
Strategic Littlestone Dimension:
Improved Bounds on Online Strategic Classification∗

Saba Ahmadi†,*, Kunhe Yang‡,*, and Hanrui Zhang§,*

†Toyota Technological Institute at Chicago, saba@ttic.edu
‡University of California, Berkeley, kunheyang@berkeley.edu
§Chinese University of Hong Kong, hanrui@cse.cuhk.edu.hk

Abstract

We study the problem of online binary classification in settings where strategic
agents can modify their observable features to receive a positive classification.
We model the set of feasible manipulations by a directed graph over the feature
space, and assume the learner only observes the manipulated features instead
of the original ones. We introduce the Strategic Littlestone Dimension, a new
combinatorial measure that captures the joint complexity of the hypothesis class
and the manipulation graph. We demonstrate that it characterizes the instance-
optimal mistake bounds for deterministic learning algorithms in the realizable
setting. We also achieve improved regret in the agnostic setting by a refined
agnostic-to-realizable reduction that accounts for the additional challenge of not
observing agents’ original features. Finally, we relax the assumption that the learner
knows the manipulation graph, instead assuming their knowledge is captured by a
family of graphs. We derive regret bounds in both the realizable setting where all
agents manipulate according to the same graph within the graph family, and the
agnostic setting where the manipulation graphs are chosen adversarially and not
consistently modeled by a single graph in the family.

1 Introduction

Strategic considerations in machine learning have gained significant attention during the past decades.
When ML algorithms are used to assist decisions that affect a strategic entity (e.g., a person, a
company, or an LLM agent), this entity — henceforth the agent — naturally attempts to game the
ML algorithms into making decisions that better serve the agent’s goals, which in many cases differ
from the decision maker’s. Examples include loan applicants optimizing their credit score without
actually improving their financial situation.2 It is therefore desirable, if not imperative, that the ML
algorithms used for decision-making be robust against such strategic manipulation.

Indeed, extensive effort has been made towards designing ML algorithms in the presence of strategic
behavior, shaping the research area of strategic machine learning [Brückner and Scheffer, 2011, Hardt
et al., 2016]. In particular, powerful frameworks have been proposed for offline environments, where
the decision maker has access to historical data, on which they train a model that is subsequently used
to make decisions about (i.e., to classify) members of a static population. These frameworks provide
almost optimal learnability results and sample complexity bounds for strategic machine learning in
offline environments, which gracefully generalize their non-strategic counterparts (see, e.g., [Zhang
and Conitzer, 2021, Sundaram et al., 2023]).

∗Authors are ordered alphabetically.
2The following article (among others) discusses some well-known tricks for this: https://www.

nerdwallet.com/article/finance/raise-credit-score-fast.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://www.nerdwallet.com/article/finance/raise-credit-score-fast
https://www.nerdwallet.com/article/finance/raise-credit-score-fast

However, the situation becomes subtler in online environments, where the decision maker has
little or no prior knowledge about the population being classified, and must constantly adjust the
decision-making policy (i.e., the classifier) through trial and error. This is particularly challenging in
the presence of strategic behavior, because often the decision maker can only observe the agent’s
features after manipulation. In such online environments, the performance of a learning algorithm is
often measured by its regret, i.e., how many more mistakes it makes compared to the best classifier
within a certain family in hindsight. For online strategic classification, while progress has been
made in understanding the optimal regret in several important special cases, a full instance-wise
characterization has been missing, even in the seemingly basic realizable setting (meaning that there
always exists a perfect classifier in hindsight). This salient gap is the starting point of our investigation
in this paper — which turns out to reach quite a bit beyond the gap itself.

Following prior work [Ahmadi et al., 2023, Cohen et al., 2024], we study the following standard and
general model of online strategic classification: we have a (possibly infinite) feature space, equipped
with a manipulation graph defined over it. An edge between two feature vectors x1 and x2 means
that an agent whose true features are x1 can pretend to have features x2, and in fact, the agent would
have incentives to do so if the label assigned to x2 by the classifier is better than that assigned to the
true features x1. At each time step, the decision maker commits to a classifier (which may depend on
observations from previous interactions), and an agent arrives and observes the classifier. The agent
then responds to the classifier by reporting (possibly nontruthfully) a feature vector that leads to the
most desirable label subject to the manipulation graph, i.e., the reported feature vector must be a
neighbor of the agent’s true feature vector. The decision maker then observes the reported feature
vector, as well as whether the label assigned to that feature vector matches the agent’s true label.

1.1 Our Results and Techniques

An instance-optimal regret bound through the strategic Littlestone dimension. Our first main
finding is an instance-optimal regret bound for online strategic classification in the realizable setting,
when randomization is not allowed (we will discuss the role of randomization in Section 6). In this
setting, there is a predefined hypothesis class of classifiers, in which there must exist one classifier that
assigns all agents their true labels under manipulation. The decision maker, knowing that a perfect
classifier exists in this class, tries to learn it on the fly while making as few mistakes as possible in
the process. Naturally, the richer this hypothesis class is, the harder the decision maker’s task will be
(e.g., one extreme is when the hypothesis class contains only one classifier, and the decision maker
knows a priori that that classifier must be perfectly correct, and the optimal regret is 0). Thus, the
optimal regret must depend on the richness of the hypothesis class. Similarly, one can imagine that
the optimal regret must also depend on the manipulation graph.

Previous work [Ahmadi et al., 2023, Cohen et al., 2024] has established regret bounds for this setting
based on various complexity measures of the hypothesis class and the manipulation graph, including
the size and the (classical) Littlestone dimension [Littlestone, 1988] of the hypothesis class, as well
as the maximum out-degree of the manipulation graph. However, the optimality (when applicable)
of these bounds only holds under the assumption that the mistake bound must be parametrized as a
function on the classical Littlestone dimension and/or the graph’s out-degree. However, these bounds
are not tight for all instances, as there exist problem instances that are learnable where all these
parameters are infinite.

To address the above issue, we introduce a new combinatorial complexity measure that generalizes
the classical Littlestone dimension into strategic settings. Conceptually, the new notion also builds
on the idea of “shattered trees”, which has proved extremely useful in classical settings. However,
the asymmetry introduced by strategic behavior3 demands a much more delicate construction of
shattered trees (among other intriguing implications to be discussed in Section 3). We show that the
generalized Littlestone dimension captures precisely the optimal regret of any deterministic learning
algorithm given a particular hypothesis class and a manipulation graph, thereby providing a complete
characterization of learnability in this setting. Being instance-optimal, our bound strengthens and
unifies all previous bounds for online strategic classification in the realizable setting.

3E.g., unlike in classical (non-strategic) settings, a true positive does not carry the same information as a
false negative in our setting.

2

An improved regret bound for the agnostic case. We then proceed to the agnostic setting, where
no hypothesis necessarily assigns correct labels to all agents. The regret is defined with respect to the
best hypothesis in hindsight. Compared to the classical (i.e., non-strategic) setting, the main challenge
is incomplete information: since the learner cannot observe original features, upon observing the
behavior of an agent under one classifier, it is not always possible to counterfactually infer what
would have been observed if the learner used another classifier.

To understand why this can be a major obstacle, recall some high-level ideas behind the algorithms
for classical agnostic online classification (see, e.g., [Ben-David et al., 2009]). The key is to construct
a finite set of “representative” experts out of the potentially infinite set of hypotheses, such that the
best expert performs almost as well as the best hypothesis in hindsight. An agnostic learner then runs
a no-regret learning algorithm (such as multiplicative weights) on the expert set, which in the long
run matches the performance of the best expert, and in turn of the best hypothesis.

The partial information challenge appears in both steps of the above approach. First, to construct the
set of representative experts, the learner needs to simulate the observation received by each hypothesis,
had that hypothesis been used to label the strategic agents. Second, the no-regret algorithm on the
expert set also needs to counterfacurally infer the agent’s response to each expert. To circumvent
both issues, we design a nuanced construction of the representative set of experts that effectively
“guesses” each potential direction of the agent’s manipulation. We then run the biased voting approach
introduced in [Ahmadi et al., 2023] on the finite set of experts, which enjoys regret guarantees in the
strategic setting even with partial information. Combined with our regret bound for the realizable
setting, this approach yields an improved bound for the agnostic setting.

Learning with unknown manipulation graphs. Our last result focuses on relaxing the assumption
that the learner has perfect knowledge about the manipulation graph structure. Instead, following
previous works [Lechner et al., 2023, Cohen et al., 2024], we model their knowledge about the
manipulation graph using a pre-defined graph class, which to some degree reflects the true set of
feasible manipulations. In this setting, our work is the first that provides positive results when
the learner only observes features after manipulation. We start with the realizable setting where
the manipulation graphs are consistently modeled by the same (unknown) graph in the class. In
this setting, we provide a more careful construction of the representative experts to account for
the additional challenge of unknown graphs. Combing this construction with re-examining the
effectiveness of the biased voting approach [Ahmadi et al., 2023] when the input graph is a overly-
conservative estimate of the true graph, we obtain the first regret bound in this setting that is
approximately optimal (up to logarithmic factors) in certain instances. We also extend our results to
fully agnostic settings where the agents in each round manipulates according to a potentially different
graph, and the best graph in the class has nonzero error in modeling all the manipulations.

1.2 Further Related Work

There is a growing line of research that studies learning from data provided by strategic agents [Dalvi
et al., 2004, Dekel et al., 2008, Brückner and Scheffer, 2011]. The seminal work of Hardt et al.
[2016] introduced the problem of strategic classification as a repeated game between a mechanism
designer that deploys a classifier and an agent that best responds to the classifier by modifying their
features at a cost. Follow-up work studied different variations of this model, in an online learning
setting [Dong et al., 2018, Chen et al., 2020, Ahmadi et al., 2021], incentivizing agents to take
improvement actions rather than gaming actions [Kleinberg and Raghavan, 2020, Haghtalab et al.,
2020, Alon et al., 2020, Ahmadi et al., 2022], causal learning [Bechavod et al., 2021, Perdomo et al.,
2020], screening processes [Cohen et al., 2023], fairness [Hu et al., 2019], etc.

