
Shifu: A Self-Learning Framework for Automating Root Cause
Analysis in Logistics Operations

Yizhe Xu
1
, David Maoujoud, Marco Bocchetti, Ruochen Li, Ryan Valoris, Alexandru Amihalachioaei,

Menna Elkashef, Xiaoyu Mao

Amazon

Seattle, Washington, USA

ABSTRACT
Modern logistics networks face a critical challenge in performance

documentation that consumes substantial resources yet suffers from

inconsistent quality, limited expert review, and context-specificity.

We present Shifu, an adaptive knowledge acquisition system for

automated root cause analysis that learns continuously from oper-

ational feedback without requiring gold standard examples. Shifu

integrates targeted machine learning, agent-based data analysis,

utility-driven insight prioritization, and active learning through

a comprehensive feedback loop. We evaluated Shifu across five

North American logistics facilities over a two-week deployment,

demonstrating improvements in content quality (reaching 87.9% ac-

ceptance within one week), effective feedback incorporation (89.5%

closure rate), and knowledge expansion (44% metric growth in

key categories). Our results show a 4X improvement over baseline

systems, with Shifu self-adapting to facility-specific operational

contexts while continuously enhancing its analytical capabilities.

This approach transforms resource-intensive analytical processes

by complementing rather than replacing human expertise, provid-

ing a blueprint for continuous learning systems in domains with

subjective quality criteria, specialized operational contexts, and

limited supervision.

CCS CONCEPTS
•Computingmethodologies→Active learning settings;Learn-
ing from critiques; Causal reasoning and diagnostics; • Infor-
mation systems→ Data analytics; • Applied computing→
Transportation; • Human-centered computing→ Reputation

systems.
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1 INTRODUCTION
Modern logistics networks require systematic documentation of

performance deviations and corrective actions—a valuable cog-

nitive tool [16] that increasingly overwhelms operators as data

volume doubles every two years [11]. Traditional supervised learn-

ing approaches fail to automate this process due to four critical

challenges:

• Documentation quality varies significantly across orga-

nizations (nearly half compared to best performers) due to

differences in skills, tools, and methodologies [12].

• Only a small fraction of reports (less than one-fifth) receive

adequate expert review [22], with minimal awareness of

knowledge transfer status [12].

• No "golden standard" exists for training AI systems, with

persistent process mismatches and differing vocabularies

across organizations [12].

• Context specificity creates transfer challenges in major-

ity of multi-site operations [10], requiring facility-specific

documentation despite similar performance metrics.

While measurement is fundamental to logistics improvement [6],

the absence of standardized approaches significantly complicates

AI-based automation efforts.

To address these logistics documentation challenges, we devel-

oped Shifu with three key contributions:

• An adaptive knowledge acquisition system that func-

tions without gold standards, doubling its metric understand-

ing within 11 days of deployment—compared to two months

of expert involvement in previous systems—through a self-

reinforcing operational learning cycle.

• A structured methodology for root cause analysis that
preserves cognitive value bymaintaining analytical exercises

for experts, adapting to facility-specific contexts, and in-

corporating active feedback mechanisms—eliminating thou-

sands of documentation hours while preserving analytical

rigor.

• An evaluation framework for domains with subjective
quality criteria that tracks content evolution at the sen-

tence level, conducts parallel assessment of operational util-

ity and analytical quality, and quantifies learning capacity

through continuous use.

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX
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Shifu demonstrates how AI can transform resource-intensive an-

alytical processes by complementing rather than replacing human

expertise—reducing operational burden while preserving valuable

cognitive processes in logistics operations.

2 RELATEDWORK
Expert-Driven vs. Data-Driven Knowledge Acquisition. Root
cause analysis systems typically follow either expert-driven ap-

proaches requiring significant knowledge codification [1, 9, 14] or

data-driven methods extracting historical patterns [2, 19]. The for-

mer offer interpretability but lack adaptability; the latter generate

insights operators struggle to trust—creating a persistent imple-

mentation gap in operational environments.

