1 1 0 0
n = 200 2 1 1 0 2 1 1 0

SHORTEST PATH
n = 50 47 52 20 51 47 53 21 51
n = 100 43 43 15 40 43 43 15 40
n = 200 42 44 11 35 42 44 11 35

CVAR
SHORTEST PATH

n = 50 68 63 37 70 68 63 37 70
n = 100 71 73 42 70 71 74 42 70
n = 200 61 63 27 52 61 63 27 52

The percentage of symmetric contexts depends on the predictor and its hyper-parameters. While the number of trees in the
random forest has no significant effect, nearest-neighbor predictors with larger values of k have more symmetric solutions.
This is also intuitive since, as k grows toward n, the policy converges to a non-contextual decision policy, in which all
contexts are symmetric. Finally, note that we exclude all symmetric contexts when reporting computational time throughout
the paper.

D.2. Sensitivity analyses of hyper-parameters

In this section, we investigate the effect of the hyper-parameters of random forest and nearest-neighbor predictors, namely,
the number of trees, the maximum depth of trees, and the number of neighbors.

Computational time We use the same simulation setting as in Section 4.2 and vary the size of random forests T ∈
{100, 200} and the number of neighbors k ∈ {10, 30}. We show the effect of these hyper-parameters on the computational
time in Table 5. The time needed to obtain explanations increases for large random forests but remains overall small when
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the decision problem minimizes expected costs.

Table 5. Average computational time for varying predictor hyper-parameters: forest size and k (in s).
RELATIVE EXPLANATION ABSOLUTE EXPLANATION

RF K-NN RF K-NN

T = 100 T = 200 k = 10 k = 30 T = 100 T = 200 k = 10 k = 30

NEWSVENDOR
n = 50 0.28 0.77 0.24 0.22 1.65 3.73 0.96 0.83
n = 100 0.37 1.09 1.07 1.34 3.00 6.00 5.46 6.27
n = 200 0.48 1.44 3.71 5.01 4.41 8.12 23.90 32.78

SHIPMENT
n = 50 0.34 1.01 0.25 0.26 2.68 5.31 2.06 1.60
n = 100 0.36 1.08 1.10 2.02 5.61 9.84 9.25 13.02
n = 200 0.47 1.52 4.12 10.91 14.35 21.52 53.32 132.17

SHORTEST PATH
n = 50 0.61 2.41 0.87 0.91 1.78 5.61 2.66 2.26
n = 100 1.02 3.99 5.34 24.09 3.67 9.75 33.77 93.18
n = 200 1.41 5.41 24.25 187.98 5.50 12.52 141.53 650.67

CVAR
SHORTEST PATH

n = 50 6.78 26.50 1.40 1.24 7.47 31.71 4.47 2.80
n = 100 16.27 57.78 9.45 29.82 17.88 65.75 25.60 111.65
n = 200 45.20 145.11 37.66 345.58 48.63 130.69 203.52 845.31

We also vary the maximum depth of trees of random forest predictors within {3, 4, 5, 6} while keeping the number of trees
fixed to T = 100. We show the impact of the maximum tree depth on the computational time in Table 6. While increasing
the maximum tree depth increases the computational time, explanations can still be obtained quickly within a few seconds to
a few minutes on the considered problems.

Table 6. Average computational time for varying maximum tree depth [in s].
RELATIVE EXPLANATION ABSOLUTE EXPLANATION

MAX. TREE DEPTH 3 4 5 6 3 4 5 6

NEWSVENDOR
n = 50 0.13 0.29 0.51 0.86 0.94 1.72 2.79 4.16
n = 100 0.16 0.34 0.66 1.19 1.71 2.73 4.07 6.84
n = 200 0.21 0.42 0.86 1.65 2.49 4.09 6.48 10.58

SHIPMENT
n = 50 0.15 0.32 0.60 1.06 1.62 2.57 4.50 6.81
n = 100 0.17 0.40 0.69 1.41 3.60 6.24 8.69 14.08
n = 200 0.20 0.46 0.98 2.42 10.04 14.94 21.97 33.26

SHORTEST PATH
n = 50 0.24 0.78 1.66 2.50 1.08 2.22 3.85 6.00
n = 100 0.33 1.10 3.01 6.01 1.76 3.37 7.28 12.59
n = 200 0.36 1.45 3.96 11.71 3.34 5.78 10.69 25.40

CVAR
SHORTEST PATH

n = 50 2.54 4.78 8.66 14.09 3.25 6.01 10.07 17.07
n = 100 6.41 18.11 37.74 61.68 6.15 20.57 44.61 73.85
n = 200 16.32 40.97 97.54 242.87 13.79 40.76 121.58 220.07

Distance of explanations We now measure the distance between the obtained explanations and the initial context xn+1

using the l1 norm. We show how the average distance varies with the model hyperparameters in Table 7. Interestingly, the
hyper-parameters of the predictors have little effect on the distance of explanations.