Two different models for capturing the set of plausible manipulations have been considered in the
literature. The first one is a geometric model, where the agent’s best-response to the mechanism
designer’s deployed classifier is a state within a bounded distance (with respect to some ℓp norm)
from the original state, i.e. feature set [Dong et al., 2018, Chen et al., 2020, Shao et al., 2024,
Sundaram et al., 2023, Ghalme et al., 2021, Haghtalab et al., 2020]. In the second model, introduced
by Zhang and Conitzer [2021] there is a combinatorial structure, i.e. manipulation graph, that
captures the agent’s set of plausible manipulations. This model has been studied in both offline PAC
learning [Lechner and Urner, 2022, Zhang and Conitzer, 2021, Lechner et al., 2023] and online
settings [Ahmadi et al., 2023]. In a recent work, Lechner et al. [2023] consider this problem in an

3

offline setting where the underlying manipulation is unknown and belongs to a known family of
graphs. Our work improves the results given by [Ahmadi et al., 2023] in the online setting and also
extends their results to the setting where the underlying manipulation is unknown and belongs to a
known family of graphs.

Our work is also closely related to that of Cohen et al. [2024], with two main points of distinction.
First, in the realizable setting, their bound is shown to be optimal for a specific instance, whereas our
bound is instance-wise optimal. Second, in both the agnostic and the unknown graph settings, they
assume that agents’ original features are observable before the learner makes decisions, whereas our
algorithm only requires access to post-manipulation features.

Finally, our work is also tangentially connected to several recent advances in understanding multi-
class classification under bandit feedback, e.g., [Raman et al., 2024, Filmus et al., 2024], as the
false-positive mistake types can be treated as multiple labels at a very abstract level. However, an
additional challenge in the strategic setting is that the learner needs to choose a classifier without
observing the original instance to be labeled.

2 Model and Preliminaries

2.1 Strategic classification.

Let X be a space of feature vectors, Y = {−1, 1} be the binary label space, and H : X → Y be a
hypothesis class that is known to the learner (also referred to as “decision-makers”). In the strategic
classification setting, agents prefer positive labels over negative labels, and they may manipulate
their features within a predefined range to receive a positive label. We use the manipulation graphs
introduced by [Zhang and Conitzer, 2021, Lechner and Urner, 2022] to model the set of feasible
manipulations. The manipulation graph G(X , E) is a directed graph in which each node corresponds
to a feature vector in X , and each edge (x1, x2) ∈ E ⊆ X 2 represents that an agent with initial
feature vector x1 can modify their feature vector to x2. For each x ∈ X , we use N+

G (x) to denote the
set of out-neighbors of x in G, excluding x itself, and N+

G [x] to denote the out-neighbors including x.
Formally, N+

G (x) = {x′ ∈ X \ {x} | (x, x′) ∈ E} and N+
G [x] = {x} ∪N+

G (x). Similarly, we use
N−

G (x) and N−
G [x] to denote respectively the exclusive and inclusive in-neighborhood of x.

Agents’ utility and the manipulation rule. Given a manipulation graph G(X , E) and a classi-
fier h ∈ YX , an agent with initial features x ∈ X aims to maximize their utility by potentially
manipulating their features to a different x′. The agent’s utility function utilG,h(x, x

′) is defined as

utilG,h(x, x
′) = h(x′)−∞ · 1{(x, x′) ∈ E} ,

where the agent’s utility is the classification outcome h(x′) minus the manipulation cost associated
with changing features from x to x′. For the classification outcome, agents receive utility +1 if
the classifier h labels x′ as positive and −1 otherwise. For the manipulation cost, moving from x
to x′ incurs no cost if the two features are connected by an edge in G, but when x and x′ are not
connected (i.e., (x, x′) ̸∈ E), the manipulation incurs an infinite cost, effectively making such a
manipulation infeasible. As a result, an agent with initial features x would move to some x′ in the
inclusive neighborhood N+

G [x] that is labeled as positive by h, if such a node exists.

Formally, the set of best response features from x, denoted by BRG,h(x), is defined as

BRG,h(x) ≜ {x′ | utilG,h(x, x
′) = +1} = N+

G [x] ∩ {x | h(x) = +1}.

If, however, the set BRG,h(x) is empty — indicating that the entire out-neighborhood N+
G [x] is

labeled as negative by h — then the agent is assumed to not manipulate their features and remain at
x. In addition, when there are multiple nodes in BRG,h(x), the agent may select any node arbitrarily.
We do not require the selection to be consistent across rounds or to follow a pre-specified rule. Our
results specifically focus on the learner’s mistakes against worst-case (adversarial) selections by the
agent.4 Finally, the manipulated feature vector is denoted by brG,h(x).

4Some previous works, such as [Ahmadi et al., 2023, Cohen et al., 2024], assume that agents will not
manipulate their features if x ∈ BRG,h(x). While this assumption enforces consistency in the special case
of h(x) = 1, we remark that most algorithms proposed by both papers remain effective even without this
assumption.

4

The labels induced by the manipulated feature vectors brG,h(x) are captured by effective classifiers
h̃G, formally defined as

h̃G(x) ≜ h(brG,h(x)) =

{
+1, if ∃v ∈ N+

G [x], s.t. h(v) = +1;

−1, otherwise.

Online learning. We consider an online strategic classification setting modeled as a repeated game
between the learner (aka the decision maker) and an adversary over T rounds, where the learner
make decisions according to an online learning algorithm A. At each round t ∈ [T], the learner
first commits to the classifier ht ∈ YX (not necessarily restricted toH) that is generated by A. The
adversary then selects an agent (xt, yt) where xt ∈ X is the original feature vector and yt ∈ Y is
the true label. In response to ht, the agent manipulates their features from xt to vt = brG,h(xt).
Consequently, the learner observes the manipulated features vt (instead of xt), and incurs a mistake
if yt ̸= ht(vt). We use S = (xt, yt)t∈[T] to denote the sequence of agents.

The learner aims to minimize the Stackelberg regret on S with respect to the optimal hypothesis
h⋆ ∈ H had the agents responded to h⋆:

RegretA(S,H, G) ≜
∑T

t=1 1{ht(brG,ht
(xt)) ̸= yt} −minh⋆∈H

∑T
t=1 1{h⋆(brG,h⋆(xt)) ̸= yt} .

We call a sequence S realizable with respect to H if the optimal-in-hindsight hypothesis h⋆ ∈ H
achieves zero mistakes on S. Specifically, this means that for all (xt, yt) in the sequence S, we have
yt = h⋆(brG,h⋆(xt)) = h̃⋆

G(xt). In such cases, the learner’s regret coincides with the number of mis-
takes made. We use MistakeA(H, G) to denote the maximal number of mistakes thatAmakes against
any realizable sequence with respect to classH and graph G. A deterministic algorithm is called min-
max optimal or instance-optimal if achieves the minimal MistakeA(H, G) across all deterministic
algorithms5. We denote this optimal mistake bound byM(H, G) ≜ infA deterministic MistakeA(H, G).

2.2 Classical Littlestone Dimension

In this section, we revisit the classical online binary classification setting where the agents are unable
to strategically manipulate their features. This setting can be viewed as a special case of strategic
classification where the manipulation graph G consists solely of isolated nodes. We will introduce the
characterization of the optimal mistake in this classical setting — known as the Littlestone Dimension
— which inspires our analysis in the strategic setting.
Definition 2.1 (H-Shattered Littlestone Tree). A Littlestone tree shattered by hypothesis classH of
depth d is a binary tree where:

• (Structure) Nodes are labeled by X and each non-leaf node has exactly two outgoing edges that
are labeled by +1 and −1, respectively.

• (Consistency) For every root-to-leaf path x1
y1−→ x2

y2−→ · · ·xd
yd−→ xd+1 where x1 is the root

node and each yt is the edge connecting xt and xt+1, there exists a hypothesis h ∈ H that is
consistent with the entire path, i.e., ∀t ≤ d, h(xt) = yt.

The above tree structure intuitively models an adversary’s strategy to maximize the learner’s mistakes,
where each node xt represents the unlabeled instance to be presented to the learner, and yt represents
the type of mistake (either a false positive or a false negative) that the adversary aims to induce.
For example, if the learner predicts the label of xt to be ŷt = +1, then the adversary will declare
yt = −1, enforce a false positive mistake, and choose the next instance xt+1 as the children of the
current node along the−1 edge. In addition, the consistency requirement guarantees that the resulting
input sequence is realizable by some classifier inH.
Definition 2.2 (Littlestone Dimension). The Littlestone dimension of classH, denoted as Ldim(H),
is the maximum integer d such that there exists anH-shattered Littlestone of depth d.

The interpretation of the true structure immediately implies that the mistake of any algorithm should
be lower bounded by Ldim(H). Moreover, a seminal result by Littlestone [1988] also showed that
an online learning algorithm known as the Standard Optimal Algorithm (SOA, see Algorithm 2 in

5In this paper, we mainly consider deterministic algorithms. We will discuss the role of randomness in
Section 6 and Appendix E.

5

Appendix A) can achieve this lower bound. Together, they form a complete characterization of the
optimal mistake bound in the classical setting, which we summarize in the following proposition.
Proposition 2.1 (Optimal Mistake Bound [Littlestone, 1988]). LetM(H) be the optimal mistake in
the classical online learning setting, thenM(H) = Ldim(H).

In the next section, we will discuss the challenges of extending Littlestone’s characterization to the
strategic setting, and present our solution.

3 The Strategic Littlestone Dimension

In this section, we will introduce a new combinatorial dimension called the Strategic Littlestone Di-
mension, and show that it characterizes the minmax optimal mistake bound for strategic classification.

Inspired by the classical Littlestone dimension, we hope to use a tree structure to model an adversary’s
strategy for selecting agents (xt, yt), where nodes serve as (proxies of) the initial feature vector
of each agent, and edges represent the types of mistakes that the adversary can induce. However,
since agents can strategically manipulate their features, the potential mistakes associated with the
same initial feature vector could manifest in many more types depending on the learner’s choice of
classifiers. Specifically, let x be the initial feature vector. Then a mistake associated with x might be
observed as a false negative mistake at node x (denoted as (x,+1) where x is the observable node
and +1 is the true label), or as a false positive mistake at any outgoing neighbor v of x (denoted as
(v,−1) accordingly). Therefore, an adversary’s strategy should accommodate all such possibilities,
which necessitates the strategic Littlestone tree to contain branches representing all potential mistake
types.

Another challenge is caused by the mismatch of the information available to the learner and the
adversary. Since the learner only observes manipulated features instead of the true ones, the amounts
of information carried by false positive and false negative mistakes are inherently asymmetric. False
negatives provide full-information feedback as the manipulated and original features are identical.
However, false positives introduce uncertainty about the original features, which could potentially be
any in-neighbor of the observed one. As a result, a hypothesis is deemed “consistent” with a false
positive observation as long as it can correctly label any one of the potential original nodes.

