
Training and Cross-Validating Machine Learning Pipelines
with Limited Memory

Martin Hirzel1 Kiran Kate1 Louis Mandel1 Avraham Shinnar1

1
IBM Research

Abstract While automated machine learning (AutoML) can save human labor in finding well-

performing pipelines, it often suffers from two problems: overfitting and using excessive

resources. Unfortunately, the solutions are often at odds: cross-validation helps reduce over-

fitting at the expense of more resources; conversely, preprocessing on a separate compute

cluster and then cross-validating only the final predictor saves resources at the expense of

more overfitting. This paper shows how to train and cross-validate entire pipelines on a

single moderate machine with limited memory by using monoids, which are associative, thus

providing a flexible way for handling large data one batch at a time. To facilitate AutoML, our

approach is designed to support the common sklearn APIs used by many AutoML systems

for pipelines, training, cross-validation, and several operators. Abstracted behind those APIs,

our approach uses task graphs to extend the benefits of monoids from operators to pipelines,

and provides a dual-backend implementation. Overall, our approach lets users train and

cross-validate pipelines on simple and inexpensive compute infrastructure.

1 Introduction

This paper tackles the problem of training and cross-validating machine-learning pipelines on large

datasets while only needing limited memory. This enables the use of a moderately-sized cloud

compute node, thus avoiding the cost of upgrading to a more powerful machine and the complexity

of upgrading to a cluster. It even lets data scientists use a laptop, thus simplifying debugging,

avoiding data transfer, and reducing competition for compute resources.

Automated machine learning (AutoML) can jointly select algorithms and tune hyperparameters

across an entire pipeline, including both data preprocessing and modeling [18, 46]. A pipeline is a
directed acyclic graph of operators, where operators are data transformers (e.g., encoders, scalers)

and predictors (e.g., classifiers, regressors). A pipeline edge 𝑃 → 𝑆 means that intermediate data

transformed by a predecessor operator 𝑃 becomes the input to a successor operator 𝑆 . As the most

popular library for defining such pipelines today is sklearn [8], this paper adopts sklearn terminology,

but its concepts apply more broadly. Many AutoML systems expect sklearn APIs [16, 18, 25, 36],

and many third-party libraries conform to sklearn APIs [5, 10, 9, 14, 21, 24, 28]. We have extended

the sklearn-compatible AutoML framework Lale [4] with our operators and algorithms.

Operators have two execution modes, training (fit in sklearn) and application (transform or

predict). Training a pipeline requires both execution modes. To train an operator 𝑆 of a pipeline, the

input data of 𝑆 must be transformed by its predecessors, which in turn must be already trained.

1 for each operator 𝑆 in pipeline.topological_order:
2 𝑆.fit(out[preds of 𝑆])
3 out[𝑆] ← 𝑆.transform(out[preds of 𝑆])

Figure 1: Naive non-batched training algorithm.

Figure 1 shows a naive pipeline training algorithm.

Here, out maps from operators to their intermediate

transformed collection of output data, as well as the

input data at the start of the pipeline. Unfortunately,

this naive algorithm uses excessive memory, since

it retains all non-batched intermediate data in out.
One approach that avoids holding the entire training data in memory is deep learning [27].

Unlike general machine learning, deep learning uses an execution regime we call partial transform:

AutoML 2024 © 2024 the authors, released under CC BY 4.0

mailto:hirzel@us.ibm.com
mailto:kakate@us.ibm.com
mailto:lmandel@us.ibm.com
mailto:shinnar@us.ibm.com
https://creativecommons.org/licenses/by/4.0/

a partially-fitted predecessor layer 𝑃 transforms data for a successor layer 𝑆 so a batch passes all the

way through the network without the predecessor being fully trained first. Unfortunately, partial

transform does not work for all data preparation operators. For instance, the OneHotEncoder operator

encodes categorical features as a one-hot numeric array; training this operator on additional

batches can discover new categories, thus invalidating encodings of earlier batches. Hence, data

preprocessing for deep learning usually happens separately, not in a single combined pipeline.

To enable training and cross-validating sklearn-style pipelines on large data without requiring

partial transform, this paper uses monoids to support batching at the pipeline level. A monoid is

simply a set with a binary associative combine operation and an identity element [7, 23, 45]. We

express the training of several common operators as monoids, so they can train on each batch

independently before combining learned coefficients from different batches. Next, we express the

training of a pipeline of operators using a task graph with tasks for lifting batches to monoids,

combining monoids, and applying operators. Using monoids in task graphs maximizes flexibility

for reuse and scheduling, enabling us to minimize spilling to disk via a resource-aware schedule.

Specifically, the associativity of monoids allows batches to be processed and combined in a more

efficient order while guaranteeing equivalent end results to those of doing the work sequentially.

Importantly for AutoML, monoids even let us eliminate some spurious work during cross-validation.

This is because the associativity of monoids lets us do some computations only once per fold and

then combine these reusable partial results into multiple sets of folds.

Our task-graph framework is general enough to faithfully emulate common machine-learning

pipeline semantics. We express our monoidal operators via relational algebra to decouple them

from backends. We implement the relational algebra operators on two backends, pandas [30] and

Spark SQL [2]. The Spark SQL backend scales to large data and is distributed. The pandas backend

also scales to large data thanks to our batching and spilling implementation but is not distributed

and has lower framework overhead. This paper makes the following novel contributions:

• A monoidal framework to express the training of data preprocessing operators (Section 2).

• Algorithms for batched training or cross-validation of pipelines via task graphs that leverage

monoids for resource-aware scheduling and spilling (Section 3).

• A generic implementation of the approach on top of relational algebra operators and two backends

targeting pandas and Spark SQL (Section 4).

Our implementation is open-source: https://github.com/IBM/lale/tree/master/lale/lib/rasl.

2 Monoids
To train in limited memory, we want batch-wise training, but unlike in deep learning, we cannot

pass a batch through the entire pipeline. Instead, we need to hold on to intermediate tranformed

data whose size can exceed the memory budget, necessitating spilling. Since spilling is expensive,

we want to minimize it by processing batches as independently as possible, without “harmful” [44]

sequential dependencies on their predecessor. Fortunately, there is a very simple abstraction that

supports exactly that: a monoid, which is a set with an associative operator. Besides enabling

flexible schedules, monoids also enable us to eliminate some duplicate effort in cross-validation.

Operators as Monoids. A core insight of this paper is that several common machine-learning

operators are monoidal, which we define as being expressible via the following three operations:

• to_monoid : BatchXy→ Monoid, for lifting a batch to the monoid of the operator’s learned coefficients;

• combine : Monoid × Monoid→ Monoid, for combining learned coefficients from different batches; and

• from_monoid : Monoid→ TrainedOp, for lowering learned coefficients from their monoidal form into a

form suitable for the operator to be applied.

We express the training (fit in sklearn) of a monoidal machine-learning operator by applying

the to_monoid operation to each batch and then applying the combine operation. And we express the

application (transform or predict) by applying the from_monoid operation and using its results.

2

https://github.com/IBM/lale/tree/master/lale/lib/rasl

scan
INP(d0)

scan
INP(d1)

scan
INP(d2)

to_monoid
SIM(d0)

to_monoid
SIM(d1)

to_monoid
SIM(d2)

combine
SIM(d0,d1,d2)

transform
SIM(d1)

transform
SIM(d0)

transform
SIM(d2)

x: 2, , 3

x: 3, 1, 5

x: , 4, 

nx: 2, sx: 5

nx: 3, sx: 9

nx: 1, sx: 4

nx: 6, sx: 18

x: 2, 3, 3

x: 3, 1, 5

x: 3, 4, 3

to_monoid(X) combine(a, b) transform(X)

fit(X, y)

Filter(x )>> Agg(nx: |x|, sx: x) Map(nx: a.nx+b.nx, sx: a.sx+b.sx) Map(x: replace(x, {:
sx
nx
}))

Figure 2: Monoid example: imputing missing values with mean (INP = input, SIM = SimpleImputer).

Figure 2 gives an example of imputing missing values with mean. It shows a part of a task

graph for an input comprising three batches d0, d1, and d2. The edges coming out of scan tasks are

annotated with the values for an example column, 𝑥 , that contains either numbers or a missing

value, denoted ⊥. The to_monoid operation filters non-missing values and computes their count 𝑛𝑥
and sum 𝑠𝑥 . (The >> combinator denotes function composition.) The edges coming out of to_monoid

tasks are annotated with combinable learned coefficients. For instance, in 𝑥 : 2,⊥, 3, the number of

non-missing values is 𝑛𝑥 : 2 and their sum is 𝑠𝑥 : 5. The combine task applies the monoid’s operation;

being associative, it can freely choose how to arrange the binary operations to combine multiple

(here three) pieces. In this case, combine sums 𝑛𝑥 and 𝑠𝑥 from its predecessors. Finally, transform uses

from_monoid to compute the arithmetic mean
𝑠𝑥
𝑛𝑥
, here

18

6
= 3, and replaces missing values with that

number. For illustration purposes, the example shows only 3 rows, 1 column, and 3 batches; with

more rows, columns, and batches, the monoidal data per column and batch is still small, comprising

just the count 𝑛𝑥 and the sum 𝑠𝑥 .

We can express several common preprocessing operators via monoids. For instance, Standard-

Scaler scales values by subtracting the mean and dividing by the standard deviation. Its monoid

stores, for each column 𝑥 of a dataset 𝑋 , the count 𝑛𝑥 of rows without missing value, the sum

of the values in the column 𝑠𝑥 =
∑
𝑥 , and the sum of squares sq𝑥 =

∑
𝑥2𝑖 . Then, transform calls

from_monoid to lower these into the concrete mean and standard deviation, which it uses to scale data.

The monoidal approach is not limited to preprocessing. For instance, BatchedBaggingClassifier

is an ensemble where the monoid holds a list of base classifiers trained on separate batches [23].