Static vs. Adaptive Knowledge. Conventional solutions de-
pend on predefined knowledge bases. Systems like Annotate-LLM

[3] and LogRCA [20] require either labeled data or predefined

causes—approaches that fail where features emerge gradually, la-

beled data is scarce, and root causes continuously evolve. With only

one analysis examined per incident, traditional models cannot learn

from these sparse validation signals.

Causality vs. Correlation. RCA methods divide between corre-

lation approaches (efficient but vulnerable to spurious relationships)

and causal techniques (rigorous but data-intensive). Current cor-

relation methods require unavailable ground truth validation [5]

or human interpretation [4]. While causal methods using directed

acyclic graphs [15] or Bayesian Networks offer reliability, they are

vulnerable to incomplete input variables—an understated limita-

tion. Frameworks like PyRCA and ProRCA [7, 13] attempt causal

knowledge generation but impose strict data requirements most

operations cannot meet.

Shifu addresses these limitations through a knowledge system

that continuously refines through feedback, augments human decision-

making, and systematically collects data enabling future causal

approaches.

𝑅𝑜𝑜𝑡 𝐶𝑎𝑢𝑠𝑒 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦 𝐾𝑃𝐼𝑠 𝐴𝑔𝑒𝑛𝑡 − 𝐵𝑎𝑠𝑒𝑑

𝐷𝑎𝑡𝑎 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

𝐴𝑐𝑡𝑖𝑣𝑒 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝐿𝑜𝑜𝑝

𝑅𝑜𝑜𝑡 𝐶𝑎𝑢𝑠𝑒

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑

𝐾𝑃𝐼𝑠 𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑒

𝑟𝑎𝑤 𝑖𝑛𝑠𝑖𝑔ℎ𝑡𝑠

𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

𝑑𝑎𝑡𝑎

𝐼𝑛𝑔𝑒𝑠𝑡

𝐹𝑖𝑙𝑡𝑒𝑟 𝑎𝑛𝑑 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒

𝑟𝑎𝑤 𝑖𝑛𝑠𝑖𝑔ℎ𝑡𝑠

𝐹𝑖𝑛𝑎𝑙 𝑖𝑛𝑠𝑖𝑔ℎ𝑡𝑠

𝐻𝑢𝑚𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑅𝑒𝑓 𝑖𝑛𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑅𝑒 𝑓 𝑖𝑛𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑓 𝑖𝑛𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

Figure 1: Shifu Architecture

3 SHIFU REASONING ARCHITECTURE
Shifu integrates data acquisition, reasoning, and presentation into

a system for automated operational analytics in logistics environ-

ments. While data pipelines and interpretable presentation layers

are essential components, it is the reasoning architecture that con-

stitutes Shifu’s primary contribution to knowledge discovery in

logistics performance analysis. We designed this architecture to ad-

dress the documentation challenges identified in Section 1 through

systematic, adaptive, and context-aware reasoning.

The system’s data infrastructure implements a bifurcated collec-

tion strategy: aggregated Key Performance Indicators (KPIs) such

as on-time delivery percentage, transit time, and service time are

preserved in a 92-day historical window, while granular transaction-

level data is retrieved selectively to optimize computational re-

sources. Our preprocessing pipeline standardizes heterogeneous

inputs while preserving data lineage—critical for reproducibility in

environments where inconsistent dimension encoding can compro-

mise analysis integrity.

Our reasoning architecture comprises four specialized compo-

nents working in concert to continuously improve operational

insights without manual reprogramming:

(1) Root Cause Attribution: Identifies key performance dri-

vers through targeted machine learning and explainability

techniques.

(2) Agent-Based Data Analysis: Investigates identified drivers
through automated exploration of detailed operational data.

(3) Root Cause Optimization: Filters and prioritizes insights

based on learned utility criteria, actionability, and impact.

(4) Active Feedback Loop: Continuously refines system be-

havior based on operator interactions.