Now we formally introduce the strategic Littlestone tree with adapted branching and consistency
rules tailored for strategic classification. See Figure 1 for a pictorial illustration.
Definition 3.1 (H-Shattered Strategic Littlestone Tree). A Strategic Littlestone tree for hypothesis
classH under graph G with depth d is a tree where:

• (Structure) Nodes are labeled by X . The set of outgoing edges from each non-leaf node x are:
one false negative edge (x,+1), and a set of false positive edges {(v,−1) | v ∈ N+

G [x]}.

• (Consistency) For every root-to-leaf path x′
1

(v1,y1)−−−−→ x′
2

(v2,y2)−−−−→ · · ·x′
d

(vd,yd)−−−−→ x′
d+1 where

x′
1 is the root node and (vt, yt) ∈ X × {±1} is the edge that connects x′

t and x′
t+1, there

exists a hypothesis h ∈ H that is consistent with the entire path. Specifically, ∀t ≤ d, ∃xt s.t.
h̃G(xt) = yt, where xt satisfies xt = vt if yt = +1, and xt ∈ N−1

G [vt] if yt = −1 .
Definition 3.2 (Strategic Littlestone Dimension). The Strategic Littlestone Dimension of a hypothesis
classH under graph G, denoted with SLdim(H, G), is defined as the largest nonnegative integer d
for which there exists a Strategic Littlestone tree of depth d shattered byH under graph G.

Theorem 3.1 (Minmax optimal mistake for strategic classification). For any hypotheses class H
and manipulation graph G, the minmax optimal mistake in the realizable setting is captured by the
strategic Littlestone dimension, i.e.,M(H, G) = SLdim(H, G).

We divide the proof of Theorem 3.1 into two parts: the lower bound direction is established in
Theorem 3.2, and the upper bound direction is established in Theorem 3.3.
Theorem 3.2 (Lower bound part of Theorem 3.1). For any pair of hypothesis classH and manipula-
tion graph G, any deterministic online learning algorithm A must suffer a mistake lower bound of
MistakeA(H, G) ≥ SLdim(H, G).

Proof sketch of Theorem 3.2. Let T be a strategic Littlestone tree for (H, G) with depth d. We
will show that for any deterministic algorithm A, there exists an adversarial sequence of agents

6

x′
1

x′
2

(v1, y1)

· · ·

· · · · · · · · ·x′
3

(v2, y2)

· · ·

Figure 1: A Strategic Littlestone Tree with depth 2. False negative edges are marked red, whereas false positive

edges are marked blue. The highlighted path x′
1

(v1,y1)−−−−→ x′
2

(v2,y2)−−−−→ x′
3 is an example root-to-leaf path. In this

path, the first observation (v1, y1) is a false positive, which satisfies v1 ∈ N+
G [x′

1] and y1 = −1; the second
observation (v2, y2) is a false negative, which satisfies v2 = x′

2 and y2 = +1.

S = (xt, yt)t∈[d] such that A is forced to make a mistake at every round. We construct the sequence

S by first finding a path x′
1

(v1,y1)−−−−→ x′
2

(v2,y2)−−−−→ · · ·x′
d

(vd,yd)−−−−→ x′
d+1 in tree T which specifies the

types of mistakes that the adversary wishes to induce, then reverse-engineering this path to obtain
the sequence of initial feature vectors before manipulation that is realizable under H. We remark
that the need for reverse-engineering is unique to the strategic setting, which is essential in resolving
the information asymmetry between the learner and the adversary regarding the true features. We
formally prove this theorem in Appendix B.1.

In the remainder of this section, we present an algorithm called the Strategic Standard Optimal
Algorithm (SSOA) that achieves the instance-optimal mistake bound of SLdim(H, G). We first
define some notations. For any hypothesis sub-class F ⊂ H and an observable labeled instance
(v, y) ∈ X × Y , we use F (v,y)

G to denote the subset of F that is consistent with (v, y) under
manipulation graph G. We refer to the consistency rule defined in Definition 3.1, i.e., for all v ∈ X ,
F (v,+1)

G and F (v,−1)
G are defined respectively as:

F (v,+1)
G ≜ {h ∈ F | h̃G(v) = +1}; F (v,−1)

G ≜ {h ∈ F | ∃x ∈ N−
G [v] s.t. h̃G(x) = −1}.

We present SSOA in Algorithm 1 and prove its optimality in Theorem 3.3. The high-level idea
of SSOA is similar to the classical SOA algorithm (Algorithm 2): it maintains a version space of
classifiers consistent with the history, and chooses a classifier ht in a way that guarantees the “progress
on mistakes” property. This means that the (strategic) Littlestone dimension of the version space
should decrease whenever a mistake is made.

However, designing ht to satisfy this property in a strategic setting is more challenging because
the potential types of mistakes depend on ht’s labeling in the neighborhood N+

G [xt], where xt is
unobservable. If we directly optimize the labelings on N+

G [x] for each x independently, the resulting
classifier may suggest self-contradictory labelings to the nodes in the overlapping parts of N+

G [x] and
N+

G [x′] for different x and x′. Instead, the learner needs to choose a single ht that simultaneously
guarantees the “progress on mistakes” property for all possible xt and their neighborhoods.

In the following, we will show that this challenge can be resolved by choosing a classifier ht that
labels each node x only based on whether a false positive observation (x,−1) can decrease the
strategic Littlestone dimension, as described in Line 3 of Algorithm 1.

Theorem 3.3 (Upper bound part of Theorem 3.1). The SSOA algorithm (Algorithm 1) achieves a
maximal mistake bound of MistakeSSOA(H, G) ≤ SLdim(H, G).

Remark 3.4 (Comparison with previous results). Since the mistake bound of SSOA is shown to
be instance-optimal across all deterministic algorithms, it improves upon the bounds established
by Ahmadi et al. [2023], Cohen et al. [2024], which both depend on the maximum out-degree of
the graph G. Furthermore, we show in Appendix B.2 that the gap between their bounds and ours
could be arbitrarily large. An extreme example is the complete graph G supported on an unbounded
domain, where SLdim(H, G) = 1 but both previous bounds are∞.

Proof of Theorem 3.3. It suffices to prove that if SSOA makes a mistake at round t, then the strategic
Littlestone dimension of version space Ht (maintained by the SSOA algorithm in Line 5) must

7

Algorithm 1: The Strategic Standard Optimal Algorithm (SSOA)
Input: Hypothesis classH, manipulation graph G.
Initialization :Version spaceH0 ← H.

1 for t ∈ [T] do
2 Commit to the classifier ht : X → {±1} defined as follows:

3 ∀x ∈ X , ht(x)←

{
+1, if SLdim

(
(Ht−1)

(x,−1)
G , G

)
< SLdim(Ht−1, G);

−1, otherwise.
;

4 Observe the manipulated feature vector vt and the true label yt;
5 If a mistake occurs (ht(vt) ̸= yt), updateHt ← (Ht−1)

(vt,yt)
G . OtherwiseHt ← Ht−1.

6 end

decrease by at least 1, namely SLdim(Ht, G) ≤ SLdim(Ht−1, G)− 1. For notational convenience,
let d = SLdim(Ht−1, G).

False positives. We start with the case where SSOA makes a false positive mistake, i.e., ht(vt) = +1
but yt = −1. According to the definition of classifier ht and the update rule of version spaceHt, we
immediately obtain

SLdim(Ht, G) = SLdim
(
(Ht−1)

(vt,−1)
G , G

)
< SLdim(Ht−1, G) ⇒ SLdim(Ht, G) ≤ d− 1.

False negatives. Then we consider the case where SSOA makes a false negative mistake, i.e.,
ht(vt) = −1 but yt = +1. For the sake of contradiction, assume that the strategic Littlestone di-
mension does not decrease, i.e., SLdim(Ht, G) = SLdim

(
(Ht−1)

(vt,+1)
G , G

)
= d. This assumption

implies that there exists a strategic Littlestone tree T that is shattered by (Ht−1)
(vt,+1)
G and of depth

SLdim(Ht−1, G).

Since the agent is classified as negative, it must be the case that the agent has not manipulated (i.e.,
xt = vt), and the entire outgoing neighborhood N+

G [xt] is labeled as negative by ht. Therefore,

according to the definition of ht, for all v ∈ N+
G [xt], we have SLdim

(
(Ht−1)

(v,−1)
G , G

)
= d,

which implies that there also exists a strategic Littlestone tree Tv of depth d that is shattered by
(Ht−1)

(v,−1)
G .

Now consider the tree T ′ with root xt, subtree T on the false negative edge (xt,+1), and subtree
Tv on each false positive edge (v,−1) for all v ∈ N+

G [xt]. Since we have argued that each subtree
has depth d, the overall depth of T ′ is d+ 1. We claim that T ′ is shattered byHt−1. In fact, for all
root-to-leaf paths in T ′, the first observation is guaranteed to be consistent with all hypotheses in the
subclass for the subtree, and the consistency of each subtree ensures the existence of a hypothesis
that makes all subsequent observations realizable.

We have thus constructed a strategic Littlestone tree T ′ that is shattered byHt−1 and of depth d+ 1.
However, this contradicts with the assumption that SLdim(Ht−1, G) = d. Therefore, it must follow
that SLdim(Ht, G) ≤ d − 1 = SLdim(Ht−1, G) − 1, which in turn proves MistakeSSOA(H, G) ≤
SLdim(H, G).

4 Agnostic Setting

In this section, we study the regret bound in the agnostic setting. Recall that benchmark is de-
fined as the minimum number of mistakes that the best hypothesis in H makes, i.e., OPT ≜
minh⋆∈H

∑
t∈[T] 1{h⋆(brG,h⋆(xt)) ̸= yt}. We will present an algorithm that has vanishing regret

compared to ∆+
G · OPT whenever the strategic Littlestone dimension is bounded, where ∆+

G is the
maximum out-degree of G. Inspired by the classical reduction framework proposed by Ben-David
et al. [2009], our algorithm aims to reduce the agnostic problem to that of strategic online learning
with expert advice by constructing a finite number of representative experts that performs almost as
well as the potentially unbounded hypothesis class. The problem with a finite expert set can then

8

be solved using the biased weighted voting algorithm proposed by Ahmadi et al. [2023]. However,
establishing the reduction turns out to be more challenging in the strategic setting, as the learner can
only observe manipulated features instead of the original ones. We address this problem by designing
the experts to “guess” every possibile direction the original node could have come. We present our
algorithms (Algorithms 3 and 4) in Appendix C and analyze their regret in Theorem 4.1.