The appendix provides the monoidal formulations of ten operators (MinMax- and StandardScaler,

SimpleImputer, Project, OneHot-, Ordinal-, Target-, and HashingEncoder, SelectKBest, and Batched-

BaggingClassifier) and six metrics (accuracy, 𝐹1, 𝑅
2
, DI [17], symmetric DI, and accuracy-and-DI).

Alternatives to Monoids. Not all machine-learning operators are monoidal, but some exhibit other

properties that can also be useful towards batch-wise training. Section 3 will leverage the property

of being monoidal and other alternative properties to give formal guarantees.

• An incremental operator has a method partial_fit : TrainableOp × BatchXy→ TrainedOp. The method is

designed to be invoked repeatedly on the same operator, with each call modifying the object by

updating its learned coefficients. The first call changes it from trainable to trained. For example,

in sklearn, MinMaxScaler and SGDClassifier have partial_fit.

• A convergent operator 𝑆 is one where, after fitting on different batches 𝑑1, 𝑑2, transforming a third

batch 𝑑3 yields similar results: 𝑆.fit(𝑑1).transform(𝑑3)≈𝑆.fit(𝑑2).transform(𝑑3). Unlike being monoidal

or incremental, which are algebraic properties, being convergent is an approximate property.

However, deep learning universally assumes it for all layers. Likewise, stacking ensembles

assume that their base predictors are convergent across folds. TargetEncoder [31] is convergent

but OneHotEncoder is non-convergent. One core insight of this paper is that batch-wise training

3

does not require convergence; that said, for completeness, we will also show experiments that

leverage convergence.

• A pretrained operator implements training (i.e., fit) as a no-op. It can be viewed as trivially

incremental, monoidal, and convergent. An example is a frozen embedding such as BERT [13] if

used in a pipeline without fine-tuning [9]. We also implemented HashingEncoder, a categorical

encoder that lacks learned coefficients and is thus pretrained.

3 Task Graphs

This paper shows how to use batching to train a pipeline on a large dataset without using too

much memory at any one time. The goal is to define an algorithm that takes as input a trainable

pipeline and an iterator over batches of the training dataset, and outputs a trained pipeline. To

train on large datasets, assuming that all operators in the pipeline implement an incremental

training method partial_fit, we could extend the naive algorithm from Section 1 by adding an

inner loop and a cache. We refer to this as the nested-loops algorithm and show it in Figure 3.

1 for each operator 𝑆 in pipeline.topological_order:
2 for each batch 𝑖 ∈ 0 . . . 𝑛 − 1:
3 spill/load batches to/from cache
4 𝑆.partial_fit(out[preds of 𝑆]𝑖)
5 for each batch 𝑖 ∈ 0 . . . 𝑛 − 1:
6 spill/load batches to/from cache
7 out[𝑆]𝑖 ← 𝑆.transform(out[preds of 𝑆]𝑖)

Figure 3: Nested-loops algorithm.

Unfortunately, its rigid structure of repeated full

passes over all data batches causes wasteful spilling

and loading. The root cause of the inflexibility is that

partial_fit is intrinsically sequential [44]. Besides

limiting scheduling flexibility and thus wastefully

spilling, partial_fit yields a computation with a long

critical path [6]. Furthermore, in cross-validation,

it reduces opportunities for computation reuse [23].

This paper introduces an alternative algorithm based on monoids and task graphs.

task ::= operation step ‘(’ batch+ ‘)’ holdout?
operation ::= apply | train
apply ::= ‘scan’ | ‘split’ | ‘transform’ | ‘predict’

train ::= ‘to_monoid’ | ‘combine’ | ‘partial_fit’ | ‘fit’

step ::= ‘INP’ | ‘SCR’ | operator
batch ::= fold idx
holdout ::= ‘\’ fold

Figure 4: Specification of a task in a task graph.

Definitions. Like a pipeline, a task graph is a directed
acyclic graph. But unlike pipeline nodes, task graph

nodes are not operators but tasks. As defined in

Figure 4, each task (node) is given by an operation, a

step, one or more batches, and an optional holdout.

For example, the task graph in Figure 2 contains a

task ‘combine SIM(d0,d1,d2)’, where the operation

is combine, the step is SIM = SimpleImputer, and the batches are (d0,d1,d2). There are two kinds of

tasks based on their operation: apply tasks (angular nodes in Figure 2) produce data and train tasks

(rounded nodes in Figure 2) produce learned coefficients. The step is one of INP = input, SCR = score,

or a pipeline operator. Since Figure 2 shows an example for training without cross-validation, all

tasks have a batch belonging to the same fold (d), and none specify a holdout.

1 create first scan task and goal tasks
2 while any tasks ready:
3 T ← get ready task based on priority
4 spill/load batches to/from cache
5 execute T
6 if T was scan and success:
7 create next scan task
8 backward chain task creation
9 extract learned coefficients and scores

Figure 5: Task-graph algorithm.

Algorithm. Figure 5 shows our algorithm for batch-

wise training or cross-validating machine-learning

pipelines. The initial phase, in L1, translates the

trainable pipeline to an initial task graph, with a

task scan INP(d0) to read the first batch (d0) of the input
dataset (INP) and a goal task for each operator 𝑆 of the

pipeline. A goal task is a task that, when completed,

contributes directly to the output of the algorithm.

For example, ‘combine SIM(d0,d1,d2)’ in Figure 2 is

a goal task that computes the learned coefficients for the SimpleImputer operator on all batches.

The main phase, in L2–L8 of Figure 5, is a worklist algorithm that executes tasks as they become

ready. A task is ready when all its predecessors are done. L3 can pick any ready task, and can be

configured with different priorities; for instance, to minimize spilling, our resource-aware scheduler

4

prioritizes tasks whose input batches are resident. L4 checks if there is enough memory for the

task T, spilling batches if needed and loading any previously spilled input batches for T. L5 executes

task T, performing its associated operation and storing the result with the task. L6 checks whether

T was a scan task that actually returned a new batch, as opposed to having reached the end of the

input iterator. In that case, L7 adds a new scan task node to the task graph for scanning the next

batch of input. L8 performs backward chaining, starting from goal tasks to create their required

recursive predecessors (see below for detailed rules). The final phase, in L9, reads the desired

outputs from goal tasks. For example, in Figure 2, it would read the learned coefficients from

‘combine SIM(d0,d1,d2)’ and create a trained SimpleImputer from them in the trained pipeline.

Backward Chaining. The backward chaining in L8 of the algorithm from Figure 5 can be configured

with different rules to obtain different regimes of training or cross-validation. We define backward

chaining via rules of the form operation 𝑃 (d𝑖) → operation’ 𝑆 (d𝑖′). The different possible matches

for operation are defined in Figure 4, and 𝑃, 𝑆 match instances of step in the same figure. Batches

d𝑖 , d𝑖′ match data batches in d0, d1, The notation preds(𝑆) refers to predecessors of step 𝑆 in

the pipeline, plus INP for all source operators of the pipeline; furthermore, preds(SCR) contains the
sinks of the pipeline. Below, we describe four different sets of backward chaining rules.

to_monoid
A(d0)

scan
INP(d0)

combine
A(d0,d1,d2)

scan
INP(d1)

scan
INP(d2)

to_monoid
A(d1)

to_monoid
A(d2)

transform
A(d1)

transform
A(d2)

transform
A(d0)

to_monoid
B(d0)

combine
B(d0,d1,d2)

to_monoid
B(d1)

to_monoid
B(d2)

transform
B(d1)

transform
B(d2)

transform
B(d0)

to_monoid
C(d0)

combine
C(d0,d1,d2)

to_monoid
C(d1)

to_monoid
C(d2)

Figure 6: Task graph for training pipeline A >> B >> C on 3 batches with the full-transform regime.

R1: apply 𝑃 (d𝑖) → apply’ 𝑆 (d𝑖)
R2: apply 𝑃 (d𝑖) → to_monoid 𝑆 (d𝑖)
R3: to_monoid 𝑆 (d𝑖) → combine 𝑆 (d0, ..., d𝑛−1)
R4: combine 𝑆 (d0, ..., d𝑛−1) → apply 𝑆 (d𝑖)

Figure 7: Backward chaining rules for batched training

with the full-transform regime.

Batched training with the full-transform
regime. Our first regime works in limited mem-

ory by batching, and is faithful to the usual

semantics of general (non-deep) machine learn-

ing pipelines by waiting for operators to be

fully trained before applying them. Figure 6

shows an example. Let 𝑃 ∈ preds(𝑆) and 𝑛 be

the number of batches. Figure 7 shows the backward chaining rules (R). Backward chaining moves

in the opposite direction of task graph edges, back from successor tasks to predecessor tasks. While

there are fresh tasks, it attempts to match a fresh task against the right pattern of all rules. If the

match succeeds, it finds or creates the left part indicated in the rule. For example, in Figure 6, R1

matches transform B(d0), creates transform A(d0), and creates the edge between them. The following formal

guarantees (FG) hold for this regime. FG1: All schedules behave equivalently. Regardless of the
schedule used by L3 of Figure 5, the final trained pipeline has the same learned coefficients, because

R3 trains an operator on all batches and R4 applies such a fully-trained operator. FG2: This regime

yields the same result as sklearn. Thanks to FG1, if suffices to show this for one schedule. Let

PrioStep be a scheduling priority that favors tasks for earlier operators, or, if the operator matches,

favors tasks for earlier batches. PrioStep recovers the nested-loops algorithm in Figure 3. To reduce

spilling and loading, we also define PrioResourceAware that favors tasks with less non-resident input

data; thanks to FG1, it is equivalent.

transform
A(d0)

to_monoid
A(d0)

scan
INP(d0)

to_monoid
C(d0)

combine
A(d0,d1)

scan
INP(d1)

scan
INP(d2)

to_monoid
A(d1)

to_monoid
A(d2)

to_monoid
B(d0)

transform
B(d0)

transform
A(d1)

combine
B(d0,d1)

to_monoid
B(d1)

transform
B(d1) combine

C(d0,d1)to_monoid
C(d1)

combine
A(d0,d1,d2)

transform
A(d2)

to_monoid
B(d2)

combine
B(d0,d1,d2)

transform
B(d2)

combine
C(d0,d1,d2)

to_monoid
C(d2)

Figure 8: Task graph for training pipeline A >> B >> C on 3 batches with the partial-transform regime.