3.1 Root Cause Attribution
Motivation: Operations teams need to rapidly identify which met-

rics most significantly influence target performance indicators, but

face challenges with context-specific importance and varying base-

line expectations across facilities. We designed the attribution com-

ponent to provide station-specific analysis that aligns with opera-

tors’ mental models of their unique operational contexts.

System Components: The attribution module consists of: (1)

a feature preprocessing pipeline that normalizes operational met-

rics, (2) a station-specific supervised model framework, and (3) an

explainability layer that quantifies feature contributions.

Technical Implementation: For each station 𝑠 ∈ S and tar-

get metric𝑚 ∈ M, we define a feature vector 𝑋𝑠,𝑡 of operational

KPIs and target value 𝑦𝑠,𝑡,𝑚 at time 𝑡 , using a 92-day historical

window. We construct a supervised model 𝑓𝑠 such that 𝑦𝑠,𝑡,𝑚 =

𝑓𝑠 (𝑋𝑠,𝑡 ), implemented via AutoGluon TabularPredictor [8] with

the medium_quality preset to satisfy strict temporal constraints.

For models achieving R2 better than established threshold, we ap-

ply SHAP analysis using each station’s historical "good perfor-

mance days" as the baseline rather than global averages, generating

station-specific feature importance values that better align with

local operational context.

3.2 Agent-Based Data Analysis
Motivation: Once key performance drivers are identified, oper-

ators need detailed understanding of the underlying patterns in

transaction-level data.Manual deep-dive analysis is time-consuming

and inconsistent, requiring automation that can adapt to different

data types while maintaining analytical rigor.

System Components: Our multi-agent analysis framework

consists of: (1) a data analysis agent that executes parametrized

exploratory workflows, (2) a validation agent that independently

verifies metric calculations, and (3) an insight generation module

that transforms statistical findings into natural language explana-

tions.
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Technical Implementation: The data analysis agent applies
type-specific analysis protocols (frequency distribution for cate-

gorical variables, distribution analysis for numerical variables, and

cluster analysis for geo-spatial data). Analysis results are standard-

ized through statistical operations, while the validation agent in-

dependently reproduces metric calculations using raw transaction

data to ensure integrity. This approach both verifies data quality

and provides natural language explanations of complex metrics for

operational context.

3.3 Root Cause Optimization
Motivation: Raw analytical insights often overwhelm operators

with information that varies in relevance, actionability, and impact.

We address this challenge through a learning system that filters and

prioritizes insights based on operational value criteria extracted

from actual usage patterns.

System Components: The optimization architecture includes:

(1) an importance judgment module that filters insights based on

learned utility criteria, (2) a priority ranking system that orders

insights along multiple dimensions, and (3) a contextual adaptation

layer that adjusts output based on operational feedback.

Technical Implementation: The importance judgment em-

ploys contrastive Chain-of-Thought reasoning with dual example

banks (positive examples from promoted/added insights and neg-

ative examples from demoted/deleted insights). These examples

undergo vector embedding and K-means clustering to select diverse

representatives. The priority ranking implements an LLM-as-Judge

architecture trained on pairwise comparisons from operator inter-

actions, evaluating insights along actionability, evidential support,

and impact scale dimensions:

Algorithm 1 Insight Prioritization

1: Input: New insight 𝐼 , Example banks 𝑃 (positive) and 𝑁 (nega-

tive)

2: function InsightPrediction(𝐼 , 𝑃 , 𝑁 )

3: 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 ← ["actionability", "evidence", "impact"]

4: 𝑃𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← SampleDiverse(𝑃 , 𝑘 = 3)

5: 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← SampleDiverse(𝑁 , 𝑘 = 3)

6: 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ← ContrastiveJudgement(𝐼 , 𝑃𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 )

7: if 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 > threshold then
8: 𝑠𝑐𝑜𝑟𝑒𝑠 ← EvaluateAlongDimensions(𝐼 , 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠)

9: return 𝐼 with priority 𝑠𝑐𝑜𝑟𝑒𝑠

10: else
11: Filter out 𝐼

12: end if
13: end function

3.4 Active Feedback Loop
Motivation: Static analysis systems quickly become irrelevant

in dynamic operational environments. Our active feedback loop

transforms daily operational interactions into continuous system

improvements without requiring dedicated expert support sessions.