Theorem 4.1. For any adaptive adversarial sequence S of length T , the Agnostic Online Strategic
Classification algorithm (Algorithm 3) has regret bound

Regret(S,H, G) ≤ O
(
∆+

G · OPT+∆+
G · SLdim(H, G) · (log T + log∆−

G)
)
,

where ∆+
G (resp. ∆−

G) denotes the maximum out-degree (resp. in-degree) of graph G.

Remark 4.2. Ahmadi et al. [2023] showed that there exists instances in which all deterministic
algorithms must suffer regret Ω(∆+

G·OPT), which means the first term in the above bound is necessary.
The second term connects to our instance-wise lower bound of SLdim(H, G) in Theorem 3.2.

Proof sketch of Theorem 4.1. We use E to denote the set of experts constructed in Algorithm 4,
and define OPTE as the minimum number of mistakes made by the best expert e⋆ ∈ E, had the
agents responded to e⋆. Then the Biased Weighted Majority Vote algorithm from Ahmadi et al.
[2023] guarantees that the number of mistakes made by Algorithm 3 is at most ∆+

G · OPT
E +∆+

G ·
log |E|. According to our construction of experts, the total number of experts satisfies log |E| ≤
log

(∑
m≤d

(
T
m

)
· (∆−

G)
m
)
≤ O(d · (log T + log∆−

G)), where d = SLdim(H, G) is the strategic
Littlestone dimension. Therefore, it suffices to show that OPTE is not too much larger than OPT—in
other words, the set of experts E are representative enough of the original hypothesis class H in
their ability of performing strategic classification. We use the following lemma, which we prove in
Appendix C by establishing the equivalence between the SSOA instance running on the sequence
labeled by the effective classifier and the SSOA instance simulated by a specific expert.

Lemma 4.3 (Experts are representative). For any hypothesis h ∈ H and any sequence of agents S,
there exists an expert eh ∈ E that makes at most SLdim(H, G) more mistakes than h.

5 Unknown Manipulation Graph

In this section, we generalize the main settings to relax the assumption that the learner has full
knowledge about the underlying manipulation graph G. Instead, we use a graph class G to capture
the learner’s knowledge about the manipulation graph. In Section 5.1, we begin with the realizable
graph class setting, where the true manipulation graph remains the same across rounds and belongs
to the family G. We then study the agnostic graph class setting in Section 5.2, where we drop both
assumptions and allow our regret bound to depend on the “imperfectness” of G. In both cases, we
assume the hypothesis classH is also agnostic, which encompasses the setting whereH is realizable.

5.1 Realizable graph classes

In this section, we assume that there exists a perfect (but unknown) graph G⋆ ∈ G, such that each
agent (xt, yt) ∈ S manipulates according to G⋆. We define the benchmark OPTH to be the optimal
number of mistakes made by the best h⋆ ∈ H assuming that each agent best responds to h⋆ according
to G⋆. Formally, OPTH ≜ minh⋆∈H 1{h⋆(brG⋆,h⋆(xt)) ̸= yt}. Same to our main setting, we
assume that the learner only observes the post-manipulation features vt = brG⋆,ht

(xt) after they
commit to classifier ht, but cannot observe the original features xt.

Our algorithm (Algorithm 6) for this setting leverages two main ideas. First, to overcome the
challenge that G⋆ is unknown to the experts, we blow up the number of experts by a factor of |G| and
let each expert simulate their own SSOA instance according to some internal belief of G⋆. Since the
regret bound depends logarithmic on the number of experts, this only introduces an extra log |G| term,
which has been shown by Cohen et al. [2024] to be unavoidable even when the learner has access to
the original features.

Our second idea involves re-examining the correctness of Algorithm 5 for bounded expert class to
the scenario where the input G is a pessimistic estimate of the true graph G⋆, i.e., G contains all the
edges in G⋆ but potentially some extra edges. This allows us to use Gunion whose edge set is taken to

9

be the union of all egdes in G. Combining these two ideas, we present our algorithm and establish its
regret bound (Theorem 5.1) in Appendix D.
Theorem 5.1. For any realizable graph class G and any adaptive adversarial sequence S of length
T , Algorithm 6 has regret bound

Regret(S,H, G) ≤ O
(
∆+

G ·
(
OPTH + dG · (log T + log∆−

G) + log |G|
))

,

where dG ≜ maxG∈G SLdim(H, G) is the maximum strategic Littlestone dimension for all graphs
in G, ∆+

G ≜ ∆+
Gunion

is the maximum out-degree of Gunion (i.e., the union of graphs in G), and
∆−

G ≜ maxG∈G ∆−
G is the maximum max in-degree over graphs in G.

Remark 5.2 (Implications in the realizable setting). In the realizable setting where OPTH = 0,
Theorem 5.1 implies a mistake bound of Õ(∆+

G ·dG+log |G|). This bound is optimal up to logarithmic
factors due to a lower bound proved by Cohen et al. [2024, Proposition 14]. They constructed an
instance with |G| = |H| = Θ(n) in which any deterministic algorithm makes Ω(n) mistakes. In this
instance, our bound evaluates to be Õ(n) since ∆+

G = Θ(n) and dG = 1.

5.2 Agnostic graph classes

In this section, we consider a fully agnostic setting where each agent (xt, yt) may behave according
to a different manipulation graph Gt ⊆ Gunion. We define the benchmark OPTG to count the number
of times that the best graph G⋆ ∈ G fails to model the local manipulation structure under Gt, and
OPTH is defined as in Section 5.1, using the graph G⋆ that achieves OPTG .

OPTG ≜ min
G⋆∈G

T∑
t=1

1
{
N+

G⋆ [xt] ̸= N+
Gt

[xt]
}
, OPTH ≜ min

h⋆∈H

T∑
t=1

1{h⋆(brG⋆,h⋆(xt) ̸= yt)} 6.

Assuming access to an upper bound N of OPTG , we present Algorithm 7 that achieves a regret
bound of Õ

(
∆+

G (N + OPTH + dG)
)
, as shown in Theorem D.2. We additionally apply the standard

doubling trick to remove the requirement of knowing N . More details can be found in Appendix D.2.

6 Discussion and Future Research

Improved bounds for the agnostic setting. An immediate direction for future research is tightening
our bounds in the agnostic setting under known manipulation graph. Note that our upper bound is
Õ
(
∆+

G · (OPT+ SLdim(H, G)
)

whereas the lower bounds are Ω(∆+
G · OPT) from Ahmadi et al.

[2023] and Ω(SLdim(H, G)) from Theorem 3.2. The extra ∆+
G factor is introduced by the strategic

learning-with-expert-advice algorithm, for which all known results have the dependency on ∆+
G.

Randomized learners. Our results mainly focus on deterministic learners. It is an important open
problem to find the corresponding characterizations for randomized learners. In Appendix E, we
provided a family of realizable instances that witnesses a super-constant gap between the optimal
mistake of deterministic and randomized algorithms. This is in contrast to their classical counterparts
which are always a factor of 2 within each other. One challenge (among others) of proving a tight
lower bound in the randomized setting is controlling the learner’s information about the agents’
original features, as the adversary can no longer “look-ahead” at an algorithm’s future classifiers.

6We can also derive regret bounds when OPTH is defined based on the agents’ best responses according to
their own manipulation graph Gt instead of G⋆. In this case, the regret bound would be the same up to constant
factors.

10

Acknowledgments. We thank Avrim Blum for the helpful comments and discussions. This work
was done while Hanrui Zhang was in residence at the Simons Laufer Mathematical Sciences Institute
(formerly MSRI) in Berkeley, California, during the Fall 2023 semester. This work was supported
in part by the National Science Foundation under grants DMS-1928930, CCF-2212968, and ECCS-
2216899, by the Alfred P. Sloan Foundation under grant G-2021-16778, by the Simons Foundation
under the Simons Collaboration on the Theory of Algorithmic Fairness, and by the Defense Advanced
Research Projects Agency under cooperative agreement HR00112020003. The views expressed in
this work do not necessarily reflect the position or the policy of the Government and no official
endorsement should be inferred. Approved for public release; distribution is unlimited.

References
Saba Ahmadi, Hedyeh Beyhaghi, Avrim Blum, and Keziah Naggita. The strategic perceptron. In

Proceedings of the 22nd ACM Conference on Economics and Computation (EC), pages 6–25,
2021.

Saba Ahmadi, Hedyeh Beyhaghi, Avrim Blum, and Keziah Naggita. On classification of strategic
agents who can both game and improve. arXiv preprint arXiv:2203.00124, 2022.

Saba Ahmadi, Avrim Blum, and Kunhe Yang. Fundamental bounds on online strategic classification.
In Proceedings of the 24th ACM Conference on Economics and Computation (EC), pages 22–58,
2023.

Tal Alon, Magdalen Dobson, Ariel Procaccia, Inbal Talgam-Cohen, and Jamie Tucker-Foltz. Mul-
tiagent evaluation mechanisms. Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 34(02):1774–1781, 2020.

Yahav Bechavod, Katrina Ligett, Steven Wu, and Juba Ziani. Gaming helps! learning from strategic
interactions in natural dynamics. In International Conference on Artificial Intelligence and
Statistics, pages 1234–1242. PMLR, 2021.

Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning. In Conference on
Learning Theory (COLT), volume 3, page 1, 2009.

Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction problems. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 547–555, 2011.

Yiling Chen, Yang Liu, and Chara Podimata. Learning strategy-aware linear classifiers. In Advances
in Neural Information Processing Systems (NeurIPS), volume 33, pages 15265–15276, 2020.

Lee Cohen, Saeed Sharifi-Malvajerdi, Kevin Stangl, Ali Vakilian, and Juba Ziani. Sequential strategic
screening. In International Conference on Machine Learning, pages 6279–6295. PMLR, 2023.

Lee Cohen, Yishay Mansour, Shay Moran, and Han Shao. Learnability gaps of strategic classification.
arXiv preprint arXiv:2402.19303, 2024.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adversarial classifica-
tion. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 99–108, 2004.

Ofer Dekel, Felix Fischer, and Ariel D Procaccia. Incentive compatible regression learning. In
Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages
884–893, 2008.

Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu. Strategic
classification from revealed preferences. In Proceedings of the 19th ACM Conference on Economics
and Computation (EC), pages 55–70, 2018.

Yuval Filmus, Steve Hanneke, Idan Mehalel, and Shay Moran. Bandit-feedback online multiclass
classification: Variants and tradeoffs. arXiv preprint arXiv:2402.07453, 2024.