5

(R1 and R2 from Figure 7)

R5: to_monoid 𝑆 (d0) → apply 𝑆 (d0)
R6: combine 𝑆 (d0, ..., d𝑖) → apply 𝑆 (d𝑖)
R7: combine 𝑆 (d0, ..., d𝑖) → combine 𝑆 (d0, ..., d𝑖+1)
R8: to_monoid 𝑆 (d𝑖+1) → combine 𝑆 (d0, ..., d𝑖+1)

Figure 9: Backward chaining rules for batched training

with the partial-transform regime.

Batched training with the partial-transform
regime. Our second regime supports incremen-

tal training by applying operators even when

they are not yet fully trained. This approach

is uncommon in general machine-learning but

common in deep learning [27]. Figure 8 shows

an example and Figure 9 shows the rules. To get

the most out of the partial-transform regime,

we define a scheduling priority PrioBatch that favors tasks for earlier batches, or if the batch matches,

favors tasks for earlier steps. This regime guarantees the following: FG3:With PrioBatch, all operators

are trained up to batch 𝑖 before scanning batch 𝑖 + 1. In other words, it trains a pipeline incremen-

tally, which can for instance be used to monitor a learning curve or for early stopping [29, 40].

Compared to the full-transform regime, the partial-transform regime is more restrictive (requir-

ing convergent operators) and offers weaker guarantees (lacking FG1); fortunately, our approach

supports both regimes.

combine
A(d0, f0)\g

transform
A(e0)\g

transform
A(f0)\g

combine
B(e0, f0)\g

to_monoid
B(e0)\g

to_monoid
B(f0)\g

transform
B(e0)\g

transform
B(f0)\g

combine
C(e0, f0)\g

to_monoid
C(e0)\g

to_monoid
C(f0)\g

predict
C(e0)\g

predict
C(f0)\g

combine
A(e0, g0)\f

transform
A(e0)\f

transform
A(g0)\f

combine
B(e0, g0)\f

to_monoid
B(e0)\f

to_monoid
B(g0)\f

transform
B(e0)\f

transform
B(g0)\f

combine
C(e0, g0)\f

to_monoid
C(e0)\f

to_monoid
C(g0)\f

predict
C(e0)\f

predict
C(g0)\f

combine
A(f0, g0)\e

transform
A(f0)\e

transform
A(g0)\e

combine
B(f0, g0)\e

to_monoid
B(f0)\e

to_monoid
B(g0)\e

transform
B(f0)\e

transform
B(g0)\e

combine
C(f0, g0)\e

to_monoid
C(f0)\e

to_monoid
C(g0)\e

predict
C(f0)\e

predict
C(g0)\e

to_monoid
A(e0)

to_monoid
A(f0)

to_monoid
A(g0)

split
INP(e0)

split
INP(f0)

split
INP(g0)

scan
INP(d0)

Figure 10: Cross-validation using the in-fold regime, for pipeline A >> B >> C, 3 folds, and 1 batch.

R9: scan INP(d𝑖) → split INP(𝑓𝑖)
R10: split INP(𝑓𝑖) → apply 𝑆 (𝑓𝑖)\ℎ
R11: split INP (𝑓𝑖) → to_monoid 𝑆 (𝑓𝑖)
R12: to_monoid 𝑆 (𝑓𝑖) → combine 𝑆 (d𝑖\ℎ)\ℎ
R13: apply 𝑃 (𝑓𝑖)\ℎ→ apply 𝑆 (𝑓𝑖)\ℎ
R14: apply 𝑃 (𝑓𝑖)\ℎ→ to_monoid 𝑆 (𝑓𝑖)\ℎ
R15: to_monoid 𝑆 (𝑓𝑖) → combine 𝑆 (d𝑖\ℎ)\ℎ

Figure 11: Backward chaining rules for cross-

validation with the in-fold regime.

Cross-validation with the in-fold regime. Our

third regime performs 𝑘-fold cross-validation with

the usual semantics: for each of 𝑘 folds (denoted

e, f, g, ...), hold out one fold ℎ and train the pipeline

on the remaining 𝑘 − 1 folds (denoted d\ℎ), scoring
on the held-out fold ℎ. Let 𝑓𝑖 denote fold 𝑓 at batch

index 𝑖 , e.g., e0. The resulting task graph may con-

tain multiple different tasks ‘apply 𝑆 (𝑓𝑖)’ for trained
copies of the same operator 𝑆 on the same batch 𝑓𝑖
that differ only in which fold was held out for train-

ing them. To disambiguate, let T\ℎ be a task T with a holdout fold ℎ. Figure 10 shows an example

and Figure 11 shows the rules. Since the total number of batches is a priori unknown and may not

be a multiple of the number of folds, we must split each batch into folds when it arrives. This is

handled by explicit split tasks and rule R9. Tasks for source operators (preds(𝑆) = {INP}) can share

work, since their left-hand side is still fold-agnostic, as expressed by rules R10–R12. This work

sharing does not occur in non-source operators, see R13–R15. Given 𝑘 folds and 𝑛 batches, this

regime makes the following formal guarantees. FG4: This regime yields the same result as sklearn’s

cross_val_score. FG5: A source operator has 𝑘𝑛 to_monoid tasks, a non-source operator has (𝑘 − 1)𝑘𝑛
to_monoid tasks, and all operators have (𝑘 − 1)𝑘𝑛 apply tasks. It saves a factor of 𝑘 − 1 to_monoid tasks

for source operators. For space reasons, Figure 10 only illustrates the case with a single batch; see

Figure 23 in the appendix for an example with multiple batches.

6

to_monoid
A(e0)

split
INP(e0)

combine
A(e0, g0)

split
INP(f0)

split
INP(g0)

to_monoid
A(f0)

to_monoid
A(g0)

transform
A(f0)

transform
A(g0)

transform
A(e0)

combine
A(f0, g0)

combine
A(e0,f0)

scan
INP(d0)

to_monoid
B(e0)

combine
B(e0, g0)

to_monoid
B(f0)

to_monoid
B(g0)

transform
B(f0)

transform
B(g0)

transform
B(e0)

combine
B(f0, g0)

combine
B(e0, f0)

to_monoid
C(e0)

combine
C(e0, g0)

to_monoid
C(f0)

to_monoid
C(g0)

predict
C(f0)

predict
C(g0)

predict
C(e0)

combine
C(f0, g0)

combine
C(e0, f0)

Figure 12: Cross-validation using the out-of-fold regime, for pipeline A >> B >> C, 3 folds, and 1 batch.

(R9 from Figure 11)

R16: apply 𝑃 (𝑓𝑖) → apply 𝑆 (𝑓𝑖)
R17: apply 𝑃 (𝑓𝑖) → to_monoid 𝑆 (𝑓𝑖)
R18: to_monoid 𝑆 (𝑓𝑖) → combine 𝑆 (d𝑖\ℎ) if 𝑓 ≠ ℎ

Figure 13: Backward chaining rules for cross-

validation with the out-of-fold regime.

Cross-validation with the out-of-fold regime.
Our fourth regime performs 𝑘-fold cross-

validation with alternative semantics. It de-

pends on all operators being convergent. Fig-

ure 12 shows an example and Figure 13 shows

the rules. In the out-of-fold regime, training

𝑆 always uses only data resulting from out-of-

fold applications of its predecessors 𝑃 , and to_monoid tasks are never qualified by a holdout. This

leads to more sharing. Let 𝑘 and 𝑛 be the number of folds and batches as before. FG6: Each operator

has 𝑘𝑛 to_monoid tasks and apply tasks. The out-of-fold regime unlocks the reuse enabled by monoids

to save a factor of 𝑘 − 1 to_monoid and transform tasks for all operators, not just for source operators.

But it lacks FG4: it may yield a different result than sklearn. For space reasons, Figure 12 only

illustrates the case with 1 batch; see Figure 24 in the appendix for an example with multiple batches.

4 Implementation

Except for BatchedBaggingClassifier, we define all monoidal operators using a relational algebra to

abstract over backends. Our algebra has three kinds of operators (c.f. Table 4 in the appendix):

• Unary (operators with signature Table→ Table): Filter, Project, Map, OrderBy, and Alias.

• 𝑛-ary (operators with signature List[Table]→ Table): ConcatFeatures, Join, and Scan.

• Grouped (operators to or from grouped data): GroupBy : Table→ Grouped and Aggregate : Grouped→ Table.

Our relational operators mostly follow text-book semantics, with a few deviations. As usual in

dataframe systems including pandas [30] and Spark SQL [2], Grouped data is not normalized. A Table

is a two-dimensional data structure with a fixed set of named columns and an ordered sequence

of rows. In addition, unlike classical relational algebra, each Table has a name and an index. The

table name is used by 𝑛-ary operators to identify one of their inputs, as doing so positionally would

be less intuitive [3]. An index comprises one or more special columns of unique values that keep

track of row order and identity but are separate from the payload data columns. Indexes support a

common pattern in preprocessing pipelines: first preprocess different sets of columns separately

(e.g., categorical encoding vs. numeric scaling), then concatenate columns belonging to the same

row. To support this, each sub-pipeline must preserve row order and identity. Most of our relational

operators (e.g. Map) preserve the index, and thus so do monoidal operators built with them.

Each of our relational operators has two equivalent implementations, one on pandas [30] and the

other on Spark SQL [2]. Both backend libraries provide their own dataframe types, which have some

differences that we needed to work around. While pandas dataframes come with an index, Spark

SQL dataframes do not, so we had to implement our own index support over Spark SQL dataframes.