SystemComponents:The feedback system consists of: (1) inter-

action capture mechanisms for four signal types, (2) a dual-channel

feedback processor that balances operational and expert input, and

(3) a signal routing system that directs feedback to appropriate

system components.

Technical Implementation: The system captures structured

events containing action type (promote or demote/delete/edit/add),

affected content, timestamp, and contextual metadata including

user role. These events undergo validation filtering to eliminate

spurious signals based on consistency thresholds and minimum

occurrence requirements. Valid feedback is then routed to appropri-

ate system components—attribution features, optimization criteria,

presentation templates, or analysis focus—creating a self-improving

cycle where daily usage simultaneously generates value for oper-

ators while enhancing system performance through continuous

learning.

4 EXPERIMENTAL STUDY
To evaluate Shifu’s effectiveness in real-world logistics environ-

ments, we designed an experiment that assessed both system per-

formance and learning capability in day to day operational settings.

Our approach focused onmeasuring content quality, feedback incor-

poration, and continuous improvement through direct operational

deployment.

4.1 Experiment Setup
We conducted a two-week proof-of-concept (PoC) across multiple

logistics stations in North America during Q1 2025. Test sites were

selected based on three criteria: (1) historical high modification

patterns when interacting with the predecessor system GLaDOS [9],

(2) station managers’ and operational experts’ (ACES) willingness

to participate, and (3) data privacy considerations. This selection

strategy ensured we captured stations with diverse operational

contexts and engagement patterns.

To maximize learning opportunities, station operators were in-

structed to complete daily root cause documentation (bridges) even

when their stations met performance targets. This approach gener-

ated consistent feedback through three channels:

• Content acceptance (preservation of system-generated in-

sights)

• Text modifications (edits to system language or analysis)

• Metric suggestions (operator-identified additional root causes)

Domain experts subsequently validated the quality of operator-

modified content through daily email reviews, providing an assess-

ment layer that complemented operational feedback.

4.2 Evaluation Metrics
We developed three complementary metrics to assess Shifu’s per-

formance across different dimensions of effectiveness:

4.2.1 Bridge Quality (𝐵𝑄). 𝐵𝑄 measures how effectively the AI-

generated content meets user needs with minimal editing required.

A score above 80% indicates high-quality content requiring few

operator changes. We define 𝐵𝑄 using a weighted harmonic mean

that balances content preservation with modification intensity:

𝐵𝑄 =
𝑤𝑎 +𝑤𝑑 + (𝑤𝑚 +𝑤𝑟 )
𝑤𝑑

P +
𝑤𝑎

U +
𝑤𝑚+𝑤𝑟

I
, (1)

where:
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• 𝑤𝑎 , 𝑤𝑑 , 𝑤𝑚 , and 𝑤𝑟 are weights representing the relative

importance of additions, deletions, modifications, and re-

orderings to the original content (set to 𝑤𝑎 = 4, 𝑤𝑑 = 3,

𝑤𝑚 = 2, and𝑤𝑟 = 1 in our experiment)

• P = 𝐺−𝐷
𝐺

(preservation) measures the percentage of original

system-generated content that operators kept

• U =
(𝐺−𝐷 )

( (𝐺−𝐷 )+𝐴) (purity) measures the percentage of the

final content that originated from Shifu

• I = max

(
0,
( (𝐺−𝐷 )−𝑀−𝑅)
(𝐺−𝐷 )

)
(integrity) measures the per-

centage of kept content that remained unchanged

• 𝐺 , 𝐴, 𝐷 , 𝑀 , and 𝑅 represent the number of sentences that

were generated, added, deleted, modified and reordered re-

spectively

This formulation balances the competing priorities of maintain-

ing system-generated content while accommodating necessary op-

erator modifications.