Alan M Frieze. On the independence number of random graphs. Discrete Mathematics, 81(2):
171–175, 1990.

11

Ganesh Ghalme, Vineet Nair, Itay Eilat, Inbal Talgam-Cohen, and Nir Rosenfeld. Strategic classifi-
cation in the dark. In International Conference on Machine Learning, pages 3672–3681. PMLR,
2021.

Nika Haghtalab, Nicole Immorlica, Brendan Lucier, and Jack Z. Wang. Maximizing welfare with
incentive-aware evaluation mechanisms. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 160–166, 2020.

Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classification.
In Innovations in Theoretical Computer Science Conference (ITCS), pages 111–122, 2016.

Lily Hu, Nicole Immorlica, and Jennifer Wortman Vaughan. The disparate effects of strategic
manipulation. In Proceedings of the Conference on Fairness, Accountability, and Transparency,
FAT* ’19, page 259–268, 2019.

Jon Kleinberg and Manish Raghavan. How do classifiers induce agents to invest effort strategically?
ACM Transactions on Economics and Computation (TEAC), 8(4):1–23, 2020.

Tosca Lechner and Ruth Urner. Learning losses for strategic classification. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), volume 36, pages 7337–7344, 2022.

Tosca Lechner, Ruth Urner, and Shai Ben-David. Strategic classification with unknown user ma-
nipulations. In International Conference on Machine Learning, pages 18714–18732. PMLR,
2023.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning, 2:285–318, 1988.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction.
In Proceedings of the 37th International Conference on Machine Learning (ICML), volume 119,
pages 7599–7609. PMLR, 2020.

Ananth Raman, Vinod Raman, Unique Subedi, Idan Mehalel, and Ambuj Tewari. Multiclass online
learnability under bandit feedback. In International Conference on Algorithmic Learning Theory,
pages 997–1012. PMLR, 2024.

Han Shao, Avrim Blum, and Omar Montasser. Strategic classification under unknown personalized
manipulation. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, 2024.

Ravi Sundaram, Anil Vullikanti, Haifeng Xu, and Fan Yao. PAC-learning for strategic classification.
Journal of Machine Learning Research, 24(192):1–38, 2023.

Hanrui Zhang and Vincent Conitzer. Incentive-aware pac learning. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), volume 35, pages 5797–5804, 2021.

12

A Supplementary Materials for Section 2

We present the SOA algorithm in Algorithm 2.

Algorithm 2: The Classical Standard Optimal Algorithm (SOA)
Input: Hypothesis classH.
Initialization :Version spaceH0 ← H.

1 for t ∈ [T] do
2 Observe xt;
3 For y ∈ {±1}, letH(xt,y)

t−1 ← {h ∈ Ht−1 | h(xt) = ŷ};
4 Predict ŷt ← argmaxy Ldim(H(y)

t−1);

5 Observe yt and update version spaceHt ← H(xt,yt)
t−1 .

6 end

B Supplementary Materials for Section 3

B.1 Proof of Theorem 3.2

Theorem 3.2 (Restated). For any pair of hypothesis class H and manipulation graph G, any
deterministic online learning algorithm A must suffer a mistake lower bound of MistakeA(H, G) ≥
SLdim(H, G).

Proof of Theorem 3.2. Recall that to construct an adversarial sequence of agents S = (xt, yt)t∈[d]

such thatA is forced to make a mistake at every round, we will first find a path x′
1

(v1,y1)−−−−→ x′
2

(v2,y2)−−−−→
· · ·x′

d

(vd,yd)−−−−→ x′
d+1 in tree T which specifies the types of mistakes that the adversary wishes to

induce, then reverse-engineering this path to obtain the sequence of initial feature vectors before
manipulation that is realizable underH.

Constructing the path. We initialize x′
1 to be the root of the tree T . For all t ≤ d and given the

history (partial path) x′
1

(v1,y1)−−−−→ · · ·x′
t−1

(vt−1,yt−1)−−−−−−−→ x′
t, we find the edge (vt, yt) and the next node

x′
t+1 as follows: run the online learning algorithm A for t − 1 rounds with inputs (vt′ , yt′)t′≤t−1,

and let ht be the outputted classifier at round t. We examine the labels of ht in the out-neighborhood
N+

G [x′
t] under graph G and consider the following two cases.

Case 1: False negatives. If all the feature vectors in N+
G [x′

t] is labeled as negative by ht, then the
adversary will induce a false negative mistake by letting the post-manipulation feature vector be x′

t

(which is same as the original feature vector xt) and the true label be positive, i.e., (vt, yt) ≜ (x′
t,+1).

We then choose the next node x′
t+1 to be the child of x′

t along the false negative edge (x′
t,+1) in T .

Case 2: False positives. If there exists v ∈ N+
G [x′

t] such that ht(v) = +1, then the adversary
will induce a false positive mistake that is observed at v with true label −1, i.e., (vt, yt) ≜ (v,−1).
However, we remark that the true features xt may be chosen as a different node in N−

G [vt] to ensure
realizability, which we will discuss in the reverse-engineering part. We choose x′

t+1 to be the child of
x′
t along the false positive edge (v,−1) in T .

Reverse-engineering. Repeating the above procedure for all t ≤ d gives us the path x′
1

(v1,y1)−−−−→
· · ·x′

d

(vd,yd)−−−−→ x′
d+1, where each yt already specifies the true labels of each agent. It remains to

select the initial features (xt). Since T is shattered by H, the consistency part of Definition 3.1
guarantees the existence of h ∈ H such that ∀t < d, there exists xt that satisfies h̃G(xt) = yt, where
xt = vt = x′

t if yt = −1 and xt ∈ N−
G [vt] if yt = +1. We let those (xt)t∈[d] be agents’ true feature

vectors. It then follows that the sequence of agents S = (xt, yt)t∈[d] is realizable under (H, G) and
indeed induces a mistake observed as (vt, yt) at every round t ∈ [d].

13

Finally, if SLdim(H, G) <∞, then the above argument with d = SLdim(H, G) proves the theorem.
When SLdim(H, G) = ∞, the above argument shows MistakeA(H, G) ≥ d for all d ∈ N, which
implies that MistakeA(H, G) =∞ by driving d→∞. The proof is thus complete.

B.2 Comparison with max-degree based bounds

In this section, we consider two families of instances (H, G) in which our mistake bound
SLdim(H, G) from Theorem 3.3 significantly improves the previous bounds. We compare with
upper bounds O(∆+

G · log |H|) from [Ahmadi et al., 2023] and Õ(∆+
G · Ldim(H)) from [Cohen et al.,

2024], where Ldim(H) denotes the classical Littlestone dimension of hypothesis classH. We focuses
on comparing with the latter bound, since it can be shown that Ldim(H) ≤ log |H| for allH.

Graphs with a large clique. Our first example involves graphs with a very large clique. The
main idea is that the densest part of graph may turn out to be very easy to learn since there are
only a few effective hypotheses supported on it. On the other hand, the harder-to-learn part of the
hypothesis class may be supported on a subgraph with a much smaller maximum degree. For this
reason, the previous bounds that directly multiply the complexity of the entire graph (e.g., ∆+

G) with
the complexity of the entire hypothesis class would be suboptimal.

Let (G′,H′) be a pair of manipulation graph and hypothesis class, for which we have
SLdim(H, G′) ≤ O(∆+

G′ · Ldim(H′) since the strategic Littlestone dimension is a lower bound
of all valid mistake bounds (Theorem 3.2). Let N ≫ max{|G′|, |H′|} be a very large integer, and
KN be a clique of size N . We assume that the vertex set of KN is disjoint from that of G′. We
take the hypothesis class on KN to be the set of all functions, i.e., {±1}KN . Let G = G′ ∪KN and
H = H′ × {±1}N .

• Previous bound: Since ∆+
G = N and Ldim(H) ≥ Ldim(H′). Therefore, the bound in [Cohen

et al., 2024] is of order (ignoring logarithmic factors)

∆+
G · Ldim(H) ≥ Ω(N · Ldim(H′)).

• Our bound based on the strategic Littlestone dimension: By Theorem 3.2, SLdim(H, G) lower
bounds the mistake bound achievable by any deterministic algorithm. Consider the following
deterministic algorithm that uses two independent algorithms A1 and A2 to learn on each of the
disjoint subgraphs G′ and KN . We will choose A1 to be the Red2Online-PMF(SOA) algorithm
proposed by Cohen et al. [2024], and A2 be the algorithm that predicts all nodes negative until a
mistake happens, at which point flips the prediction to positive on all nodes. Since the effective
classifiers on KN is either all positive or all negative, A2 makes at most 1 mistake. We have

SLdim(H, G) ≤ MistakeA1(H′, G′) +MistakeA2({±1}KN ,KN) ≤ Õ(∆+
G′ · Ldim(H′)).

• Improvement. As a result, for this instance, the gap between these two algorithms is lower
bounded by N/∆+

G′ , which can be arbitrarily large by taking N →∞.

Random graphs in G(n, p), H = {±1}n. Our second example considers random graphs G ∼
G(n, p), in which every (undirected) edge is realized independently with probability p. We will show
that when p = ω(1/n) (when the random graph is “effectively” dense), with high probability over
G ∼ G(n, p), the strategic Littlestone dimension significantly improves previous bounds.

SinceH is extremely expressive (contains all functions), we have log |H| = Ldim(H) = n. However,
we will show that even after strengthening the previous bounds by applying it on the reduced-size
hypothesis class H̃G ⊆ H—which contains only one hypothesis in each equivalence class that
induces the same effective hypothesis h̃G—the strategic Littlestone dimension SLdim(H, G) still
offers significant improvement over ∆+

G · Ldim(H̃G).

• Previous bound: By concentration, ∆+
G ≥ Ω(np) with high probability. Moreover, with high

probability, the independence number α(G) satisfies α(G) ≥ Ω(log(np)/p) [Frieze, 1990]. Let
I(G) be the independent set with size α(G) and consider the projection of H̃G onto I(G). Since
there are no edges inside, the effective hypothesis coincides with the original hypothesis, therefore

14

(H̃G)I(G) contains all functions that maps from I(G) to {±1}, which has classical Littlestone
dimension |I(G)| = α(G). As a result, we have that with high probability,

∆+
G · Ldim(H̃G) ≥ Ω(np) · Ω(log(np)/p) ≥ Ω(n log(np)).

• Our bound based on the strategic Littlestone dimension: Again, SLdim(H, G) lower bounds
the mistake bound of all deterministic algorithms. Consider the following algorithm: start with
predicting all nodes as positive. Whenever a false positive is observed at some node u, flip the
sign of u to negative. Such an algorithm achieves a mistake bound of n. Therefore,

SLdim(H, G) ≤ n.