D.3. Additional results on synthetic data

Sparsity of explanations. In Section 4.2, we investigate shortest-path problems with a large number of features and
training samples and observed that explanations can be obtained in a short time. The average number of features changed in
explanations obtained for n = 500 training samples is shown in Table 8. The table shows that the explanations obtained are
sparse: only a few features are changed, even when the context has a large number of dimensions. This can be explained
by our use of the ℓ1 norm to measure the distance of explanations to the original contexts, which is known to favor sparse
explanations.
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Table 7. Average distance of explanations for varying predictor hyper-parameters: forest size and k [in s].
RELATIVE EXPLANATION ABSOLUTE EXPLANATION

RF K-NN RF K-NN

T = 100 T = 200 k = 10 k = 30 T = 100 T = 200 k = 10 k = 30

NEWSVENDOR
n = 50 0.3 0.28 0.39 0.36 0.88 0.88 0.88 0.83
n = 100 0.37 0.37 0.44 0.44 1.09 1.07 1.12 1.13
n = 200 0.27 0.27 0.37 0.37 0.82 0.85 0.93 0.96

SHIPMENT
n = 50 0.28 0.26 0.38 0.39 0.67 0.6 0.72 0.65
n = 100 0.21 0.19 0.34 0.46 0.66 0.7 0.86 0.9
n = 200 0.19 0.2 0.47 0.47 0.59 0.65 0.94 1.01

SHORTEST PATH
n = 50 0.03 0.04 0.04 0.04 0.04 0.05 0.06 0.04
n = 100 0.05 0.05 0.04 0.04 0.06 0.07 0.06 0.05
n = 200 0.06 0.06 0.04 0.03 0.07 0.07 0.06 0.04

CVAR
SHORTEST PATH

n = 50 0.05 0.06 0.05 0.03 0.06 0.07 0.06 0.04
n = 100 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04
n = 200 0.04 0.04 0.03 0.04 0.05 0.05 0.04 0.04

Table 8. Average number of features changed to obtain explanations.
NUMBER OF FEATURES dx NUMBER OF FEATURES CHANGED (PERCENTAGE)

RELATIVE EXPLANATIONS ABSOLUTE EXPLANATIONS

5 2.8 (43%) 2.5 (49%)
10 3.2 (32%) 3.6 (36%)
25 2.3 (9%) 2.5 (10%)
50 1.6 (3.3%) 1.9 (3.8%)

100 2.0 (2.0%) 2.3 (2.3%)
500 3.6 (0.7%) 3.6 (0.7%)

CVaR shortest path. We present the sensitivity of the computational time to obtain relative and absolute explanations
of the CVaR shortest-path problem with an increasing number of features in Figure 8. The results are similar to those on
the shortest path with expected costs: our methods provide explanations in a reasonable time even when the contextual
information consists of many informative features. In fact, as in Figure 2, the computational time tends to decrease as the
number of features increases.
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Figure 8. c-SP: computational time on large instances (standard deviation is shown in shaded area).

D.4. Absolute explanations: Iterative algorithm vs. dual reformulation

Throughout the paper, we use the iterative procedure given in Algorithm 1 implemented efficiently with callbacks and lazy
constraints to obtain absolute explanations. In this section, we compare the performance of this algorithm compared to the
dual reformulation given in Proposition 3.1. We focus on the shortest-path problem with expected costs since it is the linear
decision problem with the largest computational time for absolute explanations. We show the solving time of Algorithm 1
relative to the solving time of the dual reformulation in Figure 9.

Algorithm 1 provides the best performance for random forests with large training sets, whereas the dual reformulation is the
fastest on average for nearest-neighbor predictors. However, it is interesting to observe that the distribution of the time ratios
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Figure 9. Relative solving time for obtaining absolute explanations: iterative approach relative to dual approach

has a large variance, especially for nearest-neighbor predictors. We leave it to future work to characterize the situations in
which Algorithm 1 or the dual reformulation will provide explanations in the shortest time.

D.5. Spurious features and explanations

In this section, we extend our analyses regarding the correlation of explanations by including spurious features. We focus on
the newsvendor problem and introduce two additional features that are completely independent of the demand. The spurious
features are also set to follow standard normal distributions. We repeatedly generate contexts and determine explanations
and measure two indicators: (1) the correlation between explanations and alternative contexts as in Section 4.2, and (2) the

percentage of changes made on relevant features rather than spurious ones, calculated as p =
∥xalt

(1:2)−xn+1
(1:2)

∥2

∥xalt−xn+1∥2
.

We focus on random forest predictors and vary the sample size n ∈ {50, 100, 200, 400, 600, 800}. The correlation between
explanations and the alternative contexts is shown in Figure 10, and the percentage of changes made on relevant features is
shown in Figure 11. The figures suggest that relative explanations tend to modify only relevant features and avoid spurious
ones. However, they do not always move the explanation toward the alternative context. On the other hand, absolute
explanations tend to modify all features equally, but stay almost completely aligned with the direction of the alternative
contexts. These observations remain valid for all sample sizes investigated.
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Figure 10. Correlation between obtained explanations and alternative contexts with spurious features.
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Figure 11. Percentage of change made on relevant rather than spurious features.
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