4.2.2 Closed Feedback Loop Effectiveness (𝐶𝐹𝐿𝐸). 𝐶𝐹𝐿𝐸 evaluates

Shifu’s ability to successfully incorporate valid operational feedback

into future bridge generations. This metric traces the complete

feedback journey:

1. Initial operator modification to system-generated content 2.

Expert (ACES) validation of the modification’s value 3. Successful

incorporation into Shifu’s knowledge base 4. Application of the

learned insight in future analyses

A high 𝐶𝐹𝐿𝐸 score indicates that Shifu effectively captures and

applies operational expertise, closing the knowledge acquisition

loop between system and operators.

4.2.3 Capacity to Learn (𝐶2𝐿). 𝐶2𝐿 quantifies Shifu’s ability to

continuously improve through operational feedback, measuring

both:

1. Knowledge acquisition rate: How efficiently the system ab-

sorbs new operational insights 2. Application effectiveness: How

successfully the system applies learned knowledge

This metric specifically addresses the challenge of learning in

environments with limited feedback signals, tracking improvement

despite the sparse validation typical in logistics operations.

Detailed formulations for𝐶𝐹𝐿𝐸 and𝐶2𝐿metrics, alongwith their

component calculations and effectiveness thresholds, are presented

in the Appendix to maintain focus on experimental outcomes in

the main paper.

5 RESULTS
We present findings from our two-week proof-of-concept deploy-

ment across five logistics stations, demonstrating Shifu’s ability

to learn continuously from operational feedback without requir-

ing golden standard examples. Our results show improvements

in content quality, effective feedback incorporation, and domain

knowledge expansion.

5.1 Bridge Quality
Shifu’s Bridge Quality (𝐵𝑄) scores demonstrate a clear performance

trajectory across the POC period, as shown in Table 1. Initial 𝐵𝑄

(73%) improved to consistent performance above our 80% threshold

Day 𝐵𝑄 (%) 𝜎 (%)

1 95 16

2 73 37

3 76 0

4 79 28

5 86 20

6 90 7

7 86 14

8 86 11

9 90 11

10 92 9

11 85 13

Table 1: Bridge Quality scores showing rapid improvement
and stabilization above the 80% quality threshold.

after only 5 days of operational feedback, ultimately stabilizing at

87.9% (𝜎=6.31%)1.

The transition from adjustment period (Feb 20-24, avg=76%) to

stabilization phase (Feb 25-Mar 5, avg=87.9%) represents an im-

provement that coincides with our first feedback cycle completion.

This confirms our hypothesis that Shifu effectively learns from op-

erational feedback without requiring pre-defined exemplar bridges.

Comparative analysis shows Shifu achieved a 4X improvement

over our baseline system. While the production baseline system

reported an 80% naive acceptance rate, detailed analysis revealed

that 76.5% of its "accepted" insights required substantial modifica-

tion, with only 5.4% truly accepted without changes (140 of 2625

instances). In contrast, Shifu maintained stable acceptance rates

above 85% after just one week of operational learning while testing

against stations that frequently modified baseline bridges.

5.2 Feedback Loop Effectiveness

Day Modified Verified Grounded Closed Score(%)

1 7 6 3 0 0.00

2 28 22 16 0 0.00

3 32 25 18 1 5.56

4 44 37 27 15 55.56

5 47 39 29 15 51.72

6 54 42 29 15 51.72

7 66 53 31 24 77.42

8 73 57 33 24 72.73

9 79 61 34 24 70.59

10 85 64 35 25 71.43

11 93 68 38 25 65.79

12-16 93 68 38 27 71.05

17 93 68 38 34 89.47

Metric %

Verified 73.12

Grounded 55.88

Closed 89.47

Table 2: Closed Feedback Loop Effectiveness showing the
progression from operator modifications to insights that get
validated by ACES team, insights that can be grounded by
available observed data, and finally to feedback loop closure.
Despite challenging operational conditions, Shifu achieved
89.47% feedback closure.