We did that by repurposing some regular columns, and attaching metadata to each dataframe for

keeping track of which columns are index vs. payload. For table names, the situation was reversed:

while Spark SQL dataframes can carry a table name, pandas dataframes do not, so we had to add

one as metadata. Another difference is that whereas pandas expressions execute eagerly, Spark

SQL expressions lazily build up query plans for later execution. Our implementation lets Spark

SQL grow these query plans across multiple tasks in a task graph and only forces execution when

necessary. That gives Spark SQL’s query plan optimizer the opportunity to optimize across tasks

7

Table 1: Memory limit at which batched succeeds but non-batched sklearn fails (RQ1).

Dataset Target column Rows Cols Size (disk) Memory limit

KDDCup99 [15] target 4,898,431 42 0.8GB 10GB

steam_reviews [42] recommended 21,747,371 17 2.2GB 16GB

ecommerce_2019_oct [35] brand 42,448,764 8 3.2GB 16GB

data_cityofchicago_taxi [11] Trip Total 107,780,923 8 5.7GB 16GB

and even across operators in a machine-learning pipeline. Our monoidal operators are oblivious

of the backend, since they use our relational operators. Relational operators pick a backend by

checking the type of their input data, so the same pipeline can work on both backends.

5 Results

This section describes our experiments to answer six research questions (RQs).

RQ1. Can batching enable fitting pipelines on larger data without Spark SQL? We compared

our batched full-transform training regime with our pandas backend against the training of an

equivalent sklearn pipeline. The pipeline comprised a SimpleImputer, OrdinalEncoder, SelectKBest,

and SGDClassifier or SGDRegressor depending on the dataset. To create a limited memory setting,

we controlled the memory allotted to the Python process starting from 64GB going down in steps

of 2GB. We noted the value at which sklearn training fails and ran the batched training with that

memory size with a batch size of 10,000. Table 1 shows the result on four large datasets. Batched

training worked successfully with the memory limit, confirming that our approach enables training

pipelines on datasets too large for sklearn pipelines to process. We reran the experiment on a cloud

VM with only 8GB of physical memory and its default system swap space of 2GB. The result was

the same: sklearn ran out of memory while our batched training succeeded.

Figure 14: Ratio of training time with Spark SQL

vs. pandas backend (RQ2).

RQ2. When should users use the pandas backend
and when the Spark SQL backend? This experiment

compared the computational performance (speed)

of the pandas and Spark SQL implementations of

our operators. (We also checked the predictive per-

formance of the two backends and found them to

be identical as seen in Table 9.) We record the time

to train a classification pipeline on 10 OpenML [47]

datasets. We upsample each dataset to observe how

each of the backends performs as the data size in-

creases. Figure 14 shows the results of this com-

parison. We used Spark SQL in local mode so the

hardware resources are the same for the two back-

end runs. While neither backend is a clear winner,

providing two backends enables users to choose the

faster one for their circumstances, which can obtain a substantial speedup over the other.

RQ3. Do the pandas and Spark SQL backends yield identical results to sklearn? We used monoids

to reimplement six operators from sklearn (MinMaxScaler, StandardScaler, OneHotEncoder, Ordi-

nalEncoder, SelectKBest, and SimpleImputer) plus two operators from scikit-learn-contrib (Hashing-

Encoder and TargetEncoder). To check if they behave the same as the original implementation, we

extracted examples from the documentation (https://scikit-learn.org/stable/modules/classes.html

and http://contrib.scikit-learn.org/category_encoders/) and executed themwith our implementation.

We obtained the same results. In addition, we implemented tests that systematically compare the

output and public state of our operators with the reference implementation. They do not always

8

https://scikit-learn.org/stable/modules/classes.html
http://contrib.scikit-learn.org/category_encoders/

produce equal results but very similar ones (< 10
−7

difference). Table 5 in the appendix provides a

detailed summary of the experiments.

RQ4. Does batched execution yield identical results as non-batched? This experiment verifies that

the batched task graph execution with the full-transform regime on our pandas backend generates

the same outputs as a sklearn-style non-batched execution using our monoidal preprocessing oper-

ators. The pipeline for this experiment comprises a SimpleImputer, OrdinalEncoder, SelectKBest,

and RandomForestClassifier. RandomForestClassifier does not support partial_fit, ensuring that any

accuracy differences would only be due to the preprocessing prefix of the pipeline. We control the

random seeds for the train-test splits. The mean accuracy and standard deviation over 5 random

80%-20% train-test splits of 10 OpenML [47] datasets was identical for the two cases (see appendix).

Figure 15: Accuracy normalized to non-inc-sklearn of incre-

mental training (RQ5), averaged over 10 datasets.

RQ5. How much accuracy does partial-
transform training lose? Figure 15 shows

the results from an experiment with

10 OpenML [47] datasets and 10 incremen-

tal classifiers. In each experiment, the clas-

sifier is the final operator in a pipeline

with convergent preprocessing operators

(SimpleImputer, MinMaxScaler, Hashing-

Encoder). We repeated each run with 5 dif-

ferent random 80%-20% splits. The non-

incremental regimes (non-inc-sklearn and

non-inc-rasl) use a single fit call, and differ

in whether they use sklearn preprocessing

operators directly or our monoidal reim-

plementations. The incremental regimes

(partial-fit and partial-transform) split the training set into 5 batches. Here, partial-fit refers to the

case of only transforming data with preprocessing operators after they have been trained on all

batches. Each bar averages the accuracy from 5 holdout splits, then normalizes to non-inc-sklearn,

and finally averages over 10 datasets. While the non-incremental regimes tend to perform better (es-

pecially for MLPClassifier, where fit makes multiple passes over the data), the two non-incremental

regimes perform similarly to each other and the two incremental regimes perform similarly to each

other. For incremental training, partial-transform loses very little accuracy compared to partial-fit.

Figure 16: Correlation between mean rank

and slowdown (RQ6).

RQ6. How effective is out-of-fold cross-validation at
picking models? To quantify how good a cross-validation

regime is, we let it pick the model that has the best ac-

curacy according to the regime, and then check where

that model ranks on the holdout set. The out-of-fold

regime yields a smaller task graph but also reduces iso-

lation between training on different folds. This ranking

experiment used the same 10 classifiers and 10 datasets as

in RQ5. Let inf_cv𝑘 and oof_cv𝑘 denote the in-fold and out-

of-fold cross-validation regimes, where 𝑘 is the number of

folds, and let holdout𝑘 denote batched training followed

by evaluation on the holdout set, where 𝑘 is the number

of batches. Both ranks and slow-downs are relative to

holdout3 and averaged across 10 datasets, with error bars

showing standard deviations; for both, lower is better.

All configurations attempt 10 classifiers and the rank is

computed by finding the configuration’s best classifier

on the rank list according to holdout3. All configurations used monoidal preprocessing operators

9

but non-incremental fit for the final classifier. Figure 16 shows the results. Being the baseline, by

definition, holdout3 has rank 1 with zero standard deviation. Since there are 10 classifiers, random

picking would yield an expected rank of 5.5. The out-of-fold regime is faster than in-fold thanks to

the smaller task graph. The results for ranks are less clear due to the large error bars. Given that

the out-of-fold regime may leak information between folds, it might do worse on ranking.

6 Related Work

We discuss prior work related to each of the three contributions of our paper listed in Section 1.

Monoids. Izbicki [23] defines monoidal operators including variants of Bayes classifiers, decision

trees, and ensembling. He motivates these with uses for cross-validation, parallelization, and online

training. Mergeable summaries [1] are monoidal approximate algorithms for frequency estimation,

quantile summary, etc. In MapReduce [12], reduce operations do not have to be associative, but

they often are [49], in which case they unlock more optimizations. In a streaming setting, monoids

are essential to efficient incremental sliding window aggregation [20]. Steele observes that, in

contrast to the linear accumulator mindset prevalent in functional programming, monoids enable

binary decomposition algorithms [44]. Associative aggregation has also been at the core of data

warehousing [19]. In contrast to the above-listed papers, we show how to express common sklearn

operators as monoids in the context of an end-to-end machine learning pipeline.

Task graphs. Dask implements partial_fit methods to enable batching for several sklearn op-

erators, and provides a parallel engine for “dask graphs” [39]. Like our work, Dask connects to

pandas and sklearn; but unlike our work, Dask does not use monoids, nor does it tackle end-to-end

pipelines. Paramo uses a task graph for cross-validation and algorithm selection of a learning

pipeline on Hadoop [34]. KeystoneML provides a joint pipeline abstraction across data preparation

and machine learning in Spark, with parallelism and intra-pipeline caching [43]. Helix goes one

step further with inter-pipeline caching across trials [48]. Cilk defines task graphs for work stealing

approach with asymptotically optimal parallel speedup [6]. Ray provides task graphs for distri-

bution and lets users interleave training with serving [33]. In contrast to these systems, our task

graphs leverage monoids for computation reuse and scheduling flexibility, contributing backward

chaining rules for sklearn compatible and novel regimes.

Machine learning and relational algebra. We published a non-archival workshop paper on

RASL [41] with an early version of most of the relational algebra operators used here, but none of

the monoids built on top and no task graphs. Modin is a pandas alternative based on a dataframe

algebra with a relational core [38]. We use a similar data model and similar operators, but use

pandas as a backend instead of supplanting it. Several papers have melded linear algebra with

relational algebra, including SparkNet [32], LaraDB [22], Weld [37], and Lara [26]. Unlike these,

we use relational algebra as an intermediate layer to implement monoids usable in task graphs.

7 Conclusion

This paper presents techniques for training or cross-validating machine-learning pipelines in

limited memory. The main idea is to process data one batch at a time, and to express operators

with monoids for flexibility and reuse. Our implementation enables AutoML tools to use common

sklearn APIs for end-to-end pipelines over large datasets with a single modest compute node.

8 Broader Impact Statement

After careful reflection, the authors have determined that this work presents no notable negative

impacts to society or the environment.

10

References

[1] Agarwal, P. K., Cormode, G., Huang, Z., Phillips, J., Wei, Z., and Yi, K. (2012). Mergeable

summaries. In Symposium on Principles of Database Systems (PODS), pages 23–34.