• Improvement When p = ω(1n), with high probability, the gap between these two bounds are

Ω(np) = ωn(1),

which can be made to approach∞ as n→∞.

C Supplementary Materials for Section 4

C.1 Algorithms for the agnostic setting

In this section, we present algorithms for the agnostic setting and prove their regret guarantees. As
discussed in Section 4, the main idea behind the strategic version of agnostic-to-realizable reduction
lies in our “guess” of the possible direction the original node would have come from. To do this
systematically, we first need to specify a indexing system to the in-neighborhoods of every node in
the graph. For each node v ∈ X , we assign a unique index to each in-neighbor in N−

G [v] from the
range {0, 1, · · · ,∆−

G}, where ∆−
G being the max in-degree of G. This indexing is specific to each v

and does not require consistency when indexing a common in-neighbor of different nodes. We are
now ready to formally introduce our algorithms in Algorithms 3 and 4.

Algorithm 3: Agnostic Online Strategic Classification Algorithm
Input: Hypothesis classH, manipulation graph G.

1 Let d← SLdim(H, G);
2 foreach m ≤ d, i1:m, r1:m where 1 ≤ i1 < · · · < im ≤ T , 0 ≤ r1, · · · , rm ≤ ∆−

G do
3 Construct Expert(i1:m, r1:m) as in Algorithm 4.
4 end
5 Run Biased Weighted Majority Vote (Algorithm 5) on the set of experts.

Algorithm 4: Expert(i1, · · · , im, r1, · · · , rm;G)

Input: Hypothesis classH, manipulation graph G, indices for mistakes 1 ≤ i1 < · · · < im ≤ T ,
indices for manipulation directions 0 ≤ r1, · · · , rm ≤ ∆−

G,
the sequence of post-manipulation agents (vt, yt)t∈[T] received sequentially.

Output: Classifiers (ĥt)t∈[T] outputted sequentially.
Initialization :Simulate an instance of the SSOA algorithm with parameters (H, G).

1 for t ∈ [T] do
2 ĥt ← classifier outputted by the SSOA algorithm;
3 Observe the manipulated feature vector vt and the true label yt;
4 if t ∈ {i1, · · · , im} (suppose t = ik) then
5 x̂t ← the in-neighbor in N−

G [vt] with index rk// guess of the original feature vector xt

6 v̂t ← brĥt,G
(x̂t)// simulate the post-manipulation feature vector in response to ĥt

7 Update the SSOA algorithm with instance (v̂t,−ĥt(v̂t)).
8 end
9 end

15

C.2 Proof of Lemma 4.3

Lemma 4.3 (Restated). For any hypothesis h ∈ H and any sequence of agents S, there exists an
expert eh ∈ E that makes at most SLdim(H, G) more mistakes than h.

Proof of Lemma 4.3. Let us define the hypothetical sequence S(h) ≜ (xt, y
(h)
t)t∈[T], where we keep

the same sequence of initial feature vectors (xt) in S, but adjust their labels to be y
(h)
t ≜ h̃G(xt),

i.e., the label that the effective classifier h̃G assigns to xt. Note that this sequence is defined only for
analytical purpose and not required to be known by either the agnostic algorithm or the experts.

By definition, S(h) is realizable by the hypothesis h ∈ H under graph G. Therefore, Theorem 3.3
guarantees that runnning SSOA on S(h) gives at most SLdim(H, G) mistakes. Let m ≤ SLdim(H, G)
be the number of mistakes made, and i1, i2, · · · , im be the time steps at which the mistakes occur.
In addition, at every mistake ik = t ∈ [T], let v(h)t be the post-manipulation node observed by the
SSOA algorithm running on sequence S(h). On the other hand, let vt be the observation received by
each expert. Although vt may be different from v

(h)
t because vt is the best response to the agnostic

algorithm while v
(h)
t is the best response to SSOA, we know that vt must be an out-neighbor of xt.

Therefore, there must exist an index rk (where 0 ≤ rk ≤ ∆−
G) such that xt is the rt-th in-neighbor of

vt. We argue that Expert(i1:m, r1:m) is the expert eh that we want.

We first establish the equivalence of the two following instances of SSOA:

• SSOAeh denotes the algorithm instance simulated by expert eh;

• SSOAh denotes the algorithm instance running on sequence S(h).

We will show by induction that both instances SSOAeh and SSOAh have the same version space—and
as a result, output the same classifier for the next round—at all time steps. This is clearly true at the
base case t = 1, as the version spaces of both instances are initialized to beH. Now we assume the
two instances are equivalent up to t− 1 and prove that they are still equivalent at time t. Since they
have the same version spacesHt−1, they output the same classifiers for time step t. We denote this
classifier by ĥt as in line 2 of Algorithm 4.

If t /∈ {i1, · · · , im}, then the version space Ht are still the same because neither instances update.
Otherwise, there exists k ∈ [m] such that t = ik. Since SSOAh makes a mistake at ik, it will update
the version space with observation (v

(h)
t , y

(h)
t) = (v

(h)
t ,−ĥt(v

(h)
t)). On the other hand, according to

line 7 of Algorithm 4, the instance SSOAeh is updated using observation (v̂t,−ĥt(v̂t)). Therefore, it
suffices to show that v(h)t = v̂t. Since our choice of rk guarantees xt to be the rk-th in-neighbor of vt,
we have x̂t = xt based on line 5 of Algorithm 4. Therefore, both v

(h)
t and v̂t are equal to brĥt,G

(xt),
so they are the same. As a result, both SSOAeh and SSOAh updates their version space using the
same observation, so theirHt remains the same. By induction, these two instances are equivalent for
all time steps.

Finally, we use the equivalence established above to prove the lemma. Using (ĥt)t∈[T] to denote the
sequence of classifiers outputted by eh, we have

Mistakeeh(S)−Mistakeh(S) =
T∑

t=1

1

{
ĥt(brĥt,G

(xt)) ̸= yt

}
−

T∑
t=1

1{h(brh,G(xt)) ̸= yt}

≤
T∑

t=1

1

{
ĥt(brĥt,G

(xt)) ̸= h(brh,G(xt))
}

=

T∑
t=1

1

{
ĥt(brĥt,G

(xt)) ̸= y
(h)
t

}
(y(h)t = h̃G(xt) in S(h))

= MistakeSSOA(S
(h)) (Equivalence of SSOAh and SSOAeh)

≤ SLdim(H, G). (S(h) is realizable underH and G)

16

The proof of the lemma is thus complete.

C.3 The Biased Weighted Majority Vote Algorithm

We present the algorithm in Algorithm 5.

Algorithm 5: Biased Weighted Majority Vote [Ahmadi et al., 2023]
Input: Expert class E, manipulation graph G(X , E) that is a supergraph of the true (unknown)

manipulation graph G⋆.
Initialization :For all experts e ∈ E, set weight w0(e)← 1.

1 for t ∈ [T] do
/* the learner commits to a classifier ht that is constructed as follows: */

2 for v ∈ X do
3 Let W+

t (v) =
∑

e∈E:et(v)=+1 wt(e), W−
t (v) =

∑
e∈E:et(v)=−1 wt(e), and

Wt = W+
t (v) +W−

t (v) =
∑

e∈E wt(e); // et is the prediction of expert e at round t

4 if W+
t (v) ≥Wt/(∆

+
G + 2) then

5 ht(v)← +1;
6 else
7 ht(v)← −1;
8 end
9 end

10 Observe manipulated node vt and output prediction ht(vt);
11 if ht(vt) ̸= yt then

/* If there was a mistake: */
12 if yt = −1 then

/* False positive mistake. */
13 E′ ← {e ∈ E | et(vt) = +1}; // penalize the experts that label vt as positive.
14 else

/* False negative mistake. */
15 N̂ [vt]← N+

G [vt] \ {x ∈ N+
G [vt], ht(x) = +1};

16 E′ ← {e ∈ E | ∀x ∈ N̂ [vt], et(x) = −1};
// penalize the experts that label all nodes in N̂ [vt] as negative.

17 end
18 if e ∈ E′, then wt+1(e)← γ · wt(e); otherwise, wt+1(e)← wt(e);
19 end
20 end

C.4 Proof of Theorem 4.1

Theorem 4.1 (Restated). For any adaptive adversarial sequence S of length T , the Agnostic Online
Strategic Classification algorithm (Algorithm 3) has regret bound

Regret(S,H, G) ≤ O
(
∆+

G · OPT+∆+
G · SLdim(H, G) · (log T + log∆−

G)
)
,

where ∆+
G (resp. ∆−

G) denotes the maximum out-degree (resp. in-degree) of graph G.

Proof of Theorem 4.1. As showed in the proof sketch, combing the guarantee of Algorithm 5 and
bound on |E| gives

Mistake(S,H, G) ≤ ∆+
G · OPT

E +∆+
G · log |E| ≲ OPTE +∆+

G · d(log T + log∆−
G),

where OPTE denotes the optimal number of mistakes made by the best expert in E.

Applying Lemma 4.3 to the best hypothesis in hindsight h⋆ ∈ H shows that there exists eh⋆ ∈ E that
makes no more than OPT+ d mistakes, which further implies OPTE ≤ OPT+ d. Hence, we have

Mistake(S,H, G) ≲ ∆+
G · (OPT+ d log T + d log∆−

G).

17

D Supplementary Materials for Section 5

D.1 Realizable graph classes

Algorithm 6: Online Strategic Classification For Relizable Graph Class
Input: Hypothesis classH, graph class G.

1 foreach G ∈ G do
2 Let dG ← SLdim(H, G);
3 foreach m ≤ dG, i1:m, r1:m where 1 ≤ i1 < · · · < im ≤ T , 0 ≤ r1, · · · , rm ≤ ∆−

G do
4 Construct Expert(i1:m, r1:m;G) as in Algorithm 4.
5 end
6 end
7 Let Gunion ← (X ,

∑
G∈G EG) be the union of graphs in G;

8 Run Biased Weighted Majority Vote (Algorithm 5) on the set of experts under graph Gunion.

Theorem 5.1 (Restated). For any realizable graph class G and any adaptive adversarial sequence S
of length T , Algorithm 6 has regret bound

Regret(S,H, G) ≤ O
(
∆+

G ·
(
OPTH + dG · (log T + log∆−

G) + log |G|
))

,

where dG ≜ maxG∈G SLdim(H, G) is the maximum strategic Littlestone dimension for all graphs
in G, ∆+

G ≜ ∆+
Gunion

is the maximum out-degree of Gunion (i.e., the union of graphs in G), and
∆−

G ≜ maxG∈G ∆−
G is the maximum max in-degree over graphs in G.