1
We dismissed the high acceptance (95%) from the first day as operators were still

getting oriented with the new bridge UI and were being reminded about experimental

expectations.
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Table 2 presents the cumulative results for Shifu’s Closed Feed-

back Loop Effectiveness (𝐶𝐹𝐿𝐸). This data reveals two important

operational characteristics of Shifu’s feedback mechanism.

First, expert validation through email exchanges emerged as a

significant bottleneck in the feedback closure process. Contrary to

our initial expectations, these exchanges required multiple rounds

of clarification to properly map station feedback to specific met-

rics rather than simple validation. This explains the step-function

increases observed on 2/24 (5.56%→ 55.56%) and 3/11 (71.05%→
89.47%), which correspond to batch processing of accumulated feed-

back following extended consultations.

Second, operational time constraints significantly impacted feed-

back quality. Despite experimental requirements, practical pres-

sures limited operators’ ability to provide detailed modification

explanations. When encountering unclear content, operators typi-

cally deleted problematic sections entirely rather than providing

targeted corrections that would yield clearer learning signals. This

behavior pattern explains why only 55.9% of ACES-validated modi-

fications could be grounded in accessible operational data.

Despite these challenges, Shifu achieved a final 𝐶𝐹𝐿𝐸 score of

89.47%, exceeding our 80% success threshold. This validates our

approach of continuous learning from operational feedback rather

than requiring extensive upfront knowledge engineering, as further

demonstrated in our knowledge expansion results.

5.3 Knowledge Expansion
Our experiment demonstrated Shifu’s ability to expand domain

knowledge through operational feedback. We observed knowledge

expansion in 4 out of 6 performance categories investigated, with a

net addition of 11 new metrics and removal of 2 metrics that proved

less relevant in practice.

For the category related to warehouse intake and package scan-

ning timeliness, Shifu expanded the metric coverage by nearly half

compared to the baseline system within the initial week of feed-

back. The system identified particularly valuable additions like Sort

Compliance (which appeared across multiple metric categories)

and specialized metrics such as Total Volume that Missed Induct

Critical Pull Time and Volume Inducted but not Containerized.

Similar expansion patterns occurred across other performance

categories:

• "Not Attempted" category: 50% metric increase

• "Not Dispatched" category: 10% metric increase

• "Out of Delivery Time" category: 8% metric increase

This knowledge expansion demonstrates Shifu’s ability to adapt

to facility-specific operational contexts without requiring compre-

hensive advance knowledge engineering.

5.4 Facility-Specific Context Adaptation
Our operational deployment revealed distinct patterns in how dif-

ferent facilities interact with Shifu’s bridge generation system. Each

facility demonstrated unique "signature patterns" in their feedback,

reflecting their operational priorities and improvement focus areas:

• Facility A consistently prioritized subcontractor manage-

ment metrics, modifying a substantial majority of bridges

to include specific route identifiers and delivery service

provider (DSP) performance data.

• Facility B focused intensively on internal operations, major-

ity of their modifications adding process stage performance

data and personnel metrics.

• Facility C displayed a characteristic emphasis on capacity

planning, with almost all of their modifications addressing

volume management aspects.

Through conversations with domain specialists, we discovered

that facilities selectively focus on areas they perceive as their biggest

improvement opportunities rather than providing comprehensive

on all aspects of operational performance. Intentionally, facilities

modify sections most relevant to their core operational focus areas

while often leaving other aspects unaddressed, even when those

unmodified sections contain potential inaccuracies.

This finding suggests the value of facility-customizable analysis

categories. As one expert noted: "I’d like to see AI Insights allow

facilities to optimize the categories themselves." This validates our

approach of building facility-specific knowledge models rather than

attempting to create a universal model that would inadequately

address unique operational contexts.