[2] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan, T., Franklin,

M. J., Ghodsi, A., and Zaharia, M. (2015). Spark SQL: Relational data processing in Spark. In

International Conference on Management of Data (SIGMOD), pages 1383–1394.

[3] Auerbach, J., Hirzel, M., Mandel, L., Shinnar, A., and Siméon, J. (2017). Handling environments

in a nested relational algebra with combinators and an implementation in a verified query

compiler. In International Conference on Management of Data (SIGMOD), pages 1555–1569.

[4] Baudart, G., Hirzel, M., Kate, K., Ram, P., Shinnar, A., and Tsay, J. (2021). Pipeline combinators

for gradual AutoML. In Advances in Neural Information Processing Systems (NeurIPS), pages
19705–19718.

[5] Bellamy, R. K. E., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., Lohia, P., Martino, J.,

Mehta, S., Mojsilovic, A., Nagar, S., Ramamurthy, K. N., Richards, J., Saha, D., Sattigeri, P., Singh,

M., Varshney, K. R., and Zhang, Y. (2018). AI Fairness 360: An extensible toolkit for detecting,

understanding, and mitigating unwanted algorithmic bias. https://arxiv.org/abs/1810.01943.

[6] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou, Y. (1995).

Cilk: An efficient multithreaded runtime system. In Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 207–216.

[7] Boykin, O., Ritchie, S., O’Connell, I., and Lin, J. (2014). Summingbird: A framework for

integrating batch and online MapReduce computations. In Conference on Very Large Data Bases
(VLDB), pages 1441–1451.

[8] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Pretten-

hofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., and Varoquaux,

G. (2013). API design for machine learning software: Experiences from the scikit-learn project.

https://arxiv.org/abs/1309.0238.

[9] Chaudhary, A., Issak, A., Kate, K., Katsis, Y., Valente, A. N., Wang, D., Evfimievski, A. V.,

Gurajada, S., Kawas, B., Malossi, A. C. I., Popa, L., Pedapati, T., Samulowitz, H., Wistuba, M.,

and Li, Y. (2021). AutoText: An end-to-end AutoAI framework for text. In Demonstration at
Conference on Artificial Intelligence (AAAI-Demos), pages 16001–16003.

[10] Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Conference on
Knowledge Discovery and Data Mining (KDD), pages 785–794.

[11] City of Chicago (2022). Chicago data portal: Taxi trips. https://data.cityofchicago.org/

Transportation/Taxi-Trips/wrvz-psew (Retrieved October 2023).

[12] Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters.

In Symposium on Operating Systems Design and Implementation (OSDI), pages 137–150.

[13] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep

bidirectional transformers for language understanding. https://arxiv.org/abs/1810.04805.

[14] Dünner, C., Parnell, T., Sarigiannis, D., Ioannou, N., Anghel, A., Ravi, G., Kandasamy, M., and

Pozidis, H. (2018). Snap ML: A hierarchical framework for machine learning. In Conference on
Neural Information Processing Systems (NIPS), pages 252–262.

11

https://arxiv.org/abs/1810.01943
https://arxiv.org/abs/1309.0238
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://arxiv.org/abs/1810.04805

[15] Elkan, C. (2019). KDD cup 1999 dataset. https://www.openml.org/search?type=data&status=

active&id=42746 (Retrieved October 2023).

[16] Erickson, N., Mueller, J., Shirkov, A., Zhangh, H., Larroy, P., Li, M., and Smola, A. (2020).

AutoGluon-Tabular: Robust and accurate AutoML for structured data. In ICML Workshop on
Automated Machine Learning (AutoML@ICML).

[17] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian, S. (2015).

Certifying and removing disparate impact. In Conference on Knowledge Discovery and Data
Mining (KDD), pages 259–268.

[18] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015).

Efficient and robust automated machine learning. In Conference on Neural Information Processing
Systems (NIPS), pages 2962–2970.

[19] Gray, J., Bosworth, A., Layman, A., and Pirahesh, H. (1996). Data cube: A relational aggregation

operator generalizing group-by, cross-tab, and sub-total. In International Conference on Data
Engineering (ICDE), pages 152–159.

[20] Hirzel, M., Schneider, S., and Tangwongsan, K. (2017). Sliding-window aggregation algorithms:

Tutorial. In Conference on Distributed Event-Based Systems (DEBS), pages 11–14.

[21] Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F. (2023). TabPFN: A transformer that

solves small tabular classification problems in a second. In International Conference on Learning
Representations (ICLR).

[22] Hutchison, D., Howe, B., and Suciu, D. (2017). LaraDB: A minimalist kernel for linear and

relational algebra computation. In Workshop on Algorithms and Systems for MapReduce and
Beyond (BeyondMR).

[23] Izbicki, M. (2013). Algebraic classifiers: A generic approach to fast cross-validation, online

training, and parallel training. In International Conference on Machine Learning (ICML), pages
648–656.

[24] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). LightGBM:

A highly efficient gradient boosting decision tree. In Conference on Neural Information Processing
Systems (NIPS), pages 3146–3154.

[25] Komer, B., Bergstra, J., and Eliasmith, C. (2014). Hyperopt-sklearn: Automatic hyperparameter

configuration for scikit-learn. In Python in Science Conference (SciPy), pages 32–37.

[26] Kunft, A., Katsifodimos, A., Schelter, S., Bress, S., Rabl, T., andMarkl, V. (2019). An intermediate

representation for optimizing machine learning pipelines. In Conference on Very Large Data
Bases (VLDB), pages 1553–1567.

[27] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

[28] Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A Python toolbox

to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning
Research (JMLR), 18(17):1–5.

[29] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018). Hyperband: A

novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research (JMLR), 18(185):1–52.

12

https://www.openml.org/search?type=data&status=active&id=42746
https://www.openml.org/search?type=data&status=active&id=42746

[30] McKinney, W. (2011). pandas: a foundational Python library for data analysis and statistics.

Workshop on Python for High Performance and Scientific Computing (PyHPC), pages 1–9.

[31] Micci-Barreca, D. (2001). A preprocessing scheme for high-cardinality categorical attributes

in classification and prediction problems. SIGKDD Explorations Newsletter, 3(1):27–32.

[32] Moritz, P., Nishihara, R., Stoica, I., and Jordan, M. I. (2015). SparkNet: Training deep networks

in Spark. InWorkshop on Machine Learning Systems (LearningSys).

[33] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z., Paul,

W., Jordan, M. I., and Stoica, I. (2018). Ray: A distributed framework for emerging AI applications.

In Symposium on Operating Systems Design and Implementation (OSDI), pages 561–577.

[34] Ng, K., Ghoting, A., Steinhubl, S. R., Stewart, W. F., Malin, B., and Sun, J. (2014). PARAMO: a

PARAllel predictive MOdeling platform for healthcare analytic research using electronic health

records. Journal of Biomedical Informatics (JBI), 48:160–170.

[35] Ofer, D. (2019). eCommerce 2019 oct dataset. https://www.kaggle.com/code/danofer/

ecommerce-store-predict-purchases-data-prep/data?select=2019-Oct.csv (Retrieved October

2023).

[36] Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., and Moore,

J. H. (2016). Automating biomedical data science through tree-based pipeline optimization. In

European Conference on the Applications of Evolutionary Computation (EvoApplications), pages
123–137.

[37] Palkar, S., Thomas, J. J., Shanbhag, A., Narayanan, D., Pirk, H., Schwarzkopf, M., Amarasinghe,

S., and Zaharia, M. (2017). Weld: A common runtime for high performance data analytics. In

Conference on Innovative Data Systems Research (CIDR). http://cidrdb.org/cidr2017/papers/p127-
palkar-cidr17.pdf.

[38] Petersohn, D., Ma, W. W., Lee, D. J. L., Macke, S., Xin, D., Mo, X., Gonzalez, J., Hellerstein,

J. M., Joseph, A. D., and Parameswaran, A. G. (2020). Towards scalable dataframe systems. In

Conference on Very Large Data Bases (VLDB), pages 2033–2046.

[39] Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task scheduling.

In Python in Science Conference (SciPy), pages 130–136.

[40] Sabharwal, A., Samulowitz, H., and Tesauro, G. (2016). Selecting near-optimal learners via

incremental data allocation. In Conference on Artificial Intelligence (AAAI), pages 2007–2015.

[41] Sahni, C., Kate, K., Shinnar, A., Lam, H. T., and Hirzel, M. (2021). RASL: Relational algebra in

scikit-learn pipelines. InWorkshop on Databases and AI (DBAI@NeurIPS).

[42] Sobkowicz, A. (2017). Steam review dataset. https://www.kaggle.com/datasets/andrewmvd/

steam-reviews (Retrieved October 2023).

[43] Sparks, E. R., Venkataraman, S., Kaftan, T., Franklin, M. J., and Recht, B. (2017). KeystoneML:

Optimizing pipelines for large-scale advanced analytics. In International Conference on Data
Engineering (ICDE).

[44] Steele, Jr., G. L. (2009). Organizing functional code for parallel execution or, foldl and foldr

considered slightly harmful. In International Conference on Functional Programming (ICFP), pages
1–2.

13

https://www.kaggle.com/code/danofer/ecommerce-store-predict-purchases-data-prep/data?select=2019-Oct.csv
https://www.kaggle.com/code/danofer/ecommerce-store-predict-purchases-data-prep/data?select=2019-Oct.csv
https://www.kaggle.com/datasets/andrewmvd/steam-reviews
https://www.kaggle.com/datasets/andrewmvd/steam-reviews

[45] Tangwongsan, K., Hirzel, M., and Schneider, S. (2023). Out-of-order sliding-window aggrega-

tion with efficient bulk evictions and insertions. In Conference on Very Large Data Bases (VLDB),
pages 3227–3239.

[46] Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-WEKA: Com-

bined selection and hyperparameter optimization of classification algorithms. In Conference on
Knowledge Discovery and Data Mining (KDD), pages 847–855.