Proof of Theorem 5.1. For each G ∈ G, we use EG to denote the subset of experts constructed in
Algorithm 6 for graph G. We also use E ≜ ∪G∈GEG to denote the set of all experts.

To prove this theorem, we first revisit the regret guarantee for Algorithm 5 in Lemma D.1, especially
when the input graph G does not match the actual graph G⋆. The proof of Lemma D.1 largely follows
from [Ahmadi et al., 2023], but we include it in the end of this section for completeness.

Lemma D.1 (Regret of Algorithm 5 [Ahmadi et al., 2023]). If Algorithm 5 is called on manipulation
graph G that includes all the edges in the actual manipulation graph G⋆, then the number of mistakes
is upper bounded as follows:

Mistake(H, G⋆) ≤ O
(
∆+

G · OPT
E
G⋆ +∆+

G · log |E|
)
,

where ∆+
G is the maximum out-degree of graph G, and OPTE

G⋆ is the minimum number of mistakes
made by the optimal expert under graph G⋆.

Since Gunion contains all edges in any G ∈ G and thus the unknown G⋆, Lemma D.1 that the number
of mistakes made by Algorithm 6 is at most

∆+
G · OPT

E
G⋆ +∆+

G · log |E| ≤ ∆+
G · OPT

E
G⋆ +∆+

G ·
(
dG · log(T∆−

G) + log |G|
)
,

where the second step uses the following upper bound on the number of experts:

|E| ≤
∑
G∈G

∑
m≤SLdim(H,G)

(
T

m

)
· (∆−

G)
m

≤ |G| ·
∑

m≤dG

(
T

m

)
· (∆−

G)
m (∀G ∈ G, SLdim(H, G) ≤ dG ,∆

−
G ≤ ∆−

G)

≲ |G| · (T ·∆−
G)

dG+1.

Therefore, it remains to show that OPTE
G⋆ ≤ OPTH + dG . To this end, we apply Lemma 4.3 the

expert class EG⋆ , in which all experts have the correct belief about the manipulation graph G⋆. For
the hypothesis h⋆ ∈ H that achieves OPTH under G⋆, there must exist eh,G⋆ ∈ EG⋆ ⊆ E such that
eh,G⋆ makes at most SLdim(H, G⋆) ≤ dG more mistakes than h⋆ under G⋆. We have thus proved
that OPTE

G⋆ ≤ OPTH + dG , which in turn establishes the theorem.

18

Proof of Lemma D.1. Suppose a mistake is made in round t, we show the following claims hold:

• The total weights decrease by at least constant fraction: Wt+1 ≤Wt

(
1− γ/(∆+

G + 2)
)

where G
is the input graph.

• The algorithm penalizes experts only if it makes a mistake on G⋆.

To prove these claims, we consider the following two types of mistakes.

False positive. Suppose ht(vt) is positive but the true label yt is negative. According to the
algorithm, ht labels vt positive only when the total weight of experts predicting positive on vt is at
least Wt/(∆

+
G + 2). Moreover, each of their weights is decreased by a factor of γ. As a result, we

have Wt+1 ≤Wt

(
1− γ/(∆+

G + 2)
)

and the first claim holds.

For the second claim, note that the algorithm only penalize experts e where et(vt) = +1. Since
vt ∈ N+

G⋆ [xt], this implies et(bret,G⋆(xt)) = +1, whereas yt = −1. In other words, the experts
penalized must have made a mistake under G⋆.

False negative. In the case of a false negative, the agent has not moved from a different location
to vt to get classified as negative, so vt = xt. Since the agent did not move, none of the vertices
in N+

G⋆ [vt] was labeled positive by the algorithm. However, there might exist some vertices in
N+

G [vt] \N+
G⋆ [vt] that are labeled as positive by the algorithm. Let N̂ [vt] denote the set that includes

all vertices in N+
G [vt] that are labeled as negative by ht, we have

N+
G⋆ [vt] ⊆ N̂ [vt] ⊆ N+

G [vt].

According to the algorithm, for each x ∈ N̂ [vt], the total weight of experts predicting x as positive is
less than Wt/(∆

+
G + 2) where ∆+

G is the maximum out-degree of G. Therefore, taking the union
over all x ∈ N̂ [vt], it implies that the total weight of experts predicting negative on all x ∈ N̂ [vt] is
at least

Wt

(
1− |N̂ [vt]|/(∆+

G + 2)
)
≥Wt

(
1− (∆+

G + 1)/(∆+
G + 2)

)
= Wt/(∆

+
G + 2),

where the inequality comes from N̂ [vt] ⊆ N+
G [vt]. Reducing their weights by a factor of γ results in

Wt+1 ≤Wt − (γWt)/(∆
+
G + 2). The first claim holds true.

As for the second claim, if an expert e is penalized, then et(x) = −1 for all x ∈ N̂ [xt]. Since
N+

G⋆ [xt] ⊆ N̂ [xt], et must label all nodes in N+
G⋆ [xt] as negative. In other words, et(bret,G⋆(xt)) =

−1, which means that e must have made a mistake under G⋆. The second claim holds.

Regret analysis. Let M = Mistake(H, G⋆) denote the number of mistakes made by the algorithm.
Since the initial weights are all set to 1, we have W0 = |E|. The first claim implies that Wt+1 ≤

Wt

(
1− γ

∆+
G+2

)
. Therefore, WT ≤ |E|

(
1− γ

∆+
G+2

)M

.

On the other hand, we use the second claim to show that WT ≥ γOPTE
G⋆ . We have proved that

whenever the algorithm decreases the weight of an expert, they must have made a mistake on G⋆.
Let e⋆ ∈ E denote the best expert that achieves the minimum number of mistakes OPTE

G⋆ under G⋆.
From our argument above, the weight of e⋆ is penalized by no more than OPTE

G⋆ times. Therefore,
after T rounds, WT ≥ wT (e

⋆) ≥ γOPTE
G⋆ where the second inequality holds since 0 < γ < 1.

Finally, we have:

γOPTE
G⋆ ≤WT ≤ |E|

(
1− γ

∆+
G + 2

)M

⇒ OPTE
G⋆ · ln γ ≤ ln |E|+M ln

(
1− γ

∆+
G + 2

)
≤ ln |E| −M

γ

∆+
G + 2

⇒M ≤
∆+

G + 2

γ
ln |E| −

ln γ(∆+
G + 2)

γ
OPTE

G⋆

By setting γ = 1/e, we bound the total number of mistakes as M ≤ e(∆+
G+2)(ln |E|+OPTE

G⋆).

19

D.2 Agnostic graph classes

Before presenting the algorithm in the setting of agnostic graph classes, we first introduce an indexing
system to the in-neighborhoods of Gunion, which is constructed in the same way as described in
Section 4. These indices whill be in the range {0, 1, · · · ,∆−

G } where ∆−
G is the maximum in-degree

of graph Gunion. We now present the algorithm in Algorithms 7 and 8 and prove its regret bound in
Theorem D.2.

Algorithm 7: Online Strategic Classification For Agnostic Graph Class
Input: Hypothesis classH, graph class G, an upper bound N that satisfies OPTG ≤ N .

1 Let Gunion ← (X ,
∑

G∈G EG) be the union of graphs in G, ∆−
G ← ∆−

Gunion
;

2 foreach G ∈ G do
3 Let dG ← SLdim(H, G);
4 foreach m ≤ dG, i1:m ∈

(
T
m

)
, r1:m ∈ [∆−

G]
m, n ≤ N, i′1:n ∈

(
T
n

)
, r′1:n ∈ [∆−

G]
n do

5 Construct Expert(i1:m, r1:m, i′1:n, r
′
1:n;G) as in Algorithm 8.

6 end
7 end
8 Run Biased Weighted Majority Vote (Algorithm 5) on the set of experts under graph Gunion.

Algorithm 8: Expert(i1:m, r1:m, i′1:n, r
′
1:n;G)

Input: Hypothesis classH, manipulation graph G, indices for mistakes 1 ≤ i1 < · · · < im ≤ T ,
indices for manipulation directions 0 ≤ r1, · · · , rn ≤ ∆−

G, indices for imperfect graphs
1 ≤ i′1 < · · · < i′n ≤ T , and manipulation directions 0 ≤ r′1, · · · , r′n ≤ ∆−

G ,
the sequence of post-manipulation agents (vt, yt)t∈[T] received sequentially.

Output: Classifiers (ĥt)t∈[T] outputted sequentially.
Initialization :Simulate an instance of the SSOA algorithm with parameters (H, G).

1 for t ∈ [T] do
2 ĥt ← classifier outputted by the SSOA algorithm;
3 Observe the manipulated feature vector vt and the true label yt;
4 if t ∈ {i1, · · · , im} (suppose t = ik) then

/* Guess where the original node xt comes from */
5 if t ∈ {i′1, · · · , i′n} (suppose t = i′s) then
6 x̂t ← the in-neighbor in N−

Gunion
[vt] with index r′s// when Gt ̸= G, we have Gt ⊆ Gunion

7 else
8 x̂t ← the in-neighbor in N−

G [vt] with index rk// when Gt = G
9 end

10 v̂t ← brĥt,G
(x̂t)// simulate the post-manipulation feature vector in response to ĥt

11 Update the SSOA algorithm with instance (v̂t,−ĥt(v̂t)).
12 end
13 end

Theorem D.2. For any graph class G and hypothesis classH, any adaptive adversarial sequence S
of length T , and any integer N that is a valid upper bound on OPTG , Algorithm 7 has regret bound

Regret(S,H, G) ≤ O
(
∆+

G ·
(
OPTH + (dG +N) · (log T + log∆−

G) + log |G|
))

,

where dG ≜ maxG∈G SLdim(H, G) is the maximum strategic Littlestone dimension for all graphs in
G, and ∆+

G (resp. ∆−
G) is the maximum out-degree (resp. in-degree) of Gunion, where Gunion is the

union of G that contains edges from all graphs in G.

Proof of Theorem D.2. Similar to the proof of Theorem 5.1, we use EG to denote the subset of
experts constructed in Algorithm 7 for graph G, and use E ≜ ∪G∈GEG to denote the set of all experts.
Since we have Gt ⊆ Gunion at all time steps, Lemma D.1 on the expert set E gives us an upper bound

20

on the number of mistakes made by Algorithm 7 as follows:

Mistake(S,H, G1:T) ≲ ∆+
G · OPT

E
G1:T

+∆+
G · log |E|. (1)

We establish the following lemma, which is a strengthened version of Lemma 4.3 that accounts for
the possibility of Gt ̸= G.