6 CONCLUSION AND FUTUREWORK
Shifu demonstrates a novel approach to knowledge acquisition

and root cause analysis in logistics environments, addressing the

challenges of documentation quality variance, limited expert review,

absence of gold standards, and context specificity. Our experimental

results show that Shifu can improve content quality (reaching 87.9%

Bridge Quality score within one week), effectively close feedback

loops (89.5% closure rate), and expand domain knowledge (44%

metric expansion in key categories) without requiring extensive

upfront knowledge engineering.

6.1 Limitations
While Shifu shows promising results, several limitations affect its

current implementation:

Data Access Constraints: The primary barrier to achieving

human-equivalent analysis is data availability rather than reasoning

capabilities. As a Process Improvement Specialist noted, "For the

new model to be able to explain [issues] as well as an operator can

and quicker, it needs Quicksight... I open a couple of Quicksight

dashboards and know what happened in the station." Many critical

metrics become available only after the analysis deadline, creating

a timing mismatch that affects quality. Additionally, some metrics

are managed by federated teams who did not enable metric deep

dive access during our experiment.

Feedback Quality Dependencies: Shifu’s learning rate is con-

strained by the quality and consistency of user feedback, which

varies significantly across stations, operators, and field experts.

Our results show that only 55.9% of operator modifications were

sufficiently detailed to be grounded in accessible operational data.

Correlation vs. Causality: The current system identifies statis-

tical relationships but may present correlations as causal relation-

ships, potentially leading to ineffective operational interventions.

As we advance toward causal inference, robust data collectionmech-

anisms established through Shifu will enable more sophisticated

approaches.
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Cold Start and Echo Chamber Risks: New metric categories

or facilities without historical feedback may experience initially

lower bridge quality. Additionally, as Shifu adapts to facility-specific

preferences, it risks reinforcing existing operational biases rather

than identifying optimal strategies.

6.2 Future Work
Based on our findings, we identify three key directions for future

development:

Enhanced Data Integration: Future iterations will focus on
improving data accessibility by integrating Quicksight dashboards

and other operational data sources that currently inform human

analysis. We will work with federated teams to enable deeper met-

ric access while addressing the timing mismatch between data

availability and analysis deadlines through predictive approaches.

Production Readiness Improvements:While AutoML (specif-

ically AutoGluon) has proven effective for prototyping, we will im-

plement more controlled approaches for production environments

including:

• Multi-Station Benchmarking: Testing comprehensive ap-

proaches across multiple facilities selected based on field

expert proximity or regional director alignment

• Prompt EngineeringOptimization: Evaluating cost-performance

trade-offs with newer models, adapting dynamic exemplar

techniques, and applying optimization approaches like CO-

PRO [21] and MIPRO [17]

• Advanced Explainability: Testing alternative interpretabil-
ity methods from the imodels library [18] to enhance under-

standing of Shifu’s insights

Causal Reasoning Development: Building on our current

correlation-based approach, we will work toward more sophisti-

cated causal inference methods. The systematic data collection es-

tablished through Shifu provides the foundation for this transition,

potentially addressing the long-standing challenge of separating

correlation from causation in logistics performance analysis.

Shifu provides a blueprint for continuous learning systems in

domains with subjective quality criteria and specialized operational

contexts. By balancing automated analysis with human expertise,

this approach offers a path forward for knowledge-intensive appli-

cations where neither pure automation nor fully manual processes

are optimal.
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A DETAILED EVALUATION METRICS
This appendix provides detailed formulations for the Closed Feed-

back Loop Effectiveness (CFLE) and Capacity to Learn (C2L) metrics

referenced in Section 4.

A.1 Closed Feedback Loop Effectiveness (CFLE)
CFLE measures Shifu’s ability to successfully incorporate valid op-

erational feedback into future bridge generations. It specifically

quantifies the percentage of operator modifications that complete

the full feedback cycle—from initial modification to system incor-

poration.