[47] Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2014). OpenML: Networked science in

machine learning. SIGKDD Explorations Newsletter, 15(2):49–60.

[48] Xin, D., Ma, L., Liu, J., Macke, S., Song, S., and Parameswaran, A. (2018). Helix: Accelerating

human-in-the-loop machine learning. In Conference on Very Large Data Bases (VLDB), pages
1958–1961.

[49] Xu, Z., Hirzel, M., and Rothermel, G. (2013). Semantic characterization ofmapreduceworkloads.

In International Symposium on Workload Characterization (IISWC), pages 87–97.

14

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See discussions around formal guaran-

tees (FG) for each regime in Section 3.

(c) Did you discuss any potential negative societal impacts of your work? [No] We are not

aware of potential negative societal impacts of our work.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] In addition to the description of the

evaluation protocols in Section 5, please also see more details about pipelines and datasets

in the appendix.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes]

(e) Did you report the statistical significance of your results? [No] While we included error

bars based on standard deviations, we did not perform additional statistical tests. Out of six

research questions, for one research question, the error bars were large, so we carefully

avoided overclaiming the corresponding conclusions (Figure 16).

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A]

(g) Did you compare performance over time and describe how you selected the maximum

duration? [N/A]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We experimented with variants, such as batched vs. non-batched, full-transform vs.

partial-transform, and out-of-fold vs. in-fold.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes]

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [No]

15

https://2022.automl.cc/ethics-accessibility/

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] The rasl_experiments directory in the supplemental material has two

sub-directories with raw results.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] The supplemental material includes

notebooks which generate some of the figures in the paper.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A] The license does not require it.

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The data does not contain personally identifiable

information or offensive content.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] The asset is released as part of the Lale open-source library

on both GitHub (https://github.com/IBM/lale/) and PyPI (https://pypi.org/project/lale/).

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Section 3 mentions

formal guarantees (FG) for different regimes, which are predicated on explicitly stated

assumptions. For example, some regimes assume convergent operators while others are

more general and thus also work for non-convergent operators.

(b) Did you include complete proofs of all theoretical results? [No] Given the page limit and

the audience, we prioritized clear intuitions and illustrative examples over formalizations.

16

https://github.com/IBM/lale/
https://pypi.org/project/lale/

A Appendix

pretrained: no fit
(e.g., ConcatFeatures, Project with fixed columns)

convergent: partial_fit and to_monoid
(e.g., MinMaxScaler, SimpleImputer with mean)

incremental: partial_fit
(e.g., SGDClassifier, MLPClassifier)

associative: to_monoid
(e.g., OrdinalEncoder, OneHotEncoder)

non-incremental
(e.g., RandomForestClassifier, SimpleImputer with mode)

Figure 17: Taxonomy for operator properties from Section 2. The properites form a lattice, where each

property subsumes all properties reachable by following lines “down”. For instance, every

convergent operator is also both incremental and associative.

Table 2: Monoids for operators. As discussed in Section 2, each associative operator provides three

operations to_monoid, combine, and transform. This table specifies those operations in relational

algebra; the pipe combinator >> denotes function composition. The from_monoid operation is

inlined in transform.

Operator to_monoid(𝑋, 𝑦) combine(𝑎,𝑏) transform(𝑋)

MinMaxScaler Agg(lo𝑥 : min(𝑥), hi𝑥 : max(𝑥)) lo𝑥 : min(𝑎.lo𝑥 , 𝑏.lo𝑥),
𝑥 :

𝑥 − lo𝑥
hi𝑥 − lo𝑥hi𝑥 : max(𝑎.hi𝑥 , 𝑏.hi𝑥)

StandardScaler Map(𝑥 : 𝑥, 𝑠𝑞 : 𝑥2) 𝑛𝑥 : 𝑎.𝑛𝑥 + 𝑏.𝑛𝑥 , 𝑠𝑥 : 𝑎.𝑠𝑥 + 𝑏.𝑠𝑥 , 𝑥 :
𝑥 − 𝑠𝑥 /𝑛𝑥√︃

(sq𝑥 − 𝑠2𝑥 /𝑛𝑥)/𝑛𝑥
>> Agg(𝑛𝑥 :count(), 𝑠𝑥 :Σ𝑥, sq𝑥 :Σ𝑠𝑞) sq𝑥 : 𝑎.sq𝑥 + 𝑏.sq𝑥

SimpleImputer Filter(𝑥 ≠ ⊥) 𝑛𝑥 : 𝑎.𝑛𝑥 + 𝑏.𝑛𝑥 , 𝑠𝑥 : 𝑎.𝑠𝑥 + 𝑏.𝑠𝑥 𝑥 : replace(𝑥, {⊥ : 𝑠𝑥 /𝑛𝑥})
(mean) >> Agg(𝑛𝑥 : count(), 𝑠𝑥 : sum(𝑥))

Project(categorical) Agg(𝑢𝑥 : collect_set(𝑥, limit)) 𝑢𝑥 : 𝑎.𝑢𝑥 ∪limit 𝑏.𝑢𝑥 keep 𝑥 for which |𝑢𝑥 | ≤ limit

OneHotEncoder Agg(𝑢𝑥 : collect_set(𝑥)) 𝑢𝑥 : 𝑎.𝑢𝑥 ∪ 𝑏.𝑢𝑥 𝑥1 : int(𝑥 =𝑢𝑥1), . . . ,
𝑥𝑖 |𝑢𝑥 | : int(𝑥 =𝑢𝑥 |𝑢𝑥 |)

OrdinalEncoder Agg(𝑢𝑥 : collect_set(𝑥)) 𝑢𝑥 : 𝑎.𝑢𝑥 ∪ 𝑏.𝑢𝑥 𝑥 : replace(𝑥, encoding_dict(𝑢𝑥))
TargetEncoder GroupBy(𝑥) 𝑛𝑥𝑐 : 𝑎.𝑛𝑥𝑐 + 𝑏.𝑛𝑥𝑐 , 𝑥 : replace(𝑥, {𝑥𝑥𝑐 : 𝜆 (𝑛𝑥𝑐)

𝑠𝑥𝑐
𝑛𝑥𝑐

>> Agg(𝑛𝑥𝑐 : count(), 𝑠𝑥𝑐 : sum(𝑦)) 𝑠𝑥𝑐 : 𝑎.𝑠𝑥𝑐 + 𝑏.𝑠𝑥𝑐 , +(1 − 𝜆 (𝑛𝑥𝑐))
∑
𝑐 𝑠𝑥𝑐∑
𝑐 𝑛𝑥𝑐

})

HashingEncoder NoOp NoOp 𝑐𝑖 : Σ𝑥 (hash(𝑥)%𝑁 = 𝑖)

SelectKBest

(f_classif)

GroupBy(𝑦)
>> Agg(𝑛𝑘 : count(), 𝑠𝑘𝑖 : Σ𝑥𝑘𝑖)
Map(𝑥𝑖 : 𝑥𝑖 , 𝑠𝑞𝑖 : 𝑥2

𝑖
)

>> Agg(𝑛𝑖:count(), 𝑠𝑖:Σ𝑥𝑖 , sq𝑖:Σ𝑠𝑞𝑖)

𝑛𝑘 :𝑎.𝑛𝑘 + 𝑏.𝑛𝑘 , 𝑠𝑘𝑖 :𝑎.𝑠𝑘𝑖 + 𝑏.𝑠𝑘𝑖 ,
𝑛𝑖:𝑎.𝑛𝑖 + 𝑏.𝑛𝑖 , 𝑠𝑖:𝑎.𝑠𝑖 + 𝑏.𝑠𝑖 ,
sq𝑖:𝑎.sq𝑖 + 𝑏.sq𝑖

keep 𝑥𝑖 for which 𝑓𝑖 among 𝑘 best

where 𝑓𝑖 :

Σ𝑘 (𝑠2𝑘𝑖
/𝑛𝑘)−𝑠2𝑖 /𝑛
|𝑘 |−1

sq𝑖 −𝑠2𝑖 /𝑛−
(
Σ𝑘 (𝑠2𝑘𝑖

/𝑛𝑘)−𝑠2𝑖 /𝑛
)

𝑛−|𝑘 |
and |𝑘 | is the number of classes

BatchedBagging- 𝑐 : singleton_list(base_est.fit(𝑋, 𝑦)) 𝑐 : concat_lists(𝑎.𝑐,𝑏.𝑐) mode(𝑐 𝑗 .predict(𝑋) for 𝑐 𝑗 ∈ 𝑐)
Classifier(base_est)

17

:TrainablePipeline

:TrainedPipeline :Scores

:Iterable[BatchXy] :BatchCache

create goal tasks, first scan task1

extract scores13extract learned coefficients14

while any tasks ready:2
T ¬ get ready task based on priority3
spill/load batches to/from cache4
execute T5
if T is a scan task:6

if success: create next scan task7
else: end_of_scan ¬ True8

mark goal tasks fresh again9
backward chain task creation10

mark T done and propagate11
if T is a score task, call callback12

SIM
Simple-
Imputer

MMS
MinMax-
Scaler

SGD
SGDClassi-

fier

SIM
Simple-
Imputer

MMS
MinMax-
Scaler

SGD
SGDClassi-

fier

:TaskGraph

Figure 18: More detailed version of the task-graph algorithm from Figure 5, including an example

input trainable pipeline, intermediate task graph, and output trained pipeline. The wildcard

‘*’ refers to ‘all batches’ for situations where the total number of batches from the input

‘Iterable[BatchXy]’ is not yet known because the iterator has not yet been exhausted.

scan
INP(d0)

combine
SIM(d*)

combine
MMS(d*)

partial_fit
SGD(d*)

Figure 19: Initial task graph corresponding to Figure 18 L1.

Table 3: Monoids for metrics. Each monoidal metric provides three operations to_monoid, combine, and

from_monoid. This table specifies those operations in relational algebra; the pipe combinator >>
denotes function composition.