Lemma D.3. For any hypothesis h ∈ H, any sequence of agents S, and any sequence of graphs G1:T

where
∑T

t=1 1
{
N+

Gt
[xt] ̸= N+

G [xt]
}
≤ N , there exists an expert eh ∈ EG (which are constructed in

Algorithm 7) such that
Mistakeeh(S,G1:T) ≤ Mistakeh(S,G) +N + SLdim(H, G).

Applying the above lemma to EG⋆ and using the upper bound OPTG = 1{Gt ̸= G⋆} ≤ N , we
conclude that for the optimal hypothesis h⋆, there must exist expert eh⋆,G⋆ ∈ EG⋆ ⊆ E, such that the
number of mistakes eh⋆,G⋆ makes under G1:T is at most SLdim(H, G⋆) +N ≤ dG +N more than
that made by h⋆ under G⋆. This implies

OPTE
G1:T

≤ OPTH + dG +N. (2)
As for the number of experts, we have

|E| =
∑
G∈G

 ∑
m≤SLdim(H,G)

(
T

m

)
· (∆−

G)
m

∑
n≤N

(
T

n

)
· (∆−

G)
n

≤ |G|

 ∑
m≤dG

(
T

m

)
· (∆−

G)
m

∑
n≤N

(
T

n

)
· (∆−

G)
n

(∀G ∈ G, SLdim(H, G) ≤ dG ,∆

−
G ≤ ∆−

G)

≲ |G| · (T ·∆−
G)

dG+1 · (T ·∆−
G)

N+1. (3)
Finally, plugging both (2), (3) into the bound Equation (1) gives us

Regret(S,H, G) ≤ O
(
∆+

G ·
(
OPTH + (dG +N) · (log T + log∆−

G) + log |G|
))

,

as desired. The proof is thus complete.

Proof of Lemma D.3. We use a similar approach to that of proving Lemma 4.3. We define the
sequence S(h) and the indices i1:m, r1:m in the same way as Lemma 4.3. In addition, we set
i′1:n to be the time steps where Gt ̸= G, which clearly satisfies n ≤ N . At time step t = i′s
(s ∈ [k]), since vt is the best response according to graph Gt ⊆ Gunion, there exists an index
r′s ∈ {0, · · · ,∆−

G } such that xt is the r′s-th in-neighbor under graph Gunion. We will show that expert
eh = Expert(i1:m, r1:m, i′1:n, r

′
1:n;G) is the one we want.

Again, we prove this by showing the equivalence of the following two SSOA instances:

• SSOAeh is the algorithm instance simulated by expert eh;

• SSOAh is the algorithm instance running on sequence S(h).

Repeating the induction approach in Lemma 4.3, it suffices to show that the estimate x̂t correctly
matches the true xt during the rounds i1:m. When t /∈ {i′1, · · · , i′n}, this is guaranteed by the way
indices r1:m are constructed. When there exists s ∈ [n] such that t = i′s, this also holds based on the
definition of r′1:n. Therefore, the above two SSOA instances are equivalent.

Finally, we have
Mistakeeh(S,G1:T)−Mistakeh(S,G)

=

T∑
t=1

1

{
ĥt(brĥt,Gt

(xt)) ̸= yt

}
−

T∑
t=1

1{h(brh,G(xt)) ̸= yt}

≤
T∑

t=1

1
{
N+

Gt
[xt] ̸= N+

G [xt]
}
+

T∑
t=1

1

{
ĥt(brĥt,G

(xt)) ̸= h(brh,G(xt))
}

(break [T] into two parts on whether N+
Gt

[xt] ̸= N+
G [xt])

≤ N + SLdim(H, G). (Combining
∑

t 1{Gt ̸= G} ≤ N and the bound from Lemma 4.3)

21

We have thus established the lemma.

Doubling trick to removing the assumption of knowing OPTG We end this section with an
algorithm for agnostic graph classes that does not require any prior knowledge on OPTG . We present
Algorithm 9 which uses Algorithm 7 as a subrountine and performs the doubling technique on the
parameter N .

This algorithm is based on the important observation that, if N ≥ OPTH + OPTG + dG + log |G|
(in particular this implies N ≥ OPTG), then Theorem D.2 guarantees that running Algorithm 7
with parameter N achieves the mistake upper bound of O

(
∆+

G · (2N) · (log T + log∆−
G)

)
, where

the leading constant of the mistake bound can be estimated to be ≤ 4 by a more careful analysis.
Therefore, if we denote define the problem-dependent parameter C to be

C ≜ 8∆+
G · (log T + log∆−

G),

then as long as N reaches value at least

N⋆ ≜ OPTH + OPTG + dG + log |G|, (4)
running Algorithm 7 makes no more than C ·N mistakes. Therefore, the learner just needs to estimate
N through the doubling trick and terminate when the observed mistake does not exceed C times the
estimate of N .

Algorithm 9: Online Strategic Classification For Agnostic Graph Class
Input: Hypothesis classH, graph class G.

1 Let C ← 8∆+
G · (log T + log∆−

G);
Initialization : index of the current epoch k ← 1

2 while total number of steps < T do
/* Epoch k */

3 Ak ← a new instance of Algorithm 7 with parameters (H,G, Nk = 2k);
4 while Ak has made no more than C · 2k mistakes do
5 Run Ak for another round
6 end

/* Exiting the while loop indicates that Nk < N⋆, should double estimate and enter the next epoch */
7 k ← k + 1
8 end

Proposition D.4. For any graph class G, any hypothesis class H, and any sequences S =
(xt, yt)t∈[T], (Gt)t∈[T], Algorithm 9 enjoys regret bound

Regret(S,H,G) ≤ O
(
∆+

G · (OPTH + OPTG + dG + log |G|) · log(T∆−
G)

)
.

Proof of Proposition D.4. Since the above argument has shown that an epoch with Nk ≥ N⋆ will
never terminate, the algorithm will have at most k⋆ = logN⋆ = log(OPTH+OPTG +dG +log |G|)
epochs. Moreover, since the number of mistakes made in any epoch k cannot exceed C · 2k, the total
number of mistakes (thus the regret) is upper bounded by

C ·
k⋆∑
k=1

2k ≤ C · 2k
⋆+1 ≤ O(CN⋆) ≤ O

(
∆+

G · (OPTH + OPTG + dG + log |G|) · log(T∆−
G)

)
.

This completes the proof.

E Randomization Gap

In this section, we present a an instance (H, G) in which there exists an exponential gap between the
optimal mistake bound of deterministic and randomized algorithms.

Let G be the star graph with center x0 and ∆ leaves {x1, · · · , x∆}. H = {h1, · · · , h∆} where
hi(x) = 1{x = xi}. An adaptive adversary picks a realizable sequence S = (xt, yt)t∈[T] where
each agent (xt, yt) satisfies yt = h̃⋆(xt) for a fixed h⋆ = hi⋆ ∈ H. This means all the realizable
choices for (xt, yt) are restricted to the subset {(xi⋆ ,+1), (x0,+1)} ∪ {(xi,−1) | i ̸= i⋆}.

22

Deterministic algorithms If the learner is restricted to using deterministic algorithms, then Ahmadi
et al. [2023, Theorem 4.6] showed that the optimal mistake is lower bounded by ∆− 1. This implies
Mdet(H, G) ≥ ∆− 1.

Randomized algorithms If the learner is allowed to use randomness, we will construct an
randomized algorithm A that enjoys an expected mistake bound of log∆. This would imply
Mrand(H, G) ≤ log∆, which in turn witnesses a super-constant gap between the minmax opti-
mal mistake bounds for deterministic and randomized learners, i.e.,

Mdet(H, G)

Mrand(H, G)
≥ ω(1).

The algorithm A maintains a version spaceHt that consists of all the hypotheses consistent with the
history up to time t. This version space is initialized to be H1 ← H. At every round, the learner
commits to a distribution over classifiers that randomly pick a classifier from the version space, i.e.,
ht ∼ Unif(Ht). Let M(k) be the expected of mistakes by A in the future starting from time step t
where |Ht| = k. Consider the following cases:

• If the adversary chooses (xt, yt) = (xi⋆ ,+1), then the learner makes a mistake with
probability 1− 1

k , but gets to know i⋆ afterwards and will make no more mistakes in the
future. In this case, we have M(k) = 1− 1

k .
• If the adversary chooses (xt, yt) = (x0,+1), then the learner never makes mistakes, but

also gains no information. The version space remains the same (Ht+1 = Ht). The expected
mistakes in the future is still M(k).

• If the adversary chooses (xt, yt) = (xi,−1) for some i ̸= i⋆, then the learner makes a
mistake only when ht = hi, which happens with probability 1

k . On the other hand, no
matter which ht gets realized, the learner can always observe (vt, yt) = (xi,−1) and update
the version space to be Ht+1 = Ht \ {hi}. By symmetry of the star graph, the expected
mistakes for future rounds is M(k − 1). We thus have M(k) = 1

k +M(k − 1).

Overall, we have

M(k) ≤ max

{
1− 1

k
, M(k),

1

k
+M(k − 1)

}
.

Solving the above recurrence relation gives us M(k) ≤ log k, which implies Mrand(H, G) ≤
MistakeA(H, G) = M(∆) ≤ log∆.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction (especially section 1.1) discuss our technical
results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations and future directions are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

24

Justification: All theorems and claims are formally proved, either in the main paper or in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

25

Answer: [NA]
Justification: This paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is a theoretical work without any direct societal impact to the best
of our knowledge.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

27

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

28

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Our Results and Techniques
	Further Related Work

	Model and Preliminaries
	Strategic classification.
	Classical Littlestone Dimension

	The Strategic Littlestone Dimension
	Agnostic Setting
	Unknown Manipulation Graph
	Realizable graph classes
	Agnostic graph classes

	Discussion and Future Research
	Supplementary Materials for Section 2
	Supplementary Materials for Section 3
	Proof of thm:main-lower-bound
	Comparison with max-degree based bounds

	Supplementary Materials for Section 4
	Algorithms for the agnostic setting
	Proof of lemma:key
	The Biased Weighted Majority Vote Algorithm
	Proof of thm:agnostic

	Supplementary Materials for Section 5
	Realizable graph classes
	Agnostic graph classes

	Randomization Gap