A.1.1 Definition. CFLE is defined as the percentage of closed feed-

back loops out of the total correct and closable feedback loops. A

feedback loop is considered closable when the modifications made

by a station meet two criteria:

(1) They are verified by operational experts (ACES)

(2) They are grounded in data accessible to the Shifu system

Success is defined as achieving a score exceeding 80% of feedback

loops closed out of total possibly closable feedback loops.

A.1.2 Calculation Methodology. The CFLE calculation follows a

simple three-step process:

Step 1: Identify and categorize all operator modifications
We track four types of modifications made by operators:

• Content additions (new insights)

• Content deletions (removing irrelevant insights)

• Content modifications (changing existing insights)

• Content reordering (changing priority sequence)

Step 2: Determine valid closable feedback loops
For each modification, we check:

• Is it verified by operational experts (ACES)?

• Is it grounded in data accessible to Shifu?

Only modifications that meet both criteria are counted as valid

closable feedback loops.

Step 3: Calculate closure rate
The CFLE score is calculated using a simple percentage:

CFLE Score =
Number of successfully closed feedback loops

Number of valid closable feedback loops

×100%

Where:

• Successfully closed feedback loopsmeans the system has

incorporated the feedback in subsequent analyses

• Valid closable feedback loops means the total number of

feedback items that meet the verification and data grounding

criteria

A.1.3 Data Sources. CFLE calculation relies on three primary data

sources:

• ACESVerification: Daily expert validation of operator mod-

ifications through structured email exchanges

• Data Grounding Assessment: Verification that modifica-

tions reference metrics accessible to Shifu

• Closure Confirmation: Re-running analysis to confirm

that feedback has been incorporated

A.2 Capacity to Learn (C2L)
C2L quantifies Shifu’s ability to continuously improve through op-

erational feedback, focusing specifically on the relative velocity of

improvement between content quality and feedback incorporation.

A.2.1 Definition. C2L is defined as the average time taken to close

valid feedback loops, with a target of being faster than the time re-

quired for bridge quality improvements. This metric is particularly

important when the system demonstrates suboptimal initial bridge

quality (60%–80%), as it indicates how quickly the system can adapt

to operational needs.

Success is defined as achieving a feedback loop closure velocity

that equals or exceeds the velocity of bridge quality improvement.

A.2.2 Calculation Methodology. The C2L calculation involves com-

paring two different velocity measurements:

Step 1: Track daily scores for both metrics

• Bridge Quality Score: How well the system content meets

user needs

• Feedback Loop Score: How effectively the system closes

feedback loops

Step 2: Calculate daily changes
For each day after day 1, we calculate the day-to-day change in

scores:

ΔQuality
day

= QualityScore
day
− QualityScore

day-1

ΔFeedback
day

= FeedbackScore
day
− FeedbackScore

day-1

Step 3: Calculate average velocity
Velocity is simply the average rate of change across all days of the

evaluation:

Velocity
Quality

=
Sum of all daily quality changes

Number of days - 1

Velocity
Feedback

=
Sum of all daily feedback changes

Number of days - 1

Step 4: Compare velocities
Success is achieved when the feedback velocity is greater than or

equal to the quality velocity:

Velocity
Feedback

≥ Velocity
Quality

This indicates that the system is learning and incorporating

feedback at a pace that keeps up with or exceeds improvements in

content quality.

A.2.3 Interpretation. The C2L metric helps us understand whether:

• The system learns quickly enough to drive quality improve-

ments

• Improvements in quality are coming from feedback incorpo-

ration

• The feedback loop is functioning effectively as a learning

mechanism

A positive quality velocity with a comparable or higher feedback

velocity suggests an effective continuous learning system.
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A.2.4 Data Sources. C2L calculation relies on daily measurements

of:

• Bridge Quality Scores: Derived from the Bridge Quality

metric as defined in Section 4

• Feedback Loop Scores: The daily CFLE scores as described

above

The velocity measurements provide insight into the system’s

learning dynamics, with an optimal result showing bridge quality

improvements that match or exceed the pace of feedback incorpo-

ration.
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