Metric to_monoid(𝑦, 𝑦̂, 𝑋) combine(𝑎,𝑏) from_monoid

accuracy Map(𝑚 : int(𝑦 = 𝑦̂)) >> Agg(𝑚 : Σ𝑚,𝑛 : count()) 𝑚 : 𝑎.𝑚 + 𝑏.𝑚, 𝑛 : 𝑎.𝑛 + 𝑏.𝑛 𝑚/𝑛
𝐹1 score Map(tp : int(𝑦̂=1 ∧ 𝑦=1), fp : int(𝑦̂=1 ∧ 𝑦≠1), tp : 𝑎.tp + 𝑏.tp, fp : 𝑎.fp + 𝑏.fp, 2tp

2tp + fp + fnfn : int(𝑦̂≠1 ∧ 𝑦=1)) fn : 𝑎.fn + 𝑏.fn
>> Agg(tp : Σtp, fp : Σfp, fn : Σfn)

𝑅2
score Map(𝑦 : 𝑦, 𝑦2 :𝑦2, 𝑒2 : (𝑦 − 𝑦̂)2) 𝑛 : 𝑎.𝑛 + 𝑏.𝑛, 𝑦 : 𝑎.𝑦 + 𝑏.𝑦,

1 − 𝑒2

𝑦2 − 𝑦2/𝑛>> Agg(𝑛 : count(), 𝑦 : Σ𝑦, 𝑦2 : Σ𝑦2, 𝑒2 : Σ𝑒2) 𝑦2 : 𝑎.𝑦2 + 𝑏.𝑦2, 𝑒2 : 𝑎.𝑒2 + 𝑏.𝑒2
disparate impact Map(𝑔00 : int(𝑥𝑝 =0 ∧ 𝑦̂=0), 𝑔01 : int(𝑥𝑝 =0 ∧ 𝑦̂=1), 𝑔00 : 𝑎.𝑔00 + 𝑏.𝑔00, 𝑔01 : 𝑎.𝑔01 + 𝑏.𝑔01, 𝑔01/(𝑔00 + 𝑔01)

𝑔11/(𝑔10 + 𝑔11)𝑔10 : int(𝑥𝑝 =1 ∧ 𝑦̂=0), 𝑔11 : int(𝑥𝑝 =1 ∧ 𝑦̂=1)) 𝑔10 : 𝑎.𝑔10 + 𝑏.𝑔10, 𝑔11 : 𝑎.𝑔11 + 𝑏.𝑔11
>> Agg(𝑔00 : Σ𝑔00, 𝑔01 : Σ𝑔01, 𝑔10 : Σ𝑔10, 𝑔11 : Σ𝑔11)

symmetric dis- di : disp_impact.to_monoid(𝑦, 𝑦̂, 𝑋) di : disp_impact.combine(𝑎.di, 𝑏.di)
min

(
di,

1

di

)
parate impact

accuracy and sdi : symm_di.to_monoid(𝑦, 𝑦̂, 𝑋) sdi : symm_di.combine(𝑎.sdi, 𝑏.sdi) fw ·sdi +
disparate impact acc : accuracy.to_monoid(𝑦, 𝑦̂, 𝑋) acc : accuracy.combine(𝑎.acc, 𝑏.acc) (1 − fw) · acc

1 pipeline = (
2 (Scan(table=it.y_true) >> Map(columns={"y": it[0]})
3 & Scan(table=it.y_pred) >> Map(columns={"p": it[0]}))
4 >> ConcatFeatures
5 >> Map(columns={"y": it.y, "p": it.p, "y2": it.y * it.y, "e2": (it.y - it.p) * (it.y - it.p)})
6 >> Aggregate(columns={"n": count(it.y), "y": sum(it.y), "y2": sum(it.y2), "e2": sum(it.e2)}))

Figure 20: Pipeline example for 𝑅2 score. This elaborates the code of one of the metrics from Table 3.

The and combinator & creates separate subpipelines of operators without adding edges

between them.

18

Table 4: Relational algebra operators (c.f. Section 4). Each is implemented in an sklearn-compatible

way for use in sklearn pipelines, as exemplified in Figures 20 and 21. Hyperparameters are

constructor arguments.

Operator Hyperparameters Transform
Name Description Name : Type Input →Output

Filter Drop non-matched rows pred : List[expr] Table → Table

Project Drop non-matched columns columns : Union[monoid, List[str]] Table → Table

drop_columns : Union[monoid, List[str]]

Map Assign columns, columns :Dict[str, expr] Table → Table

one row at a time remainder : Enum["passthrough", "drop"]

ConcatFeatures Concatenate rows — List[Table]→ Table

Join Combine columns of pred : List[expr] List[Table]→ Table

matching rows join_type : Enum["inner", "left", "right"]

name : str

GroupBy Create groups of rows by : List[expr] Table →Grouped

Aggregate Reduce group to row columns :Dict[str, expr] Grouped → Table

OrderBy Sort by columns by : List[expr] Table → Table

Scan Pick out a table table : expr List[Table]→ Table

Alias Rename table name : str Table → Table

1 prep_cats = (Project(columns=categorical(5))
2 >> SimpleImputer(strategy="constant")
3 >> HashingEncoder())
4 prep_nums = (Project(columns={"type": "number"}, dropcolumns=categorical(5))
5 >> SimpleImputer(strategy="mean")
6 >> MinMaxScaler())
7 pipeline = ((prep_cats & prep_nums) >> ConcatFeatures
8 >> SelectKBest()
9 >> MLPClassifier())
10 trained = pipeline.fit(train_X, train_y)
11 y_pred = trained.predict(test_y)

Figure 21: Pipeline example for multi-modal input. While this paper uses the relational algebra

operators from Table 4 for implementing operators and metrics, they can also be used

directly, as this example illustrates.

Table 5: Summary of tests run for RQ3. For each operator we report the number of tests and values

compared to the sklearn reference implementation. The order of operations sometimes

changed between the implementations, since floating-point arithmetic is not commutative,

different approximations are computed. We therefore report the number of exact matches and

the number of times the value are different with a difference < 10
−7
. The code of the tests is

available in [URL elided for double-blind review].

Operator Number of tests Number of checks Exact match Approximate match

MinMaxScaler 8 18,052 8,308 9,744

StandardScaler 6 124,568 77,852 46,716

OrdinalEncoder 5 598,878 598,876 2

SelectKBest 4 144,345 144,267 78

OneHotEncoder 5 38,464 38,464 0

SimpleImputer 7 1,096,052 1,096,052 0

TargetEncoder 4 24,689 24,689 0

19

sklearn API
(operators, pipelines, fit, predict, metrics, cross-validate)

task graphs
(batching,

reuse,
spilling,

priorities)

monoid
operators
(scalers,
imputers,
encoders,

feature sel.)

monoid
metrics

(accuracy,
R2 score,
disparate

impact, …)

incremental
estimators
(classifiers,
regressors)relational operators

(filter, project, map, concat-
features, join, group-by,
aggregate, scan, alias,

order-by)

back-ends
(pandas dataframes, Spark SQL dataframes)

Figure 22: Architecture. Section 4 describes the implementation of our library and this figure shows

it as a stack. At the base are backends for pandas and Spark SQL. Between the backends

and the monoidal operators and metrics is a layer of relational algebra operators. This

paper also contributes task graphs, designed to seamlessly work with existing incremental

operators from sklearn and third-party sklearn-compatible libraries. At the top, our library

can be consumed via an sklearn API.

Table 6: Mean accuracy (stddev) over 5 runs with vs. without batching (RQ4) on 10 OpenML datasets.

Dataset Rows Cols Full-transform Non-batched

spectf 267 44 0.893 (0.029) 0.893 (0.029)

breast-cancer 286 9 0.724 (0.016) 0.724 (0.016)

australian 690 15 0.875 (0.018) 0.875 (0.018)

blood-transfusion 748 5 0.722 (0.018) 0.722 (0.018)

diabetes 768 9 0.759 (0.017) 0.759 (0.017)

credit-g 1,000 20 0.760 (0.011) 0.760 (0.011)

car 1,728 7 0.960 (0.007) 0.960 (0.007)

mfeat-factors 2,000 217 0.967 (0.005) 0.967 (0.005)

kc1 2,109 22 0.854 (0.014) 0.854 (0.014)

kr-vs-kp 3,196 37 0.990 (0.002) 0.990 (0.002)

Table 7: Incremental classifiers used in RQ5 and RQ6. All of these either already came with a partial_fit

method or we added it where missing and distribute it with our library.

Library Operator

sklearn [8] GaussianNB

sklearn [8] MultinomialNB

sklearn [8] Perceptron

sklearn [8] SGDClassifier

sklearn [8] PassiveAggressiveClassifier

sklearn [8] MLPClassifier

Lale [4] BatchedBaggingClassifier

Snap ML [14] BatchedTreeEnsembleClassifier

LightGBM [24] LGBMClassifier

XGBoost [10] XGBClassifier

20

F
i
g
u
r
e
2
3
:
T
a
s
k

g
r
a
p
h

f
o
r
c
r
o
s
s
-
v
a
l
i
d
a
t
i
o
n

u
s
i
n
g

t
h
e

i
n
-
f
o
l
d

r
e
g
i
m
e

w
i
t
h

3
f
o
l
d
s
(
d
,e
,f
)
a
n
d

2
b
a
t
c
h
e
s
(
0
,1
)
.
T
h
e
p
i
p
e
l
i
n
e
i
s
SI

M
>>

MM
S

>>
BB

C,
w
h
e
r
e
SI

M
i
s
Si

mp
le

Im
pu

te
r,

MM
S
i
s
Mi

nM
ax

Sc
al

er
,

a
n
d
BB

C
i
s
Ba

tc
he

dB
ag

gi
ng

Cl
as

si
fi

er
.
A
l
l
t
h
r
e
e
o
f
t
h
e
s
e
o
p
e
r
a
t
o
r
s
a
r
e
m
o
n
o
i
d
a
l
.
T
h
i
s
fi
g
u
r
e
a
l
s
o

s
h
o
w
s
s
c
o
r
e
t
a
s
k
s
d
e
n
o
t
e
d
SC

R
u
s
i
n
g
o
u
r
m
o
n
o
i
d
a
l
i
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
a
c
c
u
r
a
c
y
m
e
t
r
i
c
.

21

F
i
g
u
r
e
2
4
:
T
a
s
k
g
r
a
p
h
f
o
r
c
r
o
s
s
-
v
a
l
i
d
a
t
i
o
n
u
s
i
n
g
t
h
e
o
u
t
-
o
f
-
f
o
l
d
r
e
g
i
m
e
w
i
t
h

3
f
o
l
d
s
(
d
,e
,f
)
a
n
d

2
b
a
t
c
h
e
s
(
0
,1
)
.
T
h
e
p
i
p
e
l
i
n
e
i
s
SI

M
>>

MM
S

>>
BB

C,
w
h
e
r
e
SI

M
i
s
Si

mp
le

Im
pu

te
r,

MM
S
i
s
Mi

nM
ax

Sc
al

er
,

a
n
d
BB

C
i
s
Ba

tc
he

dB
ag

gi
ng

Cl
as

si
fi

er
.
A
l
l
t
h
r
e
e
o
f
t
h
e
s
e
o
p
e
r
a
t
o
r
s
a
r
e
m
o
n
o
i
d
a
l
.
T
h
i
s
fi
g
u
r
e
a
l
s
o

s
h
o
w
s
s
c
o
r
e
t
a
s
k
s
d
e
n
o
t
e
d
SC

R
u
s
i
n
g
o
u
r
m
o
n
o
i
d
a
l
i
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
a
c
c
u
r
a
c
y
m
e
t
r
i
c
.

22

Figure 25: Pipeline used for comparison of batched training to sklearn training (RQ1). SGDClassifier is

replaced with SGDRegressor for regression tasks. Operators shown in white are pretrained,

whereas blue indicates associative or incremental.

Table 8: OpenML [47] datasets used in RQ5 and RQ6.

Dataset Rows Cols

blood-transfusion 748 5

diabetes 768 9

credit-g 1,000 20

car 1,728 7

mfeat-factors 2,000 217

kc1 2,109 22

kr-vs-kp 3,196 37

sylvine 5,124 21

phoneme 5,404 6

jungle-chess 44,819 7

Figure 26: Ratio of training time with Spark SQL vs. pandas backend (RQ2) with error bars.

23

Table 9: Raw results for RQ2.

dataset setting fraction holdout_accuracy_mean holdout_accuracy_stddev time_mean time_stddev ratio (spark/pandas)

spectf spark 1024 0.698275862 0 62.33600473 0 1.51992169

spectf pandas 1024 0.698275862 0 41.01264238 0 1

spectf spark 2048 0.698275862 0 131.1390002 0 1.297772454

spectf pandas 2048 0.698275862 0 101.0493016 0 1

spectf spark 4096 0.698275862 0 207.6392157 0 1.306535496

spectf pandas 4096 0.698275862 0 158.9235168 0 1

spectf spark 8192 0.698275862 0 452.0865004 0 1.328498656

spectf pandas 8192 0.698275862 0 340.2988014 0 1

breast-cancer spark 1024 0.715789474 0 11.77873111 0 0.846154598

breast-cancer pandas 1024 0.715789474 0 13.92030621 0 1

breast-cancer spark 2048 0.715789474 0 17.53592038 0 0.677604551

breast-cancer pandas 2048 0.715789474 0 25.87928367 0 1

breast-cancer spark 4096 0.715789474 0 39.06328797 0 0.665626869

breast-cancer pandas 4096 0.715789474 0 58.68646502 0 1

breast-cancer spark 8192 0.715789474 0 96.74211335 0 0.735493191

breast-cancer pandas 8192 0.715789474 0 131.5336628 0 1

australian spark 1024 0.600877193 0 39.93376708 0 0.998017721

australian pandas 1024 0.600877193 0 40.01308417 0 1

australian spark 2048 0.600877193 0 89.66839337 0 0.832317072

australian pandas 2048 0.600877193 0 107.7334545 0 1

australian spark 4096 0.600877193 0 196.3755603 0 0.812198922

australian pandas 4096 0.600877193 0 241.7825916 0 1

australian spark 8192 0.600877193 0 451.3203506 0 0.872523768

australian pandas 8192 0.600877193 0 517.2585175 0 1

blood-transfusion spark 1024 0.732793522 0 45.32721543 0 1.354819502

blood-transfusion pandas 1024 0.732793522 0 33.45627618 0 1

blood-transfusion spark 2048 0.732793522 0 56.06554794 0 1.030880564

blood-transfusion pandas 2048 0.732793522 0 54.38607526 0 1

blood-transfusion spark 4096 0.732793522 0 152.1027329 0 1.131169147

blood-transfusion pandas 4096 0.732793522 0 134.465065 0 1

blood-transfusion spark 8192 0.732793522 0 349.2777286 0 1.112427673

blood-transfusion pandas 8192 0.732793522 0 313.9779215 0 1

diabetes spark 1024 0.661417323 0 44.60869765 0 0.856111892

diabetes pandas 1024 0.661417323 0 52.10615349 0 1

diabetes spark 2048 0.661417323 0 87.30375195 0 1.113078156

diabetes pandas 2048 0.661417323 0 78.43452096 0 1

diabetes spark 4096 0.661417323 0 245.0170028 0 1.260857635

diabetes pandas 4096 0.661417323 0 194.3256686 0 1

diabetes spark 8192 0.661417323 0 482.963865 0 1.136070077

diabetes pandas 8192 0.661417323 0 425.1180229 0 1

credit-g spark 1024 0.693939394 0 63.11257815 0 0.527458551

credit-g pandas 1024 0.693939394 0 119.6540999 0 1

credit-g spark 2048 0.693939394 0 159.8480685 0 0.81083415

credit-g pandas 2048 0.693939394 0 197.1402764 0 1

credit-g spark 4096 0.693939394 0 364.5939066 0 0.853200242

credit-g pandas 4096 0.693939394 0 427.3251326 0 1

credit-g spark 8192 0.693939394 0 992.3586102 0 0.86239563

credit-g pandas 8192 0.693939394 0 1150.699952 0 1

car spark 1024 0.695271454 0 46.3204205 0 0.7487929

car pandas 1024 0.695271454 0 61.86012244 0 1

car spark 2048 0.695271454 0 111.5793927 0 0.807539845

car pandas 2048 0.695271454 0 138.1719966 0 1

car spark 4096 0.695271454 0 223.1127155 0 0.789894795

car pandas 4096 0.695271454 0 282.4587741 0 1

car spark 8192 0.695271454 0 480.9890895 0 0.787069439

car pandas 8192 0.695271454 0 611.1139195 0 1

mfeat-factors spark 1024 0.090909091 0 1592.317333 0 1.026821316

mfeat-factors pandas 1024 0.090909091 0 1550.724851 0 1

mfeat-factors spark 2048 0.096969697 0 2660.711861 0 1.438332237

mfeat-factors pandas 2048 0.096969697 0 1849.85902 0 1

mfeat-factors spark 4096 0.081818182 0 9919.777119 0 1.144714836

mfeat-factors pandas 4096 0.081818182 0 8665.719014 0 1

mfeat-factors spark 8192 -1 0 -1 0 -1

mfeat-factors pandas 8192 -1 0 -1 0 -1

kc1 spark 1024 0.844827586 0 224.4481311 0 1.266899141

kc1 pandas 1024 0.844827586 0 177.1633778 0 1

kc1 spark 2048 0.844827586 0 484.9539335 0 1.063267111

kc1 pandas 2048 0.844827586 0 456.097935 0 1

kc1 spark 4096 0.844827586 0 1478.12337 0 1.093927815

kc1 pandas 4096 0.844827586 0 1351.20741 0 1

kc1 spark 8192 0.844827586 0 5471.855341 0 0.993253763

kc1 pandas 8192 0.844827586 0 5509.020497 0 1

kr-vs-kp spark 1024 0.527014218 0 200.2625384 0 0.435140871

kr-vs-kp pandas 1024 0.527014218 0 460.2246115 0 1

kr-vs-kp spark 2048 0.527962085 0 430.8784208 0 0.452880949

kr-vs-kp pandas 2048 0.527962085 0 951.4165287 0 1

kr-vs-kp spark 4096 0.527962085 0 1025.327973 0 0.492221551

kr-vs-kp pandas 4096 0.527962085 0 2083.061925 0 1

kr-vs-kp spark 8192 0.527962085 0 2324.238755 0 0.525030237

kr-vs-kp pandas 8192 0.527962085 0 4426.866473 0 1

24

Table 10: RQ2 updated results for breast cancer averaged over 5 runs.

dataset setting fraction holdout_accuracy_mean holdout_accuracy_stddev time_mean time_stddev ratio_mean (spark/pandas) ratio_stddev (spark/pandas)

breast-cancer spark 1024 0.72 0.064288133 13.27299833 0.793947706 0.825600297 0.023497824

breast-cancer pandas 1024 0.72 0.064288133 16.06694379 0.562293044 0.825600297 0.023497824

breast-cancer spark 2048 0.72 0.064288133 29.41563063 8.315909176 0.86576034 0.256408931

breast-cancer pandas 2048 0.72 0.064288133 34.05961185 0.801125363 0.86576034 0.256408931

breast-cancer spark 4096 0.72 0.064288133 58.96682754 2.027603695 0.763718999 0.018693966

breast-cancer pandas 4096 0.72 0.064288133 77.2890501 4.404486342 0.763718999 0.018693966

breast-cancer spark 8192 0.72 0.064288133 146.1375819 16.7489225 0.831358467 0.085012886

breast-cancer pandas 8192 0.72 0.064288133 175.6816947 5.799947915 0.831358467 0.085012886

25

	Introduction
	Monoids
	Task Graphs
	Implementation
	Results
	Related Work
	Conclusion
	Broader Impact Statement
	Appendix

